	Report No.: DACE240425008RL001
DAC	
DAG	RF TEST REPORT
RESING T	
	ECHNOLOGY (SHENZHEN) CO., LTD duct Name: Wireless Earphone
	Test Model(s).: X88
Report Reference No.	: DACE240425008RL001
FCC ID	: 2ATU8-X88
Applicant's Name	: BESING TECHNOLOGY (SHENZHEN) CO., LTD
Address	2F, Block 1, Tianxin Resident Group Industrial Park, Shangwu Community, Shiyan Street, Baoan District, Shenzhen, China
Testing Laboratory	: Shenzhen DACE Testing Technology Co., Ltd.
Address	 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China
Test Specification Standard	: 47 CFR Part 15.247
Date of Receipt	: April 25, 2024
Date of Test	: April 25, 2024 to April 30, 2024
Data of Issue	: April 30, 2024
Result 🔷	: Pass
Testing Technology Co., Ltd. Thi	produced except in full, without the written approval of Shenzhen DACE s document may be altered or revised by Shenzhen DACE Testing Technology all be noted in the revision section of the document. The test results in the ample
- C	e & Technology Park, Tangtou, Shiyan, Bao′an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Ì

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 1 of 136

)DC

Report No.: DACE240425008RL001

Revision History Of Report

Version	Description	REPORT No.	Issue Date
V1.0	Original	DACE240425008RL001	April 30, 2024
	20	. 6	
	Dr		
		U	2

NOTE1:

DAG

DΔ

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

NE

Compiled by:

Ben Tang /Test Engineer

Tom Chen Tom Chen / Project Engineer

)De

NE

DAG

Supervised by:

Approved by:

ø

Machael MJ

Machael Mo / Manager

4

 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com

NE

26

Page 2 of 136

٩

CONTENTS

200	CONTENTS	
	Result	
	۷	
	vice (EUT) ST Modes	
	PPORT UNITS	
2.5 EQUIPMENTS USED I	DURING THE TEST	
	MEASUREMENT UNCERTAINTY	
	ESTING LABORATORY	
	VALUATION)	
3.1 ANTENNA REQUIREM	ENT	
3.1.1 Conclusion	:	
RADIO SPECTRUM MATT	ER TEST RESULTS (RF)	
4.1 CONDUCTED EMISSIO	ON AT AC POWER LINE	
411FUT Ope	ration:	<u> (</u>
4.1.2 Test Setup	Diagram:	
	2.09.01	
	тн	
	ration:	
	Diagram:	
	ED OUTPUT POWER	
	ration:	
•	Diagram:	
	с 	
4.4 CHANNEL SEPARATIO	DN	N
4.4.1 E.U.T. Ope	ration:	
4.4.2 Test Setup	Diagram:	
4.4.3 Test Data:.	-	
4.5 NUMBER OF HOPPIN	G FREQUENCIES	
4.5.1 E.U.T. Ope	ration:	
4.5.2 Test Setup	Diagram:	<u>. (</u>
4.6 DWELL TIME		
4.6.1 E.U.T. Ope	ration:	
	Diagram:	
	ESTRICTED FREQUENCY BANDS	
•	ration:	
	Diagram:	
	NS (RADIATED)	
4.8.1 E.U.T. Ope	ration:	

DAG

2

DAG

4.8.2 Test Setup Diagram:	
4.9 EMISSIONS IN FREQUENCY BANDS (BELOW 10	iHz)
	GHz)
4.10.1 E U.T. Operation:	
4.10.1 E.O.1. Operation	
	40 53
	54
	G)
	G)123
8. DWELL TIME (HOPPING)	

DAE

DAG

)AC

DAE

Page 4 of 136

-

1 TEST SUMMARY

1.1 Test Standards

DAG

The tests were performed according to following standards:

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

1.2 Summary of Test Result

Item	Standard	Method	Requirement	Result
Antenna requirement	47 CFR Part 15.247		47 CFR 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	ANSI C63.10-2013 section 6.2	47 CFR 15.207(a)	Pass
Occupied Bandwidth	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.7 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.215(c)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(b)(1)	Pass
Channel Separation	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)	Pass
Number of Hopping Frequencies	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)(iii)	Pass
Dwell Time	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)(iii)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass

Page 5 of 136

			200
DVG	V1.0	V	Report No.: DACE240425008RL001
2 GENERAL II 2.1 Client Information	_	RMATION	
Applicant's Name		BESING TECHNOLOGY (SHENZHEI	
Address	ł	2F, Block 1, Tianxin Resident Group I Shiyan Street, Baoan District, Shenzh	ndustrial Park, Shangwu Community,
Manufacturer	:	BESING TECHNOLOGY (SHENZHEI	N) CO., LTD
Address	:	2F, Block 1, Tianxin Resident Group I Shiyan Street, Baoan District, Shenzh	

2.2 Description of Device (EUT)

Product Name:	Wireless Earphone
Model/Type reference:	X88
Series Model:	N/A
Trade Mark:	N/A
Power Supply:	DC 5V/1A from adapter Battery:DC3.7V 65mAH
Operation Frequency:	2402MHz to 2480MHz
Number of Channels:	79
Modulation Type:	GFSK, π/4 DQPSK, 8DPSK
Antenna Type:	Chip antenna
Antenna Gain:	1.8dBi
Hardware Version:	V1.0
Software Version:	V1.0

(Remark: The Antenna Gain is supplied by the customer. DACE is not responsible for This data and the related calculations associated with it)

Operatio	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32 🗸	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Tel: +86-755-23010613

Web: http://www.dace-lab.com

E-mail: service@dace-lab.com

Report No.: DACE240425008RL001

16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

DA

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency (MHz)
	BDR/EDR
Lowest channel	2402MHz
Middle channel	2441MHz
Highest channel	2480MHz

2.3 Description of Test Modes

No	Title	Description
TM1	TX-GFSK (Non- Hopping)	Keep the EUT in continuously transmitting mode (non-hopping) with GFSK modulation.
TM2	TX-Pi/4DQPSK (Non- Hopping)	Keep the EUT in continuously transmitting mode (non-hopping) with Pi/4DQPSK modulation.
тмз	TX-GFSK (Hopping)	Keep the EUT in continuously transmitting mode (hopping) with GFSK modulation,.
TM4	TX-Pi/4DQPSK (Hopping)	Keep the EUT in continuously transmitting mode (hopping) with Pi/4DQPSK modulation.
Remarl	k:Both left and right ears hav	re been tested, and only the worst left ear data is reflected in the

report. Only the data of the worst mode would be recorded in this report.

2.4 Description of Support Units

NE

Title	Manufacturer	Model No.	Serial No.
AC-DC adapter	HUAWEI TECHNOLOGY	HW100400C01	

De

)AC

C

2.5 Equipments Used During The Test

C power line Ianufacturer										
lanufacturer	Madal Na		Conducted Emission at AC power line							
	Model No	Inventory No	Cal Date	Cal Due Date						
EVERFINE	LLA-2	80900L-C	2024-02-19	2025-02-18						
SCHWARZ BECK	MESS- ELEKTRONIK	1	2024-03-25	2025-03-24						
SCHWARZ BECK	CAT5 8158	CAT5 8158#207	/	10						
SCHWARZ BECK	1	/	2024-03-20	2025-03-19						
SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB Ateennator	561-G071	2023-12-12	2024-12-11						
Anritsu	MP59B	M20531	/	/						
Rohde & Schwarz	ESPI TEST RECEIVER	ID:1164.6607K 03-102109- MH	2023-06-13	2024-06-12						
R&S	ESH3-Z5	831.5518.52	2023-12-12	2024-12-11						
	SCHWARZ BECK SCHWARZ BECK SCHWARZ BECK SCHWARZ BECK Anritsu Rohde & Schwarz	SCHWARZ BECKMESS- ELEKTRONIKSCHWARZ BECKCAT5 8158SCHWARZ BECK/SCHWARZ BECK/SCHWARZ BECKVTSD 9561-F Pulse limiter 10dB AteennatorAnritsuMP59BRohde & SchwarzESPI TEST RECEIVER	SCHWARZ BECKMESS- ELEKTRONIK/SCHWARZ BECKCAT5 8158CAT5 8158#207SCHWARZ BECK//SCHWARZ BECK//SCHWARZ BECKVTSD 9561-F Pulse limiter 10dB Ateennator561-G071AnritsuMP59BM20531Rohde & SchwarzESPI TEST RECEIVERID:1164.6607K 03-102109- MH	SCHWARZ BECKMESS- ELEKTRONIK/2024-03-25SCHWARZ BECKCAT5 8158CAT5 8158#207/SCHWARZ BECK//2024-03-20SCHWARZ BECK//2024-03-20SCHWARZ BECK//2024-03-20SCHWARZ BECKVTSD 9561-F Pulse limiter 10dB Ateennator561-G0712023-12-12AnritsuMP59BM20531/Rohde & SchwarzESPI TEST RECEIVERID:1164.6607K 03-102109- MH2023-06-13						

Occupied Bandwidth Maximum Conducted Output Power Channel Separation Number of Hopping Frequencies

Dwell Time

DAG

Emissions in non-restricted frequency bands

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
RF Test Software	TACHOY	RTS-01	V2.0.0.0	1	/	
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	1	/	
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10	
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	1	Digo	
Wideband radio communication tester	R&S	CMW500	113410	2023-06-13	2024-06-12	
Vector signal generator	Keysight	N5181A	MY48180415	2023-11-09	2024-11-08	
Signal generator	Keysight	N5182A	MY50143455	2023-11-09	2024-11-08	
Spectrum Analyzer	Keysight	N9020A	MY53420323	2023-12-12	2024-12-11	

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.com

Page 8 of 136

Report No.: DACE240425008RL001

Emissions in frequence Emissions in frequence	•			2P	
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
EMI Test software	Farad	EZ -EMC	V1.1.42	/	1
Positioning Controller	<u> </u>	MF-7802	C 1	1	1
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	1	-10
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2022-04-05	2025-04-04
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-04-05	2025-04-04
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2021-07-05	2024-07-04
Cable(LF)#2	Schwarzbeck	/		2024-02-19	2025-02-18
Cable(LF)#1	Schwarzbeck	/		2024-02-19	2025-02-18
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2024-03-20	2025-03-19
Cable(HF)#1	Schwarzbeck	SYV-50-3-1	/	2024-03-20	2025-03-19
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2023-06-13	2024-06-12
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2023-06-13	2024-06-12
Wideband radio communication tester	R&S	CMW500	113410	2023-06-13	2024-06-12
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2023-06-14	2024-06-13
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2023-05-21	2025-05-20
Test Receiver	R&S	ESCI	102109	2023-06-13	2024-06-12
DAE DAE					

)DE

DAG

V1.0

DAG

2

2

DAE

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

)DE

NE

DΔ

2.6 Statement Of The Measurement Uncertainty

Test Item	Measurement Uncertainty
Conducted Disturbance (0.15~30MHz)	±3.41dB
Occupied Bandwidth	±3.63%
RF conducted power	±0.733dB
Duty cycle	±3.1%
Conducted Spurious emissions	±1.98dB
Radiated Emission (Above 1GHz)	±5.46dB
Radiated Emission (Below 1GHz)	±5.79dB
Note: (1) This upportainty represents an expanded	upportainty expressed at approximately the 05%

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.7 Identification of Testing Laboratory

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
	102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park,
Address:	Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
Identification of the Responsi	ible Testing Location
Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
A data a a .	102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park,
Address:	Tangtou, Shiyan, Bao′an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
FCC Registration Number:	0032847402
Designation Number:	CN1342
Test Firm Registration Number:	778666
A2LA Certificate Number:	6270.01

2.8 Announcement

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by DACE and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

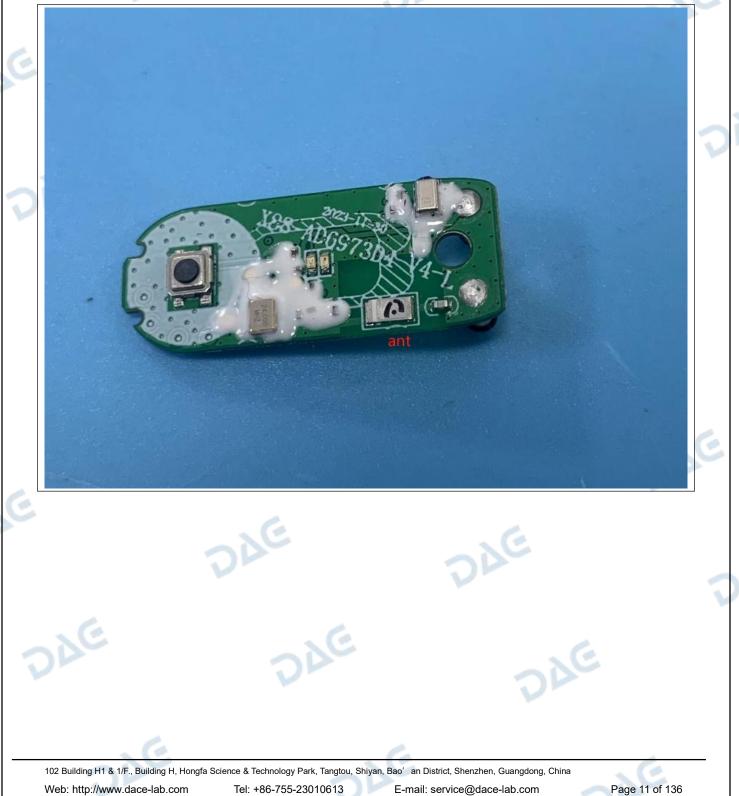
(6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com

Report No.: DACE240425008RL001

3 Evaluation Results (Evaluation)


3.1 Antenna requirement

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.1 Conclusion:

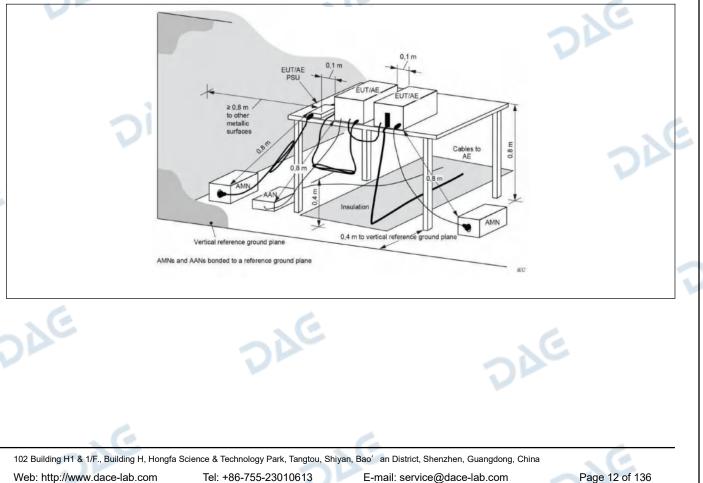
Test Requirement:

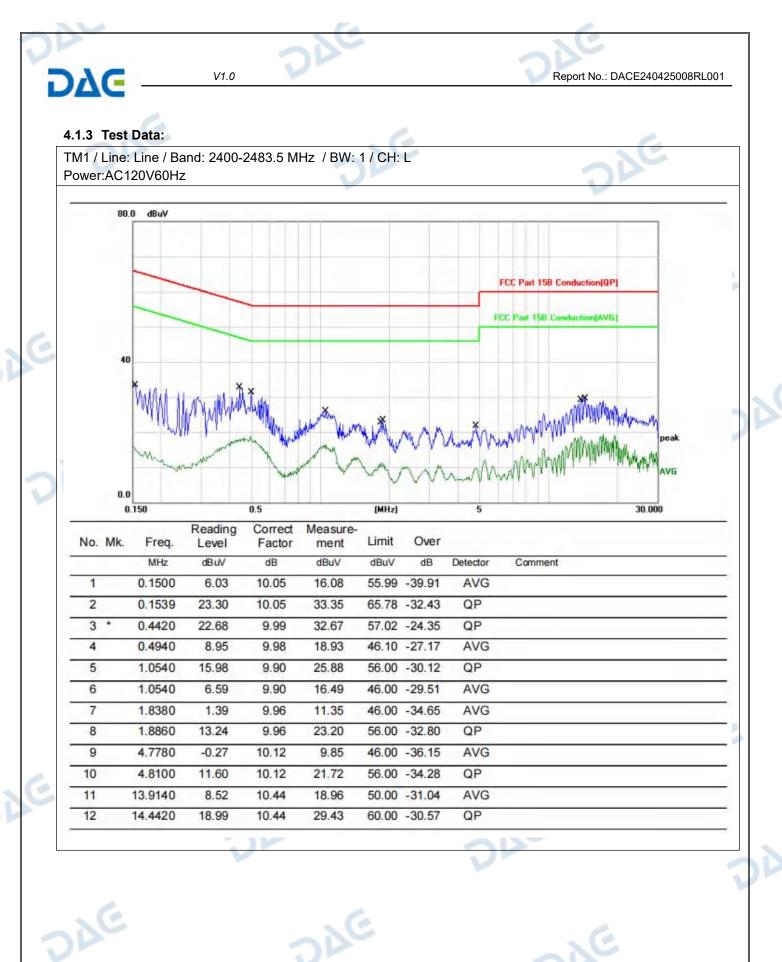
DVC

Report No.: DACE240425008RL001

Radio Spectrum Matter Test Results (RF) 4

4.1 Conducted Emission at AC power line

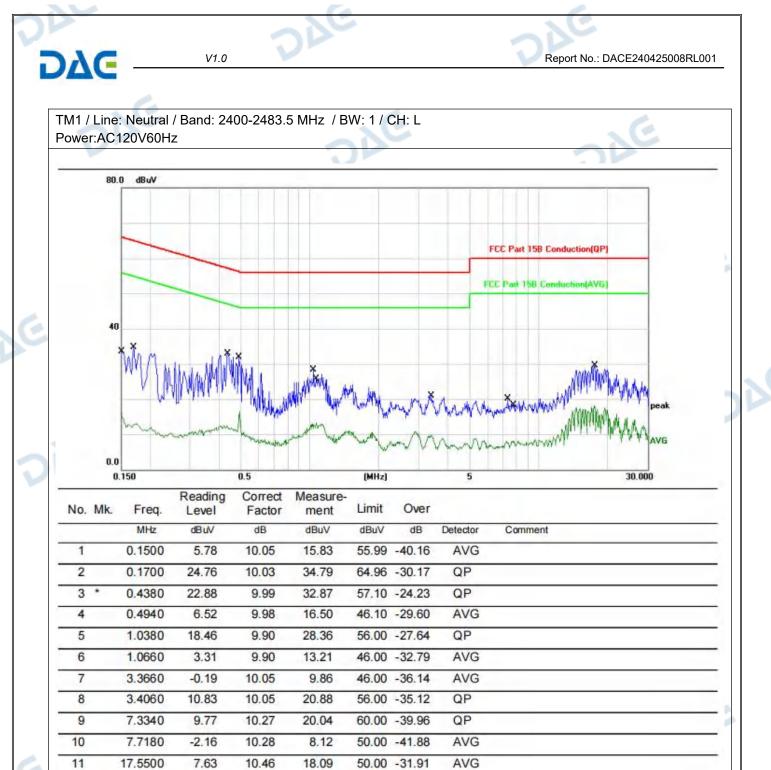

Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).						
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)					
		Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	*Decreases with the logarithm of the frequency.						
Test Method:	ANSI C63.10-2013 section 6.2	V	4				
Procedure:	Refer to ANSI C63.10-2013 section conducted emissions from unlicense		for ac power-line				
4.1.1 E.U.T. Operation:	.C						


4.1.1 E.U.T. Operation:

DAG

Operating Enviro	onment:		22			C
Temperature:	23 °C		Humidity:	52.9 %	Atmospheric Pressure:	101 kPa
Pretest mode:		TM1				
Final test mode:		TM1				

4.1.2 Test Setup Diagram:



102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

DAG

)AC

29.46

60.00 -30.54

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China E-mail: service@dace-lab.com

QP

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613

12

DAG

17.5780

19.00

10.46

Report No.: DACE240425008RL001

4.2 Occupied Bandwidth

DΔC

Test Requirement:	47 CFR 15.215(c)	
Test Limit:	Refer to 47 CFR 15.215(c), intentional radiators operal provisions to the general emission limits, as contained and in subpart E of this part, must be designed to ensu of the emission, or whatever bandwidth may otherwise rule section under which the equipment operates, is co band designated in the rule section under which the equipment	in §§ 15.217 through 15.257 ure that the 20 dB bandwidth be specified in the specific ontained within the frequency
Test Method:	ANSI C63.10-2013, section 7.8.7, For occupied bandw procedure in 6.9.2. KDB 558074 D01 15.247 Meas Guidance v05r02	vidth measurements, use the
Procedure:	 a) The spectrum analyzer center frequency is set to th center frequency. The span range for the EMI receiver be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be the OBW and video bandwidth (VBW) shall be approximately unless otherwise specified by the applicable requirement of the reference level of the instrument as required. 	or spectrum analyzer shall in the range of 1% to 5% of imately three times RBW, ent.
	 exceeding the maximum input mixer level for linear op of the spectral envelope shall be more than [10 log (Ol reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust tolerances. e) The dynamic range of the instrument at the selected dB below the target "-xx dB down" requirement; that is measuring the -20 dB OBW, the instrument noise floo be at least 30 dB below the 	BW/RBW)] below the within the specified d RBW shall be more than 10 s, if the requirement calls for
	 reference value. f) Set detection mode to peak and trace mode to maxing) Determine the reference value: Set the EUT to transform modulated signal, as applicable. Allow the trace to sanalyzer marker to the highest level of the displayed trivalue). h) Determine the "-xx dB down amplitude" using [(refe Alternatively, this calculation may be made by using the instrument. i) If the reference value is determined by an unmodulation ON, and either clear the existing trace or sispectrum analyzer and allow the new trace to stabilize 	smit an unmodulated carrier stabilize. Set the spectrum race (this is the reference erence value) – xx]. e marker-delta function of the ted carrier, then turn the EUT tart a new trace on the
	step g) shall be used for step j). j) Place two markers, one at the lowest frequency and frequency of the envelope of the spectral display, such slightly below the "-xx dB down amplitude" determined below this "-xx dB down amplitude" value, then it shall this value. The occupied bandwidth is the frequency di markers. Alternatively, set a marker at the lowest frequency of spectral display, such that the marker is at or slightly b	the other at the highest that each marker is at or in step h). If a marker is be as close as possible to ifference between the two iency of the envelope of the elow the "-xx dB down
AE	amplitude" determined in step h). Reset the marker-de marker to the other side of the emission until the delta same level as the reference marker amplitude. The ma at this point is the specified emission bandwidth. k) The occupied bandwidth shall be reported by provid instrument display; the plot axes and the scale units pe labeled. Tabular data may be reported in addition to the	marker amplitude is at the arker-delta frequency reading ling plot(s) of the measuring er division shall be clearly
4.2.1 E.U.T. Operation:		
Operating Environment:		

Web: http://www.dace-lab.com

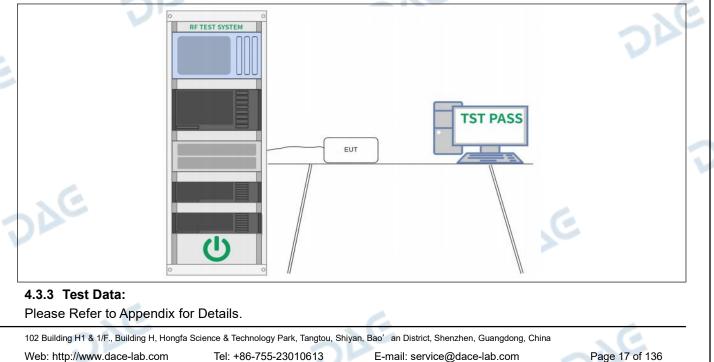
102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China E-mail: service@dace-lab.com

1	<u>оде</u> — –	V1.0		Repo	ort No.: DACE240425008RL001
[Temperature: 23 °C	Humidity:	52.9 %	Atmospheric Pressure:	101 kPa
	Pretest mode:	TM1, TM2	02.0 //		
	Final test mode:	TM1, TM2	26		20
l	4.2.2 Test Setup Diagra				
5		RF TEST SYSTEM	EUT	TST PASS	JE JAC
	4.2.3 Test Data: Please Refer to Appendix	for Details.			

DAG

Report No.: DACE240425008RL001

4.3 Maximum Conducted Output Power


Test Requirement: Test Limit:	47 CFR 15.247(b)(1)
Test Limit:	
	Refer to 47 CFR 15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test Method:	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test: a) Use the following spectrum analyzer settings: 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. 2) RBW > 20 dB bandwidth of the emission being measured.
	 3) VBW >= RBW. 4) Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold. b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables. e) A plot of the test results and setup description shall be included in the test report. NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.
4.3.1 E.U.T. Operation:	SC G

6

4.3.1 E.U.T. Operation:

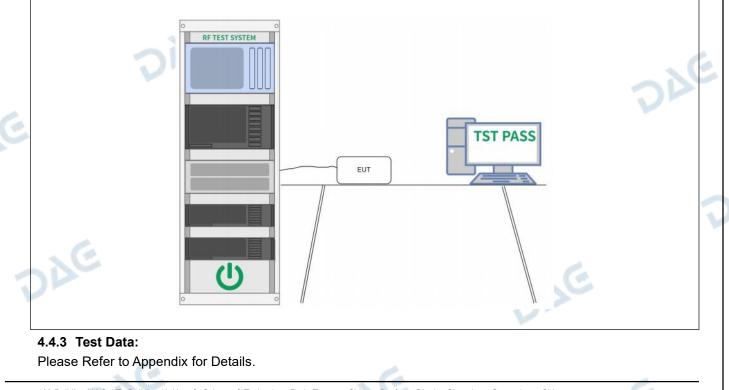
Operating Envir	onment:			2P		200
Temperature:	23 °C		Humidity:	52.9 %	Atmospheric Pressure:	101 kPa
Pretest mode:		TM1,	TM2			
Final test mode:	inal test mode: TM1, TM2					
	-	19				

4.3.2 Test Setup Diagram:

Report No.: DACE240425008RL001

4.4 Channel Separation

DAG


Test Requirement: 47 CFR 15.247(a)(1) Test Limit: Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. Test Method: ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02 Procedure: The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. a) Allow the trace to stabilize 			_
channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. Test Method: ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02 Procedure: The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold.	Test Requirement:	47 CFR 15.247(a)(1)	
KDB 558074 D01 15.247 Meas Guidance v05r02 Procedure: The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. 	Test Limit:	channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems	
 analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. 	Test Method:		
	Procedure:	 analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall 	

. 6

4.4.1 E.U.T. Operation:

Operating Environment:						
Temperature: 23 °C		Humidity:	52.9 %	1	Atmospheric Pressure:	101 kPa
Pretest mode:	TM3,	TM4		C		· Ce
Final test mode:	ТМ3,	TM4	Jr			200

4.4.2 Test Setup Diagram:

 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com

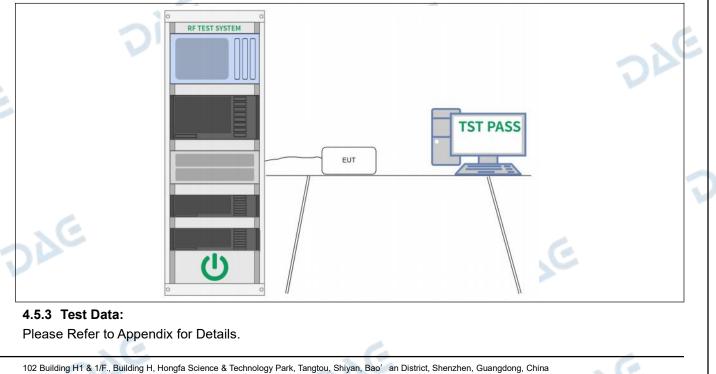
Report No.: DACE240425008RL001

Page 19 of 136

4.5 Number of Hopping Frequencies

DAG

Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data


. 6

4.5.1 E.U.T. Operation:

Operating Envir	onment:			. 6		
Temperature:	23 °C	_	Humidity:	52.9 %	Atmospheric Pressure:	101 kPa
Pretest mode:		ΤМЗ,	TM4	V		21-
Final test mode:		ΤМЗ,	TM4			

4.5.2 Test Setup Diagram:

Web: http://www.dace-lab.com

E-mail: service@dace-lab.com

Tel: +86-755-23010613

Report No.: DACE240425008RL001

4.6 Dwell Time

DγG

4.0 Dwell Time	
Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements) = (number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) × (period specified in the requirements / analyzer sweep time) The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation. The measured transmit time and time between hops shall be consistent with the values described in the operational description for the EUT.
4.6.1 E.U.T. Operation:	

4.6.1 E.U.T. Operation:

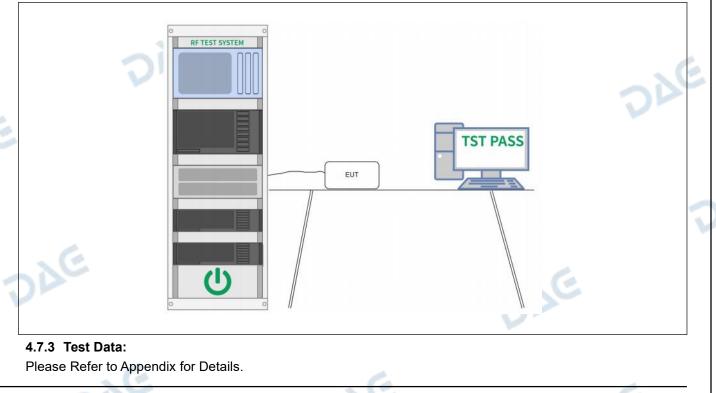
Operating Envi	ronment:					
Temperature:	23 °C		Humidity:	52.9 %	Atmospheric Pressure:	101 kPa
Pretest mode:		TM3, 1	TM4			
Final test mode	:	TM3, ⁻	TM4	6		
4.6.2 Test Set	up Diagra	m:		20		C
					~	

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

			- Ale	
DAC -	V1.0		Report No.: DACE240425008RL001	-
200	O RF TEST SYSTEM	0	6	
DE			240	
			V	
		8		
			TST PASS	
2		EUT		
2				
	U			
	0	0	N	
4.6.3 Test Data:				
Please Refer to Ap	pendix for Details.			
		V		

DAG

Report No.: DACE240425008RL001


4.7 Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers. Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.

4.7.1 E.U.T. Operation:

Operating Environment:						
Temperature: 23 °C		Humidity:	52.9 %	1	Atmospheric Pressure:	101 kPa
Pretest mode:	TM1,	TM2, TM3, 1	rm4	C		. 6
Final test mode:	TM1,	TM2, TM3, 1	ГM4			20

4.7.2 Test Setup Diagram:

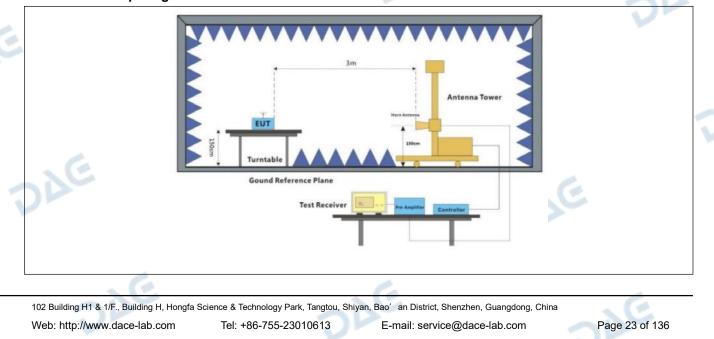
 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China

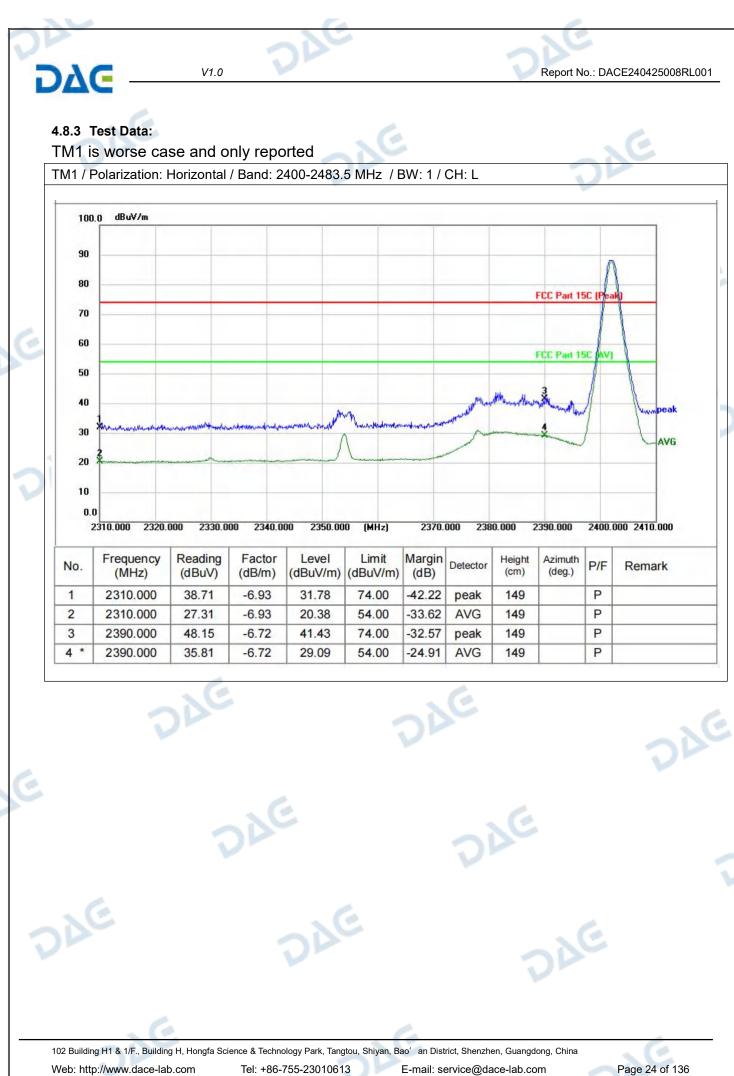
 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com

Report No.: DACE240425008RL001

4.8 Band edge emissions (Radiated)

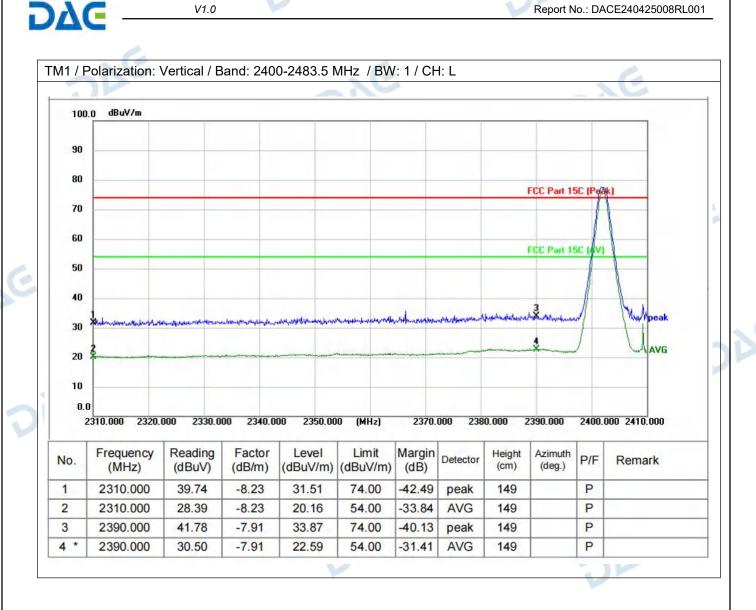
DAG


Test Requirement:	restricted bands, as de	7(d), In addition, radiated emissio fined in § 15.205(a), must also c d in § 15.209(a)(see § 15.205(c)	omply with the radiated
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
26	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
) de	radiators operating und 54-72 MHz, 76-88 MHz these frequency bands and 15.241. In the emission table al The emission limits sho employing a CISPR qu 110–490 kHz and abov	n paragraph (g), fundamental err er this section shall not be locate t, 174-216 MHz or 470-806 MHz is permitted under other section pove, the tighter limit applies at the own in the above table are based asi-peak detector except for the e 1000 MHz. Radiated emission ments employing an average det	ed in the frequency bands . However, operation within s of this part, e.g., §§ 15.231 he band edges. I on measurements frequency bands 9–90 kHz, limits in these three bands
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.24	tion 6.10 17 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2013 sec	tion 6.10.5.2	1C
481 FUT Operation			


. 6

4.8.1 E.U.T. Operation:

Operating Envir	onment:					
Temperature:	23 °C		Humidity:	52.9 %	Atmospheric Pressure:	101 kPa
Pretest mode:		TM1,	TM2		. 6	
Final test mode:	SP	TM1,	TM2	-	200	


4.8.2 Test Setup Diagram:

E-mail: service@dace-lab.com

Report No.: DACE240425008RL001

DAE

4

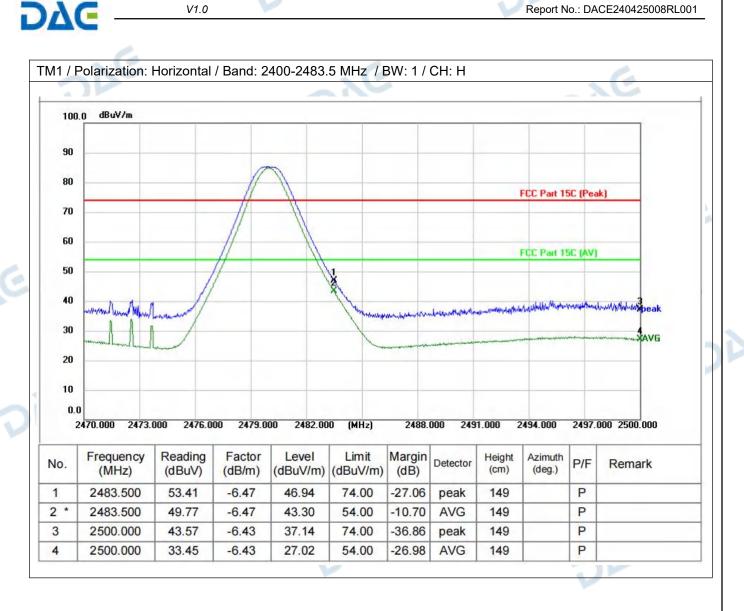
DAG

DAG

)DE

DAG

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com


)AC

)DE

NE

Report No.: DACE240425008RL001

DAE

DAG

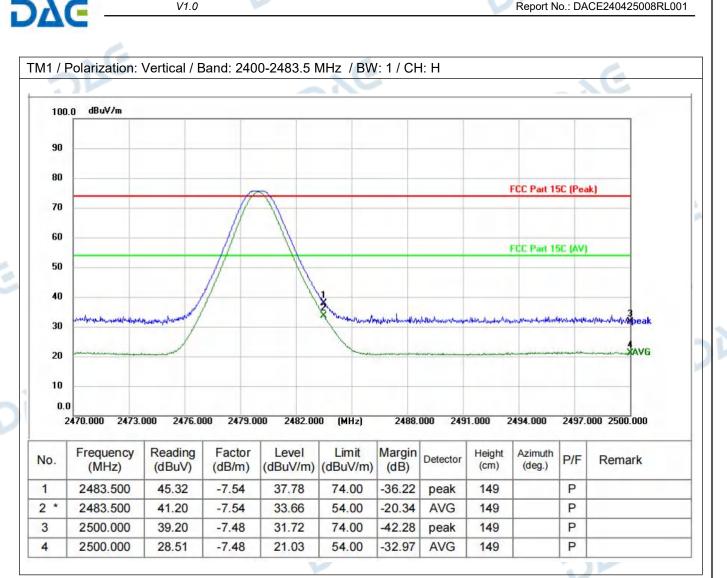
4

DAG

DAG

)AC

DAE


102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

NE

Report No.: DACE240425008RL001

Remark: The test software will only record the worst test angle and height, and only the worst case will be displayed in the test report

AC

)AC

Both left and right ears have been tested, and only the worst left ear data is reflected in the report.

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

NE

NE

DAE

16

DγG

4.9 Emissions in frequency bands (below 1GHz)

Test Requirement:	restricted bands, as defin	d), In addition, radiated emissions ied in § 15.205(a), must also com in § 15.209(a)(see § 15.205(c)).`					
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
Test Method:	The emission limits show employing a CISPR quas 110–490 kHz and above are based on measureme ANSI C63.10-2013 section		n measurements quency bands 9–90 kHz, nits in these three bands				
20	KDB 558074 D01 15.247 Meas Guidance v05r02						
Procedure:	above the ground at a 3 360 degrees to determine b. For above 1GHz, the E above the ground at a 3 degrees to determine the c. The EUT was set 3 or which was mounted on th d. The antenna height is determine the maximum polarizations of the anter e. For each suspected er the antenna was tuned to below 30MHz, the antenn was turned from 0 degree f. The test-receiver syste Bandwidth with Maximum g. If the emission level of specified, then testing co reported. Otherwise the e tested one by one using reported in a data sheet. h. Test the EUT in the low i. The radiation measurer Transmitting mode, and f	the EUT in peak mode was 10dE uld be stopped and the peak value emissions that did not have 10dB peak, quasi-peak or average meth vest channel, the middle channel, ments are performed in X, Y, Z ax ound the X axis positioning which	ber. The table was rotated tion. totating table 1.5 meters te table was rotated 360 ence-receiving antenna, a tower. ters above the ground to orizontal and vertical nent. the worst case and then its worst case and then is (for the test frequency of and the rotatable table imum reading. on and Specified B lower than the limit les of the EUT would be margin would be re- hod as specified and then the Highest channel. is positioning for n it is the worst case.				
xe	Remark: 1) For emission below 10	res until all frequencies measured GHz, through pre-scan found the v , Shiyan, Bao' an District, Shenzhen, Guangdong,	worst case is the lowest				

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.com

DVG -	V1.0	Report No.: DACE240425008RL0
DAG	Preamplifier. The basic equa Final Test Level =Receiver R Preamplifier Factor 3) Scan from 9kHz to 25GHz was very low. The points man found when testing, so only a spurious emissions from the	a is recorded in the report. ated by adding the Antenna Factor, Cable Factor & tion with a sample calculation is as follows: eading + Antenna Factor + Cable Factor "C t, the disturbance above 12.75GHz and below 30MHz rked on above plots are the highest emissions could be above points had been displayed. The amplitude of radiator which are attenuated more than 20dB below d. Fundamental frequency is blocked by filter, and only

4.9.1 E.U.T. Operation:

Temperature: 23 °C Humidity: 52.9 % Atmospheric Pressure: 101 kPa Pretest mode: TM1	Operating Environment:								
	Temperature:	23 °C	~	Humidity:	52.9 %	Atmospheric Pressure:	101 kPa		
	Pretest mode:	TM1			. 6				
Final test mode: TM1	Final test mode:	TM1							

4.9.2 Test Data:

TM1 is worse case and only reported

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L

Tel: +86-755-23010613


Web: http://www.dace-lab.com

E-mail: service@dace-lab.com

DVC

DAG

Report No.: DACE240425008RL001

NO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Deteotor	(cm)	(deg.)	1 /1	Kennark
1	59.4405	35.34	-9.06	26.28	40.00	-13.72	QP	100		Р	
2 *	86.8068	37.06	-6.51	30.55	40.00	-9.45	QP	100		Р	
3	129.0146	31.07	-4.53	26.54	43.50	-16.96	QP	100		Р	
4	383.9318	33.38	1.18	34.56	46.00	-11.44	QP	100		Р	
5	593.0497	24.55	4.87	29.42	46.00	-16.58	QP	100		Р	
6	955.4381	25.57	9.21	34.78	46.00	-11.22	QP	100		P	

Remark: The test software will only record the worst test angle and height, and only the worst case will be displayed in the test report

Both left and right ears have been tested, and only the worst left ear data is reflected in the report.

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.com

NC

AC

)AC

DγG

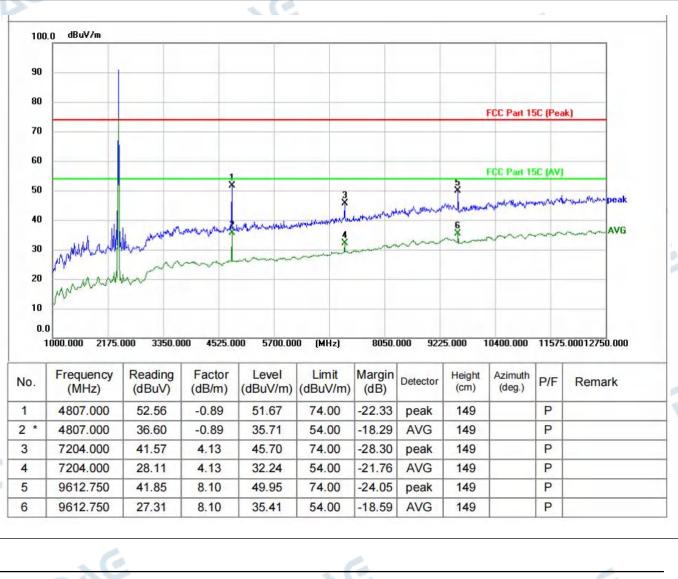
Report No.: DACE240425008RL001

4.10 Emissions in frequency bands (above 1GHz)

Test Requirement:	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).						
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
240	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
1	Above 960	500	3				
Test Method:	radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.						
Test Method:	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02						
Procedure:	 a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rota 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 36 degrees to determine the position of the highest radiation. c. The EUT was set 3 or 10 meters away from the interference-receiving antenna which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and the the antenna was tuned to heights from 1 meter to 4 meters (for the test frequence below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak, quasi-peak or average method as specified and t reported in a data sheet. h. Test the EUT in the lowest channel, the middle channel, the Highest channel. i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete. Remark: 						
-C	1) For emission below 1GHz, through pre-scan found the worst case is the lowest						

 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China

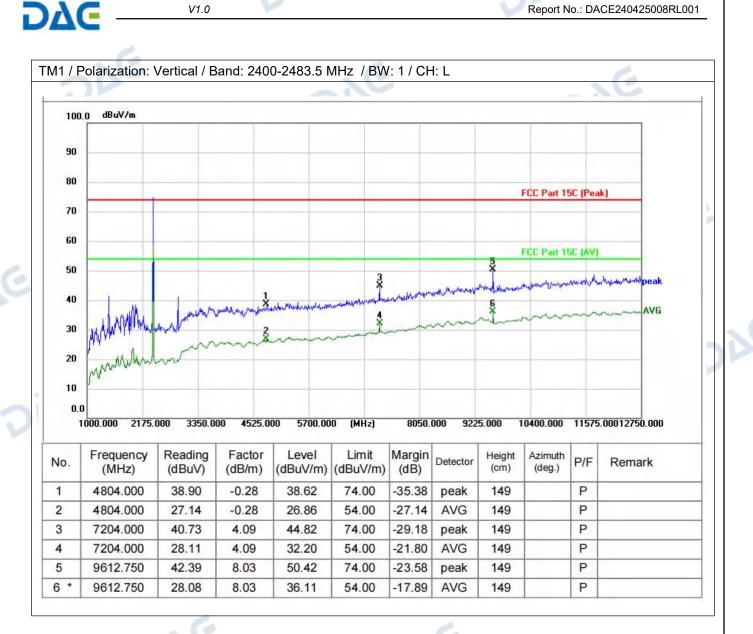
 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com


DAG -	V1.0	Report No.: DACE240425008RL001
DAG	 2) The field strength is calc Preamplifier. The basic equipart Final Test Level =Receiver Preamplifier Factor 3) Scan from 9kHz to 25GI was very low. The points m found when testing, so only spurious emissions from the 	se is recorded in the report. culated by adding the Antenna Factor, Cable Factor & uation with a sample calculation is as follows: Reading + Antenna Factor + Cable Factor "C Hz, the disturbance above 12.75GHz and below 30MHz narked on above plots are the highest emissions could be y above points had been displayed. The amplitude of he radiator which are attenuated more than 20dB below ted. Fundamental frequency is blocked by filter, and only n.

4.10.1 E.U.T. Operation:

Operating Environment:								
Temperature:	- >	Humidity:	52.9 %	Atmospheric Pressure:	101 kPa			
Pretest mode:	TM1, TM2							
Final test mode:	TM1,	TM2	M2					

4.10.2 Test Data:


 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com

4

DAG

Report No.: DACE240425008RL001

10

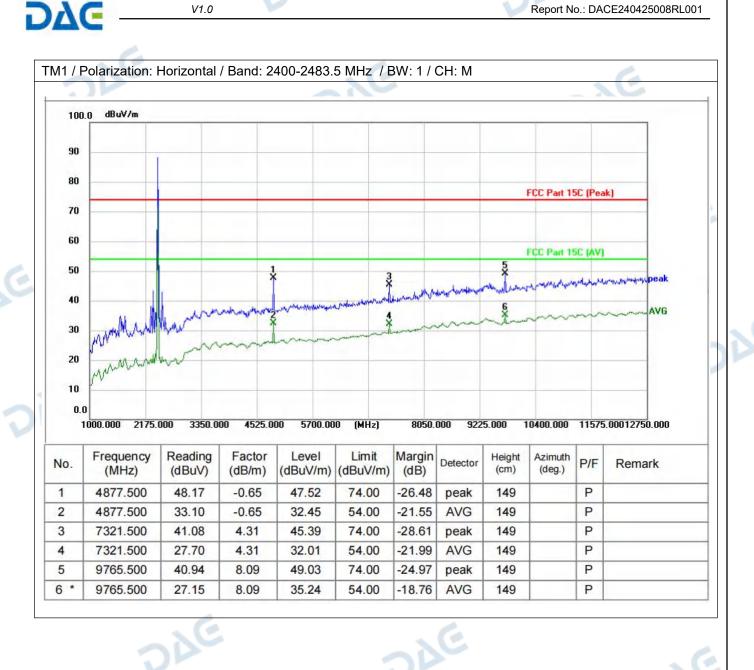
)De

DAG

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

)De



NE

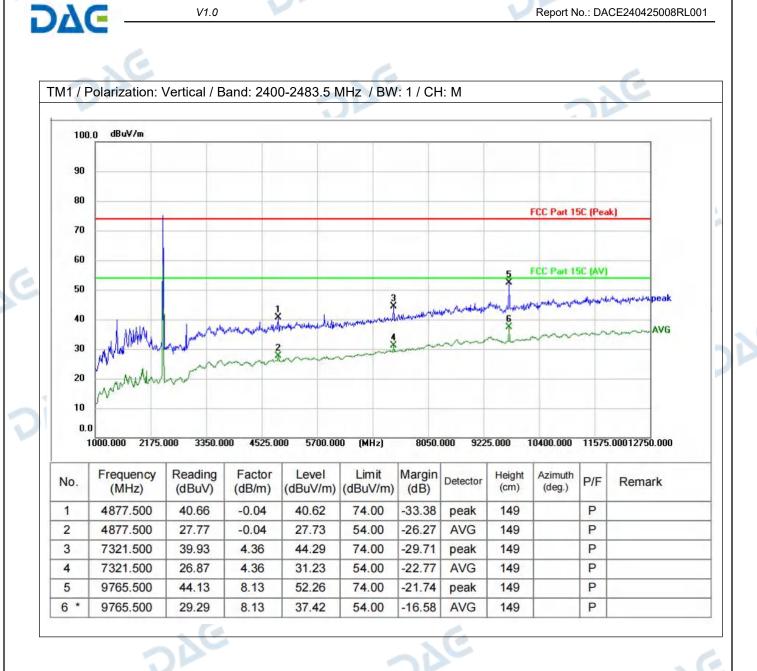
4

DAG

Report No.: DACE240425008RL001

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC


)AC

)De

DAG

DE

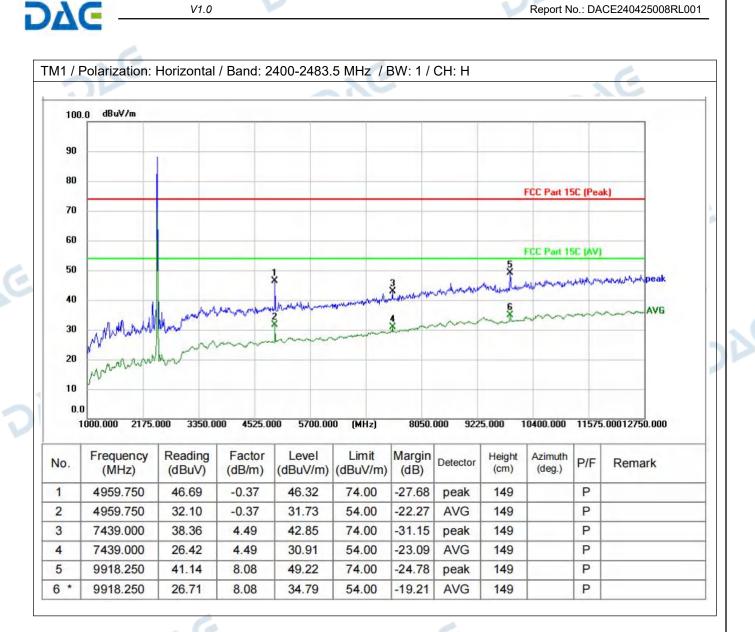
Report No.: DACE240425008RL001

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)DE

)AC

DAG


)De

DAG

4

DAG

Report No.: DACE240425008RL001

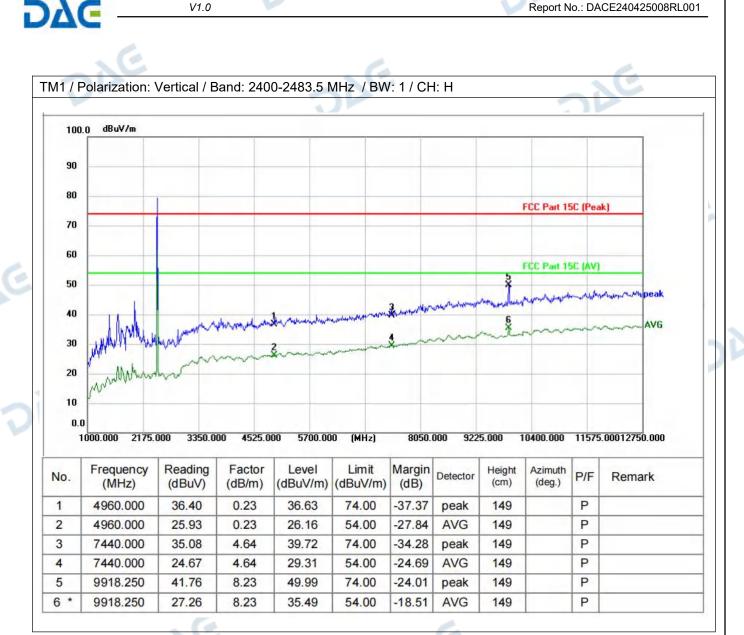
10

)De

DAG

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC


)De

NE

V1.0

Report No.: DACE240425008RL001

Remark: The test software will only record the worst test angle and height, and only the worst case will be displayed in the test report

AC

)AC

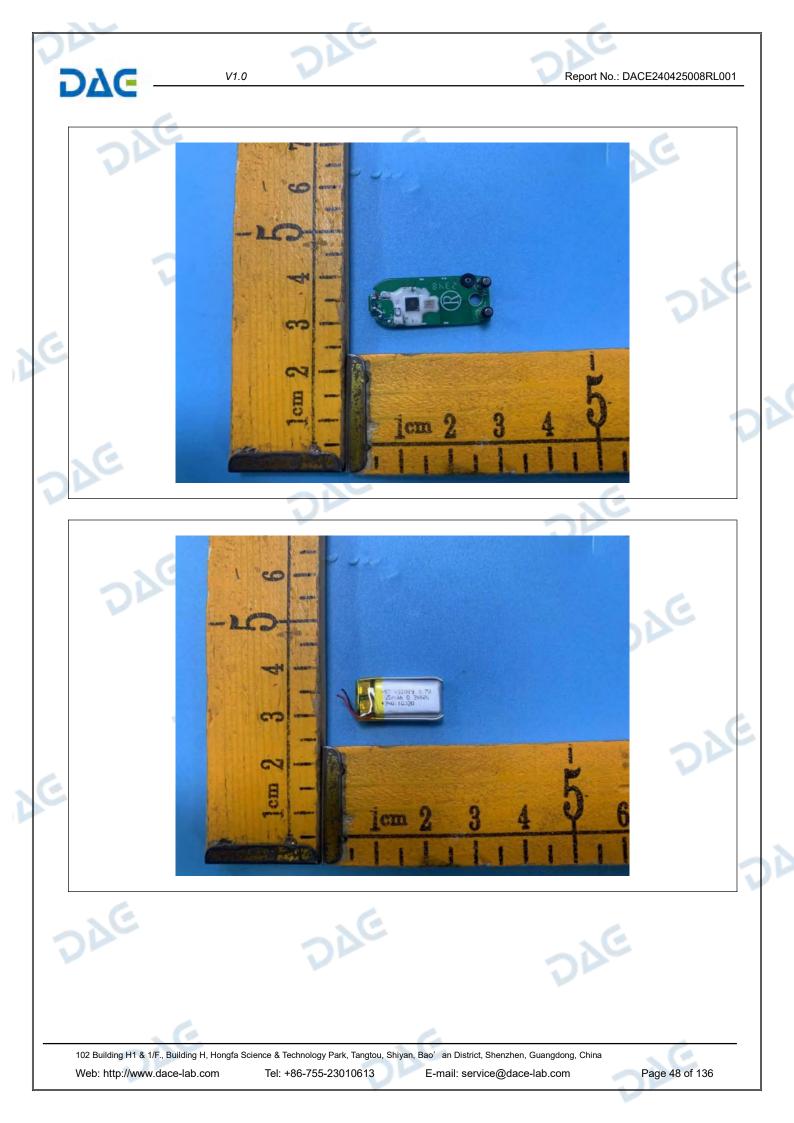
Both left and right ears have been tested, and only the worst left ear data is reflected in the report.

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

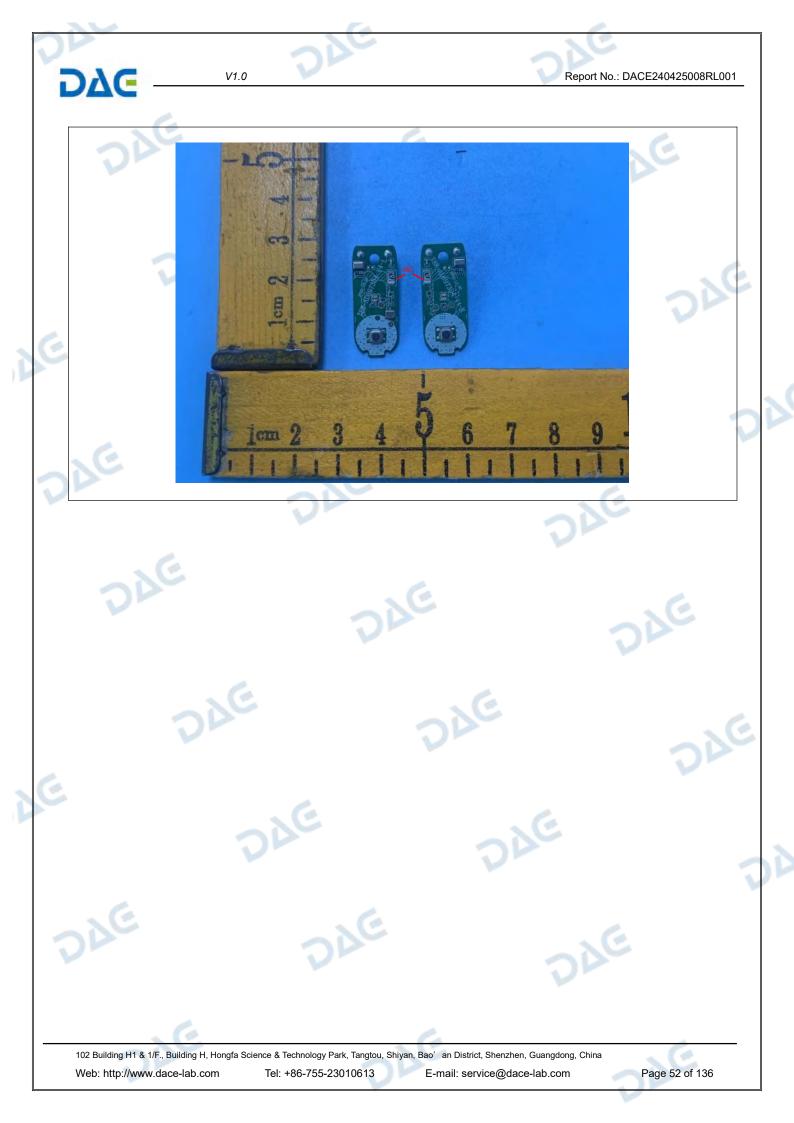
NE

DAC

DAE







DAG -	V1.0)AC	Report No.: DACE240425008RL001
DAG			
	Ap	pendi	X-L
	2	ology Park, Tangtou, Shiyan, Bao′an District, She	

Report No.: DACE240425008RL001

e

HT240424006--X88--EDR--FCC FCC_BT (Part15.247) Test Data

1. -20dB Bandwidth

V1.0

DAG

Condition	Antenna	Modulation Frequency (Antenna Modulation Frequency (MHz) -20dB BW(MHz)		if larger than CFS	
NVNT	ANT1	1-DH5	2402.00	1.028	Yes		
NVNT	ANT1	1-DH5	2441.00	1.032	Yes		
NVNT	ANT1	1-DH5	2480.00	1.032	Yes		
NVNT	ANT1	2-DH5	2402.00	1.313	Yes		
NVNT	ANT1	2-DH5	2441.00	1.309	Yes		
NVNT	ANT1	2-DH5	2480.00	1.316	Yes		

DVC -	V1.0	Report No.: DACE240425008RL001
	-20dB_Bandwidth_NVNT_ANT1_2-DH5_24	180
	Kepsight Spectrum Analyzer - Occupied BW Kepsight Spectrum Analyzer - Occupied BW Kepsight Spectrum Analyzer - Occupied BW Kepsight Spectrum Analyzer - Occupied BW	
	Center Freq 2.480000000 GHz Center Freq: 2.480000000 GHz Radio	Std: None Frequency Device: BTS
	Ref Offset 3.95 dB 10 dB/div Ref 8.70 dBm	
		Center Freq
1	203	2.480000000 GHz
	41.3 41.3	
	613	
	71.3 01.3	
	Center 2.48 GHz #Res BW 30 kHz #VBW 100 kHz St	Span 3 MHz veep 3.2 ms 300,000 kHz
	Occupied Bandwidth Total Power 3.51 dBm	Auto Man
	1.1960 MHz	Freq Offset
	Transmit Freq Error 39.304 kHz % of OBW Power 99.00 % x dB Bandwidth 1.316 MHz x dB -20.00 dB	
NC .		
	MSG 🖉 🖏 Ali	gn Now All required
		DAG
	DAC	

V1.0

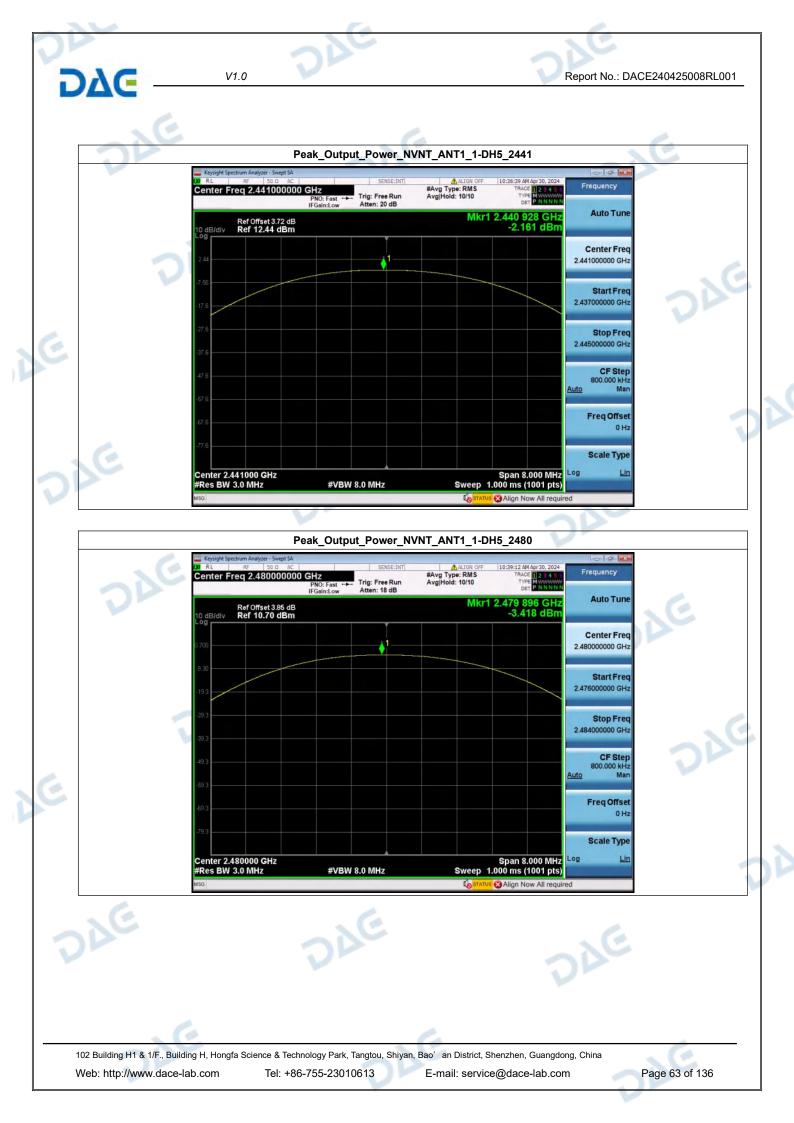
2. 99% Occupied Bandwidth

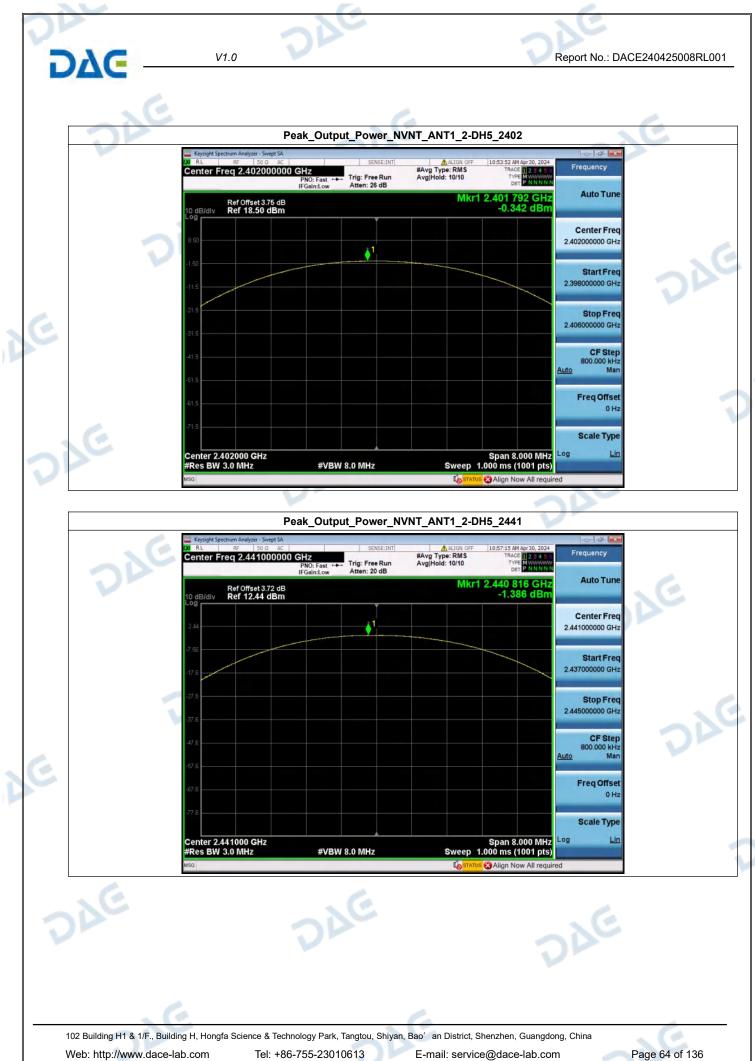
DVC

Condition	Antenna	Modulation	Frequency (MHz)	99%%BW(MHz)
NVNT	ANT1	1-DH5	2402.00	0.907
NVNT	ANT1	1-DH5	2441.00	0.912
NVNT	ANT1	1-DH5	2480.00	0.911
NVNT	ANT1	2-DH5	2402.00	1.193
NVNT	ANT1	2-DH5	2441.00	1.199
NVNT	ANT1	2-DH5	2480.00	1.194

	DAC.	246
DVC -	V1.0	Report No.: DACE240425008RL001
- ic	6	6
- DF	99%_Occupied_Bandwidth_NVNT_AN	T1_2-DH5_2480
	RL RF S0.0 ACC SENSE:INT ALIGN Center Freq 2.480000000 GHz Center Freq: 2.480000000 GHz Trig: Freq: 2.48000000 GHz	N OFF 10:59:40 AM Apr 30, 2024 Radio Std: None Frequency
	#IFGain:Low #Atten: 30 dB Ref Offset 3.85 dB	Radio Device: BTS
	10 dB/div Ref 8.70 dBm	Center Freq
0	.113	2 48000000 GHz
	31.3 41.3	
	613	
	713	
	Center 2.48 GHz #Res BW 30 kHz #VBW 100 kHz	Span 3 MHz Sweep 3.2 ms
	Occupied Bandwidth Total Power	3.52 dBm
	1.1942 MHz Transmit Freq Error 38.869 kHz % of OBW Power	99.00 % 0 Hz
6	x dB Bandwidth 1.395 MHz x dB	-26.00 dB
24		
	wsg 🛛 🕹	STATUS CAlign Now All required
	V	245

٩.


Report No.: DACE240425008RL001

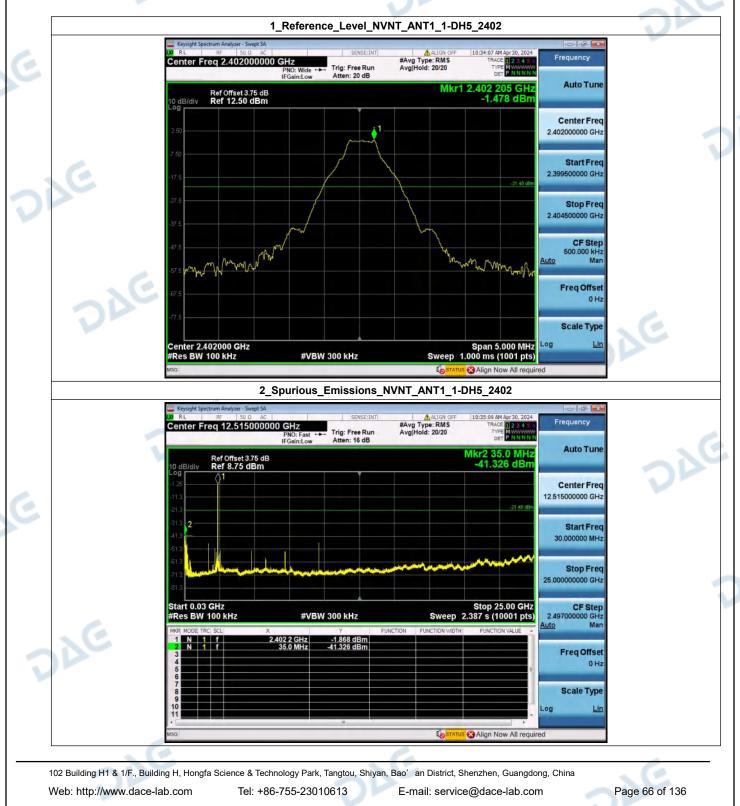

3. Peak Output Power

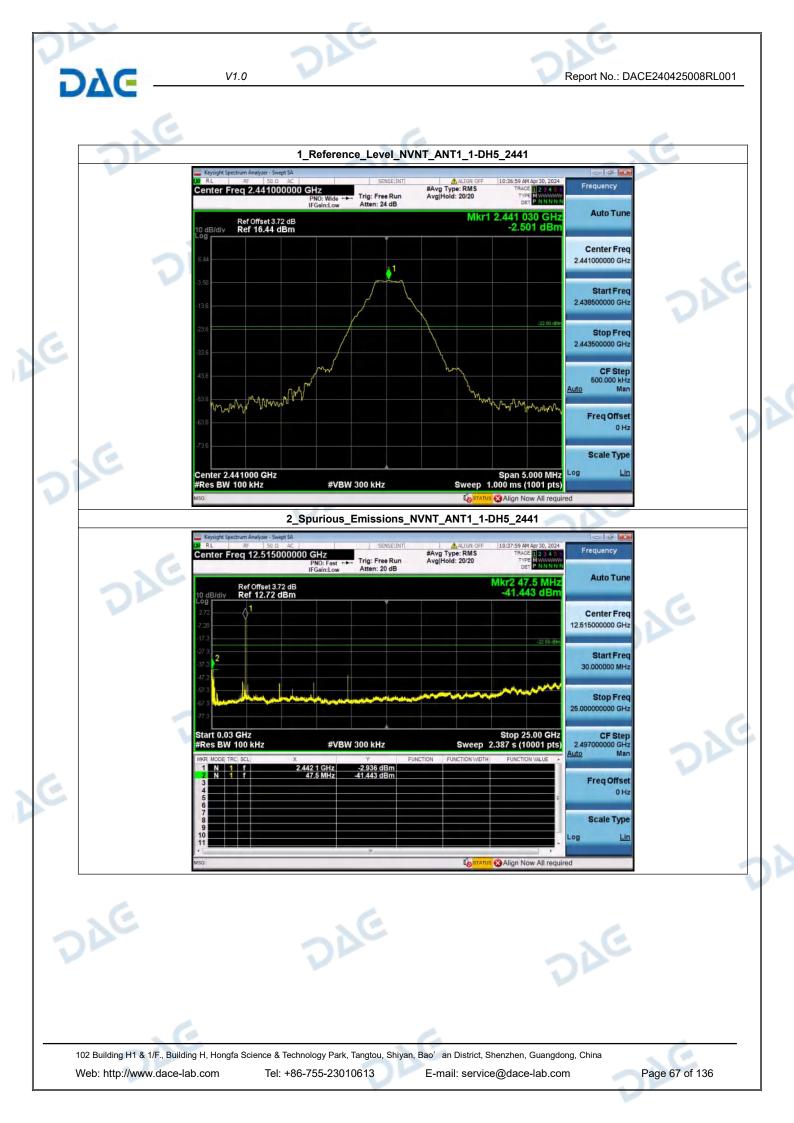
DVC

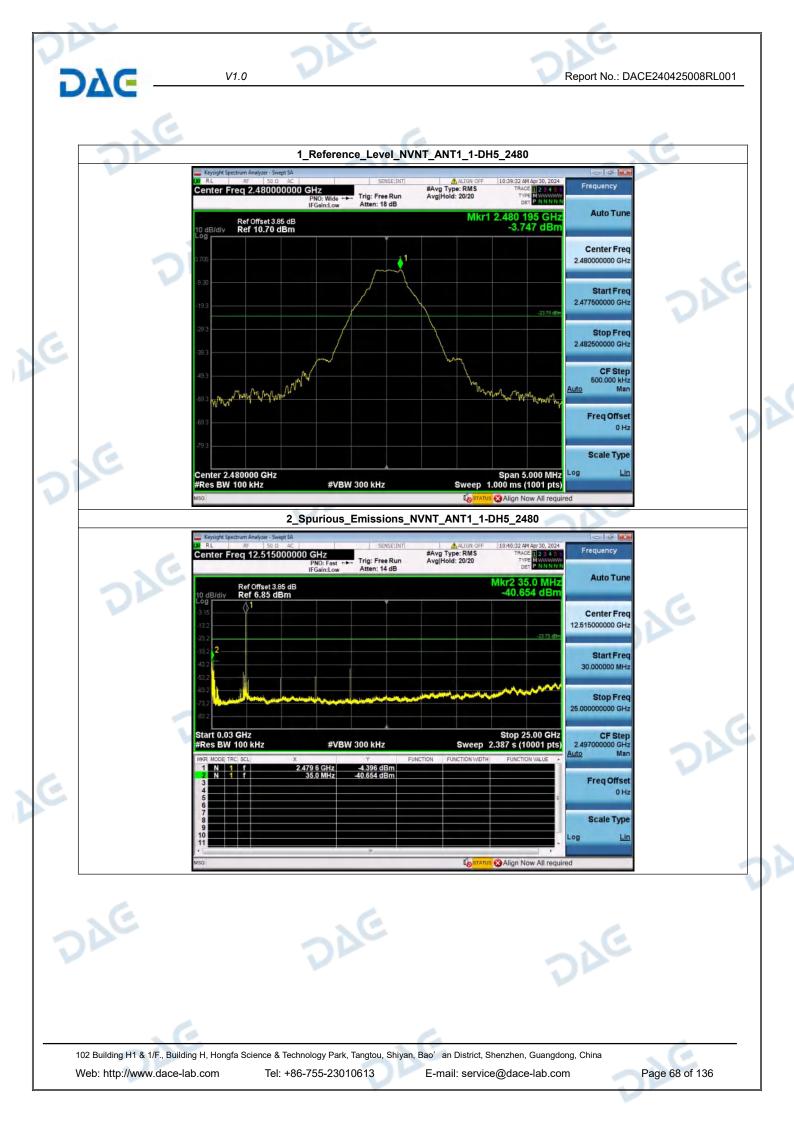
Condition	Antenna	Modulation	Frequency (MHz)	Max. Conducted Power(dBm)	Max. Conducted Power(mW)	Limit(mW)	Result
NVNT	ANT1	1-DH5	2402.00	-1.16	0.77	125	Pass
NVNT	ANT1	1-DH5	2441.00	-2.16	0.61	125	Pass
NVNT	ANT1	1-DH5	2480.00	-3.42	0.46	125	Pass
NVNT	ANT1	2-DH5	2402.00	-0.34	0.92	125	Pass
NVNT	ANT1	2-DH5	2441.00	-1.39	0.73	125	Pass
NVNT	ANT1	2-DH5	2480.00	-2.70	0.54	125	Pass

Tel: +86-755-23010613

DAG -	V1.0	Report No.: DACE240425008RL0)01
Die	Peak_Output_Power_NVNT_A	NT1_2-DH5_2480	
	Center Freq 2,48000000 GHz #Avg	ALIGN OFF 10:59:59 AM Apr30, 2024 Type: RMS TRACE 2 2 3 5 C Frequency Didd: 10/10 DFT P NIMIN N	
	Ref Offset 3.85 dB 10 dB/div Ref 10.70 dBm	Mkr1 2.479 848 GHz -2.696 dBm Center Freq	
2	9.30	2.48000000 GHz 2.476000000 GHz	
	-19.3	2.476000000 GHz	
E	-39.3	2.484000000 GHz	
	.99.3	Auto 800.000 kHz Auto Man Freq Offset	
6	-79.3	0 Hz	
OAC	Center 2.480000 GHz #Res BW 3.0 MHz #VBW 8.0 MHz	Span 8.000 MHz Sweep 1.000 ms (1001 pts)	


Report No.: DACE240425008RL001


V1.0


4. Spurious Emissions

DVC

Condition	Antenna	Modulation	TX Mode	Spurious MAX.Value(dBm)	Limit	Result
NVNT	ANT1	1-DH5	2402.00	-41.326	-21.478	Pass
NVNT	ANT1	1-DH5	2441.00	-41.443	-22.501	Pass
NVNT	ANT1	1-DH5	2480.00	-40.654	-23.747	Pass
NVNT	ANT1	2-DH5	2402.00	-33.267	-21.452	Pass
NVNT	ANT1	2-DH5	2441.00	-42.029	-22.458	Pass
NVNT 👘	ANT1	2-DH5	2480.00	-41.379	-23.807	Pass

