C.2 Dasy4 or DASY5 E-field Probe System The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 or DASY5 software reads the reflection durning a software approach and looks for the maximum using 2nd ord curve fitting. The approach is stopped at reaching the maximum. ## **Probe Specifications:** Model: ES3DV3, EX3DV4 Frequency 10MHz — 6.0GHz(EX3DV4) Range: 10MHz — 4GHz(ES3DV3) Calibration: In head and body simulating tissue at Frequencies from 835 up to 5800MHz Linearity: ± 0.2 dB(30 MHz to 6 GHz) for EX3DV4 ± 0.2 dB(30 MHz to 4 GHz) for ES3DV3 Dynamic Range: 10 mW/kg — 100W/kg Probe Length: 330 mm **Probe Tip** Length: 20 mm Body Diameter: 12 mm Tip Diameter: 2.5 mm (3.9 mm for ES3DV3) Tip-Center: 1 mm (2.0mm for ES3DV3) Application: SAR Dosimetry Testing Compliance tests of mobile phones Dosimetry in strong gradient fields **Picture C.2 Near-field Probe** Picture C.3 E-field Probe #### **C.3 E-field Probe Calibration** Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter. The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed ©Copyright. All rights reserved by CTTL. in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/ cm². E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe. $$SAR = C \frac{\Delta T}{\Delta t}$$ Where: $\Delta t = \text{Exposure time (30 seconds)},$ C = Heat capacity of tissue (brain or muscle), ΔT = Temperature increase due to RF exposure. $$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$ Where: σ = Simulated tissue conductivity, ρ = Tissue density (kg/m³). ## **C.4 Other Test Equipment** ## C.4.1 Data Acquisition Electronics(DAE) The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock. The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB. PictureC.4: DAE #### C.4.2 Robot The SPEAG DASY system uses the high precision robots (DASY4: RX90XL; DASY5: RX160L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application: - High precision (repeatability 0.02mm) - High reliability (industrial design) - Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives) - Jerk-free straight movements (brushless synchron motors; no stepper motors) - > Low ELF interference (motor control fields shielded via the closed metallic construction shields) Picture C.6 DASY 5 #### C.4.3 Measurement Server The Measurement server is based on a PC/104 CPU broad with CPU (dasy4: 166 MHz, Intel Pentium; DASY5: 400 MHz, Intel Celeron), chipdisk (DASY4: 32 MB; DASY5: 128MB), RAM (DASY4: 64 MB, DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad. The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server. Picture C.7 Server for DASY 4 Picture C.8 Server for DASY 5 #### C.4.4 Device Holder for Phantom The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ±0.5mm would produce a SAR uncertainty of ±20%. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards. The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. <Laptop Extension Kit> The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms. Picture C.9-1: Device Holder Kit Picture C.9-2: Laptop Extension #### C.4.5 Phantom The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm). Shell Thickness: $2 \pm 0.2 \text{ mm}$ Filling Volume: Approx. 25 liters Dimensions: 810 x 1000 x 500 mm (H x L x W) Available: Special **Picture C.10: SAM Twin Phantom** # ANNEX D Position of the wireless device in relation to the phantom #### **D.1 General considerations** This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position. W_{t} Width of the handset at the level of the acoustic W_b Width of the bottom of the handset A Midpoint of the width W_t of the handset at the level of the acoustic output B Midpoint of the width W_b of the bottom of the handset Picture D.1-a Typical "fixed" case handset Picture D.1-b Typical "clam-shell" case handset Picture D.2 Cheek position of the wireless device on the left side of SAM Picture D.3 Tilt position of the wireless device on the left side of SAM ### D.2 Body-worn device A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer. Picture D.4 Test positions for body-worn devices #### D.3 Desktop device A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used. The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom. Picture D.5 Test positions for desktop devices # **D.4 DUT Setup Photos** Picture D.6 # **ANNEX E Equivalent Media Recipes** The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209. **Table E.1: Composition of the Tissue Equivalent Matter** | | | | • | | • | | | | | | | |-------------------|---------------------------|--------|--------|--------|--------|--------|--------|--------|--|--|--| | Frequency | 835 | 835 | 1900 | 1900 | 2450 | 2450 | 5800 | 5800 | | | | | (MHz) | Head | Body | Head | Body | Head | Body | Head | Body | | | | | Ingredients (% by | Ingredients (% by weight) | | | | | | | | | | | | Water | 41.45 | 52.5 | 55.242 | 69.91 | 58.79 | 72.60 | 65.53 | 65.53 | | | | | Sugar | 56.0 | 45.0 | \ | \ | \ | \ | \ | \ | | | | | Salt | 1.45 | 1.4 | 0.306 | 0.13 | 0.06 | 0.18 | \ | \ | | | | | Preventol | 0.1 | 0.1 | \ | \ | \ | \ | \ | \ | | | | | Cellulose | 1.0 | 1.0 | \ | \ | \ | \ | \ | \ | | | | | Glycol | \ | \ | 44.452 | 29.96 | 41.15 | 27.22 | , | \ | | | | | Monobutyl | \ | \ | 44.432 | 29.90 | 41.15 | 21.22 | \ | \ | | | | | Diethylenglycol | \ | \ | , | \ | \ | , | 17.24 | 17.24 | | | | | monohexylether | \ | \ | \ | \ | \ | \ | 17.24 | 17.24 | | | | | Triton X-100 | \ | \ | \ | \ | \ | \ | 17.24 | 17.24 | | | | | Dielectric | ε=41.5 | ε=55.2 | ε=40.0 | ε=53.3 | ε=39.2 | ε=52.7 | ε=35.3 | ε=48.2 | | | | | Parameters | | | | | | | | | | | | | Target Value | σ=0.90 | σ=0.97 | σ=1.40 | σ=1.52 | σ=1.80 | σ=1.95 | σ=5.27 | σ=6.00 | | | | # **ANNEX F** System Validation The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components. **Table F.1: System Validation** | Probe SN. | Liquid name | Validation date | Frequency point | Status (OK or Not) | |-----------|--------------|-----------------|-----------------|--------------------| | 3151 | Head 850MHz | June 12, 2015 | 850 MHz | OK | | 3151 | Head 1750MHz | June 12, 2015 | 1750 MHz | OK | | 3151 | Head 1810MHz | June 12, 2015 | 1810 MHz | OK | | 3151 | Head 1900MHz | June 12, 2015 | 1900 MHz | OK | | 3151 | Head 2450MHz | June 12, 2015 | 2450 MHz | OK | | 3151 | Head 2550MHz | June 12, 2015 | 2550 MHz | OK | Client ## ANNEX G Probe Calibration Certificate #### Probe ES3DV3-SN:3151 Calibration Certificate Certificate No: Z14-97077 # **CALIBRATION CERTIFICATE** Object ES3DV3 - SN:3151 Calibration Procedure(s) TMC-OS-E-02-195 Calibration Procedures for Dosimetric E-field Probes Calibration date: September 01, 2014 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |---|-------------------|--|---------------------------------| | Power Meter NRP2 | 101919 | 01-Jul-14 (CTTL, No.J14X02146) | Jun-15 | | Power sensor NRP-Z91 | 101547 | 01-Jul-14 (CTTL, No.J14X02146) | Jun-15 | | Power sensor NRP-Z91 | 101548 | 01-Jul-14 (CTTL, No.J14X02146) | Jun-15 | | Reference10dBAttenuator | BT0520 | 12-Dec-12(TMC,No.JZ12-867) | Dec-14 | | Reference20dBAttenuator | BT0267 | 12-Dec-12(TMC, No. JZ12-866) | Dec-14 | | Reference Probe EX3DV4 | SN 3846 | 03-Sep-13(SPEAG,No.EX3-3846_Sep13) | Sep-14 | | DAE4 | SN 1331 | 23-Jan-14 (SPEAG, DAE4-1331_Jan14) | Jan -15 | | Secondary Standards
SignalGeneratorMG3700A | ID#
6201052605 | Cal Date(Calibrated by, Certificate No.)
01-Jul-14 (CTTL, No.J14X02145) | Scheduled Calibration
Jun-15 | | Network Analyzer E5071C | MY46110673 | 15-Feb-14 (TMC, No.JZ14-781) | Feb-15 | | SAMOON VALUE | Name | Function | Signature | | Calibrated by: | Yu Zongying | SAR Test Engineer | 2+0 | | Reviewed by: | Qi Dianyuan | SAR Project Leader | 2002 | | Approved by: | Lu Bingsong | Deputy Director of the laboratory | Fr. ser it? | | | | Issued: Sept | ember 02, 2014 | Certificate No: Z14-97077 Page 1 of 11 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Glossary: tissue simulating liquid TSL NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ Φ rotation around probe axis Polarization θ 0 rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ=0 is normal to probe axis Connector Angle Information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. - Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50MHz to ±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). # Probe ES3DV3 SN: 3151 Calibrated: September 01, 2014 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: Z14-97077 Page 3 of 11 ## DASY – Parameters of Probe: ES3DV3 - SN: 3151 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |----------------------|----------|----------|----------|-----------| | Norm(µV/(V/m)²) A | 1.11 | 1.20 | 1.14 | ±10.8% | | DCP(mV) ^B | 103.4 | 103.3 | 102.9 | | #### **Modulation Calibration Parameters** | UID | Communication | | Α | В | С | D | VR | Unc E | |------|---------------|-----|-----|------|------|-------|-------|-------| | | System Name | | dB | dBõV | | dB | mV | (k=2) | | 0 CW | Х | 0.0 | 0.0 | 1.0 | 0.00 | 264.1 | ±2.3% | | | | | Υ | 0.0 | 0.0 | 1.0 | | 275.7 | | | | | Z | 0.0 | 0.0 | 1.0 | | 268.7 | 1 | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 5 and Page 6). ⁸ Numerical linearization parameter: uncertainty not required. EUncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ## DASY – Parameters of Probe: ES3DV3 - SN: 3151 #### Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] [©] | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 850 | 41.5 | 0.92 | 6.04 | 6.04 | 6.04 | 0.41 | 1.49 | ±12% | | 900 | 41.5 | 0.97 | 6.17 | 6.17 | 6.17 | 0.38 | 1.55 | ±12% | | 1810 | 40.0 | 1.40 | 5.44 | 5.44 | 5.44 | 0.57 | 1.49 | ±12% | | 1900 | 40.0 | 1.40 | 5.16 | 5.16 | 5.16 | 0.74 | 1.25 | ±12% | | 2000 | 40.0 | 1.40 | 5.23 | 5.23 | 5.23 | 0.50 | 1.57 | ±12% | | 2100 | 39.8 | 1.49 | 5.25 | 5.25 | 5.25 | 0.74 | 1.24 | ±12% | | 2300 | 39.5 | 1.67 | 4.91 | 4.91 | 4.91 | 0.73 | 1.21 | ±12% | | 2450 | 39.2 | 1.80 | 4.71 | 4.71 | 4.71 | 0.82 | 1.16 | ±12% | | 2600 | 39.0 | 1.96 | 4.57 | 4.57 | 4.57 | 0.89 | 1.14 | ±12% | ^c Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^a Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # DASY - Parameters of Probe: ES3DV3 - SN: 3151 #### Calibration Parameter Determined in Body Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 850 | 55.2 | 0.99 | 6.14 | 6.14 | 6.14 | 0.34 | 1.78 | ±12% | | 900 | 55.0 | 1.05 | 6.08 | 6.08 | 6.08 | 0.51 | 1.43 | ±12% | | 1810 | 53.3 | 1.52 | 5.03 | 5.03 | 5.03 | 0.52 | 1.54 | ±12% | | 1900 | 53.3 | 1.52 | 4.77 | 4.77 | 4.77 | 0.48 | 1.66 | ±12% | | 2000 | 53.3 | 1.52 | 5.00 | 5.00 | 5.00 | 0.68 | 1.33 | ±12% | | 2100 | 53.2 | 1.62 | 5.04 | 5.04 | 5.04 | 0.73 | 1.32 | ±12% | | 2300 | 52.9 | 1.81 | 4.56 | 4.56 | 4.56 | 0.58 | 1.57 | ±12% | | 2450 | 52.7 | 1.95 | 4.42 | 4.42 | 4.42 | 0.67 | 1.39 | ±12% | | 2600 | 52.5 | 2.16 | 4.26 | 4.26 | 4.26 | 0.69 | 1.37 | ±12% | ^c Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. FAt frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.5% (k=2) # Receiving Pattern (Φ), θ=0° Certificate No: Z14-97077 Page 8 of 11 # Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ±0.9% (k=2) Page 9 of 11 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: *86-10-62304633-2079 Fnx: *86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn # **Conversion Factor Assessment** ## f=900 MHz, WGLS R9(H_convF) ## f=1810 MHz, WGLS R22(H_convF) # **Deviation from Isotropy in Liquid** Page 10 of 11 # DASY - Parameters of Probe: ES3DV3 - SN: 3151 #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 85.2 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 10mm | | Tip Diameter | 4mm | | Probe Tip to Sensor X Calibration Point | 2mm | | Probe Tip to Sensor Y Calibration Point | 2mm | | Probe Tip to Sensor Z Calibration Point | 2mm | | Recommended Measurement Distance from Surface | 3mm | #### **DIPOLE CALIBRATION CERTIFICATE** ANNEX H #### 850 MHz Dipole Calibration Certificate Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Http://www.chinattl.cn CTTL(South Branch) CALIBRATION No. L0570 **CALIBRATION CERTIFICATE** Certificate No: Z14-97127 Object D835V2 - SN: 4d057 Calibration Procedure(s) Client TMC-OS-E-02-194 Calibration Procedures for dipole validation kits Calibration date: November 4, 2014 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |---------------------------------------|------------|--|-----------------------| | Power Meter NRP2 | 101919 | 01-Jul-14 (CTTL, No.J14X02146) | Jun-15 | | Power sensor NRP-Z91 | 101547 | 01-Jul-14 (CTTL, No.J14X02146) | Jun-15 | | Reference Probe EX3DV4 | SN 3617 | 28-Aug-14(SPEAG,No.EX3-3617_Aug14) | Aug-15 | | DAE4 | SN 1331 | 23-Jan-14 (SPEAG, DAE4-1331_Jan14) | Jan-15 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | SignalGeneratorMG3700A | 6201052605 | 01-Jul-14 (CTTL, No.J14X02145) | Jun-15 | | Network Analyzer E5071C MY4614d0573 | | 15-Feb-14 (TMC, No.JZ14-781) | Feb-15 | | | | | | | | Name | Function | Signature | |----------------|-------------|-----------------------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 表型 | | Reviewed by: | Qi Dianyuan | SAR Project Leader | an | | Approved by: | Lu Bingsong | Deputy Director of the laboratory | mas it? | Issued: November 6, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z14-97127 Page 1 of 8 Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORMx,y,z not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 - c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### **Additional Documentation:** d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.8.8.1222 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.8 ± 6 % | 0.92 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | | |---|--------------------|--|--| | SAR measured | 250 mW input power | 2.41 mW / g | | | SAR for nominal Head TSL parameters | normalized to 1W | normalized to 1W 9.48 mW /g ± 20.8 % (k= | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | | SAR measured | 250 mW input power | 1.57 mW / g | | | SAR for nominal Head TSL parameters | normalized to 1W | 6.20 mW /g ± 20.4 % (k=2) | | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.3 ± 6 % | 0.99 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | Nation 1 | #### SAR result with Head TSL | SAR averaged over 1 cm^3 (1 g) of Body TSL | Condition | | |--|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.42 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 9.53 mW /g ± 20.8 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 1.61 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 6.36 mW /g ± 20.4 % (k=2) | Page 3 of 8