: 10191682A-H Test report No. Page : 1 of 22 **Issued date** : February 27, 2014 : BBQVR7100 FCC ID # RADIO TEST REPORT **Test Report No.: 10191682A-H** **Applicant** CASIO COMPUTER CO., LTD. **Type of Equipment Electronic Cash Register** Model No. V-R7100-C **FCC ID BBQVR7100** **Test regulation** FCC Part 15 Subpart E: 2013 (DFS test only) **Test Result Complied** : This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc. - The results in this report apply only to the sample tested. - This sample tested is in compliance with above regulation. - The test results in this report are traceable to the national or international standards. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government. Date of test: February 19, 2014 Representative test engineer: Katsunori Okai Engineer of WiSE Japan, **UL Verification Service** Approved by: Takahiro Hatakeda Leader of WiSE Japan, **UL Verification Service** 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may This laboratory is accredited by the NVLAP LAB CODE refer to the WEB address, http://www.ul.com/japan/jpn/pages/services/emc/about/ma rk1/index.jsp#nvlap UL Japan, Inc. **Head Office EMC Lab.** 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Test report No. : 10191682A-H Page : 2 of 22 Issued date : February 27, 2014 FCC ID : BBQVR7100 # **REVISION HISTORY** Original Test Report No.: 10191682A-H | Test report No. | Date | Page
revised | Contents | |-----------------|------------------------------|-----------------|--| | 10191682A-H | February 27, 2014 | - | - | Test report No. 10191682A-H | | Test report No. Date Page revised 10191682A-H February 27, 2014 | Test report No. : 10191682A-H Page : 3 of 22 Issued date : February 27, 2014 FCC ID : BBQVR7100 CONTENTSPAGESECTION 1: Customer information4SECTION 2: Equipment under test (E.U.T.)4SECTION 3: Scope of Report6SECTION 4: Test specification, procedures & results6SECTION 5: Operation of E.U.T. during testing11SECTION 6: Channel Move Time, Channel Closing Transmission Time17SECTION 7: Non-Occupancy Period19APPENDIX 1: Test instruments21APPENDIX 2: Photographs of test setup22 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Test report No. : 10191682A-H Page : 4 of 22 Issued date : February 27, 2014 FCC ID : BBQVR7100 ### **SECTION 1: Customer information** Company Name : CASIO COMPUTER CO., LTD. Address : 2-1, Sakaecho 3-chome, Hamura-shi, Tokyo 205-8555 Japan ### **SECTION 2:** Equipment under test (E.U.T.) ### 2.1 Identification of E.U.T. Type of Equipment : Electronic Cash Register Model No. : V-R7100-C Serial No. : Refer to Section 4, Clause 4.2 Rating : AC 120V (AC Adapter output: DC24V) Receipt Date of Sample : December 24, 2013 Country of Mass-production : Indonesia Condition of EUT : Production prototype (Not for Sale: This sample is equivalent to mass-produced items.) Modification of EUT : No Modification by the test lab ### UL Japan, Inc. Head Office EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Test report No. : 10191682A-H Page : 5 of 22 Issued date : February 27, 2014 FCC ID : BBQVR7100 ### 2.2 Product Description ### **Radio Specification** [Bluetooth (Ver. 2.0)] | ` /3 | | |---------------------------------|-----------------------------| | Equipment Type | Transceiver | | Frequency of Operation | 2402-2480MHz | | Type of Modulation | FHSS: GFSK, π/4DQPSK, 8DPSK | | Antenna Type | FPC Antenna | | Antenna connecter type | Internal Antenna | | Antenna Gain | 4.09dBi (2.4GHz Main) | | Power Supply (radio part input) | DC3.7V | [WLAN (IEEE802.11a/b/g/n-20)] | Equipment Type | Transceiver | | |------------------------|---------------------------|------------------------| | Frequency of Operation | 2412-2462MHz 5180-5320MHz | | | | | 5500-5700MHz * | | | | 5745-5825MHz | | Type of Modulation | DSSS, OFDM | OFDM | | Antenna Type | FPC Antenna | | | Antenna connecter type | Internal Antenna | | | Antenna Gain | 4.09dBi (2.4GHz Main) | 4.25 dBi (W52/53 Aux), | | | | 4.18 dBi (W56 Aux), | | | | 4.62 dBi (W58 Aux) | ^{*5600}MHz-5640MHz is not used in Canada. [WLAN (IEEE802.11n-40)] | [VERT (IEEEOVZ:III 40)] | | | |-------------------------|-----------------------|------------------------| | Equipment Type | Transceiver | | | Frequency of Operation | 2422-2452MHz | 5190-5310MHz | | | | 5510-5670MHz * | | | | 5755-5795MHz | | Type of Modulation | OFDM | OFDM | | Antenna Type | FPC Antenna | | | Antenna connecter type | Internal Antenna | | | Antenna Gain | 4.09dBi (2.4GHz Main) | 4.25 dBi (W52/53 Aux), | | | | 4.18 dBi (W56 Aux), | | | | 4.62 dBi (W58 Aux) | ^{*5590}MHz-5630MHz is not used in Canada. #### Model difference | TIOGET GITTET CITEE | | | | |---------------------|-------------------|---------|-----------------------| | Model | WLAN
Bluetooth | iButton | Power cord (enclosed) | | V-R7100-C* | X | - | X | | V-R7100-AUS | X | - | - | ^{*}Tested model ## UL Japan, Inc. Head Office EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Test report No. : 10191682A-H Page : 6 of 22 Issued date : February 27, 2014 FCC ID : BBQVR7100 ## **SECTION 3: Scope of Report** This report only covers DFS requirement, as specified by the following referenced procedures. ### **SECTION 4:** Test specification, procedures & results ### 4.1 Test Specification Test Specification : FCC Part 15 Subpart E: 2013, final revised on June 11, 2013 and effective July 11, 2013 Title : FCC 47CFR Part15 Radio Frequency Device Subpart E Unlicensed National Information Infrastructure Devices Section 15.407 General technical requirements Test Specification : FCC 06-96 APPENDIX Title : COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED- NATIONAL INFORMATION INFRASTRUCTURE DEVICES OPERATING IN THE 5250-5350 MHz AND 5470-5725MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION #### FCC 15.31 (e) This EUT provides stable voltage (DC3.7V) constantly to RF Part regardless of input voltage. Therefore, this EUT complies with the requirement. #### FCC Part 15.203 Antenna requirement It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Test report No. : 10191682A-H Page : 7 of 22 Issued date : February 27, 2014 FCC ID : BBQVR7100 #### 4.2 Procedures and results ### **Table 1 Applicability of DFS Requirements** | Requirement | Operating Mode Client without Radar Detection | Test Procedures & Limits | Deviation | Results | |--|---|---|-----------|----------| | U-NII Detection
Bandwidth | Not required | FCC 06-96
Appendix 7.8.1 | N/A | N/A | | Channel Availability Check Time | Not required | FCC15.407 (h) | N/A | N/A | | | | FCC 06-96
Appendix 7.8.2.1
Appendix 7.8.2.2
Appendix 7.8.2.3
RSS-210 A9.3 | | | | Channel Move Time,
Channel Closing
Transmission Time | Yes | FCC15.407 (h) FCC 06-96 Appendix 7.8.3 | N/A | Complied | | Non-Occupancy
period | Yes | RSS-210 A9.3
FCC15.407 (h)
FCC 06-96
Appendix 7.8.3
RSS-210 A9.3 | N/A | Complied | | In-Service Monitoring | Not required | FCC15.407 (h) FCC 06-96 Appendix 7.8.4 | N/A | N/A | | Overlapping Channel
Tests | Not required | FCC15.407 (h) | N/A | N/A | ### Table 2 DFS Detection Thresholds for Master Devices and Client Devices With Radar | Maximum Transmit Power | Value (See Notes 1 and 2) | | |------------------------|---------------------------|--| | ≥ 200 milliwatt | -64 dBm | | | < 200 milliwatt | -62 dBm | | Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna. Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Test report No. : 10191682A-H Page : 8 of 22 Issued date : February 27, 2014 FCC ID : BBQVR7100 #### **Table 3 DFS Response Requirement Values** | Parameter | Value | |-----------------------------------|---| | Non-occupancy period | Minimum 30 minutes | | Channel Availability Check Time | 60 seconds | | Channel Move Time | 10 seconds | | | See Note 1 | | Channel Closing Transmission Time | 200 milliseconds + an aggregate of 60 | | | milliseconds over remaining 10 second period. | | | See Notes 1 and 2 | | U-NII Detection Bandwidth | Minimum 80% of the U-NII 99% transmission | | | power bandwidth | | | See Note 3 | **Note 1:** The instant that the Channel Move Time and the Channel Closing Transmission Time begins is as follows: - For the Short Pulse Radar Test Signals this instant is the end of the *Burst*. - For the Frequency Hopping radar Test Signal, this instant is the end of the last radar Burst generated - For the Long Pulse Radar Test Signal this instant is the end of the 12 second period defining the *Radar Waveform*. **Note 2:** The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signal will not count quiet periods in between transmissions. **Note 3:** During the U-NII Detection Bandwidth detection test, radar type 1 is used and for each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Test report No. : 10191682A-H Page : 9 of 22 Issued date : February 27, 2014 FCC ID : BBQVR7100 ### **Table 4 Short Pulse Radar Test Waveform** | Radar Type | Pulse Width (µsec) | PRI (µsec) | Number of
Pulses | Minimum Percentage of Successful Detection | Minimum
Number of
Traials | |--------------------|--------------------|------------|---------------------|--|---------------------------------| | 1 | 1 | 1428 | 18 | 60% | 30 | | 2 | 1-5 | 150-230 | 23-29 | 60% | 30 | | 3 | 6-10 | 200-500 | 16-18 | 60% | 30 | | 4 | 11-20 | 200-500 | 12-16 | 60% | 30 | | Aggregate (Rader T | Types 1-4) | · | <u>-</u> | 80% | 120 | ### **Table 5 Long Pulse Radar Test Waveform** | Radar Type | Pulse
Width
(µsec) | Chip Width (MHz) | PRI (µsec) | Number of
Pulses per
Burst | Number of Burst | Minimum
Percentage
of
Successful
Detection | Minimum
Number of
Trials | |------------|--------------------------|------------------|------------|----------------------------------|-----------------|--|--------------------------------| | 5 | 50-100 | 5-20 | 1000-2000 | 1-3 | 8-20 | 80% | 30 | ### **Table 6 Frequency Hopping Radar Test Waveform** | Radar Type | Pulse
Width
(µsec) | PRI (µsec) | Pulse per
Hop (kHz) | Hopping
Rate (kHz) | Hopping
Sequence
Length
(msec) | Minimum
Percentage
of
Successful
Detection | Minimum
Number of
Trials | |------------|--------------------------|------------|------------------------|-----------------------|---|--|--------------------------------| | 6 | 1 | 333 | 9 | 0.333 | 300 | 70% | 30 | 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN : 10191682А-Н Test report No. Page : 10 of 22 : February 27, 2014 **Issued date** FCC ID : BBQVR7100 #### 4.3 **Test Location** UL Japan, Inc. Head Office EMC Lab. *NVLAP Lab. code: 200572-0 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999 Facsimile: +81 596 24 8124 | Telephone: +81 396 24 | | Facsimile: +81 39 | 1 | | 1 | |-----------------------|--------------|-------------------|--------------------|------------------------------|-------------| | | FCC | IC Registration | Width x Depth x | Size of | Other | | | Registration | Number | Height (m) | reference ground plane (m) / | rooms | | | Number | | | horizontal conducting plane | | | No.1 semi-anechoic | 313583 | 2973C-1 | 19.2 x 11.2 x 7.7m | 7.0 x 6.0m | No.1 Power | | chamber | | | | | source room | | No.2 semi-anechoic | 655103 | 2973C-2 | 7.5 x 5.8 x 5.2m | 4.0 x 4.0m | - | | chamber | | | | | | | No.3 semi-anechoic | 148738 | 2973C-3 | 12.0 x 8.5 x 5.9m | 6.8 x 5.75m | No.3 | | chamber | | | | | Preparation | | | | | | | room | | No.3 shielded room | - | - | 4.0 x 6.0 x 2.7m | N/A | - | | No.4 semi-anechoic | 134570 | 2973C-4 | 12.0 x 8.5 x 5.9m | 6.8 x 5.75m | No.4 | | chamber | | | | | Preparation | | | | | | | room | | No.4 shielded room | - | - | 4.0 x 6.0 x 2.7m | N/A | - | | No.5 semi-anechoic | - | - | 6.0 x 6.0 x 3.9m | 6.0 x 6.0m | - | | chamber | | | | | | | No.6 shielded | - | - | 4.0 x 4.5 x 2.7m | 4.0 x 4.5 m | - | | room | | | | | | | No.6 measurement | - | - | 4.75 x 5.4 x 3.0m | 4.75 x 4.15 m | - | | room | | | | | | | No.7 shielded room | - | - | 4.7 x 7.5 x 2.7m | 4.7 x 7.5m | - | | No.8 measurement | - | - | 3.1 x 5.0 x 2.7m | N/A | - | | room | | | | | | | No.9 measurement | - | - | 8.8 x 4.6 x 2.8m | 2.4 x 2.4m | - | | room | | | | | | | No.11 measurement | - | - | 6.2 x 4.7 x 3.0m | 2.4 x 3.4m | - | | room | | | | | | ^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 x 2.0m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms. #### 4.4 Uncertainty The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k=2. Time Measurement uncertainty for this test was: (±) 0.012% #### 4.5 Data of DFS test, Test instruments of DFS, Test set up Refer to APPENDIX. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Test report No. : 10191682A-H Page : 11 of 22 Issued date : February 27, 2014 FCC ID : BBQVR7100 ### **SECTION 5: Operation of E.U.T. during testing** ### **5.1** Operating Modes The EUT, which is a Client Device without Radar detection capability, operates over the 5250-5350MHz and 5470-5725MHz. Power level(EIRP) of the EUT[dBm] | 5250-5350MHz Band* | | | | | |--------------------|-------------------|--|--|--| | Output Power (Min) | Output Power(Max) | | | | | 7.04 | 20.51 | | | | | 5470-5725MHz Band* | | | | |--------------------|-------------------|--|--| | Output Power (Min) | Output Power(Max) | | | | 8.00 | 20.02 | | | ^{*}Refer to 10191682A-G, FCC Part 15E (FCC 15.407) report for other parts than DFS. WLAN traffic is generated by streaming the MPEG Test file "6 ½ Magic Hours" from the Master to the Client in full motion video mode. The EUT utilizes the 802.11a architecture, with a nominal channel bandwidth. The FCC ID for the Master Device used with EUT for DFS testing is LDK102073. The rated output power of the Master unit is >200mW(23dBm). Therefore the required interference threshold level is -64 dBm. After correction for antenna gain and procedural adjustments, the required conducted threshold at the antenna port is -64 + 1 + 3.5 = -59.5 dBm (threshold level + additional 1dB + antenna gain). It is impossible for users to change DFS control, because the DFS function is written on the firmware and users cannot access it The EUT was set by the software as follows: Software name & version: MxPLAYER version1.7.21 CODEC(For MxPLAYER ARMv7) Version1.7.24 Esfileexplorer version 3.0.8.0 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN : 10191682A-H Test report No. Page : 12 of 22 **Issued date** : February 27, 2014 FCC ID : BBQVR7100 #### 5.2 Configuration and peripherals : Standard Ferrite Core **Description of EUT and Support equipment** | No. | Item | Model number | Serial number | Manufacturer | Remarks | |-----|---------------------|----------------|---------------|--------------------|---------| | | Electronic Cash | V-R7100-C | CS-43 | CASIO | EUT | | Α | Register | | | COMPUTER CO., | | | | | | | LTD. | | | В | AC Adaptor | EKF2400250X1B | - | Mass Power | - | | Ь | | A | | Electronic Limited | | | C | Wireless LAN access | AIR-AP1262N-A- | FTX1620K39Q | Cisco Systems | | | C | point | K9 | F1X1020K39Q | | - | | D | AC Adaptor | AA25480L | ALD0520G7R6 | Cisco Systems | _ | | Е | Laptop PC | FMV-S8370 | R8Z03059 | FUJITSU | - | | F | AC Adaptor | FMV-AC325 | 08Z15123A | FUJITSU | - | List of cables used | No. | Name | Length (m) | Shield | | | |-----|-----------|------------|------------|------------|--| | | | | Cable | Connector | | | 1 | DC Cable | 1.8 | Unshielded | Unshielded | | | 2 | AC Cable | 2.0 | Unshielded | Unshielded | | | 3 | DC Cable | 1.8 | Unshielded | Unshielded | | | 4 | AC Cable | 2.3 | Unshielded | Unshielded | | | 5 | LAN Cable | 3.0 | Unshielded | Unshielded | | | 6 | DC Cable | 1.9 | Unshielded | Unshielded | | | 7 | AC Cable | 1.8 | Unshielded | Unshielded | | ## UL Japan, Inc. **Head Office EMC Lab.** 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone : +81 596 24 8999 : +81 596 24 8124 Facsimile Test report No. : 10191682A-H Page : 13 of 22 Issued date : February 27, 2014 FCC ID : BBQVR7100 #### 5.3 Test and Measurement System #### SYSTEM OVERVIEW The measurement system is based on a conducted test method. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution. The short pulse types 2, 3, and 4, the long pulse type 5, and the frequency hopping type 6 parameters are randomized at run-time. The signal monitoring equipment consists of a spectrum analyzer with the capacity to display 8001 bins on the horizontal axis. A time-domain resolution of 2 msec/bin is achievable with a 16 second sweep time, meeting the 10 seconds short pulse reporting criteria. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection. A time-domain resolution of 3 msec/bin is achievable with a 24 second sweep time, meeting the 22 second long pulse reporting criteria and allowing a minimum of 10 seconds after the end of the long pulse waveform. #### FREQUENCY HOPPING RADAR WAVEFORM GENERATING SUBSYSTEM The first 100 frequencies are selected out of the hopping sequence of the randomized 475 hop frequencies. Only a *Burst* that has the frequency falling within the receiver bandwidth of the tested U-NII device is selected among those frequencies. (Frequency-domain simulation). The radar waveform generated at the start time of the selected *Burst* (Time-domain simulation) is download to the Signal Generator. If all of the randomly selected 100 frequencies do not fall within the receiver bandwidth of the U-NII device, the radar waveform is not used for the test. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Test report No. : 10191682A-H Page : 14 of 22 Issued date : February 27, 2014 FCC ID : BBQVR7100 ### CONDUCTED METHODS SYSTEM BLOCK DIAGRM #### MEASUREMENT SYSTEM FREQUENCY REFERENCE Lock the signal generator and the spectrum analyzer to the same reference sources as follows: Connect the 10MHz OUT on the signal generator to the 10MHz IN on the spectrum analyzer and set the spectrum analyzer 10MHz In to On. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN : 10191682A-H Test report No. Page : 15 of 22 **Issued date** : February 27, 2014 FCC ID : BBQVR7100 ### **SYSTEM CALIBRATION** **Step 1**: Set the system as shown in Figure 3 of FCC 06-96 7.2.1. **Step 2**: Adjust each attenuator to fulfill the following three conditions: - WLAN can be communicated, and - Rader detection threshold level is bigger than Client Device traffic level on the spectrum analyzer, and - Master Device traffic level is not displayed on the spectrum analyzer. Step 3: Terminate 50 ohm at B and C points, and connect the spectrum analyzer to the point A. (See the figure on page 14) At the point A, adjust the signal generator and spectrum analyzer to the center frequency of the channel to be measured. Download the applicable radar waveforms to the signal generator. Select the radar waveform, trigger a burst manually and measure the amplitude on the spectrum analyzer. Readjust the amplitude of the signal generator as required so that the peak level of the waveform is at a displayed level equal to the required or desired interference detection threshold. Separate signal generator amplitude settings are determined as required for each radar type. Step 4: Without changing any of the instrument settings, restore the system setting to Step 2 and adjust the Reference Level Offset of the spectrum analyzer to the level at Step 3. By taking the above steps 1 to 4, the spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. See Clause 5.4 for Plots of Noise, Rader Waveforms, and WLAN signals. #### 5.4 Plots of Noise, Rader Waveforms, and WLAN signals ### UL Japan, Inc. **Head Office EMC Lab.** 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Test report No. : 10191682A-H Page : 16 of 22 Issued date : February 27, 2014 FCC ID : BBQVR7100 #### Plots of Radar Waveforms Rader Type 1 ### Plots of WLAN Traffic ## UL Japan, Inc. Head Office EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Test report No. : 10191682A-H Page : 17 of 22 Issued date : February 27, 2014 FCC ID : BBQVR7100 ### **SECTION 6: Channel Move Time, Channel Closing Transmission Time** #### 6.1 Operating environment Test place : No.6 measurement room Temperature : 23 deg. C Humidity : 45 % RH #### **6.2** Test Procedure Stream the MPEG test file from the Master Device to the Client Device on the test Channel for the entire period of the test. The Radar Waveform generator sends a Burst of pulses for one of the Short Pulse Radar Types 1-4 at levels defined, on the Operating Channel. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. #### 6.3 Test data | Test Item | Unit | Measurement Time | Limit | Results | |-----------------------|--------|------------------|--------|---------| | Channel Move Time *1) | [sec] | 6.814 | 10.000 | Pass | | Channel Closing | | | | | | Transmission Time *2) | [msec] | 20 | 60 | Pass | *1) Channel Move Time is calculated as follows: (Channel Move Time) = (End of Transmission) - (End of Burst) = 8.192-1.378 *2) Channel Closing Transmission Time is calculated from (End of Burst + 200msec) to (End of Burst + 10sec) (Channel Closing Transmission Time) = (Number of analyzer bins showing transmission) * (dwell time per bin) = 10 * 2(msec) 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Test report No. : 10191682A-H Page : 18 of 22 Issued date : February 27, 2014 FCC ID : BBQVR7100 Radar Type 1 Marker 1 : End of Burst : 1378 ms Marker 2 : End of Transmission : 8192 ms ### 6.4 Test result Test result: Pass Date: February 19, 2014 Test engineer: Katsunori Okai ### UL Japan, Inc. Head Office EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Test report No. : 10191682A-H Page : 19 of 22 Issued date : February 27, 2014 FCC ID : BBQVR7100 ### **SECTION 7: Non-Occupancy Period** #### 7.1 Operating environment Test place : No.6 measurement room Temperature : 23 deg. C Humidity : 45 % RH #### 7.2 Test Procedure The following two tests are performed: 1). Stream the MPEG test file from the Master Device to the Client Device on the test Channel for the entire period of the test. The Radar Waveform generator sends a Burst of pulses for one of the Radar Types 1-6 at levels defined on the Operating Channel. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors. Observe the transmissions of the EUT after the Channel Move Time on the Operating Channel for duration greater than 30 minutes. 2). Stream the MPEG test file from the Master Device to the Client Device on the test Channel for the entire period of the test. Observe the transmissions of the EUT on the Operating Channel for duration greater than 30 minutes after the Master Device is shut off. #### 7.3 Test data 1). Non-Occupancy Period Marker 1 : End of Burst : 21.62 sec Marker 2 : End of Burst +10sec : 31.62 sec ### UL Japan, Inc. Head Office EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Test report No. : 10191682A-H Page : 20 of 22 Issued date : February 27, 2014 FCC ID : BBQVR7100 ### 2). Master is shut off ### 7.4 Test result Test result: Pass Date: February 19, 2014 Test engineer: Katsunori Okai ## UL Japan, Inc. Head Office EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Test report No. : 10191682A-H Page : 21 of 22 Issued date : February 27, 2014 FCC ID : BBQVR7100 ### **APPENDIX 1: Test instruments** **EMI Test Equipment** | Control No. | Instrument | Manufacturer | Model No | Serial No | Test Item | Calibration Date * Interval(month) | |------------------|--------------------------------------|--------------|--------------|------------|-----------|------------------------------------| | MOS-14 | Thermo-Hygrometer | Custom | CTH-201 | 1401 | DFS | 2013/02/26 * 12 | | MSA-04 | Spectrum Analyzer | Agilent | E4448A | US44300523 | DFS | 2013/11/25 * 12 | | EST-48 *1) | Signal Generator | Agilent | E4438C | MY45090353 | DFS | 2013/12/10 * 12 | | MCC-91 | Microwave Cable 1G-
40GHz | Schner | SUCOFLEX102 | 30812/2 | DFS | 2013/05/31 * 12 | | MCC-93 | Microwave Cable 1G-
40GHz | Schner | SUCOFLEX102 | 30814/2 | DFS | 2013/05/31 * 12 | | MCC-93 | Microwave Cable 1G-
40GHz | Schner | SUCOFLEX102 | 30814/2 | DFS | 2013/05/31 * 12 | | MCC-99 | Microwave Cable 1G-
40GHz | Schner | SUCOFLEX102 | 30820/2 | DFS | 2013/05/31 * 12 | | MCC-137 | Microwave cable | HUBER+SUHNER | SUCOFLEX 102 | 37954/2 | DFS | 2013/10/18 * 12 | | MCC-144 | Microwave Cable | Junkosha | MWX221 | 1207S407 | DFS | 2013/08/19 * 12 | | MAT-56 | Attenuator(10dB) | Suhner | 6810.19.A | - | DFS | 2014/01/15 * 12 | | MAT-57 | Attenuator(10dB) | Suhner | 6810.19.A | - | DFS | 2014/01/15 * 12 | | MAT-58 | Attenuator(10dB) | Suhner | 6810.19.A | - | DFS | 2014/01/15 * 12 | | MAT-60 | Attenuator(20dB) | Suhner | 6820.19.A | - | DFS | Pre Check | | MAT-61 | Attenuator(20dB) | Suhner | 6820.19.A | - | DFS | Pre Check | | MPD-01 | PowerDivider DC to 26.5GHz | Agilent | 11636B | 52258 | DFS | 2013/03/28 * 12 | | MPSC-02 | Power
Splitters/Combiners | Mini-Circuit | ZFSC-2-10G | 0127 | DFS | 2013/09/30 * 12 | | COTS-MDFS-
01 | Signal Studio Software for DFS | Agilent | N7620A-101 | 5010-7739 | DFS | - | | COTS-MDFS-
02 | Radar Generating
Software for DFS | Agilent | - | - | DFS | - | ^{*1)} Signal generator is only used to generate radar test signal, and the wave form is confirmed with spectrum analyzer every time before the test. The expiration date of the calibration is the end of the expired month. All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards. As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations. **DFS: Dynamic Frequency Selection** 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN