

Page 1 of 37

FCC Test Report

Report No.	:	1812C50020712502
Applicant	:	DDPAI Technology Co., Ltd.
Address	:	28F, Building 8A International Innovation Valley, Nanshan District, Shenzhen, China
Product Name	:	Dash Cam
Report Date	:	Mar. 04, 2025

Shenzhen Anbotek Compliance Laboratory Limited

Contents

1. General Information	6
 1.1. Client Information 1.2. Description of Device (EUT) 1.3. Auxiliary Equipment Used During Test 1.4. Operation channel list 1.5. Description of Test Modes 1.6. Measurement Uncertainty 1.7. Test Summary 1.8. Description of Test Facility 1.9. Disclaimer 1.10. Test Equipment List 	
2. Conducted Emission at AC power line	13
2.1. EUT Operation 2.2. Test Setup 2.3. Test Data	13
3. Duty Cycle	14
3.1. EUT Operation3.2. Test Setup3.3. Test Data	14
4. Emission bandwidth and occupied bandwidth	15
4.1. EUT Operation4.2. Test Setup4.3. Test Data	16
5. Maximum conducted output power	17
5.1. EUT Operation 5.2. Test Setup 5.3. Test Data	17
6. Power spectral density	
6.1. EUT Operation 6.2. Test Setup 6.3. Test Data	
7. Band edge emissions (Conducted)	
7.1. EUT Operation 7.2. Test Setup 7.3. Test Data	21
8. Band edge emissions (Radiated)	
8.1. EUT Operation 8.2. Test Setup 8.3. Test Data	24
9. Undesirable emission limits (below 1GHz)	
9.1. EUT Operation 9.2. Test Setup	

Shenzhen Anbotek Compliance Laboratory Limited

Report No.:1812C50020712502 FCC ID: 2AJFX-Z50PRO

9.3. Test Data	31
10. Undesirable emission limits (above 1GHz)	33
10.1. EUT Operation	
10.2. Test Setup	
10.3. Test Data	36
APPENDIX I TEST SETUP PHOTOGRAPH	37
APPENDIX II EXTERNAL PHOTOGRAPH	37
APPENDIX III INTERNAL PHOTOGRAPH	37

Report No.:1812C50020712502 FCC ID: 2AJFX-Z50PRO

TEST REPORT

Applicant	:	DDPAI Technology Co., Ltd.
Manufacturer	:	DDPAI Technology Co., Ltd.
Product Name	:	Dash Cam
Model No.	:	DR2004, DR200401, DR200402, DR200403, DR200404, DR200405, DR200406, DR200407, DR200408, DR200409, DR200410, DR200411, DR200412, DR200413, DR200414, DR200415, DR200416, DR200417, DR200418, DR200419
Trade Mark	:	DDPAI
Rating(s)	:	Input: 5V2A
Test Standard(s)	:	47 CFR Part 15E ANSI C63.10-2020 KDB 789033 D02 General UNII Test Procedures New Rules v02r01

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt:

Date of Test:

Prepared By:

Jan. 15, 2025 to Jan. 24, 2025

Jan. 15, 2025

Tu Tu Hong

(TuTu Hong)

Ktugo

(Hugo Chen)

Approved & Authorized Signer:

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email:service@anbotek.com

Hotline 400-003-0500 www.anbotek.com

Revision History

Report Version	Description	Issued Date
R00	Original Issue.	Mar. 04, 2025

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com

Hotline 400-003-0500 www.anbotek.com

1. General Information

1.1. Client Information

Applicant	:	DPAI Technology Co., Ltd.	
Address	•	28F, Building 8A International Innovation Valley, Nanshan District, Shenzhen, China	
Manufacturer	:	DDPAI Technology Co., Ltd.	
Address	•	8F, Building 8A International Innovation Valley, Nanshan District, Shenzhen, China	
Factory	:	DDPai vision equipment Co.,Ltd	
Address	:	Building A, Futai Industrial Park, Qingfeng south Road, Keyuancheng, Tangxia Town, Dongguan city, Guangdong province, China	

1.2. Description of Device (EUT)

Product Name	:	Dash Cam	
Model No.	:	DR2004, DR200401, DR200402, DR200403, DR200404, DR200405, DR200406, DR200407, DR200408, DR200409, DR200410, DR200411, DR200412, DR200413, DR200414, DR200415, DR200416, DR200417, DR200418, DR200419 (Note: All samples are the same except the model name, so we prepare "DR2004" for test only.)	
Trade Mark	:	DDPAI	
Test Power Supply	:	DC 12V/1.5A	
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)	
Adapter	:	N/A	
RF Specification			
Operation Frequency	:	802.11a/n(HT20)/ac(VHT20): U-NII Band 1: 5180MHz to 5240MHz; 802.11n(HT40)/ac(VHT40): U-NII Band 1: 5190MHz to 5230MHz; 802.11ac(VHT80): U-NII Band 1: 5210MHz;	
Number of Channel 802.11a/n(HT20)/ac(VHT20): U-NII Band 1: 4; 802.11n(HT40)/ac(VHT40): U-NII Band 1: 2; 802.11n(HT40)/ac(VHT40): U-NII Band 1: 2; 802.11ac(VHT80): U-NII Band 1: 1; 802.11ac(VHT80): U-NII Band 1: 1;		U-NII Band 1: 4; 802.11n(HT40)/ac(VHT40): U-NII Band 1: 2; 802.11ac(VHT80):	
Modulation Type	:	802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM); 802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM); 802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM);	

Shenzhen Anbotek Compliance Laboratory Limited

Report No.:1812C50020712502 FCC ID: 2AJFX-Z50PRO

Device Type	:	Client Devices	
DFS Type	:	ve without radar detection	
Antenna Type	:	PC Antenna	
Antenna Gain(Peak)	:	3.16dBi	
Pomark:			

Remark:

(1) All of the RF specification are provided by customer.

(2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.3. Auxiliary Equipment Used During Test

Title	Manufacturer	Model No.	Serial No.
1	/	/	/

1.4. Operation channel list

Operation Band: U-NII Band 1

Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
36	5180	38	5190	42	5210		
40	5200	46	5230	/	1		
44	5220	/	/	/	/		
48	5240	1	1	1	1		

1.5. Description of Test Modes

Pretest Modes	Descriptions
TM1	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
TM2	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
ТМЗ	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
TM4	Keep the EUT works in normal operating mode and connect to companion device

1.6. Measurement Uncertainty

Parameter	Uncertainty			
Conducted emissions (AMN 150kHz~30MHz)	3.2dB			
Dwell Time	2%			
Occupied Bandwidth	925Hz			
Conducted Output Power	0.76dB			
Power Spectral Density	0.76dB			
Conducted Spurious Emission	1.24dB			
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.64dB; 6G-18GHz: 4.82dB 18G-40GHz: 5.62dB			
Radiated emissions (Below 30MHz)	3.53dB			
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.70dB; Vertical: 4.42dB			
The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.				

1.7. Test Summary

Test Items	Test Modes	Status
Conducted Emission at AC power line	/	N
Duty Cycle	Mode1,2,3	Р
Emission bandwidth and occupied bandwidth	Mode1,2,3	Р
Maximum conducted output power	Mode1,2,3	Р
Power spectral density	Mode1,2,3	Р
Band edge emissions (Conducted)	Mode1,2,3	Р
Band edge emissions (Radiated)	Mode1,2,3	Р
Undesirable emission limits (below 1GHz)	Mode1,2,3	Р
Undesirable emission limits (above 1GHz)	Mode1,2,3	Р
Note: P: Pass N: N/A, not applicable		

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.:434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

- 1. The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 2. The test report is invalid if there is any evidence and/or falsification.
- 3. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- 4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
- 5. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- 6. The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

1.10. Test Equipment List

Cond	Conducted Emission at AC power line					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2024-09-09	2025-09-08
2	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2025-01-13	2026-01-12
3	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	/	/
4	EMI Test Receiver(CE2#)	Rohde & Schwarz	ESPI3	100926	2024-09-09	2025-09-08

Emiss Maxir Powe	Duty Cycle Emission bandwidth and occupied bandwidth Maximum conducted output power Power spectral density Band edge emissions (Conducted)						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date	
1	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ- KHWS80B	N/A	2024-10-14	2025-10-13	
2	DC Power Supply	IVYTECH	IV3605	1804D360 510	2024-09-09	2025-09-08	
3	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05	
4	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2024-09-09	2025-09-08	
5	Oscilloscope	Tektronix	MDO3012	C020298	2024-10-10	2025-10-09	
6	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2024-02-04	2025-02-03	

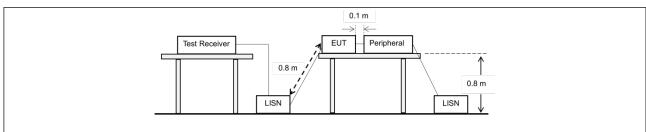
ia

t af

N

	Undesirable emission limits (above 1GHz) Band edge emissions (Radiated)						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date	
1	EMI Test Receiver(RE2/3#)	Rohde & Schwarz	ESR26	101481	2025-01-14	2026-01-13	
2	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2025-01-13	2026-01-12	
3	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15	
4	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	/	/	
5	Horn Antenna	A-INFO	LB-180400- KF	J2110606 28	2024-01-22	2027-01-21	
6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05	
7	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2024-05-07	2025-05-06	

Unde	Undesirable emission limits (below 1GHz)						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date	
1	EMI Test Receiver(RE2/3#)	Rohde & Schwarz	ESR26	101481	2025-01-14	2026-01-13	
2	Pre-amplifier	SONOMA	310N	186860	2025-01-14	2026-01-13	
3	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22	
4	Loop Antenna (9K-30M)	Schwarzbeck	FMZB1519 B	00053	2024-09-12	2025-09-11	
5	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	/	1	


2. Conducted Emission at AC power line

Test Requirement:	47 CFR Part 15.207(a)		
	Frequency of emission (MHz)	Conducted limit (dBµV)	
		Quasi-peak	Average
Test Limit:	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	*Decreases with the logarithm of t	he frequency.	
Test Method:	ANSI C63.10-2020 section 6.2		

2.1. EUT Operation

Operating Envi	ronment:
Test mode:	 1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

2.2. Test Setup

2.3. Test Data

Not Applicable

3. Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Limit:	No limits, only for report use.
Test Method:	ANSI C63.10-2020 section 12.2 (b)
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

3.1. EUT Operation

Operating Envi	ronment:
Test mode:	 1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

3.2. Test Setup

		EUT	Spectrum Analyzer	
--	--	-----	-------------------	--

3.3. Test Data

Temperature: 22.3 °C	Humidity:	40 %	Atmospheric Pressure:	101 kPa
----------------------	-----------	------	-----------------------	---------

Please Refer to Appendix for Details.

ષ્ટ્

(P. . . .

4. Emission bandwidth and occupied bandwidth

Test Requirement:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Limit:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Method:	ANSI C63.10-2020, section 6.9 & 12.5
	Emission bandwidth: a) Set RBW = approximately 1% of the emission bandwidth. b) Set the VBW > RBW. c) Detector = peak. d) Trace mode = max hold. e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%. Occupied bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The
	 frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise
Procedure:	specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope
	 shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Step a) through step c) might require iteration to adjust within the
	 specified range. e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace
	stabilizes) shall be used. f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
	 g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered
	amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached;
	that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the
	total is reached; that frequency is recorded as the upper frequency. The 99%

Shenzhen Anbotek Compliance Laboratory Limited

molun -innie

power bandwidth is
the difference between these two frequencies.
h) The occupied bandwidth shall be reported by providing plot(s) of the
measuring instrument
display; the plot axes and the scale units per division shall be clearly labeled.
Tabular data may
be reported in addition to the plot(s).

4.1. EUT Operation

Operating Environment:		
Test mode:	 1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 	

4.2. Test Setup

EUT Spectrum Analyzer

4.3. Test Data

Please Refer to Appendix for Details.

5. Maximum conducted output power

Test Requirement:	47 CFR Part 15.407(a)(1)(iv)
Test Limit:	For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Test Method:	ANSI C63.10-2020, section 12.4
Procedure:	Refer to ANSI C63.10-2020 section 12.4

5.1. EUT Operation

Operating Envi	ronment:
Test mode:	 1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

5.2. Test Setup

|--|

5.3. Test Data

Temperature:22.3 °CHumidity:40 %Atmospheric Pressure:101	101 kPa
--	---------

Please Refer to Appendix for Details.

6. Power spectral density

Test Requirement:	47 CFR Part 15.407(a)(1)(iv)
Test Limit:	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Test Method:	ANSI C63.10-2020, section 12.6
Procedure:	Refer to ANSI C63.10-2020, section 12.6

6.1. EUT Operation

Operating Environment:		
Test mode:	 1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 	

6.2. Test Setup

EUT	Spectrum Analyzer	

6.3. Test Data

Temperature:	22.3 °C	Humidity:	40 %	Atmospheric Pressure:	101 kPa

Please Refer to Appendix for Details.

7. Band edge emissions (Conducted)

Te et De su incare est	47 CFR Part 15.407(b)(1)						
Test Requirement:	47 CFR Part 15.407(b							
		For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.						
	MHz	MHz	MHz	GHz				
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15				
	10.495-0.505	16.69475- 16.69525	608-614	5.35-5.46				
	2.1735-2.1905	16.80425- 16.80475	960-1240	7.25-7.75				
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5				
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2				
	4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5				
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7				
	6.26775-6.26825	108-121.94	1718.8-	13.25-13.4				
			1722.2					
	6.31175-6.31225	123-138	2200-2300	14.47-14.5				
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2				
	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4				
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12				
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0				
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8				
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5				
Test Limit:	12.57675-12.57725	322-335.4	3600-4400	(2)				
	13.36-13.41							
	² Above 38.6 The field strength of en not exceed the limits s 1000 MHz, compliance using measurement in detector. Above 1000 15.209shall be demon	 ¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ² Above 38.6 The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements. 						
	intentional radiator sha following table: Frequency (MHz) 0.009-0.490	Frequency (MHz) (microvolts/meter) (meters)						
	0.490-1.705	24000/F(kHz)		30				
	1.705-30.0	30		30				
	30-88	30-88 100 **		3				

Shenzhen Anbotek Compliance Laboratory Limited

	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
			-					
	intentional radiators operati frequency bands 54-72 MH However, operation within t sections of this part, e.g., § In the emission table above The emission limits shown employing a CISPR quasi- 90 kHz, 110–490 kHz and a							
Test Method:	ANSI C63.10-2020, section	12.7.4, 12.7.6, 12.7.7						
Procedure:	these three bands are based on measurements employing an average							

above by more than 20 dB under any condition of modulation. For the
emissions whose peak level is lower than the average limit, only the peak
measurement is shown in the report.
4. The disturbance above 18GHz were very low and the harmonics were the
highest point could be found when testing, so only the above harmonics had
been displayed.

7.1. EUT Operation

Operating Environment:							
Test mode:	 1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 						

7.2. Test Setup

EUT Spectrum Analyzer	

7.3. Test Data

Temperature:	22.3 °C	Humidity:	40 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	------	-----------------------	---------

Please Refer to Appendix for Details.

8. Band edge emissions (Radiated)

Test Requirement:	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(10)					
	For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.					
	MHz	MHz	MHz	GHz		
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15		
	10.495-0.505	16.69475- 16.69525	608-614	5.35-5.46		
	2.1735-2.1905	16.80425- 16.80475	960-1240	7.25-7.75		
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5		
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2		
	4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5		
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7		
	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4		
	6.31175-6.31225	123-138	2200-2300	14.47-14.5		
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2		
	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4		
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12		
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0		
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8		
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5		
Test Limit:	12.57675-12.57725	322-335.4	3600-4400	(2)		
rest Linnt.	13.36-13.41					
	 ¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ² Above 38.6 The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements. 					
	15.209shall be demon	MHz, compliance wit strated based on the	h the emission li average value of	mits in § of the measured		
	15.209shall be demon emissions. The provisi Except as provided els intentional radiator sha following table: Frequency (MHz) 0.009-0.490 0.490-1.705	MHz, compliance with strated based on the strated based on the sons in § 15.35apply sewhere in this subparent sewhere in this subparent field strength (microvolts/me) 2400/F(kHz) 24000/F(kHz)	th the emission li average value of to these measur art, the emission d strength levels	mits in § of the measured ements. s from an s specified in the Measurement distance (meters) 300 30		
	15.209shall be demon emissions. The provisi Except as provided els intentional radiator sha following table: Frequency (MHz) 0.009-0.490	MHz, compliance wit strated based on the ons in § 15.35apply sewhere in this subpa all not exceed the fiel Field strength (microvolts/me 2400/F(kHz)	th the emission li average value of to these measur art, the emission d strength levels	mits in § of the measured ements. s from an s specified in the Measurement distance (meters) 300		

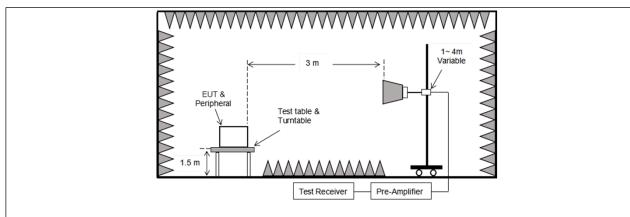
Shenzhen Anbotek Compliance Laboratory Limited

YOn.

ollio

	00.016	150 **	2				
	88-216 216-960	150 ** 200 **	3				
	Above 960	500	3				
			-				
	intentional radiators opera frequency bands 54-72 MI However, operation within sections of this part, e.g., In the emission table abov The emission limits shown employing a CISPR quasi- 90 kHz, 110–490 kHz and	as provided in paragraph (g), fundamental emissions from radiators operating under this section shall not be located in the bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. operation within these frequency bands is permitted under other f this part, e.g., §§ 15.231 and 15.241. ssion table above, the tighter limit applies at the band edges. ion limits shown in the above table are based on measurements a CISPR quasi-peak detector except for the frequency bands 9– 10–490 kHz and above 1000 MHz. Radiated emission limits in e bands are based on measurements employing an average					
Test Method:	ANSI C63.10-2020, sectio	n 12.7.4, 12.7.6, 12.7.7					
Procedure:	detector. ANSI C63.10-2020, section 12.7.4, 12.7.6, 12.7.7 Above 1GHz: a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation b. The EUT was set 3 meters away from the interference-receiving antent which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizoo and vertical polarizations of the antenna are set to make the measuremer d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for t test frequency of below 30MHz, the antenna was tuned to heights 1 mete and the rotatable table was turned from 0 degrees to 360 degrees to find maximum reading. e. The test-receiver system was set to Peak Detect Function and Specifie Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the E would be reported. Otherwise the emissions that did not have 10dB margi would be re-tested one by one using peak or average method as specifier and then reported in a data sheet. g. Test the EUT in the lowest channel, the middle channel, the Highest channel. h. The radiation measurements are performed in X, Y, Z axis positioning f Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete. Remark:						

Shenzhen Anbotek Compliance Laboratory Limited



above by more than 20 dB under any condition of modulation. For the
emissions whose peak level is lower than the average limit, only the peak
measurement is shown in the report.
4. The disturbance above 18GHz were very low and the harmonics were the
highest point could be found when testing, so only the above harmonics had
been displayed.

8.1. EUT Operation

Operating Envi	Operating Environment:						
Test mode:	 1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data rates has been tested and found the data rate @ MCS0 is the worst case. Only data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 						

8.2. Test Setup

8.3. Test Data

Temperature:	22.3 °C	Humidity:	40 %	Atmospheric Pressure:	101 kPa

TM1 / Band: 5150-5250 MHz / BW: 20 / L							
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	36.95	15.99	52.94	68.20	-15.26	Н	Peak
5150.00	39.02	15.99	55.01	68.20	-13.19	V	Peak
5150.00	26.89	15.99	42.88	54.00	-11.12	Н	AVG
5150.00	28.94	15.99	44.93	54.00	-9.07	V	AVG
		TM1 / B	and: 5150-52	250 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5250.00	37.40	16.43	53.83	68.20	-14.37	Н	Peak
5250.00	40.33	16.43	56.76	68.20	-11.44	V	Peak
5250.00	28.72	16.43	45.15	54.00	-8.85	Н	AVG
5250.00	29.62	16.43	46.05	54.00	-7.95	V	AVG

Remark: 1. Result=Reading + Factor

	TM2 / Band: 5150-5250 MHz / BW: 20 / L							
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
5150.00	35.91	15.99	51.90	68.20	-16.30	Н	Peak	
5150.00	37.29	15.99	53.28	68.20	-14.92	V	Peak	
5150.00	26.63	15.99	42.62	54.00	-11.38	Н	AVG	
5150.00	27.62	15.99	43.61	54.00	-10.39	V	AVG	
		TM2 / B	and: 5150-52	250 MHz / BV	V: 20 / H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
5250.00	37.72	16.43	54.15	68.20	-14.05	Н	Peak	
5250.00	38.77	16.43	55.20	68.20	-13.00	V	Peak	
5250.00	27.75	16.43	44.18	54.00	-9.82	Н	AVG	
5250.00	29.20	16.43	45.63	54.00	-8.37	V	AVG	

Remark: 1. Result=Reading + Factor

Shenzhen Anbotek Compliance Laboratory Limited

I	
i	
or	
(
(
i	
i	
	11 0,

		TM2 / B	and: 5150-52	250 MHz / BV	V: 40 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	36.44	15.99	52.43	68.20	-15.77	Н	Peak
5150.00	38.29	15.99	54.28	68.20	-13.92	V	Peak
5150.00	27.01	15.99	43.00	54.00	-11.00	Н	AVG
5150.00	28.73	15.99	44.72	54.00	-9.28	V	AVG
		TM2 / B	and: 5150-52	250 MHz / BV	V: 40 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5250.00	38.05	16.43	54.48	68.20	-13.72	Н	Peak
5250.00	36.93	16.43	53.36	68.20	-14.84	V	Peak
5250.00	28.26	16.43	44.69	54.00	-9.31	Н	AVG
5250.00 5250.00	28.26 29.45	16.43 16.43	44.69 45.88	54.00 54.00	-9.31 -8.12	H V	AVG AVG

Remark: 1. Result=Reading + Factor

	TM3 / Band: 5150-5250 MHz / BW: 20 / L							
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
5150.00	36.90	15.99	52.89	68.20	-15.31	Н	Peak	
5150.00	38.64	15.99	54.63	68.20	-13.57	V	Peak	
5150.00	26.54	15.99	42.53	54.00	-11.47	Н	AVG	
5150.00	28.72	15.99	44.71	54.00	-9.29	V	AVG	
		TM3 / B	and: 5150-52	250 MHz / BV	V: 20 / H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
5250.00	37.86	16.43	54.29	68.20	-13.91	Н	Peak	
5250.00	38.11	16.43	54.54	68.20	-13.66	V	Peak	
5250.00	27.76	16.43	44.19	54.00	-9.81	Н	AVG	
5250.00	28.32	16.43	44.75	54.00	-9.25	V	AVG	

Remark: 1. Result=Reading + Factor

Shenzhen Anbotek Compliance Laboratory Limited

Page 26 of 37

		TM3 / B	and: 5150-52	250 MHz / BW	N: 40 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	35.85	15.99	51.84	68.20	-16.36	Н	Peak
5150.00	36.30	15.99	52.29	68.20	-15.91	V	Peak

54.00

54.00

-11.99

-11.24

Н

V

TM3 / Band: 5150-5250 MHz / BW: 40 / H

42.01

42.76

Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5250.00	38.00	16.43	54.43	68.20	-13.77	Н	Peak
5250.00	37.16	16.43	53.59	68.20	-14.61	V	Peak
5250.00	27.47	16.43	43.90	54.00	-10.10	Н	AVG
5250.00	27.42	16.43	43.85	54.00	-10.15	V	AVG

Remark: 1. Result=Reading + Factor

26.02

26.77

15.99

15.99

	TM3 / Band: 5150-5250 MHz / BW: 80 / L							
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
5150.00	36.00	15.99	51.99	68.20	-16.21	Н	Peak	
5150.00	36.38	15.99	52.37	68.20	-15.83	V	Peak	
5150.00	26.52	15.99	42.51	54.00	-11.49	Н	AVG	
5150.00	26.80	15.99	42.79	54.00	-11.21	V	AVG	
		TM3 / B	and: 5150-52	250 MHz / BV	V: 80 / H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
5250.00	38.24	16.43	54.67	68.20	-13.53	Н	Peak	
5250.00	37.40	16.43	53.83	68.20	-14.37	V	Peak	
5250.00	28.73	16.43	45.16	54.00	-8.84	Н	AVG	
5250.00	28.07	16.43	44.50	54.00	-9.50	V	AVG	

Remark: 1. Result=Reading + Factor

Shenzhen Anbotek Compliance Laboratory Limited

m

n °°

AVG

AVG

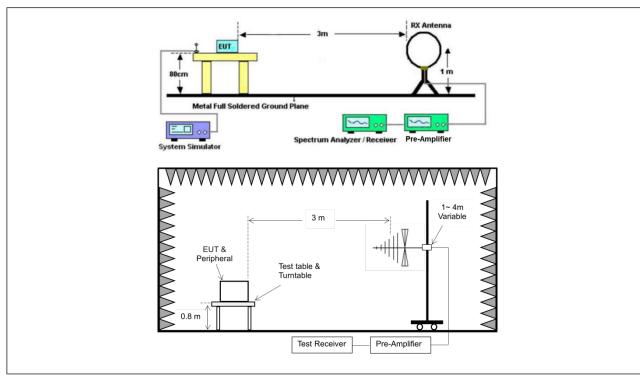
5150.00

5150.00

9. Undesirable emission limits (below 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(9)					
	Unwanted emissions be strength limits set forth i	low 1 GHz must comply with t n § 15.209.	he general field				
	Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:						
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
Test Limit:	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
	In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9– 90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.						
Test Method:	ANSI C63.10-2020, sect	ion 12.7.4, 12.7.5					
Procedure:	 meters above the ground was rotated 360 degrees b. The EUT was set 3 or antenna, which was more c. The antenna height is ground to determine the and vertical polarizations d. For each suspected e and then the antenna was test frequency of below and the rotatable table was maximum reading. e. The test-receiver system Bandwidth with Maximum f. If the emission level of limit specified, then testi would be reported. Other 	EUT was placed on the top of d at a 3 meter semi-anechoic s to determine the position of 10 meters away from the inte- unted on the top of a variable- varied from one meter to four maximum value of the field st s of the antenna are set to ma mission, the EUT was arrange as tuned to heights from 1 me 30MHz, the antenna was tune vas turned from 0 degrees to 3 em was set to Peak Detect Fu m Hold Mode. The EUT in peak mode was 1 ng could be stopped and the p rwise the emissions that did no by one using quasi-peak meth	chamber. The table the highest radiation. erference-receiving height antenna tower. r meters above the trength. Both horizontal ike the measurement. ed to its worst case ter to 4 meters (for the ed to heights 1 meter) 360 degrees to find the unction and Specified 0dB lower than the peak values of the EUT not have 10dB margin				

then reported in a data sheet.
g. Test the EUT in the lowest channel, the middle channel, the Highest
channel. h. The radiation measurements are performed in X, Y, Z axis positioning for
Transmitting mode, and found the X axis positioning which it is the worst
Case.
i. Repeat above procedures until all frequencies measured was complete. Remark:
1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low.
The points marked on above plots are the highest emissions could be found
when testing, so only above points had been displayed. The amplitude of
spurious emissions from the radiator which are attenuated more than 20dB
below the limit need not be reported.
3. The disturbance below 1GHz was very low and the harmonics were the
highest point could be found when testing, so only the above harmonics had been displayed.
Above 1GHz:
a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5
meters above the ground at a 3 meter fully-anechoic chamber. The table
was rotated 360 degrees to determine the position of the highest radiation.
b. The EUT was set 3 meters away from the interference-receiving antenna,
which was mounted on the top of a variable-height antenna tower.
c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal
and vertical polarizations of the antenna are set to make the measurement.
d. For each suspected emission, the EUT was arranged to its worst case
and then the antenna was tuned to heights from 1 meter to 4 meters (for the
test frequency of below 30MHz, the antenna was tuned to heights 1 meter)
and the rotatable table was turned from 0 degrees to 360 degrees to find the
maximum reading.
e. The test-receiver system was set to Peak Detect Function and Specified
Bandwidth with Maximum Hold Mode.
f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT
would be reported. Otherwise the emissions that did not have 10dB margin
would be re-tested one by one using peak or average method as specified
and then reported in a data sheet.
g. Test the EUT in the lowest channel, the middle channel, the Highest
channel.
h. The radiation measurements are performed in X, Y, Z axis positioning for
Transmitting mode, and found the X axis positioning which it is the worst
case. i. Repeat above procedures until all frequencies measured was complete.
Remark:
1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low.
The points marked on above plots are the highest emissions could be found
when testing, so only above points had been displayed. The amplitude of
spurious emissions from the radiator which are attenuated more than 20dB
below the limit need not be reported. 3. As shown in this section, for frequencies above 1GHz, the field strength

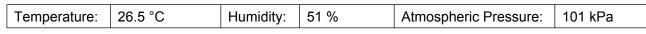


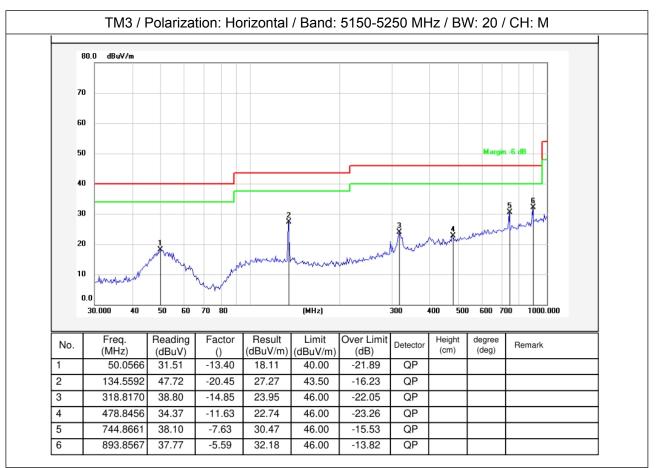
	 limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report. 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.
--	--

9.1. EUT Operation

Operating Envi	ronment:
Test mode:	 1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

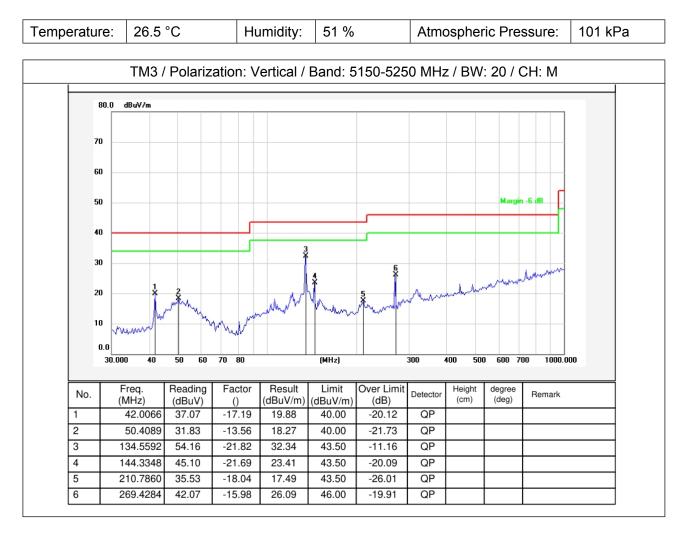
9.2. Test Setup


Shenzhen Anbotek Compliance Laboratory Limited



9.3. Test Data

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.



G

Report No.:1812C50020712502 FCC ID: 2AJFX-Z50PRO

Note: Only the worst case data was showed in the report.

10. Undesirable emission limits (above 1GHz)

Test Requirement:	47 CFR Part 15.407(b 47 CFR Part 15.407(b							
		For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.						
	MHz	MHz	MHz	GHz				
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15				
	10.495-0.505	16.69475- 16.69525	608-614	5.35-5.46				
	2.1735-2.1905	16.80425- 16.80475	960-1240	7.25-7.75				
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5				
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2				
	4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5				
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7				
	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4				
	6.31175-6.31225	123-138	2200-2300	14.47-14.5				
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2				
	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4				
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12				
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0				
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8				
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5				
Test Limit:	12.57675-12.57725	322-335.4	3600-4400	(2)				
rest Linnt.	13.36-13.41							
	¹ Until February 1, 199 ² Above 38.6 The field strength of er							
	not exceed the limits s 1000 MHz, compliance using measurement in detector. Above 1000 15.209shall be demon emissions. The provisi	hown in § 15.209. A e with the limits in § strumentation emplo MHz, compliance wit strated based on the	t frequencies equ 15.209shall be d ying a CISPR qu h the emission li average value o	ual to or less tha emonstrated uasi-peak mits in § of the measured				
	not exceed the limits s 1000 MHz, compliance using measurement in detector. Above 1000 15.209shall be demon	hown in § 15.209. A e with the limits in § strumentation emplo MHz, compliance wit strated based on the ons in § 15.35apply sewhere in this subpa	t frequencies equ 15.209shall be d ying a CISPR qu th the emission li average value o to these measur art, the emission d strength levels	ual to or less that emonstrated uasi-peak mits in § of the measured ements. s from an				
	not exceed the limits s 1000 MHz, compliance using measurement in detector. Above 1000 15.209shall be demon emissions. The provisi Except as provided els intentional radiator sha following table: Frequency (MHz) 0.009-0.490	hown in § 15.209. A e with the limits in § strumentation emplo MHz, compliance wit strated based on the ons in § 15.35apply sewhere in this subpa all not exceed the fiel Field strength (microvolts/me 2400/F(kHz)	t frequencies equ 15.209shall be d ying a CISPR qu th the emission li average value o to these measur art, the emission d strength levels	ual to or less that emonstrated uasi-peak mits in § of the measured ements. s from an s specified in the Measurement distance (meters) 300				

Shenzhen Anbotek Compliance Laboratory Limited

NON

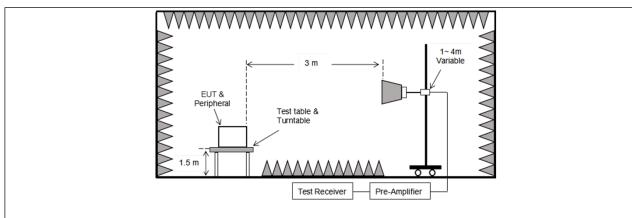
///

	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
			-			
	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9– 90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.					
Test Method:	ANSI C63.10-2020, section	12.7.4, 12.7.6, 12.7.7				
Procedure:	meters above the ground at was rotated 360 degrees to b. The EUT was set 3 meter which was mounted on the c. The antenna height is va ground to determine the material and vertical polarizations of d. For each suspected emist and then the antenna was to test frequency of below 30M and the rotatable table was maximum reading. e. The test-receiver system Bandwidth with Maximum H f. If the emission level of the limit specified, then testing would be reported. Otherwit would be re-tested one by of and then reported in a data g. Test the EUT in the lower channel. h. The radiation measurement Transmitting mode, and four case. i. Repeat above procedures Remark: 1. Level= Read Level+ Cab 2. Scan from 18GHz to 400 The points marked on abover when testing, so only abover spurious emissions from the below the limit need not be 3. As shown in this section,	of the EUT in peak mode was 10dB lower than the sting could be stopped and the peak values of the E nerwise the emissions that did not have 10dB marg e by one using peak or average method as specified data sheet. lowest channel, the middle channel, the Highest urements are performed in X, Y, Z axis positioning to d found the X axis positioning which it is the worst dures until all frequencies measured was complete Cable Loss+ Antenna Factor- Preamp Factor o 40GHz, the disturbance above 18GHz was very to above plots are the highest emissions could be four above points had been displayed. The amplitude of m the radiator which are attenuated more than 20d				

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com

Hotline 400-003-0500 www.anbotek.com



above by more than 20 dB under any condition of modulation. For the
emissions whose peak level is lower than the average limit, only the peak
measurement is shown in the report.
4. The disturbance above 18GHz were very low and the harmonics were the
highest point could be found when testing, so only the above harmonics had
been displayed.

10.1. EUT Operation

Operating Env	perating Environment:					
Test mode:	 1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 					

10.2. Test Setup

10.3. Test Data

Temperatur	e: 24.1 °C	Hu	midity: 57	.1 %	Atmospheric F	Pressure:	101 kPa		
TM1 / Band: 5150-5250 MHz / BW: 20 / CH: L									
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
10360.00	31.38	23.81	55.19	68.20	-13.01	V	Peak		
15540.00	32.64	28.68	61.32	68.20	-6.88	V	Peak		
10360.00	31.66	23.81	55.47	68.20	-12.73	Н	Peak		
15540.00	32.76	28.68	61.44	68.20	-6.76	Н	Peak		
10360.00	20.691	23.81	44.50	54.00	-9.50	V	AVG		
15540.00	21.700	28.68	50.38	54.00	-3.62	V	AVG		
10360.00	20.851	23.81	44.66	54.00	-9.34	Н	AVG		
15540.00	21.483	28.68	50.16	54.00	-3.84	Н	AVG		
		TM1 / Ban	d: 5150-525	0 MHz / BW	: 20 / CH: M				
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
10400.00	30.74	23.81	54.55	68.20	-13.65	V	Peak		
15600.00	32.17	29.13	61.30	68.20	-6.90	V	Peak		
10400.00	31.15	23.81	54.96	68.20	-13.24	Н	Peak		
15600.00	32.28	29.13	61.41	68.20	-6.79	Н	Peak		
10400.00	20.961	23.81	44.77	54.00	-9.23	V	AVG		
15600.00	21.820	29.13	50.95	54.00	-3.05	V	AVG		
10400.00	20.841	23.81	44.65	54.00	-9.35	Н	AVG		
15600.00	21.563	29.13	50.69	54.00	-3.31	Н	AVG		
		TM1 / Ban	d: 5150-525	0 MHz / BW	: 20 / CH: H				
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector		
10480.00	30.31	23.80	54.11	68.20	-14.09	V	Peak		
15720.00	31.65	30.03	61.68	68.20	-6.52	V	Peak		
10480.00	30.79	23.80	54.59	68.20	-13.61	Н	Peak		
15720.00	31.19	30.03	61.22	68.20	-6.98	Н	Peak		
10480.00	19.63	23.80	43.43	54.00	-10.57	V	AVG		
15720.00	20.58	30.03	50.61	54.00	-3.39	V	AVG		
10480.00	20.05	23.80	43.85	54.00	-10.15	Н	AVG		
15720.00	20.35	30.03	50.38	54.00	-3.62	Н	AVG		

Remark:

1.Result =Reading + Factor

2.Only the worst case (802.11ac(VHT20)) is recorded in the report.

3.Test frequency are from 1GHz to 40GHz, the amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

Shenzhen Anbotek Compliance Laboratory Limited

Address: Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel:(86)0755-26066440 Email: service@anbotek.com

Hotline 400-003-0500 www.anbotek.com

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph_RF

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

----- End of Report -----

