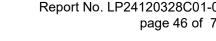
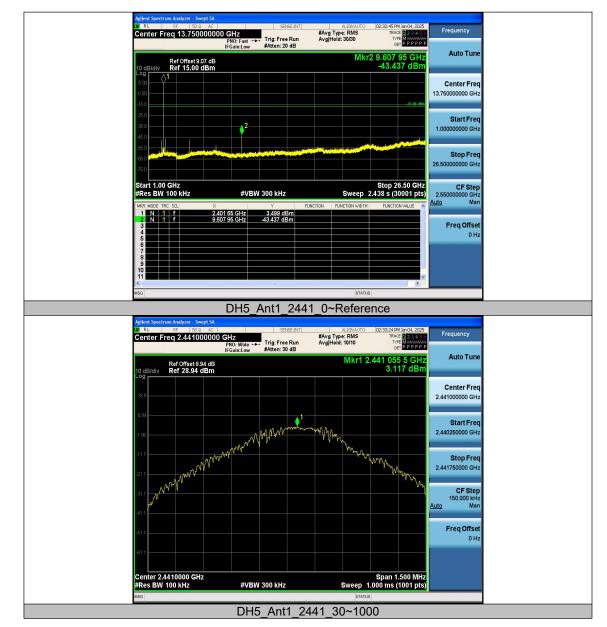
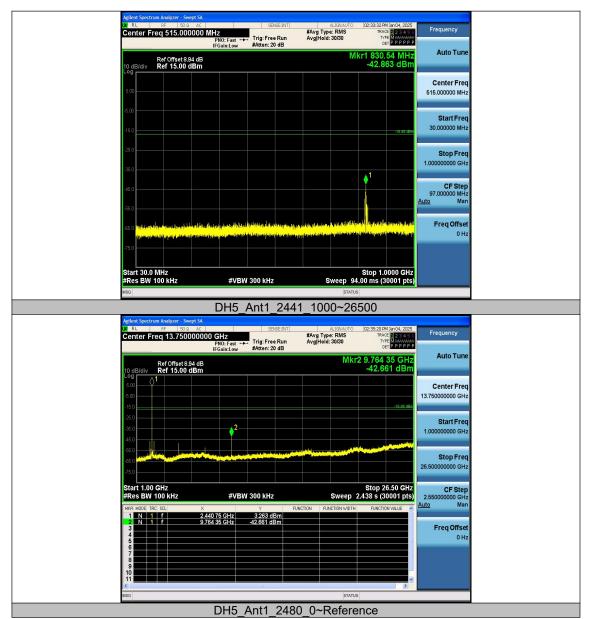
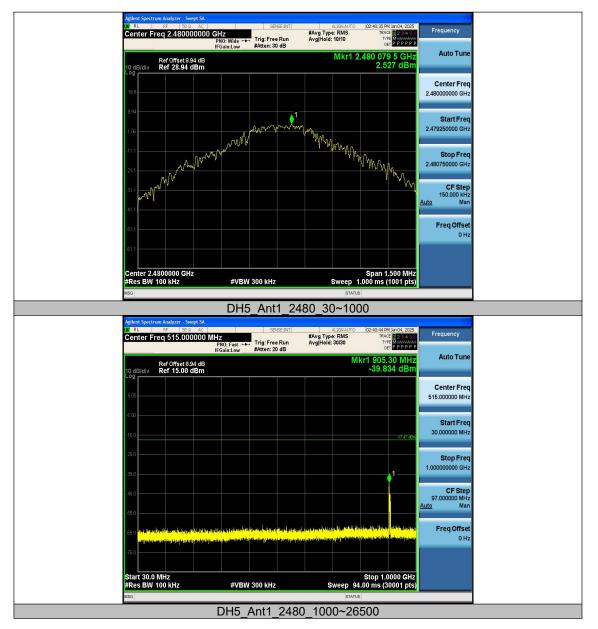


Ref Offset 9.07 dB Ref 29.07 dBm

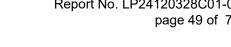

Report No. LP24120328C01-01 page 45 of 73




Report No. LP24120328C01-01 page 46 of 73

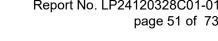


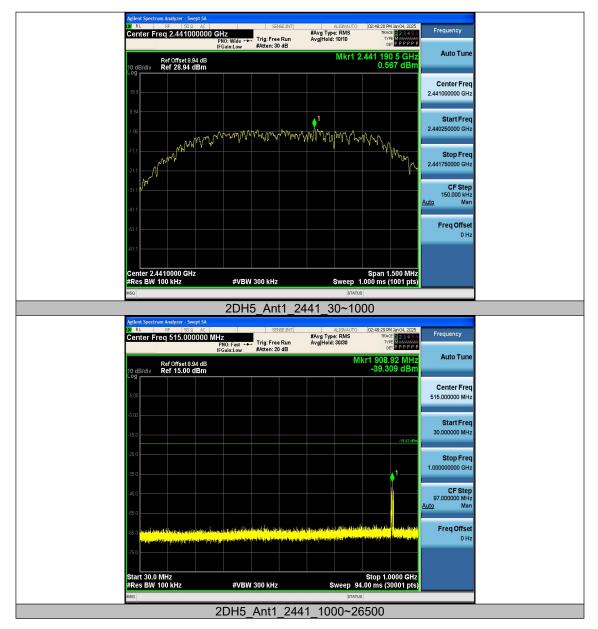
Report No. LP24120328C01-01 page 47 of 73



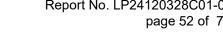
Report No. LP24120328C01-01 page 48 of 73

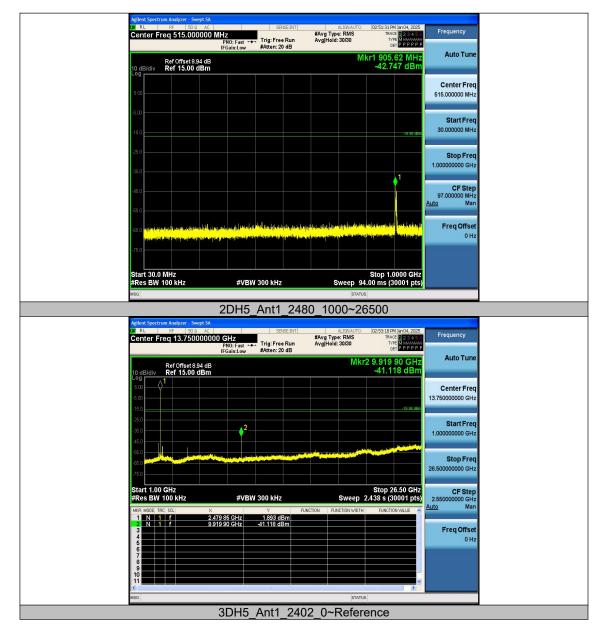
Report No. LP24120328C01-01 page 49 of 73

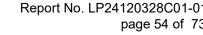

Report No. LP24120328C01-01 page 50 of 73

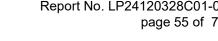


2DH5 Ant1 2441 0~Reference

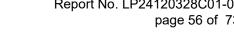

Report No. LP24120328C01-01 page 51 of 73

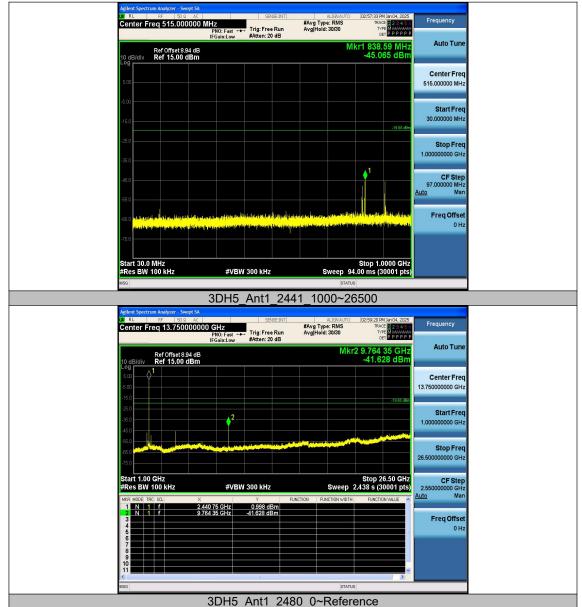

Report No. LP24120328C01-01 page 52 of 73

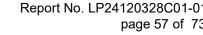

Report No. LP24120328C01-01 page 53 of 73

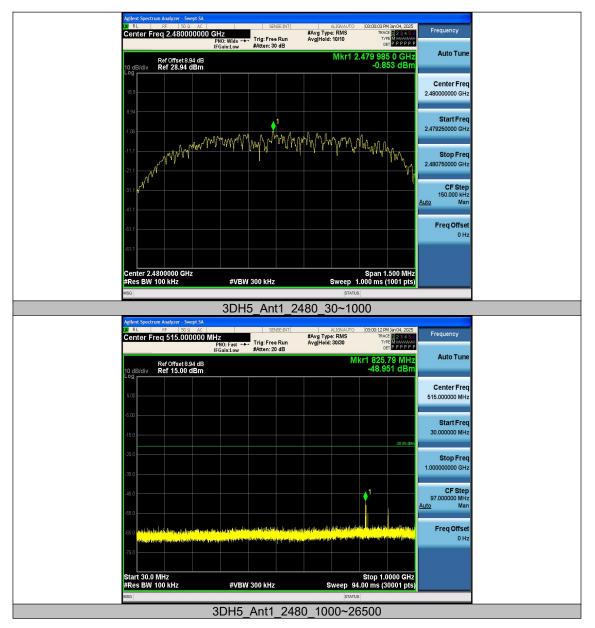

Report No. LP24120328C01-01 page 54 of 73




Report No. LP24120328C01-01 page 55 of 73




Report No. LP24120328C01-01 page 56 of 73



Report No. LP24120328C01-01 page 57 of 73

Report No. LP24120328C01-01 page 58 of 73

	RF 50 Ω AC		SENSE:1		ALIGNAUTO	03:01:59 PM Jan 04, 2025	Francisco
Center Freq	13.750000000	GHz PNO: Fast ← IFGain:Low	Trig: Free Ru #Atten: 20 dE	n Avgli	Type: RMS Iold: 30/30	TRACE 123456 TYPE M	Frequency
10 dB/div R	ef Offset 8.94 dB ef 15.00 dBm				Mkr2	2 9.919 90 GHz -40.655 dBm	Auto Tune
5.00 1 -5.00							Center Freq 13.750000000 GHz
-25.0 -36.0		¢ ²				-20.85 dBm	Start Freq 1.000000000 GHz
-55.0 -65.0 -75.0							Stop Freq 26.50000000 GHz
Start 1.00 GH #Res BW 100	0 kHz	#VB	W 300 kHz	FUNCTION	Sweep 2	Stop 26.50 GHz 438 s (30001 pts)	CF Step 2.55000000 GHz Auto Man
1 N 1 f	2.479	985 GHz 90 GHz	-0.347 dBm -40.655 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	Freq Offset 0 Hz
6							0
7 8 9 10							

4.7. RADIATED SPURIOUS EMISSION

4.7.1. Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02

4.7.2. Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

	Fait 15.205, Resulcted L	Janus	
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

According to FCC Part15.205, Restricted bands

According to FCC Part15.205, the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table

Restricted	Field Strength	Field Strength	Measurement
Frequency(MHz)	(µV/m)	(dBµV/m)	Distance
0.009-0.490	2400/F(KHz)	20 log (uV/m)	300
0.490-1.705	24000/F(KHz)	20 log (uV/m)	30
1.705-30	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

4.7.3. Test Configuration

Test according to clause 3.2 radio frequency test setup 2

4.7.4. Test Procedure

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings: For Above 1GHz: The EUT was placed on a turn table which is 1.5m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Span = wide enough to fully capture the emission being measured RBW = 1 MHz $VBW \ge RBW$ Sweep = auto Detector function = peak Trace = max hold For Below 1GHz: The EUT was placed on a turn table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Span = wide enough to fully capture the emission being measured RBW = 100 kHz $VBW \ge RBW$ Sweep = auto Detector function = peak Trace = max hold For Below 30MHz: The EUT was placed on a turn table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Span = wide enough to fully capture the emission being measured RBW = 9kHz $VBW \ge RBW$ Sweep = auto Detector function = peak Trace = max hold For Below 150KHz: The EUT was placed on a turn table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Span = wide enough to fully capture the emission being measured RBW = 200Hz $VBW \ge RBW$ Sweep = auto Detector function = peak Trace = max hold Follow the guidelines in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b). Submit this data. Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data. Repeat above procedures until all frequency measured was complete.

■ Spurious Emission below 30MHz (9KHz to 30MHz)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dB) (dBµV/m)		(dB)	Detector Type	H/V

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor

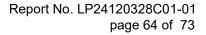
■ Spurious Emission Above 1GHz (1GHz to 25GHz)

Bluetooth (GFSK, π /4-DQPSK, 8DPSK) mode have been tested, and the worst result(8DPSK) was report as below:

Test mo	de:	8DPSK				Frequency:		С	hannel 0: 2402MHz		
Frequency	Mete Readii		Factor	Emiss Lev		Limits	Ма	rgin	Detector	Ant. Pol.	
(MHz)	(dBµ\	/)	(dB)	(dBµ∖	//m)	(dBµV/m)	(d	B)	Туре	H/V	
4808	47.74	4	-1.01	46.7	73	74	-27	.27	peak	V	
4825	34.58	3	-1.02	33.5	56	54	-20	.44	AVG	V	
7205	43.74	4	5.68	49.4	2	74	-24	.58	peak	V	
7222	30.68	3	5.67	36.35		54	-17	.65	AVG	V	
9602	43		7.57	50.5	57	74	-23	.43	peak	V	
9619	31.3		7.58	38.8	38	54	-15.12		AVG	V	
4808	49.37	7	-1.01	48.3	36	74	-25	.64	peak	Н	
4825	36.1 ⁻	1	-1.02	35.0)9	54	-18	.91	AVG	Н	
7205	44.66	3	5.68	50.3	34	74	-23	.66	AVG	Н	
7222	31.09	9	5.67	36.7	' 6	54	-17	.24	peak	Н	
9602	47.59	9	7.57	55.1	6	74	-18.84		peak	Н	
9619	34.94	4	7.58	42.5	52	54	-11	.48	AVG	Н	

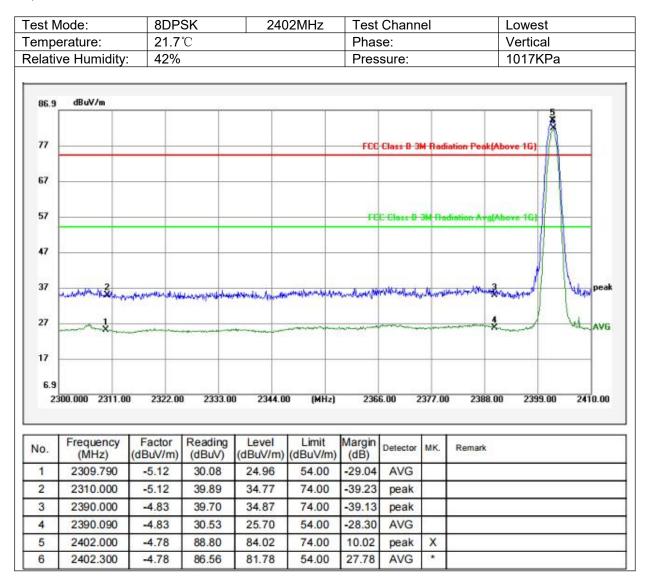
Report No. LP24120328C01-01 page 62 of 73

Test mo	de:	8DPSK F			requency:		Ch	annel 39: 2441MHz		
Frequency	Meter Readin	Eactor	Emiss Lev		Limits	Ма	argin	Detector	Ant. Pol.	
(MHz)	(dBµV	/) (dB)	(dBµ\	//m)	(dBµV/m)	(0	dB)	Туре	H/V	
4876	48.39	-1.01	47.3	38	74	-2	6.62	peak	V	
4893	35.62	2 -1	34.6	62	54	-19	9.38	AVG	V	
7324	46.19	5.63	51.8	32	74	-2	2.18	AVG	V	
7341	33.31	5.62	38.9	93	54	-1	5.07	peak	V	
9772	43.81	7.67	51.4	18	74	-2	2.52	peak	V	
9789	32	7.69	39.6	69	54	-14	4.31	AVG	V	
4876	49.26	6 -1.01	48.2	25	74	-2	5.75	peak	Н	
4893	36.78	3 -1	35.7	78	54	-18	8.22	AVG	Н	
7324	49.91	5.63	55.5	54	74	-18	8.46	AVG	Н	
7341	36.17	7 5.62	41.7	79	54	-1:	2.21	peak	Н	
9772	48.06	6 7.67	55.7	73	74	-18	8.27	peak	Н	
9789	35.37	7.69	43.0	06	54	-1	0.94	AVG	Н	

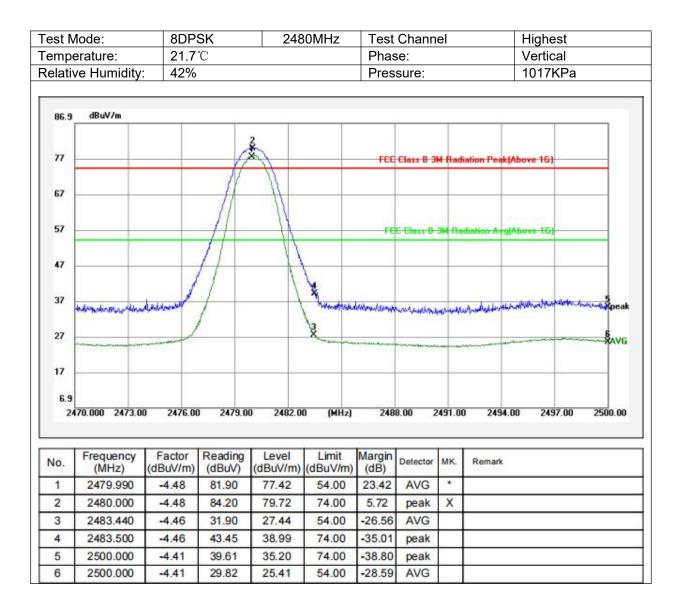


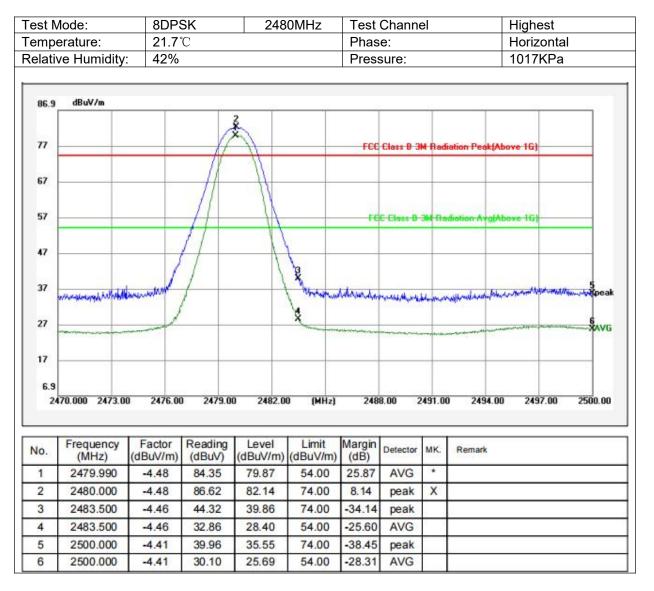
Test mo	Test mode: 8DPSK			F	requency:	80MHz			
Frequency	Meter Readin		Factor	Emiss Lev		Limits	Margin	Datastar	Ant. Pol.
(MHz)	(dBµV	['])	(dB)	(dBµ∖	//m)	(dBµV/m)	(dB)	Detector Type	H/V
4961	53.06	;	-1	52.0)6	74	-21.94	peak	V
4978	39.13		-1.01	38.1	2	54	-15.88	AVG	V
7443	44.85	;	5.57	50.4	12	74	-23.58	AVG	V
7460	31.69)	5.57	37.2	26	54	-16.74	peak	V
9925	42.89)	7.77	50.6	6	74	-23.34	peak	V
9942	31.38		7.78	39.1	6	54	-14.84	AVG	V
4961	48.99		-1	47.9	99	74	-26.01	peak	Н
4978	35.27	,	-1.01	34.2	26	54	-19.74	AVG	Н
7443	48.54		5.57	54.1	1	74	-19.89	peak	Н
7460	34.42	·	5.57	39.9	99	54	-14.01	AVG	Н
9823	40.72	!	7.7	48.4	2	74	-25.58	peak	Н
9942	30.36		7.78	38.1	4	54	-15.86	AVG	Н

Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).

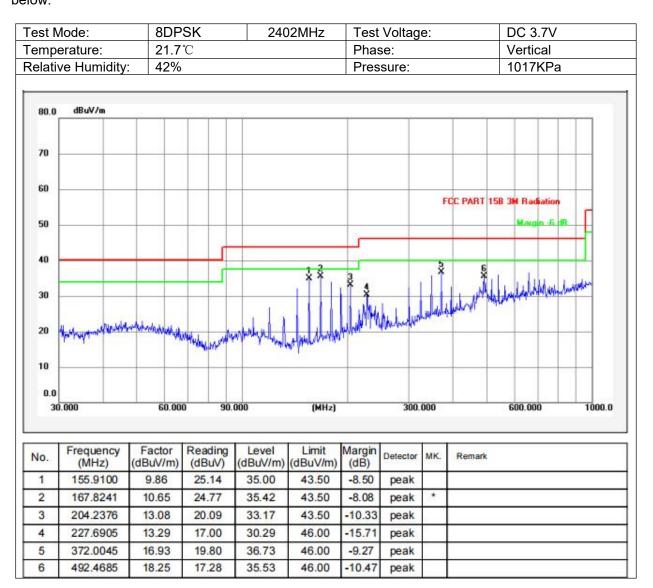

(2) Emission Level= Reading Level+Probe Factor +Cable Loss.

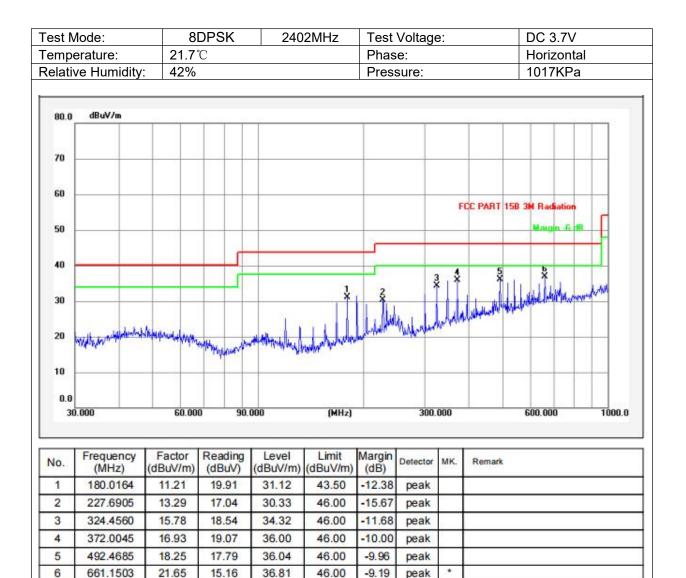
(3) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.


Spurious Emission in Restricted Band 2300-2390MHz and 2483.5-2500MHz Bluetooth (GFSK, π/4-DQPSK, 8DPSK,Hopping) mode have been tested, and the worst result(8DPSK) was report as below:



	st Mode: 8DPSK			240	2402MHz Test Channel Lov					Lowes	t	
	erature:	21.7				Phase:				Horizontal		
elati	ve Humidity:	42%				Pres	sure:			1017K	Pa	
86.9	dBuV/m										6	
											R I	
77		-				FCC	Class B 3	M Rad	iation Peak(Al	ove 16)		
67								+				
						2.	1 de la		2			
57	-					FE	E Class B	3M Fia	diation Avg(A	bove 161		
47												
										d		
37	annontration	1.1.2.1.101.0		ht	Ant Anto Canada	Jalla MA	and when the last	Manker	And the state of t	added !!	he peak	
	and an a strength	Weinerer an Anti	er felorit were and	and an		at der eine	and the second		Met concer and		()	
27					And the second second	and and a start of the start of	www.weiter	-	*	mand	AVG	
17								+				
6.9	1050005572 S4024 S452				5. 10070.000						en enere	
23	300.000 2311.00	0 2322.00	0 2333.0	0 2344.0	0 (MHz)	236	6.00 2	2377.0	0 2388.00	2399.	00 2410.00	
No.	Frequency (MHz)	Factor (dBuV/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	MK.	Remark			
1	2310.000	-5.12	39.75	34.63	74.00	-39.37	peak					
2	2310.010	-5.12	30.03	24.91	54.00	-29.09	AVG					
3	2390.000	-4.83	40.75	35.92	74.00	-38.08	100 C					
4	2390.090	-4.83	30.82	25.99	54.00	-28.01	AVG					
5	2401.970	-4.78	88.38	83.60	54.00	29.60	AVG	*				
6	2402.000	-4.78	90,99	86.21	74.00	12.21	peak	X				




- **Note:** (1) All Readings are Peak Value (VBW=3MHz) and Average Value (VBW=10Hz). (2) Emission Level= Reading Level+Correct Factor.
 - (3) Correct Factor= Ant F + Cab L Preamp
 - (4) The reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Spurious Emission below 1GHz (30MHz to 1GHz) Bluetooth (GFSK, π/4-DQPSK, 8DPSK) mode have been tested, and the worst result(8DPSK) was report as below:

4.8. CONDUCTED EMISSION TEST

4.8.1. Applicable Standard

According to FCC Part 15.207(a)

4.8.2. Conformance Limit

Conducted Emission Limit								
Frequency(MHz)	Quasi-peak	Average						
0.15-0.5	66-56	56-46						
0.5-5.0	56	46						
5.0-30.0	60	50						

Note: 1. The lower limit shall apply at the transition frequencies

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

Remark: Test results were obtained from the following equation:

Measurement (dB μ V) = LISN Factor (dB) + Cable Loss (dB) + Reading (dB μ V) Margin (dB) = Measurement (dB μ V) - Limit (dB μ V)

4.8.3. Test Configuration

Test according to clause 3.3 conducted emission test setup

4.8.4. Test Procedure

The EUT was placed on a table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Repeat above procedures until all frequency measured were complete.

Test Results : PASS

Bluetooth (GFSK, π /4-DQPSK, 8DPSK) mode have been tested, and the worst result(8DPSK) was report as below:

0.9081

1.3744

1.3744

10

11

12

7.58

14.30

12.31

10.52

10.57

10.57

18.10

24.87

22.88

46.00

56.00

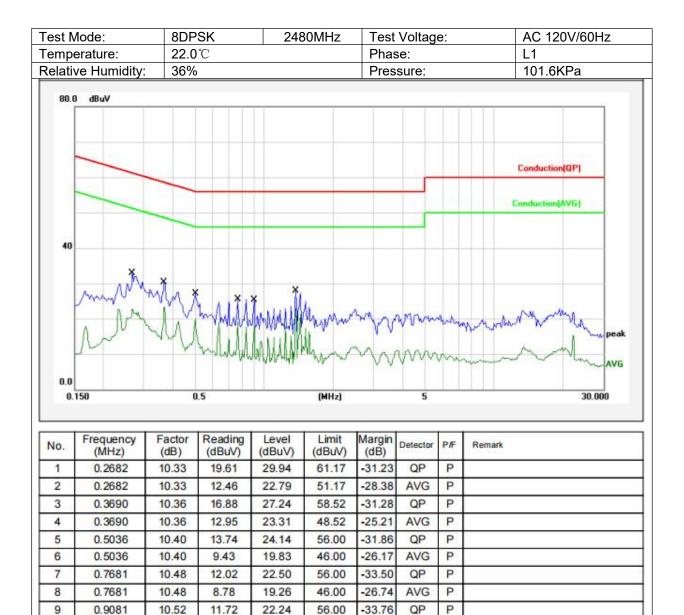
46.00

-27.90

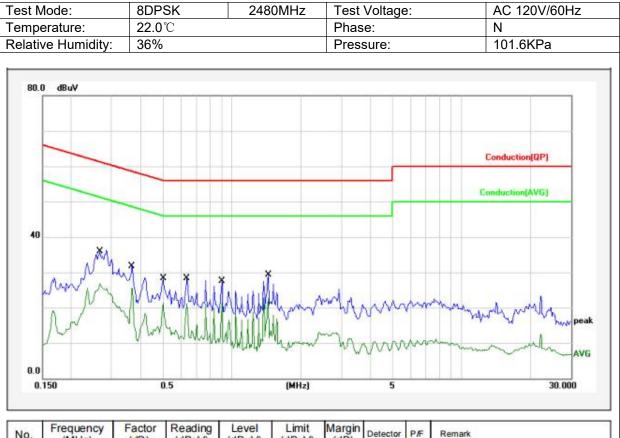
-31.13

-23.12

P


P

Ρ


AVG

QP

AVG

No.	Frequency (MHz)	Factor (dB)	Reading (dBuV)	(dBuV)	(dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.2661	10.37	22.45	32.82	61.24	-28.42	QP	Р	
2	0.2661	10.37	16.55	26.92	51.24	-24.32	AVG	Р	
3	0.3690	10.40	18.22	28.62	58.52	-29.90	QP	Р	
4	0.3690	10.40	15.16	25.56	48.52	-22.96	AVG	Р	
5	0.5036	10.43	14.87	25.30	56.00	-30.70	QP	Р	
6	0.5036	10.43	10.94	21.37	46.00	-24.63	AVG	Р	
7	0.6344	10.46	14.26	24.72	56.00	-31.28	QP	Р	
8	0.6344	10.46	10.74	21.20	46.00	-24.80	AVG	Р	
9	0.9081	10.52	13.98	24.50	56.00	-31.50	QP	Р	
10	0.9081	10.52	10.83	21.35	46.00	-24.65	AVG	Р	
11	1.4416	10.56	15.67	26.23	56.00	-29.77	QP	Р	
12	1.4416	10.56	12.10	22.66	46.00	-23.34	AVG	Р	

4.9. ANTENNA APPLICATION

4.9.1. Antenna Requirement

Standard	Requirement
FCC CRF Part 15.203	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

4.9.2. Result

PASS.

The EUT has 1 antenna: Chip Antenna for BT with classic mode, the gain is 2.31dBi;

Antenna use a permanently attached antenna which is not replaceable.

Not using a standard antenna jack or electrical connector for antenna replacement

The antenna has to be professionally installed (please provide method of installation) Note: which in accordance to section 15.203, please refer to the internal photos.

----- END OF REPORT ------