Medtronic MiniMed

ADDENDUM TO TEST REPORT 95094-9A

Carelink USB 2.4 Model: MMT-7306CL

Tested To The Following Standards:

FCC Part 15 Subpart C Sections 15.207 and 15.247

Report No.: 95094-9B

Date of issue: February 10, 2015

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Revision History	
Report Authorization	3
Test Facility Information	
Software Versions	
Site Registration & Accreditation Information	
Summary of Results	
Conditions During Testing	
Equipment Under Test	6
Peripheral Devices	6
FCC Part 15 Subpart C	
15.207 AC Conducted Emissions	
15.247(a)(2) 6dB Occupied Bandwidth	15
15.247(b)(3) Maximum Output Power	19
15.247(d) Radiated Spurious Emissions	
15.247(e) Power Spectral Density	
Supplemental Information	36
Measurement Uncertainty	36
Emissions Test Details	

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Medtronic MiniMed
Dianne Dudley
18000 Devonshire Street
CKC Laboratories, Inc.
Northridge, CA 91325-1219
5046 Sierra Pines Drive
Mariposa, CA 95338

Representative: Bob Vitti Project Number: 95094

Customer Reference Number: 4500091834

DATE OF EQUIPMENT RECEIPT:November 4, 2013 **DATE(S) OF TESTING:**November 4-6, 2013

Revision History

Original: Testing of Carelink USB 2.4, Model: MMT-7306CL to FCC Part 15 Subpart C Sections 15.207 and 15.247. **Addendum A:** To correct the labels in the Power Output 15.247(b)(3) table by removing the word "bandwidth" in the "Corrections due to bandwidth, cables, amplifiers & antennas (dB)" header and correcting the last column header from "ERP Watts" to "Conducted Power (Watts)".

Addendum B: To correct an error in the value description of LISN, Asset # 01311. The value listed was 5uH and it should have been 50uH.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance & Engineering Services
CKC Laboratories, Inc.

Page 3 of 37 Report No.: 95094-9B

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 22116 23rd Drive S.E., Suite A Bothell, WA 98021-4413

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.00.14
Immunity	5.00.07

Site Registration & Accreditation Information

Location	CB#	TAIWAN	CANADA	FCC	JAPAN
Brea A	US0060	SL2-IN-E-1146R	3082D-1	90473	A-0147

Page 4 of 37 Report No.: 95094-9B

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C

Description	Test Procedure/Method	Results		
Conducted Emissions	FCC Part 15 Subpart C Section 15.207 / ANSI C63.4	Pass		
6dB Occupied Bandwidth	FCC Part 15 Subpart C Section 15.247(a)(2) / FHSS – DA00-705 / DTS – KDB 558074/ ANSI C63.4	Pass		
Maximum Output Power	FCC Part 15 Subpart C Section 15.247(b)(3) / FHSS – DA00-705 / DTS – KDB 558074 / ANSI C63.4			
Radiated Spurious Emissions / Bandedge	FCC Part 15 Subpart C Section 15.247(d) / FHSS – DA00-705 / DTS – KDB 558074 / ANSI C63.4	Pass		
Power Spectral Density	FCC Part 15 Subpart C 15.247(e) / FHSS – DA00-705 / DTS – KDB 558074 / ANSI C63.4	Pass		

Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

Summary of Conditions	
None	

Page 5 of 37 Report No.: 95094-9B

EQUIPMENT UNDER TEST (EUT)

EQUIPMENT UNDER TEST

Carelink USB 2.4

Manuf: Medtronic MiniMed Model: MMT-7306CL Serial: PC0002898F

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

MouseHeadphonesManuf:MicrosoftManuf:MonsterModel:X800898Model:DNA

Serial: NA Serial: 5W64574YRF

LaptopAC/DC AdaptorManuf:DellManuf:Dell

Model: Latitude E6320 Model: DA90PE3-00

Serial: Serial: NA

Page 6 of 37 Report No.: 95094-9B

FCC PART 15 SUBPART C

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) 47 CFR 15C requirements for Unlicensed Radio Frequency Devices, Subpart C - Intentional Radiators.

15.207 AC Conducted Emissions

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Medtronic MiniMed

Specification: 15.207 AC Mains - Quasi-peak

Work Order #: 95094 Date: 11/4/2013
Test Type: Conducted Emissions Time: 12:08:08
Equipment: Carelink USB 2.4 Sequence#: 10

Manufacturer: Medtronic MiniMed Tested By: Steven Pittsford Model: MMT-7306CL 120V 60Hz

S/N: PC0002898F

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP05435	Attenuator	PE7015-10	10/5/2012	10/5/2014
T2	ANP05546	Cable	Heliax	3/27/2013	3/27/2015
T3	ANP05547	Cable	Heliax	9/7/2012	9/7/2014
T4	AN01311	50uH LISN-Line	3816/2	12/9/2011	12/9/2013
	AN01311	50uH LISN-Neutral	3816/2	12/9/2011	12/9/2013
T5	AN02871	Spectrum Analyzer	E4440A	4/11/2013	4/11/2015
T6	AN02611	High Pass Filter	HE9615-150K-	4/18/2012	4/18/2014
			50-720B		

Equipment Under Test (* = EUT):

1 1	- /-			
Function	Manufacturer	Model #	S/N	
Carelink USB 2.4*	Medtronic MiniMed	MMT-7306CL	PC0002898F	

Support Devices:

Function	Manufacturer	Model #	S/N
Mouse	Microsoft	X800898	NA
Headphones	Monster	DNA	5W64574YRF
Laptop	Dell	Latitude E6320	NA
AC/DC Adaptor	Dell	DA90PE3-00	NA

Page 7 of 37 Report No.: 95094-9B

Test Conditions / Notes:

Temperature: 21°C Pressure: 102.7kPa Humidity: 32%

Frequency: 150k-30MHz

EUT is located on the top of the test table 80cm over the ground plane. EUT is connected to support laptop via a 6 foot long USB extender.

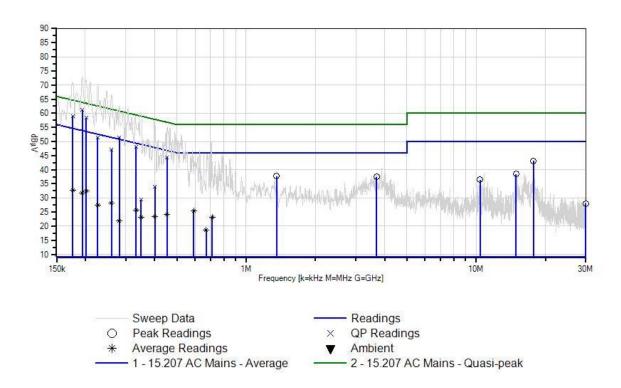
Ports are filled on the support laptop.

EUT is in Transmitting.

Ext Attn: 0 dB

	Attn: 0 dB				_						
	rement Data:		eading list					Test Lead			
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MIT	1D 37	T5	T6	1D	JD.	T. 1.1	1D 37	1D 37	JPD.	A .
	MHz	dBμV	dB	dB	dB	dB	Table	dBμV	dBμV	dB	Ant
1	17	51.7	+9.0	+0.0	+0.0	+0.1	+0.0	61.1	63.8	-2.7	Line
	QP	40.1	+0.0	+0.3	0.0	0.1	0.0	50.4			τ.
2		49.1	+9.0	+0.0	+0.0	+0.1	+0.0	58.4	63.5	-5.1	Line
	QP	40.5	+0.0	+0.2	0.0	0.1	0.0	50.0	64.7		τ.
3	176.178k	49.5	+9.0	+0.0	+0.0	+0.1	+0.0	59.0	64.7	-5.7	Line
	QP	22.2	+0.0	+0.4	. 0. 1	.0.6	. 0. 0	10.1	50.0		т.
4	17.765M	33.3	+9.0	+0.0	+0.1	+0.6	+0.0	43.1	50.0	-6.9	Line
	1.25514	20.2	+0.0	+0.1	. 0. 1	. 0.1	. 0. 0	27.7	16.0	0.2	т.
5	1.355M	28.3	+9.0	+0.0	+0.1	+0.1	+0.0	37.7	46.0	-8.3	Line
	2.601114	20.1	+0.0	+0.2	.0.1	. 0. 1	. 0. 0	27.5	16.0	0.5	т
6	3.691M	28.1	+9.0	+0.0	+0.1	+0.1	+0.0	37.5	46.0	-8.5	Line
	200.00.01	10.0	+0.0	+0.2	0.0	0.1	0.0	51.5	60.0	0.2	τ.
7		42.3	+9.0	+0.0	+0.0	+0.1	+0.0	51.5	60.8	-9.3	Line
	QP	20.0	+0.0	+0.1	.00	. 0. 1	. 0. 0	40.0	50. 4	11.0	т
8		39.0	+9.0	+0.0	+0.0	+0.1	+0.0	48.2	59.4	-11.2	Line
9	QP 226.356k	42.0	+0.0	+0.1	.00	+O 1	+ O O	51.4	62.6	-11.2	T :
9		42.0	+9.0	+0.0	+0.0	+0.1	+0.0	51.4	62.6	-11.2	Line
10	QP 14.904M	20.6	+0.0	+0.3	. 0. 1	.07	. 0. 0	38.4	50.0	-11.6	т
10	14.904M	28.6	+9.0 +0.0	+0.0 +0.0	+0.1	+0.7	+0.0	38.4	50.0	-11.6	Line
11	453.500k	35.1	+9.0	+0.0	+0.0	+0.1	+0.0	44.4	56.8	-12.4	Line
11	433.300k QP	33.1	+9.0	+0.0	+0.0	+0.1	+0.0	44.4	30.8	-12.4	Line
12	_	27.0	+9.0	+0.2	+0.1	+0.3	+0.0	36.5	50.0	-13.5	Line
12	10.40/W	27.0	+9.0	+0.1	+0.1	+0.3	+0.0	30.3	50.0	-13.3	Line
13	259.807k	37.9	+9.0	+0.0	+0.0	+0.1	+0.0	47.2	61.4	-14.2	Line
13	239.607K QP	31.7	+9.0	+0.0	+0.0	+0.1	+0.0	71.4	01.4	-14.4	Lille
14	_	16.0	+9.0	+0.0	+0.0	+0.1	+0.0	25.3	46.0	-20.7	Line
14	Ave	10.0	+0.0	+0.0	10.0	10.1	10.0	23.3	70.0	-20.7	Line
^		41.4	+9.0	+0.0	+0.0	+0.1	+0.0	50.7	46.0	+4.7	Line
	371.200K	r1.7	+0.0	+0.2	10.0	10.1	10.0	20.1	10.0	17.7	Line
16	201.631k	23.1	+9.0	+0.0	+0.0	+0.1	+0.0	32.4	53.5	-21.1	Line
10	Ave	23.1	+0.0	+0.2	10.0	10.1	10.0	32.7	55.5	21.1	Line
٨		62.5	+9.0	+0.0	+0.0	+0.1	+0.0	71.8	53.5	+18.3	Line
	201.031K	02.3	+0.0	+0.2	10.0	10.1	10.0	, 1.0	55.5	110.5	Line
			10.0	10.2							

Page 8 of 37 Report No.: 95094-9B



10 156 150	22.2	.0.0	. 0. 0	. 0. 0	. 0. 1	. 0. 0	22.0	545	21.0	T .
18 176.178k	23.3	+9.0	+0.0	+0.0	+0.1	+0.0	32.8	54.7	-21.9	Line
Ave	<i>c</i> 1 1	+0.0	+0.4	0.0	0.1	0.0	70.0	5.4.7	160	T .
^ 176.178k	61.4	+9.0	+0.0	+0.0	+0.1	+0.0	70.9	54.7	+16.2	Line
20 20 00014	17.7	+0.0	+0.4	0.1	0.0	0.0	20.0	50.0	22.0	T .
20 30.000M	17.7	+9.1	+0.1	+0.1	+0.8	+0.0	28.0	50.0	-22.0	Line
24 4042501		+0.0	+0.2	0.0	0.1	0.0	21.0	72 0	22.0	
21 194.359k	22.4	+9.0	+0.0	+0.0	+0.1	+0.0	31.8	53.8	-22.0	Line
Ave		+0.0	+0.3						10.0	
^ 194.359k	63.4	+9.0	+0.0	+0.0	+0.1	+0.0	72.8	53.8	+19.0	Line
		+0.0	+0.3							
23 453.500k	14.8	+9.0	+0.0	+0.0	+0.1	+0.0	24.1	46.8	-22.7	Line
Ave		+0.0	+0.2							
^ 453.500k	47.7	+9.0	+0.0	+0.0	+0.1	+0.0	57.0	46.8	+10.2	Line
		+0.0	+0.2							
25 711.900k	13.8	+9.0	+0.0	+0.0	+0.1	+0.0	23.1	46.0	-22.9	Line
Ave		+0.0	+0.2							
^ 711.900k	35.8	+9.0	+0.0	+0.0	+0.1	+0.0	45.1	46.0	-0.9	Line
		+0.0	+0.2							
27 259.807k	18.9	+9.0	+0.0	+0.0	+0.1	+0.0	28.2	51.4	-23.2	Line
Ave		+0.0	+0.2							
^ 259.807k	57.2	+9.0	+0.0	+0.0	+0.1	+0.0	66.5	51.4	+15.1	Line
		+0.0	+0.2							
29 400.885k	24.8	+9.0	+0.0	+0.0	+0.1	+0.0	34.1	57.8	-23.7	Line
QP		+0.0	+0.2							
30 332.530k	16.4	+9.0	+0.0	+0.0	+0.1	+0.0	25.6	49.4	-23.8	Line
Ave		+0.0	+0.1							
^ 332.530k	49.4	+9.0	+0.0	+0.0	+0.1	+0.0	58.6	49.4	+9.2	Line
		+0.0	+0.1							
32 400.885k	14.1	+9.0	+0.0	+0.0	+0.1	+0.0	23.4	47.8	-24.4	Line
Ave		+0.0	+0.2							
^ 400.885k	48.2	+9.0	+0.0	+0.0	+0.1	+0.0	57.5	47.8	+9.7	Line
		+0.0	+0.2							
34 226.356k	17.9	+9.0	+0.0	+0.0	+0.1	+0.0	27.3	52.6	-25.3	Line
Ave		+0.0	+0.3							
^ 226.356k	60.2	+9.0	+0.0	+0.0	+0.1	+0.0	69.6	52.6	+17.0	Line
		+0.0	+0.3							
36 350.000k	14.0	+9.0	+0.0	+0.0	+0.1	+0.0	23.2	49.0	-25.8	Line
Ave		+0.0	+0.1							
37 671.400k	9.3	+9.0	+0.0	+0.0	+0.1	+0.0	18.6	46.0	-27.4	Line
Ave		+0.0	+0.2							
^ 671.400k	35.9	+9.0	+0.0	+0.0	+0.1	+0.0	45.2	46.0	-0.8	Line
		+0.0	+0.2							
39 280.896k	12.6	+9.0	+0.0	+0.0	+0.1	+0.0	21.8	50.8	-29.0	Line
Ave		+0.0	+0.1							
^ 280.896k	53.3	+9.0	+0.0	+0.0	+0.1	+0.0	62.5	50.8	+11.7	Line
		+0.0	+0.1							
41 350.000k	20.2	+9.0	+0.0	+0.0	+0.1	+0.0	29.4	59.0	-29.6	Line
QP		+0.0	+0.1							

Page 9 of 37 Report No.: 95094-9B

CKC Laboratories, Inc. Date: 11/4/2013 Time: 12:08:08 Medtronic MiniMed WO#: 95094 Test Lead: Line 120V 60Hz Sequence#: 10 Line Medtronic MiniMed Carelink USB 2.4 P/N: MMT-7306CL

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Medtronic MiniMed

Specification: 15.207 AC Mains - Average

Work Order #: Date: 11/4/2013 95094 Test Type: Time: 12:20:52 **Conducted Emissions** Equipment: Carelink USB 2.4 Sequence#: 11

Manufacturer: Medtronic MiniMed Tested By: Steven Pittsford Model: MMT-7306CL 120V 60Hz

S/N: PC0002898F

Test Equipment:

1 cst Lqui	pinent.				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP05435	Attenuator	PE7015-10	10/5/2012	10/5/2014
T2	ANP05546	Cable	Heliax	3/27/2013	3/27/2015
Т3	ANP05547	Cable	Heliax	9/7/2012	9/7/2014
	AN01311	50uH LISN-Line	3816/2	12/9/2011	12/9/2013
T4	AN01311	50uH LISN-Neutral	3816/2	12/9/2011	12/9/2013
	AN02871	Spectrum Analyzer	E4440A	4/11/2013	4/11/2015
T5	AN02611	High Pass Filter	HE9615-150K-	4/18/2012	4/18/2014
			50-720B		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Carelink USB 2.4*	Medtronic MiniMed	MMT-7306CL	PC0002898F

Support Devices:

Support Deriversi			
Function	Manufacturer	Model #	S/N
Mouse	Microsoft	X800898	NA
Headphones	Monster	DNA	5W64574YRF
Laptop	Dell	Latitude E6320	NA
AC/DC Adaptor	Dell	DA90PE3-00	NA

Test Conditions / Notes:

Temperature: 21°C Pressure: 102.7kPa Humidity: 32%

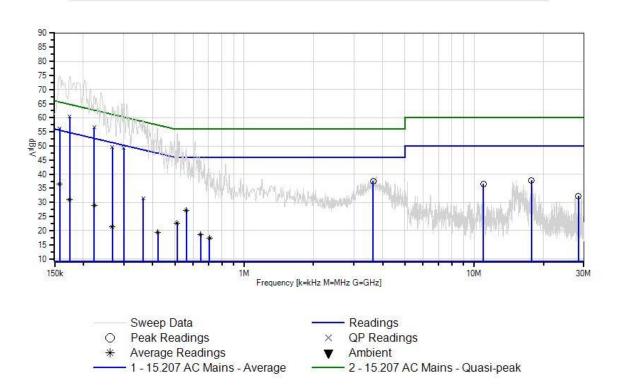
Frequency: 150k-30MHz

EUT is located on the top of the test table 80cm over the ground plane. EUT is connected to support laptop via a 6 foot long USB extender.

Ports are filled on the support laptop.

EUT is in Transmitting.

Report No.: 95094-9B


Ext Attn: 0 dB

	rement Data:	tta: Reading listed by margin. Test Lead: Neutral									
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
"	rreq	Rung	T5	12	13	17	Dist	Com	Spec	Margin	1 Olai
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	174.725k	50.9	+9.0	+0.0	+0.0	+0.1	+0.0	60.4	64.7	-4.3	Neutr
	QP		+0.4								- 10 0.02
2	223.448k	47.2	+9.0	+0.0	+0.0	+0.1	+0.0	56.6	62.7	-6.1	Neutr
	QP		+0.3								
3	3.639M	28.0	+9.0	+0.0	+0.1	+0.2	+0.0	37.5	46.0	-8.5	Neutr
			+0.2								
4	157.999k	46.5	+9.0	+0.0	+0.0	+0.1	+0.0	56.3	65.6	-9.3	Neutr
	QP		+0.7								
5	299.804k	40.1	+9.0	+0.0	+0.0	+0.1	+0.0	49.3	60.2	-10.9	Neutr
	QP		+0.1								
^	299.804k	56.0	+9.0	+0.0	+0.0	+0.1	+0.0	65.2	50.2	+15.0	Neutr
			+0.1								
7		40.3	+9.0	+0.0	+0.0	+0.1	+0.0	49.6	61.2	-11.6	Neutr
	QP		+0.2								
8	17.762M	28.0	+9.0	+0.0	+0.1	+0.6	+0.0	37.8	50.0	-12.2	Neutr
			+0.1								
9	10.976M	27.1	+9.0	+0.1	+0.1	+0.3	+0.0	36.6	50.0	-13.4	Neutr
			+0.0								
10	28.376M	21.9	+9.1	+0.1	+0.1	+0.8	+0.0	32.2	50.0	-17.8	Neutr
- 11	7 50 2 001	15.0	+0.2	0.0	0.0	0.1	0.0	27.1	4.5.0	10.0	
11	560.200k	17.8	+9.0	+0.0	+0.0	+0.1	+0.0	27.1	46.0	-18.9	Neutr
	Ave	42.0	+0.2	0.0	0.0	0.1	0.0	50.1	46.0	<u> </u>	NT .
٨	560.200k	42.8	+9.0	+0.0	+0.0	+0.1	+0.0	52.1	46.0	+6.1	Neutr
12	157,0001	267	+0.2	. 0. 0	. 0. 0	.0.1	. 0. 0	26.5	55.6	10.1	NT. dis
13	157.999k	26.7	+9.0	+0.0	+0.0	+0.1	+0.0	36.5	55.6	-19.1	Neutr
٨	Ave 157.999k	65.1	+0.7	+0.0	+0.0	+0.1	+0.0	74.9	55.6	+19.3	Marren
	137.999K	03.1	+9.0 +0.7	+0.0	+0.0	+0.1	+0.0	74.9	33.0	+19.3	Neutr
15	511.300k	13.4	+9.0	+0.0	+0.0	+0.1	+0.0	22.7	46.0	-23.3	Neutr
	Ave	13.4	+0.2	+0.0	+0.0	+0.1	+0.0	22.1	40.0	-23.3	Neuti
^	511.300k	40.9	+9.0	+0.0	+0.0	+0.1	+0.0	50.2	46.0	+4.2	Neutr
	311.300K	1 0.7	+0.2	10.0	10.0	10.1	10.0	30.2	40.0	17.2	redu
17	223.448k	19.6	+9.0	+0.0	+0.0	+0.1	+0.0	29.0	52.7	-23.7	Neutr
	Ave	17.0	+0.3	10.0	10.0	10.1	10.0	27.0	32.1	-23.1	redu
^		58.3	+9.0	+0.0	+0.0	+0.1	+0.0	67.7	52.7	+15.0	Neutr
		20.3	+0.3	10.0	10.0	. 0.1	. 0.0	57.7	52.7	. 13.0	1,000
19	174.725k	21.4	+9.0	+0.0	+0.0	+0.1	+0.0	30.9	54.7	-23.8	Neutr
	Ave		+0.4								
^	174.725k	65.3	+9.0	+0.0	+0.0	+0.1	+0.0	74.8	54.7	+20.1	Neutr
			+0.4								
21	364.526k	22.3	+9.0	+0.0	+0.0	+0.1	+0.0	31.5	58.6	-27.1	Neutr
	QP		+0.1								
^	364.526k	50.1	+9.0	+0.0	+0.0	+0.1	+0.0	59.3	48.6	+10.7	Neutr
			+0.1								
23	646.200k	9.3	+9.0	+0.0	+0.0	+0.1	+0.0	18.6	46.0	-27.4	Neutr
	Ave		+0.2								

^ 646.200k	40.6	+9.0	+0.0	+0.0	+0.1	+0.0	49.9	46.0	+3.9	Neutr
		+0.2								
25 422.700k	10.0	+9.0	+0.0	+0.0	+0.1	+0.0	19.3	47.4	-28.1	Neutr
Ave		+0.2								
^ 422.700k	44.7	+9.0	+0.0	+0.0	+0.1	+0.0	54.0	47.4	+6.6	Neutr
		+0.2								
27 707.500k	8.1	+9.0	+0.0	+0.0	+0.1	+0.0	17.4	46.0	-28.6	Neutr
Ave		+0.2								
^ 707.500k	37.3	+9.0	+0.0	+0.0	+0.1	+0.0	46.6	46.0	+0.6	Neutr
		+0.2								
29 267.807k	12.0	+9.0	+0.0	+0.0	+0.1	+0.0	21.3	51.2	-29.9	Neutr
Ave		+0.2								
^ 267.807k	54.7	+9.0	+0.0	+0.0	+0.1	+0.0	64.0	51.2	+12.8	Neutr
		+0.2								

CKC Laboratories, Inc. Date: 11/4/2013 Time: 12:20:52 Medtronic MiniMed WO#: 95094 Test Lead: Neutral 120V 60Hz Sequence#: 11 Neutral Medtronic MiniMed Carelink USB 2.4 P/N: MMT-7306CL

Test Setup Photos

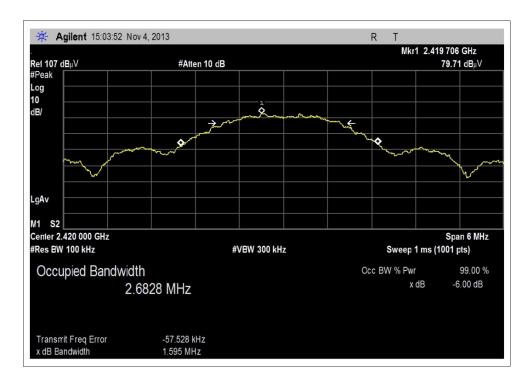
15.247(a)(2) 6dB Occupied Bandwidth

Test Conditions / Setup

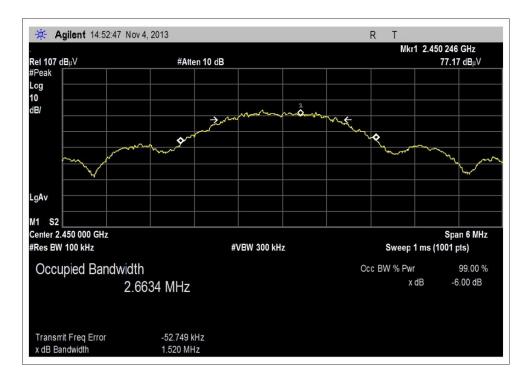
The EUT's antenna is non-removable, thus the data will be gathered through radiated measurements. The EUT is located on top of a Styrofoam table, 80cm over the ground plane. The EUT is connected to support laptop via a 6 foot long USB extender. Ports are filled on the support laptop.

Test Conditions: Temp: 23°C Humidity: 31% Pressure: 102.5kPa Freq: 2400-2483.5MHz

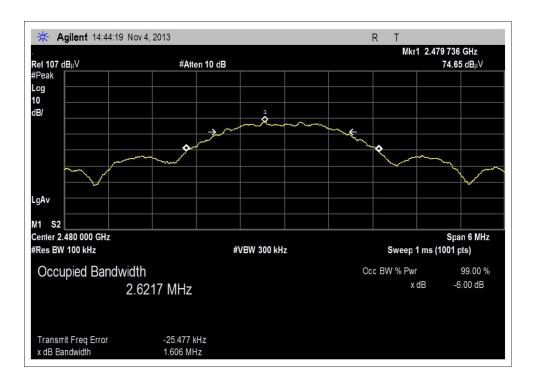
Engineer Name: Steven Pittsford


	Test Equipment										
Asset #	Description	Model	Manufacturer	Cal Date	Cal Due						
AN01467	Horn Antenna-ANSI C63.5 Calibration	3115	EMCO	9/16/2013	9/16/2015						
AN03209	Preamp	83051A	Agilent	3/5/2013	3/5/2015						
ANP05546	Cable	Heliax	Andrews	3/27/2013	3/27/2015						
ANP05547	Cable	Heliax	Andrews	9/7/2012	9/7/2014						
AN02871	Spectrum Analyzer	E4440A	Agilent	4/11/2013	4/11/2015						

Test Data


Frequency (MHz)	6dB			
	Bandwidth			
2420	1.595MHz			
2450	1.520MHz			
2480	1.606MHz			

Page 15 of 37 Report No.: 95094-9B



Low

Middle

High

Test Setup Photos

15.247(b)(3) Maximum Output Power

Test Conditions / Setup

The EUT's antenna is non-removable, thus the data will be gathered through radiated measurements. The formula shown below will be used to calculate the ERP. The EUT is located on top of a Styrofoam table, 80cm over the ground plane. Voltage on the laptop will be varied per FCC 15.31(e). The EUT is connected to support laptop via a 6 foot long USB extender. Ports are filled on the support laptop.

Test Conditions: Temp: 21°C Humidity: 32% Pressure: 102.6kPa Freg: 2400-2483.5MHz

$P = (Ed)^2 / (30 * G)$

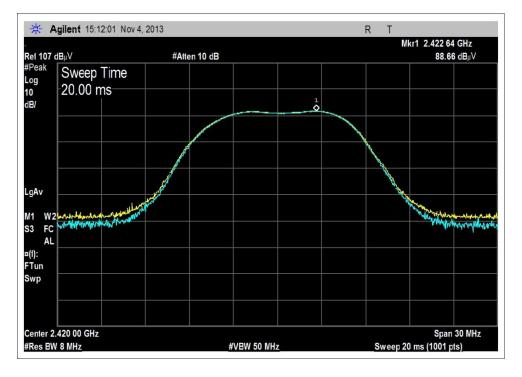
E = Field strength of the measurement converted to V/M

d = Measurement distance in meters

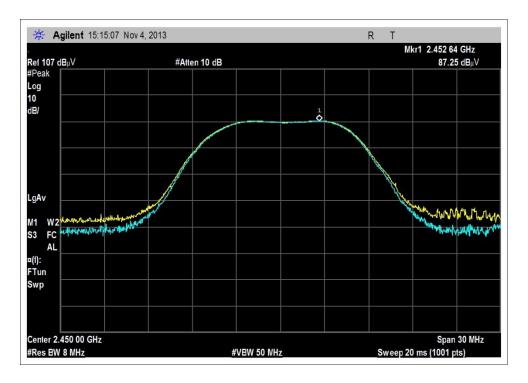
G = Numerical gain of the EUT's antenna relative to an isotropic radiator.

P = The power in watts for which we are solving

Engineer Name: Steven Pittsford


	Test Equipment										
Asset #	Description	Model	Manufacturer	Cal Date	Cal Due						
AN01467	Horn Antenna-ANSI C63.5 Calibration	3115	EMCO	9/16/2013	9/16/2015						
AN03209	Preamp	83051A	Agilent	3/5/2013	3/5/2015						
ANP05546	Cable	Heliax	Andrews	3/27/2013	3/27/2015						
ANP05547	Cable	Heliax	Andrews	9/7/2012	9/7/2014						
AN02871	Spectrum Analyzer	E4440A	Agilent	4/11/2013	4/11/2015						

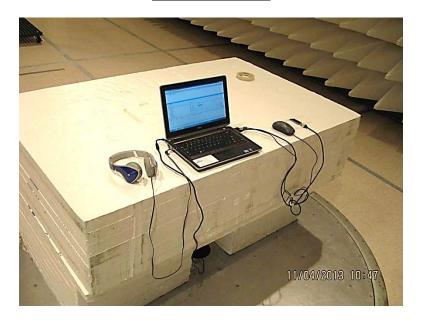
Page 19 of 37 Report No.: 95094-9B


Test Data

Frequency (MHz)	Input Voltage	Spectrum Analyzer Measurement (dBuV)	Corrections due to cables, amplifiers, antennas and (dB)	Corrected Reading (dBuV)	Antenna Gain (dBi)	Conducted Power (Watts)
	102VAC	88.7	1.5	90.2	0	3.141*10 ⁻⁴
2420	120VAC	88.7	1.5	90.2	0	3.141*10 ⁻⁴
	138VAC	88.7	1.5	90.2	0	3.141*10 ⁻⁴
	102VAC	87.2	1.6	88.8	0	2.276*10 ⁻⁴
2450	120VAC	87.2	1.6	88.8	0	2.276*10 ⁻⁴
	138VAC	87.2	1.6	88.8	0	2.276*10 ⁻⁴
	102VAC	86.6	1.6	88.2	0	1.982*10 ⁻⁴
2480	120VAC	86.6	1.6	88.2	0	1.982*10 ⁻⁴
	138VAC	86.6	1.6	88.2	0	1.982*10 ⁻⁴



Low


Middle

High

Test Setup Photos

15.247(d) Radiated Spurious Emissions

Test Data Sheet

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Medtronic MiniMed

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 95094 Date: 11/5/2013
Test Type: Maximized Emissions Time: 18:16:37
Equipment: Carelink USB 2.4 Sequence#: 10

Manufacturer: Medtronic MiniMed Tested By: Steven Pittsford

Model: MMT-7306CL S/N: PC0002898F

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN01467	Horn Antenna-ANSI	3115	9/16/2013	9/16/2015
		C63.5 Calibration			
T2	AN03209	Preamp	83051A	3/5/2013	3/5/2015
T3	ANP05546	Cable	Heliax	3/27/2013	3/27/2015
T4	ANP05547	Cable	Heliax	9/7/2012	9/7/2014
T5	AN02871	Spectrum Analyzer	E4440A	4/11/2013	4/11/2015
T6	AN02741	Active Horn Antenna	AMFW-5F-	12/18/2012	12/18/2014
			12001800-20-10P		
T7	AN02742	Active Horn Antenna	AMFW-5F-	12/17/2012	12/17/2014
			18002650-20-10P		
Т8	AN02763-69	Waveguide	Multiple	6/7/2012	6/7/2014
T9	ANP05428	Cable	PE35591-60	6/8/2012	6/8/2014
T10	AN02308	Preamp	8447D	4/3/2012	4/3/2014
T11	AN01996	Biconilog Antenna	CBL6111C	3/2/2012	3/2/2014
T12	ANP05360	Cable	RG214	12/3/2012	12/3/2014
T13	ANP05541	Cable	Heliax	4/11/2012	4/11/2014
T14	AN00052	Loop Antenna	6502	5/16/2012	5/16/2014
T15	ANP05422	Cable	PE35591-72	6/8/2012	6/8/2014

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Carelink USB 2.4*	Medtronic MiniMed	MMT-7306CL	PC0002898F	

Support Devices:

Function	Manufacturer	Model #	S/N
AC/DC Adaptor	Dell	DA90PE3-00	NA
Laptop	Dell	Latitude E6320	NA
Headphones	Monster	DNA	5W64574YRF
Mouse	Microsoft	X800898	NA

Page 23 of 37 Report No.: 95094-9B

Test Conditions / Notes:

Temperature: 23°C Pressure: 102.5kPa Humidity: 31% Frequency: 9k-26GHz

Vertical and Horizontal Polarizations investigated

CISPR Bandwidths Used.

EUT is located on the top of the test table 80cm over the ground plane.

EUT is connected to support laptop via a 6 foot long USB extender. Ports are filled on the support laptop.

EUT is transmitting at Low, Mid and High Channels.

Ext Attn: 0 dB

	Attn: 0 dB										
Measu	rement Data:		eading lis		argin.			est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11	T12					
			T13	T14	T15						
	MHz	dΒμV	dB	dB	dB	dB	Table		•	dB	Ant
1	4959.658M	41.4	+32.5	-30.8	+2.3	+3.6	+0.0	49.0	54.0	-5.0	Vert
			+0.0	+0.0	+0.0	+0.0	-16				100
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
2	144.500M	53.3	+0.0	+0.0	+0.3	+0.0	+0.0	38.4	43.5	-5.1	Horiz
			+0.0	+0.0	+0.0	+0.0	351				131
			+0.0	-27.6	+11.3	+0.7					
			+0.4	+0.0	+0.0						
3	4960.692M	41.3	+32.5	-30.8	+2.3	+3.6	+0.0	48.9	54.0	-5.1	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
4	4899.905M	41.5	+32.3	-30.8	+2.2	+3.6	+0.0	48.8	54.0	-5.2	Horiz
			+0.0	+0.0	+0.0	+0.0	360				116
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
5	24800.345	44.9	+0.0	+0.0	+0.0	+0.0	+0.0	47.6	54.0	-6.4	Vert
	M		+0.0	+0.0	-12.4	+0.2	• • •				40.4
			+6.3	+0.0	+0.0	+0.0	304				106
			+0.0	+0.0	+8.6						
6	4840.915M	40.5	+32.2	-30.9	+2.2	+3.5	+0.0	47.5	54.0	-6.5	Horiz
			+0.0	+0.0	+0.0	+0.0	348				112
			+0.0	+0.0	+0.0	+0.0					
	1000 2053 5	20.5	+0.0	+0.0	+0.0	2.5	0.0	45.0	7.1.0		**
7	4899.235M	39.7	+32.3	-30.8	+2.2	+3.6	+0.0	47.0	54.0	-7.0	Vert
			+0.0	+0.0	+0.0	+0.0					123
			+0.0	+0.0	+0.0	+0.0					
	10.10.0007.7	20.5	+0.0	+0.0	+0.0	2.7	0.0	4.5.0	7.1.0		**
8	4840.000M	39.2	+32.2	-30.9	+2.2	+3.5	+0.0	46.2	54.0	-7.8	Vert
			+0.0	+0.0	+0.0	+0.0	203				101
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						

Page 24 of 37 Report No.: 95094-9B

9	711.900M	41.5	+0.0	+0.0	+0.7	+0.0	+0.0	37.7	46.0	-8.3	Horiz
			+0.0	+0.0	+0.0	+0.0	360				131
			+0.0	-28.2	+20.9	+1.8					
1.0			+1.0	+0.0	+0.0						
10	263.800M	49.9	+0.0	+0.0	+0.4	+0.0	+0.0	37.5	46.0	-8.5	Horiz
			+0.0	+0.0	+0.0	+0.0					99
			+0.0	-27.1	+12.7	+1.0					
1.1	1220 000M	10.1	+0.6	+0.0	+0.0	+1.0	+0.0	15.2	540	0.7	Homin
11	1330.000M	48.4	$+24.5 \\ +0.0$	-30.7 +0.0	+1.3 +0.0	$+1.8 \\ +0.0$	+0.0 102	45.3	54.0	-8.7	Horiz 99
			+0.0	+0.0 +0.0	+0.0 +0.0	+0.0	102				99
			+0.0	+0.0	+0.0	10.0					
12	24500.050	42.8	+0.0	+0.0	+0.0	+0.0	+0.0	45.1	54.0	-8.9	Vert
12	M	42.0	+0.0	+0.0	-12.9	+0.1	10.0	43.1	34.0	0.7	VCIt
	1.1		+6.4	+0.0	+0.0	+0.0	360				109
			+0.0	+0.0	+8.7						
13	143.500M	49.3	+0.0	+0.0	+0.3	+0.0	+0.0	34.4	43.5	-9.1	Horiz
			+0.0	+0.0	+0.0	+0.0					99
			+0.0	-27.6	+11.3	+0.7					
			+0.4	+0.0	+0.0						
14	59.100M	52.4	+0.0	+0.0	+0.1	+0.0	+0.0	30.8	40.0	-9.2	Horiz
			+0.0	+0.0	+0.0	+0.0					99
			+0.0	-28.0	+5.5	+0.5					
			+0.3	+0.0	+0.0						
15	52.300M	50.6	+0.0	+0.0	+0.1	+0.0	+0.0	30.7	40.0	-9.3	Horiz
			+0.0	+0.0	+0.0	+0.0	360				131
			+0.0	-28.0	+7.4	+0.4					
1.0	24200 000	12.0	+0.2	+0.0	+0.0	. 0. 0	. 0. 0	44.5	540	0.5	X7 .
16		42.9	+0.0	+0.0	+0.0	+0.0	+0.0	44.5	54.0	-9.5	Vert
	M		+0.0	+0.0	-13.5	+0.1					100
			$+6.4 \\ +0.0$	+0.0	+0.0 +8.6	+0.0					109
17	273.500M	48.1	+0.0	+0.0	+0.4	+0.0	+0.0	35.9	46.0	-10.1	Horiz
17	273.300W	40.1	+0.0	+0.0	+0.4	+0.0	360	33.9	40.0	-10.1	131
			+0.0	-27.1	+12.8	+0.0	500				131
			+0.6	+0.0	+0.0	1 1.1					
18	384.000M	45.4	+0.0	+0.0	+0.4	+0.0	+0.0	35.8	46.0	-10.2	Horiz
	20 1.000111	13.1	+0.0	+0.0	+0.0		360	22.0	10.0	10.2	131
			+0.0	-27.7	+15.8	+1.2					
			+0.7	+0.0	+0.0						
19	19360.000	42.2	+0.0	+0.0	+0.0	+0.0	+0.0	43.6	54.0	-10.4	Vert
	M		+0.0	+0.0	-13.3	+1.5					
			+5.5	+0.0	+0.0	+0.0	360				106
			+0.0	+0.0	+7.7						
20	359.800M	45.7	+0.0	+0.0	+0.4	+0.0	+0.0	35.6	46.0	-10.4	Horiz
			+0.0	+0.0	+0.0	+0.0					99
			+0.0	-27.5	+15.1	+1.2					
			+0.7	+0.0	+0.0						
21	19838.245	42.4	+0.0	+0.0	+0.0	+0.0	+0.0	43.5	54.0	-10.5	Vert
	M		+0.0	+0.0	-13.4	+0.9					
			+5.7	+0.0	+0.0	+0.0					99
			+0.0	+0.0	+7.9						

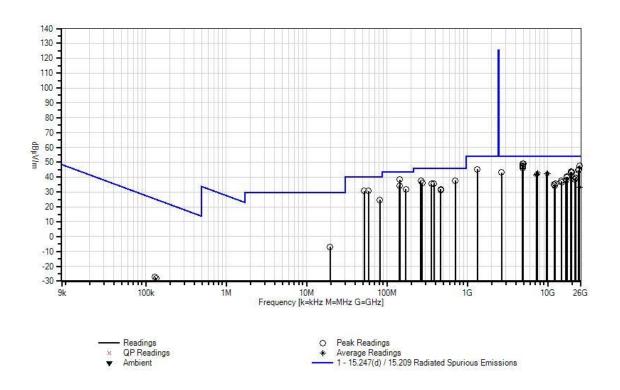
Page 25 of 37 Report No.: 95094-9B

22 1	9600.050	41.8	+0.0	+0.0	+0.0	+0.0	+0.0	43.2	54.0	-10.8	Vert
22 1	M	11.0	+0.0	+0.0	-13.3	+1.3	10.0	13.2	5 1.0	10.0	7 011
	=:=		+5.6	+0.0	+0.0	+0.0	360				109
			+0.0	+0.0	+7.8						- *
23 20	666.000M	40.8	+28.5	-30.2	+1.4	+2.7	+0.0	43.2	54.0	-10.8	Vert
			+0.0	+0.0	+0.0	+0.0					99
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
24 7	440.110M	25.7	+37.5	-28.2	+3.2	+4.4	+0.0	42.6	54.0	-11.4	Vert
Av	ve		+0.0	+0.0	+0.0	+0.0	360				105
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
^ 7	440.110M	39.2	+37.5	-28.2	+3.2	+4.4	+0.0	56.1	54.0	+2.1	Vert
			+0.0	+0.0	+0.0	+0.0	220				100
			+0.0	+0.0	+0.0	+0.0					
25.0	CO1 0753 5	24.5	+0.0	+0.0	+0.0	. 4.0	. 0. 0	40.7	<i>540</i>	11.7	77 .
	681.275M	24.6	+37.5	-27.8	+3.4	+4.8	+0.0	42.5	54.0	-11.5	Vert
Av	ve		+0.0	+0.0	+0.0	+0.0	360				105
			+0.0	+0.0	$+0.0 \\ +0.0$	+0.0					
Λ 0.	CO1 275M	20.5	+0.0	+0.0		. 1 0	.00	57.4	540	.2.4	V 4
^ 9	681.275M	39.5	$+37.5 \\ +0.0$	-27.8 +0.0	+3.4 +0.0	+4.8 +0.0	+0.0 360	57.4	54.0	+3.4	Vert 100
			+0.0 +0.0	+0.0	+0.0	+0.0 +0.0	300				100
			+0.0	+0.0	+0.0	+0.0					
28 0	920.000M	25.1	+37.3	-27.9	+3.1	+4.9	+0.0	42.5	54.0	-11.5	Horiz
Av		49.1	+0.0	+0.0	+0.0	+0.0	360	74.3	54.0	-11.3	10112
	, .		+0.0	+0.0	+0.0	+0.0	500				105
			+0.0	+0.0	+0.0	. 0.0					
^ 9	920.000M	40.5	+37.3	-27.9	+3.1	+4.9	+0.0	57.9	54.0	+3.9	Horiz
			+0.0	+0.0	+0.0	+0.0	360				99
			+0.0	+0.0	+0.0	+0.0	-				-
			+0.0	+0.0	+0.0						
30 9	800.642M	24.8	+37.4	-27.8	+3.2	+4.9	+0.0	42.5	54.0	-11.5	Vert
Av			+0.0	+0.0	+0.0	+0.0	360				105
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
^ 9	800.642M	39.9	+37.4	-27.8	+3.2	+4.9	+0.0	57.6	54.0	+3.6	Vert
			+0.0	+0.0	+0.0	+0.0	275				105
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
32	171.600M	48.3	+0.0	+0.0	+0.3	+0.0	+0.0	32.0	43.5	-11.5	Horiz
			+0.0	+0.0	+0.0	+0.0	360				131
			+0.0	-27.4	+9.5	+0.8					
22 7	240 22014	25.5	+0.5	+0.0	+0.0	. 4.2	.0.0	41.0	<i>510</i>	10.0	II
	349.230M	25.5	+37.1	-28.2	+3.1	+4.3	+0.0	41.8	54.0	-12.2	Horiz
Av	ve		+0.0	+0.0	+0.0	+0.0	360				105
			$+0.0 \\ +0.0$	$+0.0 \\ +0.0$	+0.0 +0.0	+0.0					
A 7	349.230M	40.8			+0.0	1/1/2	10.0	57.1	54.0	+2.1	Цотія
'' '	J47.43UM	40.8	$+37.1 \\ +0.0$	-28.2 +0.0	+3.1 +0.0	+4.3 +0.0	+0.0	37.1	54.0	+3.1	Horiz 120
			+0.0	+0.0	+0.0 +0.0	+0.0 +0.0					120
			+0.0	+0.0	+0.0	±0.0					
			10.0	10.0	10.0						

Page 26 of 37 Report No.: 95094-9B

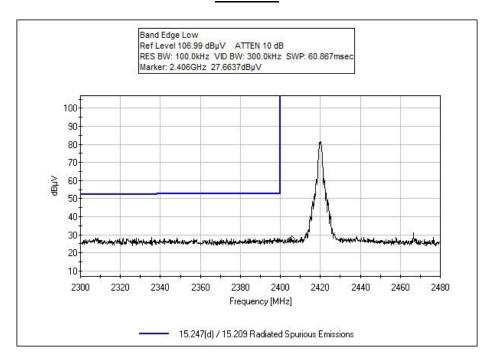
35 7262.2301	M 25.5	+36.8	-28.2	+3.0	+4.3	+0.0	41.4	54.0	-12.6	Vert
Ave		+0.0	+0.0	+0.0	+0.0	360				105
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
36 7262.2301	M 25.5	+36.8	-28.2	+3.0	+4.3	+0.0	41.4	54.0	-12.6	Horiz
Ave		+0.0	+0.0	+0.0	+0.0	360				105
		+0.0	+0.0	+0.0	+0.0					
A 7262 220	10.0	+0.0	+0.0	+0.0	. 1.2	. 0. 0	567	540	. 0.7	
^ 7262.230]	M 40.8	+36.8	-28.2	+3.0	+4.3	+0.0	56.7	54.0	+2.7	Horiz
		+0.0	+0.0	+0.0	+0.0					124
		$+0.0 \\ +0.0$	+0.0	+0.0	+0.0					
29 17250 00	5 41.2		+0.0	+0.0		. 0. 0	40.2	540	12.7	Mont
38 17359.92 M	5 41.2	$+0.0 \\ +0.0$	+0.0 -12.3	$+4.5 \\ +0.0$	+6.9 +0.0	+0.0	40.3	54.0	-13.7	Vert
IVI		+0.0	+0.0	+0.0	+0.0					99
		+0.0	+0.0	+0.0	+0.0					77
39 467.500N	M 40.0	+0.0	+0.0	+0.5	+0.0	+0.0	32.0	46.0	-14.0	Horiz
37 407.5001	·1 1 0.0	+0.0	+0.0	+0.0	+0.0	360	32.0	+0.0	-14.0	131
		+0.0	-28.2	+17.5	+1.4	300				131
		+0.8	+0.0	+0.0	11.7					
40 17150.63	0 41.5	+0.0	+0.0	+4.4	+6.7	+0.0	39.9	54.0	-14.1	Horiz
M		+0.0	-12.7	+0.0	+0.0	. 0.0	0,,,	<i>-</i>	1	110112
		+0.0	+0.0	+0.0	+0.0					99
		+0.0	+0.0	+0.0						
41 22318.860	0 41.9	+0.0	+0.0	+0.0	+0.0	+0.0	39.5	54.0	-14.5	Vert
M		+0.0	+0.0	-16.8	+0.1					
		+6.0	+0.0	+0.0	+0.0	181				106
		+0.0	+0.0	+8.3						
42 22050.050	0 41.3	+0.0	+0.0	+0.0	+0.0	+0.0	39.4	54.0	-14.6	Vert
M		+0.0	+0.0	-16.5	+0.2					
		+6.1	+0.0	+0.0	+0.0	360				109
		+0.0	+0.0	+8.3						
43 468.400N	M 39.1	+0.0	+0.0	+0.5	+0.0	+0.0	31.1	46.0	-14.9	Horiz
		+0.0	+0.0	+0.0	+0.0					99
		+0.0	-28.2	+17.5	+1.4					
		+0.8	+0.0	+0.0				45		
44 81.400N	<i>I</i> 44.2	+0.0	+0.0	+0.2	+0.0	+0.0	24.7	40.0	-15.3	Horiz
		+0.0	+0.0	+0.0		360				131
		+0.0	-28.0	+7.4	+0.6					
45 21790 000	10.2	+0.3	+0.0	+0.0	+ O O	ΙΩΩ	20 6	540	15 /	Vart
45 21780.00 M	0 40.2	$+0.0 \\ +0.0$	$+0.0 \\ +0.0$	+0.0	+0.0 +0.2	+0.0	38.6	54.0	-15.4	Vert
IVI		+0.0 +6.0	+0.0	-16.1 +0.0	+0.2					109
		+0.0	+0.0	+8.3	+0.0					107
46 16942.27	0 39.9	+0.0	+0.0	+4.4	+6.5	+0.0	37.9	54.0	-16.1	Vert
40 10942.270 M	5 59.7	+0.0	+0.0 -12.9	+4.4 +0.0	+0.0	10.0	31.7	J 1 .U	-10.1	v CI t
141		+0.0	+0.0	+0.0	+0.0					99
		+0.0	+0.0	+0.0	. 0.0					//
47 14699.25	0 41.8	+0.0	+0.0	+4.2	+6.3	+0.0	37.4	54.0	-16.6	Horiz
M	11.0	+0.0	-14.9	+0.0	+0.0	. 5.0	57.1	21.0	10.0	110112
1,1		+0.0	+0.0	+0.0	+0.0	354				99
		+0.0	+0.0	+0.0						
L		. 0.0								

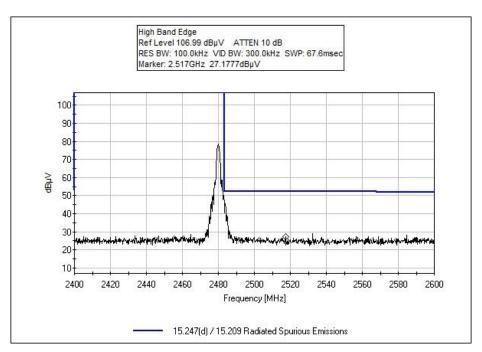
Page 27 of 37 Report No.: 95094-9B



48	14879.360	40.9	+0.0	+0.0	+4.0	+6.3	+0.0	36.4	54.0	-17.6	Vert
	M		+0.0	-14.8	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					99
			+0.0	+0.0	+0.0						
49	12398.105	40.0	+0.0	+0.0	+3.8	+5.7	+0.0	35.4	54.0	-18.6	Vert
	M		+0.0	-14.1	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					99
			+0.0	+0.0	+0.0						
50	12100.865	39.4	+0.0	+0.0	+3.8	+5.6	+0.0	34.9	54.0	-19.1	Vert
	M		+0.0	-13.9	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					99
			+0.0	+0.0	+0.0						
51	12250.480	38.6	+0.0	+0.0	+3.8	+5.7	+0.0	34.2	54.0	-19.8	Horiz
	M		+0.0	-13.9	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					105
			+0.0	+0.0	+0.0						
52	24800.000	30.7	+0.0	+0.0	+0.0	+0.0	+0.0	33.4	54.0	-20.6	Vert
	M		+0.0	+0.0	-12.4	+0.2					
	Ave		+6.3	+0.0	+0.0	+0.0	298				106
			+0.0	+0.0	+8.6						
53	19.582M	25.3	+0.0	+0.0	+0.0	+0.0	-40.0	-6.8	29.5	-36.3	Paral
			+0.0	+0.0	+0.0	+0.0					99
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+7.9	+0.0						
54	130.500k	43.2	+0.0	+0.0	+0.0	+0.0	-80.0	-27.3	25.3	-52.6	Paral
			+0.0	+0.0	+0.0	+0.0					99
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+9.5	+0.0						
55	135.140k	42.6	+0.0	+0.0	+0.0	+0.0	-80.0	-27.9	25.0	-52.9	Paral
			+0.0	+0.0	+0.0	+0.0					99
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+9.5	+0.0						

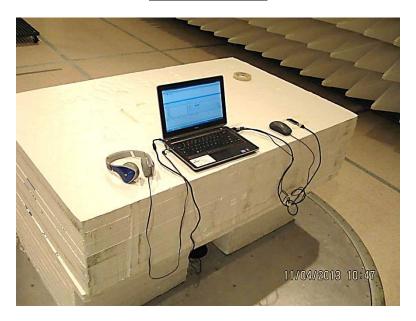
Page 28 of 37 Report No.: 95094-9B


CKC Laboratories, Inc. Date: 11/5/2013 Time: 18:16:37 Medtronic MiniMed WO#: 95094 Test Distance: 3 Meters Sequence#: 10 Horiz Medtronic MiniMed Carelink USB 2.4 P/N: MMT-7306CL



Bandedge

Test Plots



Page 30 of 37 Report No.: 95094-9B

Test Setup Photos

15.247(e) Power Spectral Density

Test Conditions / Setup

The EUT's antenna is non-removable, thus the data will be gathered through radiated measurements. The formula shown below will be used to calculate the Power Spectral Density. The EUT is located on top of a Styrofoam table, 80cm over the ground plane. The EUT is connected to support laptop via a 6 foot long USB extender. Ports are filled on the support laptop.

Test Conditions: Temp: 21°C Humidity: 38% Pressure: 103.1kPa Freq: 2400-2483.5MHz

$P = (Ed)^2 / (30 * G)$

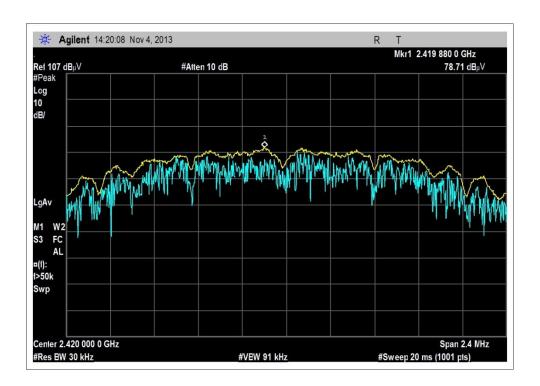
E = Field strength of the measurement converted to V/M.

d = Measurement distance in meters.

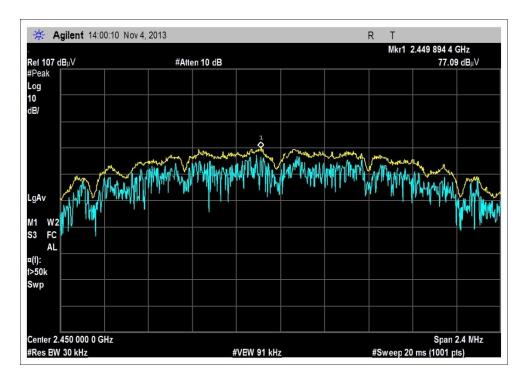
G = Numerical gain of the EUT's antenna relative to an isotropic radiator.

P = The power in watts for which we are solving.

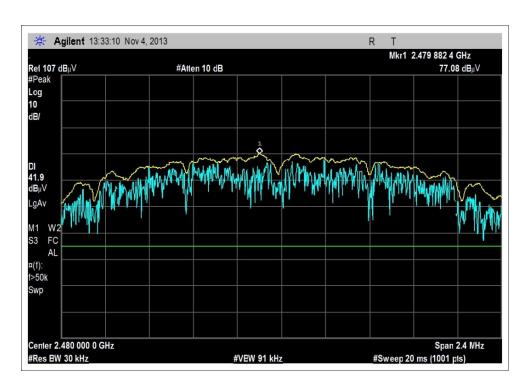
Engineer Name: Steven Pittsford


Test Equipment						
Asset #	Description	Model	Manufacturer	Cal Date	Cal Due	
AN01467	Horn Antenna-ANSI C63.5 Calibration	3115	EMCO	9/16/2013	9/16/2015	
AN03209	Preamp	83051A	Agilent	3/5/2013	3/5/2015	
ANP05546	Cable	Heliax	Andrews	3/27/2013	3/27/2015	
ANP05547	Cable	Heliax	Andrews	9/7/2012	9/7/2014	
AN02871	Spectrum Analyzer	E4440A	Agilent	4/11/2013	4/11/2015	

Page 32 of 37 Report No.: 95094-9B


Test Data

Frequency (MHz)	Spectrum Analyzer Measurement (dBuV)	Corrections due to cables, amplifiers, antennas and Bandwidth (dB)	Corrected Reading (dBuV)	Antenna Gain (dBi)	Spectral Density (Watts)	Spectral Density (dBm)
2420	78.6	1.5	80.1	0.0	3.070*10 ⁻⁵	-15.129
2450	77.1	1.6	78.7	0.0	2.224*10 ⁻⁵	-16.529
2480	77.1	1.6	78.7	0.0	2.224*10 ⁻⁵	-16.529



Low

Middle

High

Test Setup Photos

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

Page 36 of 37 Report No.: 95094-9B

SAMPLE CALCULATIONS					
	Meter reading	(dBμV)			
+	Antenna Factor	(dB)			
+	Cable Loss	(dB)			
-	Distance Correction	(dB)			
-	Preamplifier Gain	(dB)			
=	Corrected Reading	(dBμV/m)			

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE						
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING			
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz			
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz			
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz			

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("A") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 37 of 37 Report No.: 95094-9B