#### ENGINEERING STATEMENT

For Class II Permissive Change

Radio Shack, a Division of Tandy Corporation

Model No: 21-1859A FCC ID: AAO2101825

I am an Electronics Engineer, a principal in the firm of Hyak Laboratories, Inc., Springfield, Virginia. My education and experience are a matter of record with the Federal Communications Commission.

Hyak Laboratories, Inc. has been authorized by Radio Shack, a Division of Tandy Corporation, to make measurements on a modified model 21-1825 transceiver (modified transceiver identified as Model 21-1859A). These tests were made by me or under my supervision in our Springfield laboratory.

The data verifies that the above mentioned transceiver continues to meet FCC requirements and a Class II Permissive Change applies.

Rowland S. Johnson

Dated: July 26, 2001

A. INTRODUCTION

The following data are submitted in connection with continued compliance of the 21-1859A transceiver in accordance with Part 2,

Subpart J of the FCC Rules.

The 21-1859A is a portable, battery operated, UHF, frequency modulated transceiver intended for 12.5 kHz channel family radio service applications in the 462.5625-467.7125 MHz band. It operates from a nominal 4.5 Vdc battery supply. MFR rated output power is 0.3 watts ERP.

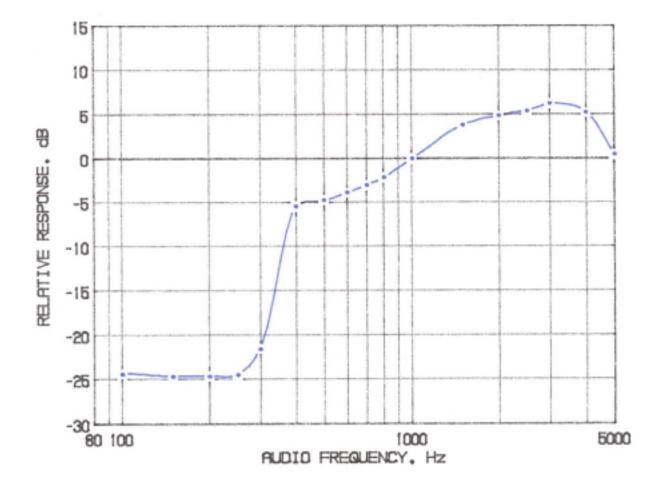
A change from the previously type certified model 21-1825 consists of:

- 1. MCU IC is changed from MC68HC05L1 to uPD789405 with its relevant component modification. The function of IC is same as before with different brand and type only.
- 2. IC302 and IC304 have been changed from NJM3403 to be LM324V with its relevant component modification. These two type Ics have the same function and can be interchangeable.
- 3. Added data control on cystal frequency to guarantee its stability within the required limits as well and the change of MCU.

A revised schematic diagram and Function of Devices exhibit is filed in a separate exhibit.

The above changes involve modification to the PLL reference crystal and audio circuits. Accordingly the following data are included:

- Frequency stability as a function of temperature; temperature as a function of supply voltage. (See Tables 1 and 2.)
- 2. Audio frequency response (figure 1); low pass filter response (figure 2); audio limiter characteristics (figure 3) and occupied bandwidth (figure 4).
- B. MODULATION CHARACTERISTICS
  - 1. A curve showing frequency response of the transmitter is shown in Figure 1. Reference level was audio signal output from a Boonton 8220 modulation meter with one kHz deviation. Audio output was measured with an Audio Precision System One integrated test system.
  - 2. Modulation limiting curves are shown in Figure 2, using a Boonton 8220 modulation meter. Signal level was established with a Audio Precision System One integrated test system. The curves show compliance with paragraphs 2.987(b).
  - 3. Figure 3 is a graph of the post-limiter low pass filter which provides a roll-off of 60Logf/3 dB where f is


audio frequency in kHz. Measurements were made following EIA RS-152B with an Audio Precision System One integrated test system on the Boonton 8220 modulation meter audio output.

4. <u>Occupied Bandwidth</u> (Paragraphs 2.989(c) of the Rules)

Figure 4 is a plot of the sideband envelope of the transmitter output taken with a Tektronix 494P spectrum analyzer. Modulation corresponded to conditions of 2.989(c)(1) and consisted of 2500 Hz tone at an input level 16 dB greater than that necessary to produce 50% modulation at 2926 Hz, the frequency of maximum response. Measured modulation under these conditions was 2.0 kHz.

## FIGURE 1

#### MODULATION FREQUENCY RESPONSE



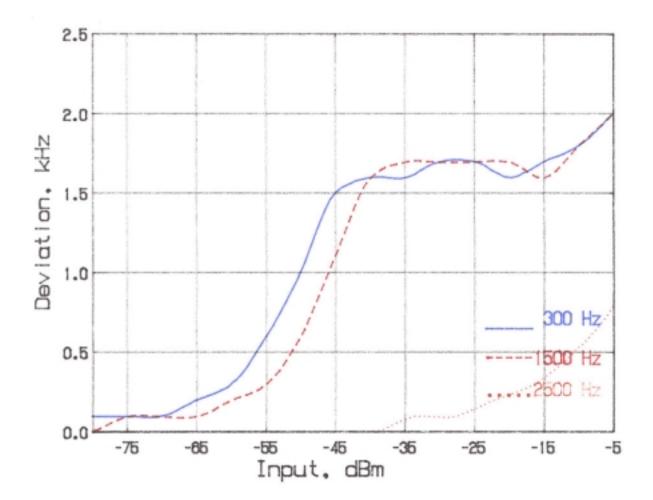

MODULATION FREQUENCY RESPONSE FCC ID: AA02101825

FIGURE 1

4

FIGURE 2

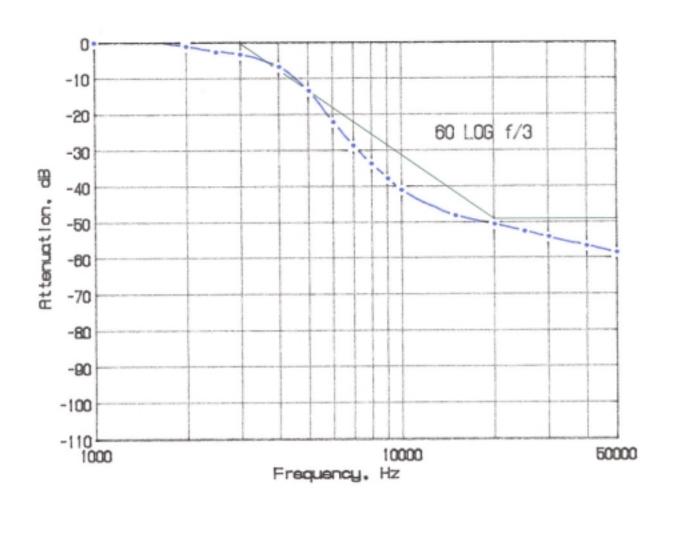
AUDIO LIMITER CHARACTERISTICS

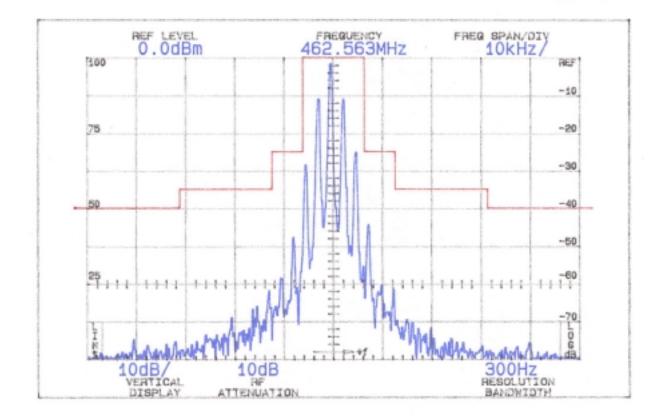


AUDIO LIMITER CHARACTERISTICS FCC ID: AA02101825

FIGURE 2 5

FIGURE 3


AUDIO LOW PASS FILTER RESPONSE


# OCCUPIED BANDWIDTH

# 6 FIGURE 4

# FIGURE 3

AUDIO LOW PASS FILTER RESPONSE FCC ID: AA02101825





ATTENUATION IN dB BELOW MEAN OUTPUT POWER Required

25

35

up to and including 100% of the authorized bandwidth, 12.5 kHz (6.25-12.5 kHz)

On any frequency more than 50%

On any frequency more than 100%, up to and including 250% of the authorized bandwidth (12.5-31.25 kHz)

On any frequency removed from the assigned frequency by more than 250% of the authorized bandwidth (over 31.25 kHz)

43+10LogP = 38(P = 0.29W)

> OCCUPIED BANDWIDTH FCC ID: AA02101825

FIGURE 4

7

C. MODULATION CHARACTERISTICS (Continued)

The plots are within FCC limits. The horizontal scale frequency) is 10 kHz per division and the vertical scale amplitude) is a logarithmic presentation equal to 10 dB per

division.

D. SPURIOUS EMISSIONS AT THE ANTENNA TERMINALS (Paragraph 2.991 of the Rules)

The 21-1859A has a permanently attached antenna. There is no connector for an external antenna. Therefore, no antenna terminal conducted measurements were made.

### E. DESCRIPTION OF RADIATED SPURIOUS MEASUREMENT FACILITIES

A description of the Hyak Laboratories' radiation test facility is a matter of record with the FCC. The facility was accepted for radiation measurements from 25 to 1000 MHz on October 1, 1976 and is currently listed as an accepted site.

# F. FREQUENCY STABILITY (Paragraph 2.995(a)(2))

Measurement of frequency stability versus temperature was made at temperatures from  $-20^{\circ}$ C to  $+50^{\circ}$ C. At each temperature, the unit was exposed to test chamber ambient a minimum of 60 minutes after indicated chamber temperature ambient had stabilized to within  $\pm 2^{\circ}$ of the desired test temperature. Following the 1 hour soak at each temperature, the unit was turned on, keyed and frequency measured within 2 minutes. Test temperature was sequenced in the order shown in Table 1, starting with  $-20^{\circ}$ C.

A Thermotron S1.2 temperature chamber was used. Temperature was monitored with a Keithley 871 digital thermometer. The transmitter output stage was terminated in a dummy load. Primary supply was 4.5 volts. Frequency was measured with a HP 5385A frequency counter connected to the transmitter through a power attenuator. Measurements were made at 462.5625 MHz. No transient keying effects were observed.

> 8 TABLE 1

FREQUENCY STABILITY AS A FUNCTION OF TEMPERATURE 462.5625 MHz, 4.5 Vdc, 0.29 W

Temperature, °C

Output\_Frequency,\_MHz p.p.m.

| -24                                                                            | 46   | 2.562593             | 2.2             |
|--------------------------------------------------------------------------------|------|----------------------|-----------------|
| -10.1                                                                          | 46   | 2.562565             | 0.1             |
| -0.9                                                                           | 46   | 2.562759             | 0.6             |
| 10.1                                                                           | 46   | 2.562803             | 0.7             |
| 20.3                                                                           | 46   | 2.562559             | 0.1             |
| 29.3                                                                           | 46   | 2.562656             | 0.3             |
| 39.8                                                                           | 46   | 2.562595             | 0.2             |
| 50.9                                                                           | 46   | 2.562455             | -0.1            |
| Maximum frequency error:                                                       |      | 2.562803<br>2.562500 |                 |
|                                                                                | +    | .000303              | MHz             |
| FCC Rule 95.627(b) specifies .00025% $\pm 0.001156$ MHz, which corresponds to: | (2.5 | p.p.m.)              | or a maximum of |
| High Limit                                                                     | 46   | 2.563656             | MHz             |

462.561344 MHz

Low Limit

9

FREQUENCY STABILITY AS A FUNCTION OF SUPPLY VOLTAGE G. (Paragraph 2.995(d)(2) of the Rules)

Oscillator frequency as a function of power supply voltage was measured with a HP 5385A frequency counter as supply voltage provided by an HP 6264B variable dc power supply was varied from  $\pm 15\%$  above the nominal 4.5 volt rating to below the battery end point. A Fluke 197 digital voltmeter was used to measure supply voltage at transmitter primary input terminals. Measurements were made at 20°C ambient.

#### TABLE 2

FREQUENCY STABILITY AS A FUNCTION OF SUPPLY VOLTAGE

462.5625 MHz, 4.5 Vdc Nominal; 0.29W

| Supply_V | <i>V</i> oltage    | Output_Frequency,_MHz | <u>p.p.m.</u> |
|----------|--------------------|-----------------------|---------------|
| 5.17     | 115%               | 462.562745            | 0.5           |
| 4.95     | 110%               | 462.562673            | 0.4           |
| 4.73     | 105%               | 462.562563            | 0.1           |
| 4.50     | 100%               | 462.562559            | 0.1           |
| 4.28     | 95%                | 462.562547            | 0.1           |
| 4.05     | 90%                | 462.562426            | -0.2          |
| 3.83     | 85%                | 462.562475            | -0.1          |
| 3.60     | 80%                | 462.562597            | -1.0          |
| Maximur  | n frequency error: | 462.562597            |               |
|          |                    | 462.562500            |               |
|          |                    | 000472 MHz            |               |

FCC Rule 95.627(b) specifies .00025% (2.5 p.p.m. or a maximum of  $\pm 0.001156$  MHz, corresponding to:

| High Limit | 462.563656 | MHz |
|------------|------------|-----|
| Low Limit  | 462.561344 | MHz |

10