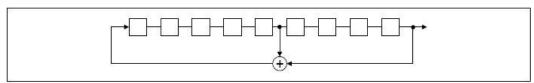




Appendix H): Pseudorandom Frequency Hopping Sequence

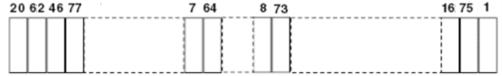
Test Requirement:

47 CFR Part 15C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

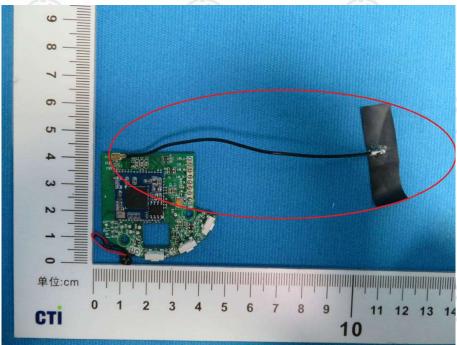
The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Report No.: EED32J00076101 Page 45 of 75

Appendix I): Antenna Requirement

15.203 requirement:

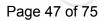

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

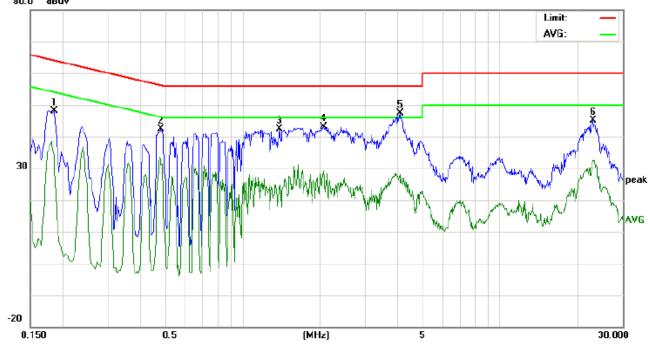
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

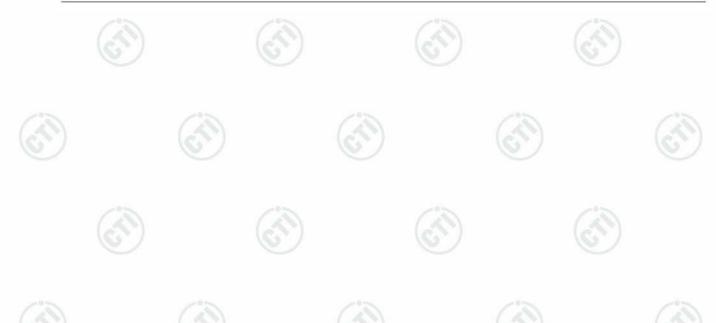
The antenna is Integral Antenna and no consideration of replacement. The best case gain of the antenna is 1dBi.

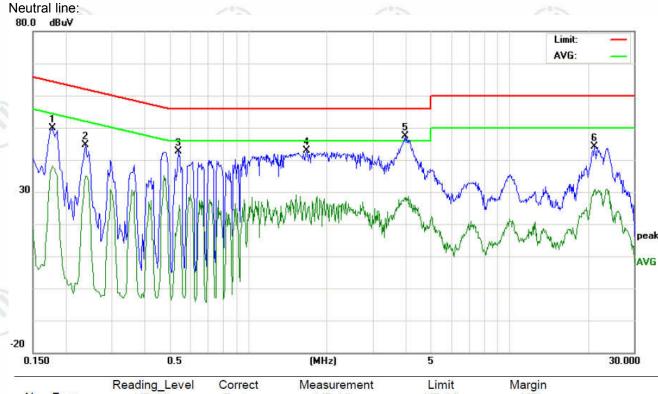



Report No. : EED32J00076101 Page 46 of 75


Appendix J): AC Power Line Conducted Emission

		Test frequency range :150KHz-			
		1)The mains terminal disturban	•		
	:	The EUT was connected to Stabilization Network) which			
		power cables of all other ur			
	(25)	which was bonded to the gr	ound reference plane	in the same way a	s the LISN 1
	6	for the unit being measured			
		multiple power cables to a s exceeded.	ingle LISN provided th	e rating of the LISI	n was not
	;	3)The tabletop EUT was place			
		reference plane. And for floo horizontal ground reference		ent, the EUT was p	laced on the
	4	4) The test was performed wit			
		EUT shall be 0.4 m from the reference plane was bonder			
		1 was placed 0.8 m from the			
	(4)	ground reference plane fo	r LISNs mounted on	top of the groun	nd reference
	10	plane. This distance was be			
		All other units of the EUT and LISN 2.	na associated equipme	eni was at least o.c	o III IIOIII tile
		5) In order to find the maximum	emission, the relative	positions of equip	ment and all
		of the interface cables must			
(3)		conducted measurement.	(2)	(45)	
it:					\neg
		Frequency range (MHz)	Limit (dE	BµV)	
	-		Quasi-peak	Average	-0-
	(4)	0.15-0.5	66 to 56*	56 to 46*	(2)
	6	0.5-5	56	46	
		5-30	60	50	
		* The limit decreases linearly was MHz to 0.50 MHz.	2840	245	e range 0.15
		NOTE : The lower limit is applic	cable at the transition fi	requency	
	ıta				
initial pre-scan	was perf	formed on the live and neutral li			mission were
	was perf	formed on the live and neutral li neasurement were performed a			mission were
initial pre-scan asi-Peak and <i>A</i>	was perf				mission were
nitial pre-scan si-Peak and <i>A</i>	was perf				mission were
nitial pre-scan ısi-Peak and <i>P</i>	was perf				mission were
initial pre-scan asi-Peak and <i>P</i>	was perf				mission were
nitial pre-scan si-Peak and <i>A</i>	was perf				mission were
nitial pre-scan si-Peak and <i>A</i>	was perf				mission were
initial pre-scan asi-Peak and <i>A</i>	was perf				mission were
nitial pre-scan ısi-Peak and <i>P</i>	was perf				mission were
nitial pre-scan asi-Peak and A	was perf				mission were
initial pre-scan asi-Peak and <i>A</i>	was perf				mission were





No.	Reading_ c. Freq. (dBu\		ding_Le dBu∀)	vel	Correct Factor	N	leasuren (dBuV)		Lin (dB	nit uV)		rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1780	42.92	35.31	31.06	9.73	52.65	45.04	40.79	64.57	54.57	-19.53	-13.78	P	
2	0.2420	35.35	25.41	25.77	9.74	45.09	35.15	35.51	62.02	52.02	-26.87	-16.51	P	
3	0.5460	32.10	20.35	17.80	9.73	41.83	30.08	27.53	56.00	46.00	-25.92	-18.47	P	
4	1.4100	31.81	21.65	16.44	9.66	41.47	31.31	26.10	56.00	46.00	-24.69	-19.90	Р	
5	4.2180	35.67	26.31	15.26	9.65	45.32	35.96	24.91	56.00	46.00	-20.04	-21.09	P	
6	21.2500	35.03	28.52	23.01	10.16	45.19	38.68	33.17	60.00	50.00	-21.32	-16.83	Р	

No.	Reading_Level (dBuV)			Freq.			el Correct Measurement Factor (dBuV)		AND THE PROPERTY OF THE PROPER				rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment	
1	0.1780	40.08	31.55	28.32	9.73	49.81	41.28	38.05	64.57	54.57	-23.29	-16.52	P		
2	0.2380	34.80	22.41	25.13	9.74	44.54	32.15	34.87	62.16	52.16	-30.01	-17.29	Р		
3	0.5420	32.77	23.64	12.04	9.73	42.50	33.37	21.77	56.00	46.00	-22.63	-24.23	P		
4	1.6780	33.20	20.15	12.86	9.69	42.89	29.84	22.55	56.00	46.00	-26.16	-23.45	P		
5	3.9860	37.72	23.87	18.37	9.65	47.37	33.52	28.02	56.00	46.00	-22.48	-17.98	Р		
6	21.2460	33.90	24.79	20.36	10.16	44.06	34.95	30.52	60.00	50.00	-25.05	-19.48	Р		

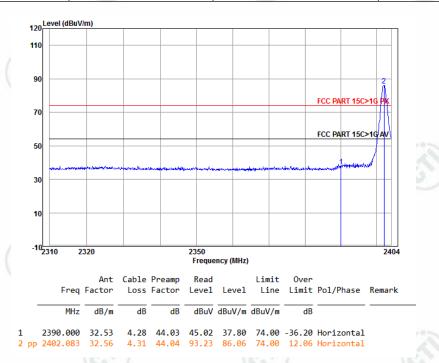
Notes:

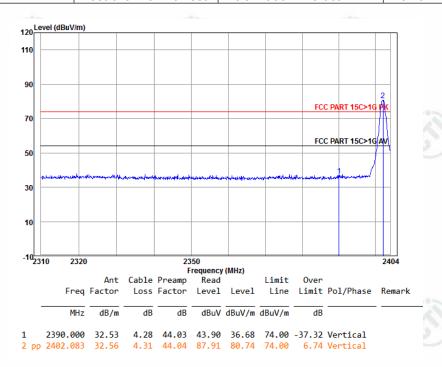
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No. : EED32J00076101 Page 49 of 75

Appendix K): Restricted bands around fundamental frequency (Radiated)

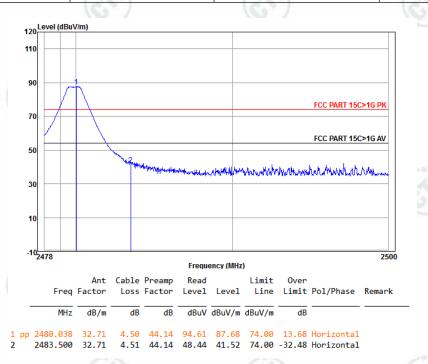
Receiver Setup:		Frequency	Detector	RBW	VBW	Remark
		30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
		Altaria d'Oll	Peak	1MHz	3MHz	Peak
	(35)	Above 1GHz	Peak	1MHz	10Hz	Average
Test Procedure:	Belo	w 1GHz test proced	dure as below:			
	b \(\)	The EUT was placed at a 3 meter semi-and determine the position of the EUT was set 3 mas mounted on the The antenna height is determine the maximpolarizations of the a	echoic camber. The nof the highest range of a variable-to varied from one um value of the fi	he table wa adiation. the interfer neight ante meter to fo eld strengtl	ence-receinna tower. bur meters h. Both hor	360 degrees to ving antenna, w above the grou izontal and vert
	d. i t e f. i f. i	For each suspected enter an antenna was tuned antenna was tuned from The test-receiver system and width with Maximal Place a marker at the frequency to show contained and highestor lowest and highestor in the spector of the spector in the spector	emission, the EUT ed to heights from n 0 degrees to 360 tem was set to Pe mum Hold Mode. e end of the restric empliance. Also m ctrum analyzer plo	F was arran 1 meter to 0 degrees teak Detect cted band colleasure any	aged to its way a meters a confind the information a closest to the information and its closest to the information and it	worst case and and the rotatabl maximum reading of the contraction of the transmit in the restricte
	- I	ve 1GHz test proce				
	h. i.	Different between about the control of the control	mber and change the distance is 1 e lowest channel rements are perfo nd found the X ax	e form table meter and , the Highe rmed in X, kis position	e 0.8 meter table is 1.5 st channel Y, Z axis p ing which i	to 1.5 meter). cositioning for t is worse case.
Limit:		Frequency	Limit (dBµV	/m @3m)	Rer	mark
		30MHz-88MHz	40.0	0	Quasi-pe	eak Value
		88MHz-216MHz	43.5	5	Quasi-pe	eak Value
		216MHz-960MHz	46.0	0	Quasi-pe	eak Value
		960MHz-1GHz	54.0	0	Quasi-pe	eak Value
				. 10	A	1.1.1
		Above 1GHz	54.0 74.0			e Value Value

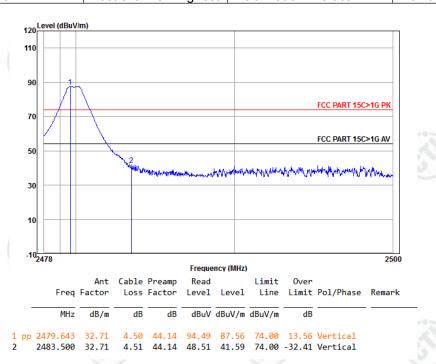



Report No. : EED32J00076101 Page 50 of 75

Test plot as follows:

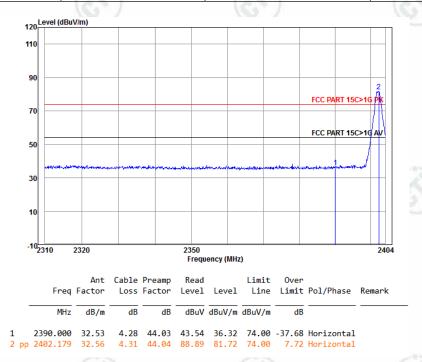
Worse case mode:	GFSK(1-DH5)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

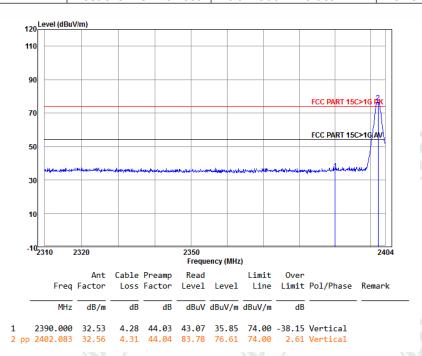

Worse case mode:	GFSK(1-DH5)			
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak	



Daga	E 4	~£ .	75
Page	วเ	OI	10

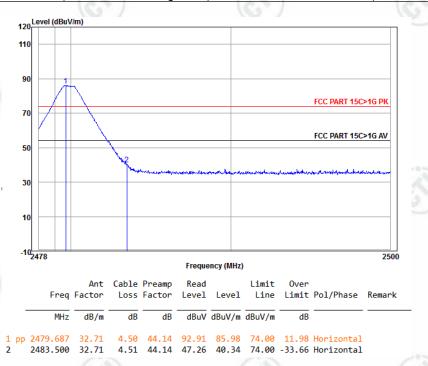
Worse case mode:	GFSK(1-DH5)			
Frequency: 2483.5MHz	Test channel:	Polarization: Horizontal	Remark: Peak	

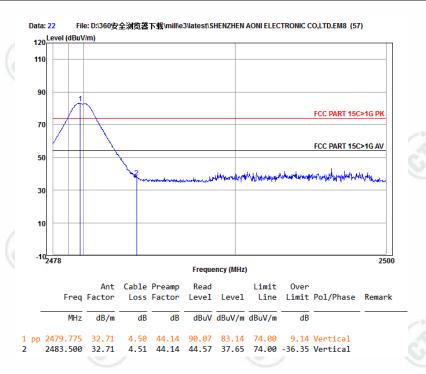

Worse case mode:	GFSK(1-DH5)	(67)	(0)	
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak	



Page 52 of 75

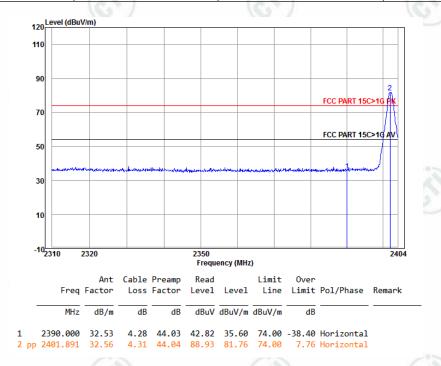
Worse case mode:	π/4DQPSK(2-DH5)	2000	215
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

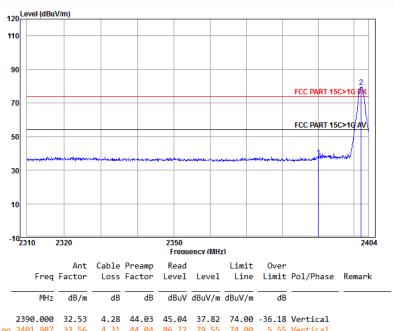

Worse case mode:	π/4DQPSK(2-DH5)	(6)	(6,)	
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak	



Page 53 of 75

Worse case mode:	π/4DQPSK(2-DH5)	200	200
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

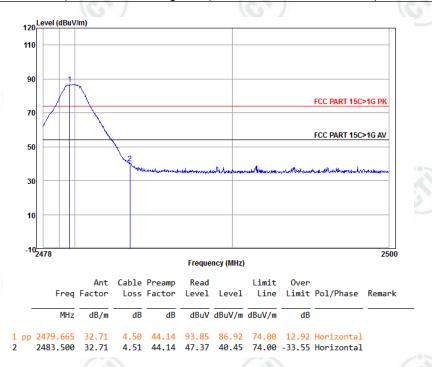

Worse case mode:	π/4DQPSK(2-DH5)	(6)	
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak



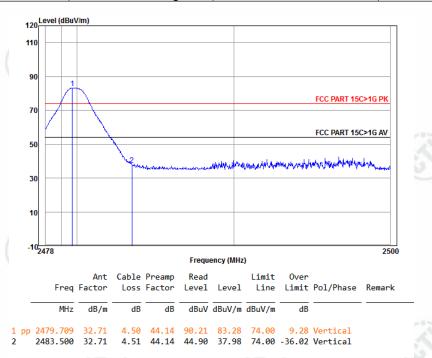
Page 54 of 75

Worse case mode:	8DPSK(3-DH5)	200	
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Waraa aasa mada:	ODDCK(2 DHE)	(25)	(25)	
Worse case mode:	0DF3K(3-DH3)			
Frequency: 2390 0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak	



44.04 86.72 79.55 74.00



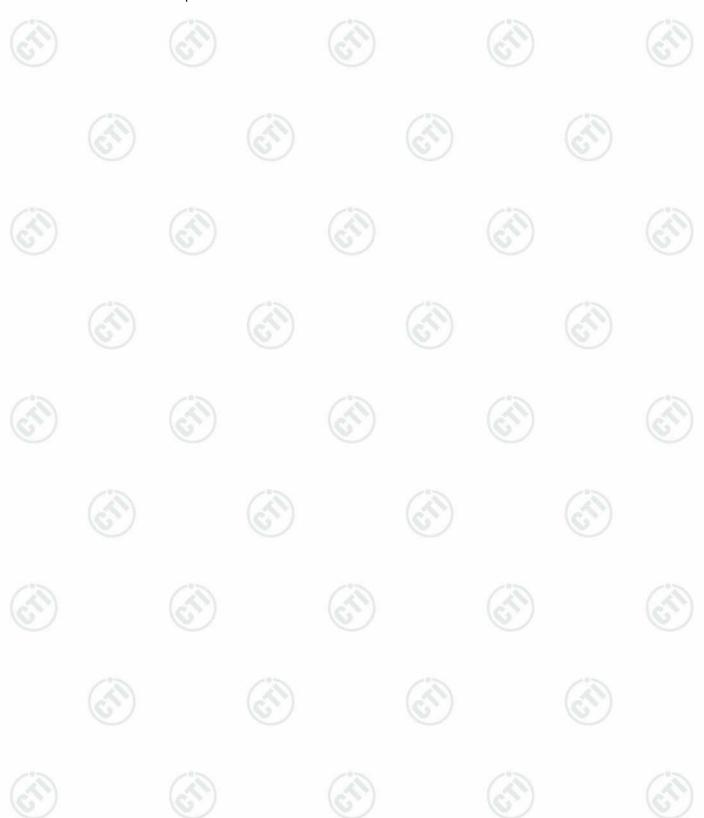
Report No. : EED32J00076101 Page 55 of 75

Worse case mode:	8DPSK(3-DH5)			
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak	

Worse case mode:	8DPSK(3-DH5)			
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak	

Note:

- 1) Through Pre-scan transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of $\pi/4DQPSK$ modulation type, the 3-DH5 of data type is the worse case of 8DPSK modulation type in charge + transmitter mode.
- 2) As shown in this section, the field strength limits are based on average limits. However, the peak field


Page 56 of 75

strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak values are measured.

3) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No.: EED32J00076101 Page 57 of 75

Appendix L): Radiated Spurious Emissions

Receiver Setup:	(20)	(2	277)		(200
	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
/	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
	A14011-	Peak	1MHz	3MHz	Peak
	Above 1GHz				

Test Procedure:

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Peak

1MHz

10Hz

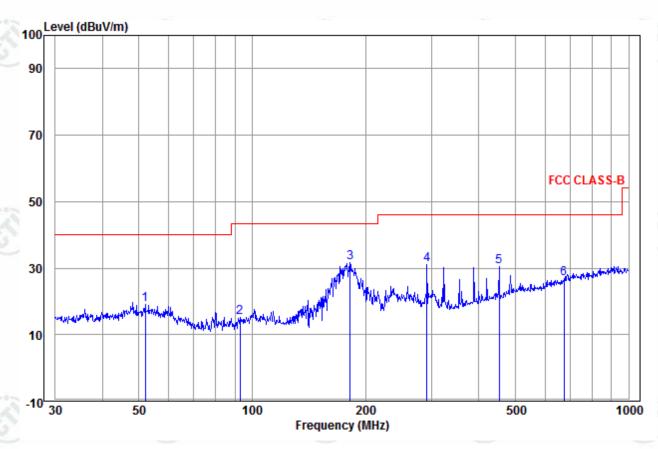
Average

- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

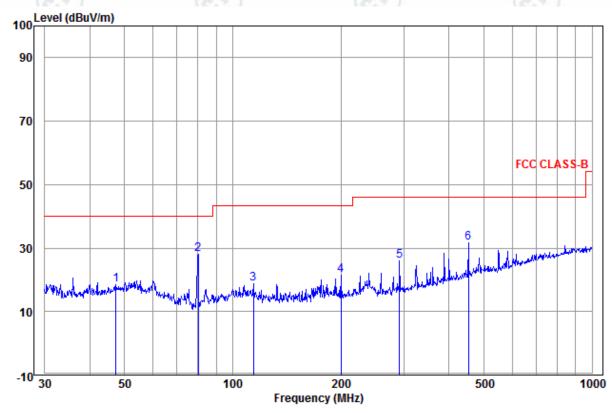
Limit:	Frequency	Field strength Limit (microvolt/meter) (dBµV/m)		Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
	0.490MHz-1.705MHz	24000/F(kHz)	- 9	- O.	30
	1.705MHz-30MHz	30	- ((3.2.)-	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3


Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No. : EED32J00076101 Page 58 of 75

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)	6	
Test mode:	Transmitting	Horizontal


		Ant	Cable	Read		Limit	0ver			
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark	
-	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB			
1	52.025	14.82	1.41	2.88	19.11	40.00	-20.89	Horizontal		
2	92.787	11.78	1.58	1.84	15.20	43.50	-28.30	Horizontal		
3 рр	181.920	10.97	2.00	18.79	31.76	43.50	-11.74	Horizontal		
4	291.036	13.32	2.38	15.41	31.11	46.00	-14.89	Horizontal		
5	452.720	17.17	3.00	10.17	30.34	46.00	-15.66	Horizontal		
6	672.845	20.11	3.72	3.08	26.91	46.00	-19.09	${\it Horizontal}$		



Page 59 of 75

	Freq		Cable Loss					Pol/Phase	Remark
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	47.326	14.88	1.19	2.25	18.32	40.00	-21.68	Vertical	
2 pp	80.081	8.62	1.57	17.75	27.94	40.00	-12.06	Vertical	
3	114.114	12.06	1.57	5.05	18.68	43.50	-24.82	Vertical	
4	199.986	11.60	2.21	7.55	21.36	43.50	-22.14	Vertical	
5	291.036	13.32	2.38	10.29	25.99	46.00	-20.01	Vertical	
6	452.720	17.17	3.00	11.55	31.72	46.00	-14.28	Vertical	

Report No. : EED32J00076101 Page 60 of 75

Transmitter Emission above 1GHz

Worse case mode:		GFSK(1-DH5)		Test char	nnel:	Lowest	Remark: P	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1617.862	31.09	2.93	43.87	47.19	37.34	74	-36.66	Pass	Н
2705.543	33.12	5.01	44.39	46.06	39.80	74	-34.20	Pass	Н
3598.087	33.09	5.51	44.64	44.22	38.18	74	-35.82	Pass	Н
4804.000	34.69	5.11	44.60	49.78	44.98	74	-29.02	Pass	Н
7206.000	36.42	6.66	44.77	45.27	43.58	74	-30.42	Pass	Н
9608.000	37.88	7.73	45.58	42.11	42.14	74	-31.86	Pass	Н
1621.985	31.10	2.94	43.86	47.71	37.89	74	-36.11	Pass	V
2875.986	33.40	5.37	44.58	46.09	40.28	74	-33.72	Pass	V
3738.129	32.99	5.48	44.62	45.06	38.91	74	-35.09	Pass	V
4804.000	34.69	5.11	44.60	48.88	44.08	74	-29.92	Pass	V
7206.000	36.42	6.66	44.77	44.60	42.91	74	-31.09	Pass	V
9608.000	37.88	7.73	45.58	42.06	42.09	74	-31.91	Pass	V

Worse case	Worse case mode:		H5)	Test channel:		Middle	Remark: P	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1617.862	31.09	2.93	43.87	46.18	36.33	74	-37.67	Pass	H
2861.381	33.38	5.34	44.56	46.11	40.27	74	-33.73	Pass	Н
3728.625	33.00	5.48	44.62	42.48	36.34	74	-37.66	Pass	Н
4882.000	34.85	5.08	44.60	53.83	49.16	74	-24.84	Pass	Н
7323.000	36.43	6.77	44.87	47.16	45.49	74	-28.51	Pass	Н
9764.000	38.05	7.60	45.55	44.94	45.04	74	-28.96	Pass	Н
1642.761	31.13	2.95	43.84	45.74	35.98	74	-38.02	Pass	V
2861.381	33.38	5.34	44.56	46.02	40.18	74	-33.82	Pass	V
3815.033	32.93	5.47	44.62	42.37	36.15	74	-37.85	Pass	V
4882.000	34.85	5.08	44.60	51.37	46.70	74	-27.30	Pass	V
7323.000	36.43	6.77	44.87	45.86	44.19	74	-29.81	Pass	V
9764.000	38.05	7.60	45.55	43.66	43.76	74	-30.24	Pass	V

Page 61 of 75

Worse case mode:		GFSK(1-DH5)		Test channel:		Highest	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1837.456	31.46	3.11	43.65	45.07	35.99	74	-38.01	Pass	Н
3184.25	33.43	5.58	44.68	44.13	38.46	74	-35.54	Pass)H
3943.392	32.84	5.45	44.60	42.76	36.45	74	-37.55	Pass	Н
4960	35.02	5.05	44.60	51.80	47.27	74	-26.73	Pass	Н
7440	36.45	6.88	44.97	44.80	43.16	74	-30.84	Pass	Н
9920	38.22	7.47	45.52	42.66	42.83	74	-31.17	Pass	Н
1402.92	30.68	2.73	44.11	46.57	35.87	74	-38.13	Pass	V
2825.193	33.32	5.27	44.52	44.13	38.20	74	-35.80	Pass	V
3983.75	32.81	5.44	44.60	44.14	37.79	74	-36.21	Pass	V
4960	35.02	5.05	44.60	52.10	47.57	74	-26.43	Pass	V
7440	36.45	6.88	44.97	44.92	43.28	74	-30.72	Pass	>
9920	38.22	7.47	45.52	41.78	41.95	74	-32.05	Pass	>

Worse case	mode:	π/4DQPSk	((2-DH5)	Test char	nnel:	Lowest	Remark: P	Remark: Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1651.146	31.15	2.96	43.83	45.00	35.28	74	-38.72	Pass	H
2825.193	33.32	5.27	44.52	44.53	38.60	74	-35.40	Pass	H
3634.91	33.07	5.50	44.63	43.30	37.24	74	-36.76	Pass	Н
4804.000	34.69	5.11	44.6	47.61	42.81	74	-31.19	Pass	Н
7206.000	36.42	6.66	44.77	44.33	42.64	74	-31.36	Pass	Н
9608.000	37.88	7.73	45.58	41.09	41.12	74	-32.88	Pass	Н
1605.554	31.07	2.92	43.88	48.00	38.11	74	-35.89	Pass	V
2179.145	32.10	3.74	43.75	42.78	34.87	74	-39.13	Pass	V
3367.661	33.28	5.55	44.66	44.65	38.82	74	-35.18	Pass	V
4804.000	34.69	5.11	44.6	46.97	42.17	74	-31.83	Pass	V
7206.000	36.42	6.66	44.77	44.31	42.62	74	-31.38	Pass	V
9608.000	37.88	7.73	45.58	42.30	42.33	74	-31.67	Pass	V

Page 62 of 75

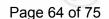
Worse case	Worse case mode:		π/4DQPSK(2-DH5)		Test channel:		Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1809.605	31.41	3.09	43.67	44.85	35.68	74	-38.32	Pass	Н
2726.283	33.15	5.06	44.42	43.88	37.67	74	-36.33	Pass	°3H,
3943.392	32.84	5.45	44.60	43.03	36.72	74	-37.28	Pass	Н
4882.000	34.85	5.08	44.60	52.83	48.16	74	-25.84	Pass	Н
7323.000	36.43	6.77	44.87	46.16	44.49	74	-29.51	Pass	Н
9764.000	38.05	7.60	45.55	45.94	46.04	74	-27.96	Pass	Н
1605.554	31.07	2.92	43.88	45.6	35.71	74	-38.29	Pass	V
2726.283	33.15	5.06	44.42	43.77	37.56	74	-36.44	Pass	V
3570.714	33.12	5.51	44.64	43.49	37.48	74	-36.52	Pass	V
4882.000	34.85	5.08	44.60	50.37	45.70	74	-28.30	Pass	V
7323.000	36.43	6.77	44.87	43.86	42.19	74	-31.81	Pass	V
9764.000	38.05	7.60	45.55	41.66	41.76	74	-32.24	Pass	V

Worse case mode:		π/4DQPSK(2-DH5)		Test channel:		Highest	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1634.419	31.12	2.95	43.85	44.97	35.19	74	-38.81	Pass	1
3072.770	33.53	5.61	44.69	42.81	37.26	74	-36.74	Pass	H
3805.334	32.94	5.47	44.62	42.99	36.78	74	-37.22	Pass	Н
4960.000	35.02	5.05	44.60	49.04	44.51	74	-29.49	Pass	Н
7440.000	36.45	6.88	44.97	46.18	44.54	74	-29.46	Pass	Н
9920.000	38.22	7.47	45.52	41.89	42.06	74	-31.94	Pass	Н
1406.496	30.68	2.74	44.11	46.76	36.07	74	-37.93	Pass	V
2698.665	33.10	5.00	44.39	46.18	39.89	74	-34.11	Pass	V
3700.26	33.02	5.49	44.63	42.75	36.63	74	-37.37	Pass	V
4960.000	35.02	5.05	44.60	48.75	44.22	74	-29.78	Pass	V
7440.000	36.45	6.88	44.97	45.92	44.28	74	-29.72	Pass	V
9920.000	38.22	7.47	45.52	42.29	42.46	74	-31.54	Pass	V

Page 63 of 75

Worse case mode:		8DPSK(3-DH5)		Test channel:		Lowest Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1417.277	30.71	2.75	44.10	45.73	35.09	74	-38.91	Pass	Н
2854.107	33.37	5.33	44.55	44.90	39.05	74	-34.95	Pass	H
3709.691	33.01	5.49	44.63	43.13	37.00	74	-37.00	Pass	ЭН
4804.000	34.69	5.11	44.60	50.16	45.36	74	-28.64	Pass	Н
7206.000	36.42	6.66	44.77	45.56	43.87	74	-30.13	Pass	Н
9608.000	37.88	7.73	45.58	42.05	42.08	74	-31.92	Pass	Н
1634.419	31.12	2.95	43.85	46.97	37.19	74	-36.81	Pass	V
2846.851	33.35	5.31	44.54	44.71	38.83	74	-35.17	Pass	V
3463.291	33.2	5.53	44.65	43.7	37.78	74	-36.22	Pass	V
4804.000	34.69	5.11	44.60	52.42	47.62	74	-26.38	Pass	V
7206.000	36.42	6.66	44.77	47.23	45.54	74	-28.46	Pass	V
9608.000	37.88	7.73	45.58	42.11	42.14	74	-31.86	Pass	V

Worse case	case mode: 8DPSI		BDPSK(3-DH5)		Test channel:		iddle Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1589.289	31.04	2.91	43.90	47.04	37.09	74	-36.91	Pass	H
2861.381	33.38	5.34	44.56	46.11	40.27	74	-33.73	Pass	H
3543.550	33.14	5.52	44.64	45.73	39.75	74	-34.25	Pass	Н
4882.000	34.85	5.08	44.60	48.83	44.16	74	-29.84	Pass	Н
7323.000	36.43	6.77	44.87	45.16	43.49	74	-30.51	Pass	Н
9764.000	38.05	7.60	45.55	41.94	42.04	74	-31.96	Pass	Н
1870.490	31.51	3.14	43.62	45.25	36.28	74	-37.72	Pass	V
2825.193	33.32	5.27	44.52	43.81	37.88	74	-36.12	Pass	V
3543.550	33.14	5.52	44.64	43.96	37.98	74	-36.02	Pass	V
4882.000	34.85	5.08	44.6	50.37	45.70	74	-28.30	Pass	V
7323.000	36.43	6.77	44.87	47.86	46.19	74	-27.81	Pass	V
9764.000	38.05	7.60	45.55	44.66	44.76	74	-29.24	Pass	V



Worse case mode:		8DPSK(3-DH5)		Test channel:		Highest	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1646.948	31.14	2.96	43.84	46.22	36.48	74	-37.52	Pass	Н
2875.986	33.40	5.37	44.58	44.55	38.74	74	-35.26	Pass	Н
3873.749	32.89	5.46	44.61	42.45	36.19	74	-37.81	Pass	Н
4960.000	35.02	5.05	44.60	49.19	44.66	74	-29.34	Pass	Н
7440.000	36.45	6.88	44.97	41.77	40.13	74	-33.87	Pass	Н
9920.000	38.22	7.47	45.52	42.42	42.59	74	-31.41	Pass	Н
1842.139	31.46	3.11	43.64	45.55	36.48	74	-37.52	Pass	V
3057.166	33.55	5.61	44.69	43.62	38.09	74	-35.91	Pass	V
3844.279	32.91	5.46	44.61	42.73	36.49	74	-37.51	Pass	V
4960.000	35.02	5.05	44.60	48.23	43.70	74	-30.30	Pass	V
7440.000	36.45	6.88	44.97	44.45	42.81	74	-31.19	Pass	V
9920.000	38.22	7.47	45.52	41.76	41.93	74	-32.07	Pass	V

Note:

- 1) Through Pre-scan transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of $\pi/4DQPSK$ modulation type, he 3-DH5 of data type is the worse case of 8DPSKmodulation type in charge + transmitter mode.
- 2) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. H owever, the peak field strength of any emission shall not exceed the maximum permitted average limits specifie d above by more than 20 dB under any condition of modulation. So, only the peak values are measured.
- 3) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

4) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No. : EED32J00076101 Page 65 of 75

PHOTOGRAPHS OF TEST SETUP

Test model No.: B021

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(30MHz - 1GHz)



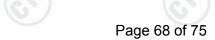
Report No. : EED32J00076101 Page 66 of 75

Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions Test Setup

Report No. : EED32J00076101 Page 67 of 75

Test model No.: B021



View of Product-1

View of Product-2

View of Product-3

View of Product-4

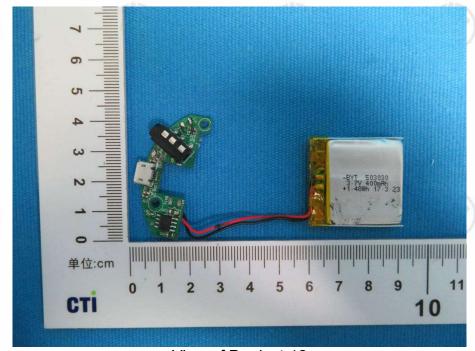
View of Product-5

View of Product-6

View of Product-7

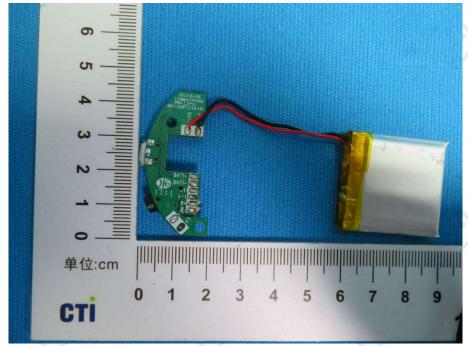
View of Product-8

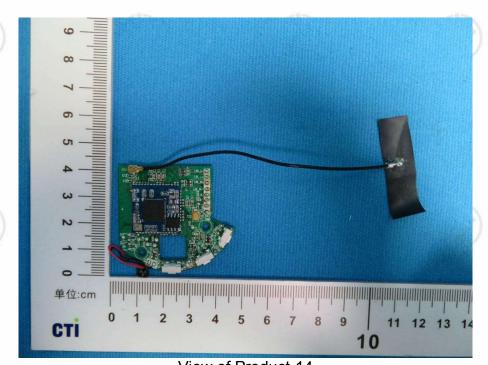
View of Product-9



View of Product-11

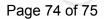
View of Product-12

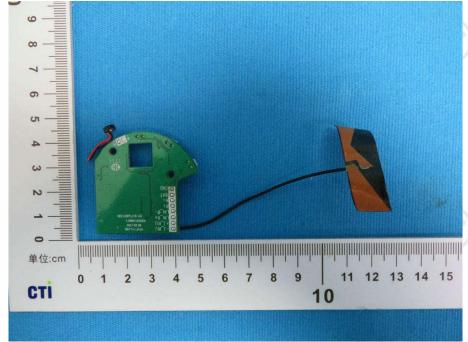


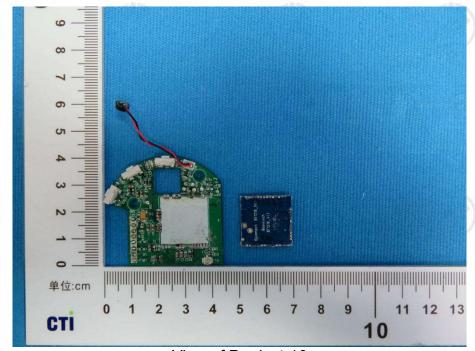


View of Product-13

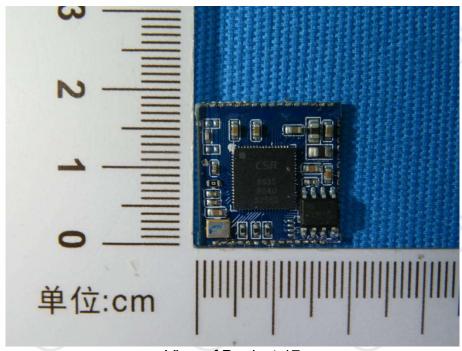
View of Product-14



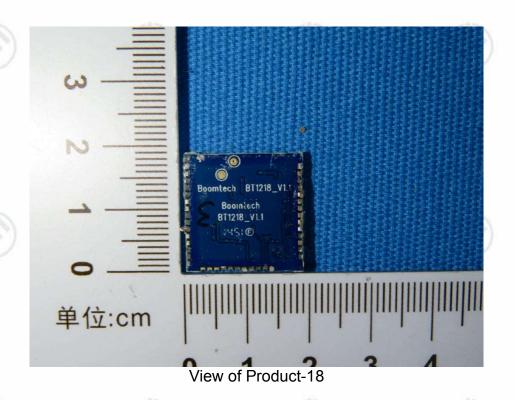




View of Product-15



View of Product-16



Report No.: EED32J00076101 Page 75 of 75

View of Product-17

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.