APPENDIX I: PROBE AND DIPOLE CALIBRATION CERTIFICATES ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **PC Test** Certificate No: D5GHzV2-1191_Sep20 # **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN:1191 Calibration procedure(s) QA CAL-22.v5 Calibration Procedure for SAR Validation Sources between 3-10 GHz \ Calibration date: September 10, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 31-Mar-20 (No. 217-03106) | Apr-21 | | Type-N mismatch combination | SN: 310982 / 06327 | 31-Mar-20 (No. 217-03104) | Apr-21 | | Reference Probe EX3DV4 | SN: 3503 | 31-Dec-19 (No. EX3-3503_Dec19) | Dec-20 | | DAE4 | SN: 601 | 27-Dec-19 (No. DAE4-601_Dec19) | Dec-20 | | | 1 | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 | | - | Name | Function | Signature | | Calibrated by: | Claudio Leubler | Labo ratory Technician | | | | | | You | | Approved by: | Katja Pokovic | Technical Manager | MM | | | | | | Issued: September 10, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: **TSL** tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 10.0 mm, dz = 10.0 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5200 MHz ± 1 MHz
5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz
5800 MHz ± 1 MHz | | # Head TSL parameters at 5200 MHz The following parameters and calculations were applied. | The following parameters and salediations were apprin | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.0 | 4.66 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.6 ± 6 % | 4.47 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 5200 MHz | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.98 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.29 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.6 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.5 ± 6 % | 4.52 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.06 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.8 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.31 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.8 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1191_Sep20 Page 3 of 20 Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | The following parameters and easedianess were spe- | Temperature | Permittivity | Conductivity | |--|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.0 ± 6 % | 4.87 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.27 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 81.8 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.36 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.3 W/kg ± 19.5 % (k=2) | Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | To tonowing post- | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ±
0.2) °C | 33.8 ± 6 % | 5.01 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 4 W 40 W | | # SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.02 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.28 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.5 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1191_Sep20 Page 4 of 20 # Head TSL parameters at 5800 MHz The following parameters and calculations were applied. | To following personners | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 33.7 ± 6 % | 5.06 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | **** | # SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.16 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.30 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.6 W/kg ± 19.5 % (k=2) | **Body TSL parameters at 5200 MHz** The following parameters and calculations were applied. | The following parameters and saliculations were appri- | Temperature | Permittivity | Conductivity | |--|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 49.0 | 5.30 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.5 ± 6 % | 5.43 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.42 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 73.8 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.09 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.8 W/kg ± 19.5 % (k=2) | Body TSL parameters at 5250 MHz The following parameters and calculations were applied. | The following parameters and a susceptibility | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.9 | 5.36 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.4 ± 6 % | 5.50 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5250 MHz | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.50 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 74.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.11 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.0 W/kg ± 19.5 % (k=2) | Page 6 of 20 # Body TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.5 | 5.77 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.8 ± 6 % | 5.98 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ### SAR result with Body TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7 .85 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 78.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.19 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.7 W/kg ± 19.5 % (k=2) | # Body TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.3 | 5.94 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.5 ± 6 % | 6.19 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5750 MHz | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.53 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 74.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.10 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.8 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1191_Sep20 # Body TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.2 | 6.00 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.4 ± 6 % | 6.26 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.52 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 74.8 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.08 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.6 W/kg ± 19.5 % (k=2) | #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 5200 MHz | Impedance, transformed to feed point | 52.0 Ω - 9.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 20.3 dB | ### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 53.4 Ω - 6.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.5 dB | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 56.9 Ω - 5.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.9 dB | #### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 59.2 Ω + 3.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.0 dB | #### Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | 56.2 Ω + 2.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.3 dB | #### Antenna Parameters with Body TSL at 5200 MHz | Impedance, transformed to feed point | 52.7 Ω - 8.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.5 dB | #### Antenna Parameters with Body TSL at 5250 MHz | Impedance, transformed to feed point | 53.1 Ω - 4.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.6 dB | #### Antenna Parameters with Body TSL at 5600 MHz | Impedance, transformed to feed point | 57.8 Ω - 3.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22,2 dB | Certificate No: D5GHzV2-1191_Sep20 #### Antenna Parameters with Body TSL at 5750 MHz | Impedance, transformed to feed point | 60.2 Ω + 3.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 20.2 dB | # Antenna Parameters with Body TSL at 5800 MHz | Impedance, transformed to feed point | 56.8 Ω + 3.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.9 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1,202 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms
in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: D5GHzV2-1191_Sep20 #### **DASY5 Validation Report for Head TSL** Date: 07.09.2020 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1191 Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.47$ S/m; $\epsilon_r = 34.6$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5250 MHz; $\sigma = 4.52$ S/m; $\varepsilon_r = 34.5$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5600 MHz; $\sigma = 4.87$ S/m; $\epsilon_r = 34.0$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.01$ S/m; $\varepsilon_r = 33.8$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 5.06 \text{ S/m}$; $\varepsilon_r = 33.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.8, 5.8, 5.8) @ 5200 MHz, ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 31.12.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electromics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.03 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 28.8 W/kg SAR(1 g) = 7.98 W/kg; SAR(10 g) = 2.29 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 68.5% Maximum value of SAR (measured) = 18.4 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.98 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 28.1 W/kg SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.31 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 69.7% Maximum value of SAR (measured) = 18.4 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.97 V/m: Power Drift = -0.08 dB Peak SAR (extrapolated) = 31.1 W/kg #### SAR(1 g) = 8.27 W/kg; SAR(10 g) = 2.36 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 67.1% Maximum value of SAR (measured) = 19.5 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.08 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 31.9 W/kg #### SAR(1 g) = 8.02 W/kg; SAR(10 g) = 2.28 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65% Maximum value of SAR (measured) = 19.3 W/kg ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.29 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 32.7 W/kg #### SAR(1 g) = 8.16 W/kg; SAR(10 g) = 2.30 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65.1% Maximum value of SAR (measured) = 19.5 W/kg 0 dB = 19.5 W/kg = 12.90 dBW/kg # Impedance Measurement Plot for Head TSL (5200, 5600, 5800 MHz) # Impedance Measurement Plot for Head TSL (5250, 5750 MHz) #### **DASY5 Validation Report for Body TSL** Date: 10.09.2020 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1191 Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.43 \text{ S/m}$; $\varepsilon_r = 47.5$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5250 MHz; $\sigma = 5.50$ S/m; $\varepsilon_r = 47.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.98 \text{ S/m}$; $\epsilon_r = 46.8$; $\rho = 1000 \text{ kg/m}^3$ Medium parameters used: f = 5750 MHz; $\sigma = 6.19$ S/m; $\varepsilon_r = 46.5$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.26 \text{ S/m}$; $\varepsilon_r = 46.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.29, 5.29, 5.29) @ 5200 MHz, ConvF(5.26, 5.26, 5.26) @ 5250 MHz, ConvF(4.79, 4.79, 4.79) @ 5600 MHz, ConvF(4.66, 4.66, 4.66) @ 5750 MHz, ConvF(4.62, 4.62, 4.62) @ 5800 MHz; Calibrated: 31.12.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.72 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 27.1 W/kg #### SAR(1 g) = 7.42 W/kg; SAR(10 g) = 2.09 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 68.3% Maximum value of SAR (measured) = 16.9 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.69 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 28.1 W/kg # SAR(1 g) = 7.50 W/kg; SAR(10 g) = 2.11 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 67.5% Maximum value of SAR (measured) = 17.2 W/kg Certificate No: D5GHzV2-1191_Sep20 # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.38 V/m: Power Drift = -0.05 dB Peak SAR (extrapolated) = 32.5 W/kg #### SAR(1 g) = 7.85 W/kg; SAR(10 g) = 2.19 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 64.2% Maximum value of SAR (measured) = 18.5 W/kg ### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.99 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 32.7 W/kg #### SAR(1 g) = 7.53 W/kg; SAR(10 g) = 2.10 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 62.8% Maximum value of SAR (measured) = 18.2 W/kg ### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.89 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 32.1 W/kg #### SAR(1 g) = 7.52 W/kg; SAR(10 g) = 2.08 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 63.4% Maximum value of SAR (measured) = 18.2 W/kg 0 dB = 18.5 W/kg = 12.67 dBW/kg # Impedance Measurement Plot for Body TSL (5200, 5600, 5800 MHz) # Impedance Measurement Plot for Body TSL (5250, 5750 MHz) # Appendix: Transfer Calibration at Four Validation Locations on SAM Head¹ #### **Evaluation Condition (f=5200 MHz)** | Phantom | SAM Head Phantom | For usage with cSAR3D V2 -R/L | |---------|------------------|--------------------------------------| | | | | ### SAR result with SAM Head (Top ≅ C0) | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 83.7 W/kg ± 20.3 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | Condition | | | • | | | #### SAR result with SAM Head (Mouth \cong F90) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 87.6 W/kg ± 20.3 % (k=2) | | 2 (10) (11) 170 | condition | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | L COHURON 3 | | #### SAR result with SAM Head (Neck \cong H0) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 83.6 W/kg ± 20.3 % (k=2) | | | | | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | ### SAR result with SAM Head (Ear ≅ D90) SAR for nominal Head TSL parameters | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 53.2 W/kg ± 20.3 % (k=2) | normalized to 1W 18.1 W/kg ± 19.9 % (k=2) Certificate No: D5GHzV2-1191_Sep20 Additional assessments outside the current scope of SCS 0108 # Appendix: Transfer Calibration at Four Validation Locations
on SAM Head² # **Evaluation Condition (f=5800 MHz)** | Phantom | SAM Head Phantom | For usage with cSAR3D V2 -R/L | |---------|------------------|--------------------------------------| # SAR result with SAM Head (Top \cong C0) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 83.8 W/kg ± 20.3 % (k=2) | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | | SAR for nominal Head TSL parameters | normalized to 1W | 23.5 W/kg ± 19.9 % (k=2) | # SAR result with SAM Head (Mouth ≅ F90) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 90.6 W/kg ± 20.3 % (k=2) | | | | | | | | | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | # SAR result with SAM Head (Neck \cong H0) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 80.9 W/kg ± 20.3 % (k=2) | | 2.60 | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | # SAR result with SAM Head (Ear ≅ D90) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | | |---|------------------|--------------------------|--| | SAR for nominal Head TSL parameters | normalized to 1W | 57.6 W/kg ± 20.3 % (k=2) | | | | | | | | 0. T 40 3 (40) (11 1 TO) | condition | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | Certificate No: D5GHzV2-1191_Sep20 $^{^{\}rm 2}$ Additional assessments outside the current scope of SCS 0108 #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **PC Test** Certificate No: D5GHzV2-1237_Aug18 | ۱ | CALIBRAT | ION | CER | TIFI | CATE | |---|----------|-----|-----|------|------| | ١ | | | | | | Object D5GHzV2 - SN:1237 Calibration procedure(s) QA CAL-22.v3 Calibration procedure for dipole validation kits between 3-6 GHz Calibration date: August 10, 2018 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |--------------------|---|------------------------| | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | P1-19A | | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | SN: 103245 | 04-Apr-18 (No. 217-02673) | Apr-19 | | SN: 5058 (20k) | 04-Apr-18 (No. 217-02682) | Apr-19 | | SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02683) | Apr-19 | | SN: 3503 | 30-Dec-17 (No. EX3-3503_Dec17) | Dec-18 | | SN: 601 | 26-Oct-17 (No. DAE4-601_Oct17) | Oct-18 | | # di | Check Date (in house) | Scheduled Check | | SN: GB37480704 | 07-Oct-15 (In house check Oct-16) | in house check: Oct-18 | | SN: US37292783 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | SN: MY41092317 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | SN: 100972 | 15-Jun-15 (in house check Oct-16) | In house check: Oct-18 | | SN: US41080477 | 31-Mar-14 (in house check Oct-17) | in house check: Oct-18 | | Name | Function | Signature | | Manu Seitz | Laboratory Technician | A. b | | | | grange | | Katja Pokovic | Technical Manager | MA | | | SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name Manu Seitz | SN: 104778 | Issued: August 17, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: **TSL** tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Additional Documentation: e) DASY4/5 System Handbook # **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.1 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz | | # Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.6 ± 6 % | 4.61 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.15 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 81.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.36 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.5 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.1 ± 6 % | 4.98 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 8.60 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 85.7 W / kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | |
---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.46 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.5 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.9 ± 6 % | 5.14 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.09 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.32 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.1 W/kg ± 19.5 % (k=2) | Page 4 of 13 ### Body TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.9 | 5.36 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.9 ± 6 % | 5.49 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.62 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 75.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.14 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.2 W/kg ± 19.5 % (k=2) | ### **Body TSL parameters at 5600 MHz** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.5 | 5.77 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.3 ± 6 % | 5.96 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.91 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 78.5 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.22 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 22.0 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1237_Aug18 Page 5 of 13 # Body TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | | |---|-----------------|--------------|------------------|--| | Nominal Body TSL parameters | 22.0 °C | 48.3 | 5.94 mho/m | | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.0 ± 6 % | 6.16 mho/m ± 6 % | | | Body TSL temperature change during test | < 0.5 °C | | | | # SAR result with Body TSL at 5750 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.65 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 75.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.14 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.2 W/kg ± 19.5 % (k=2) | #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point $47.5 \Omega - 3.5 j\Omega$ | | |--|-----------| | Return Loss | - 27.0 dB | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 50.1 Ω + 4.7 jΩ | | | |--------------------------------------|-----------------|--|--| | Return Loss | - 26.7 dB | | | #### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | $52.7~\Omega + 0.8~\mathrm{j}\Omega$ | | | |--------------------------------------|--------------------------------------|--|--| | Return Loss | - 31.2 dB | | | ### Antenna Parameters with Body TSL at 5250 MHz | Impedance, transformed to feed point | 46.5 Ω - 1.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 28.2 dB | #### Antenna Parameters with Body TSL at 5600 MHz | Impedance, transformed to feed point | 53.1 Ω + 6.2 jΩ | | | |--------------------------------------|-----------------|--|--| | Return Loss | - 23.5 dB | | | ### Antenna Parameters with Body TSL at 5750 MHz | Impedance, transformed to feed point | 53.6 Ω + 2.1 jΩ | | | |--------------------------------------|-----------------|--|--| | Return Loss | - 27.9 dB | | | #### **General Antenna Parameters and Design** | | | |----------------------------------|-------------| | Electrical Delay (one direction) | 1,195 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | | |-----------------|--------------|--|--| | Manufactured on | May 04, 2015 | | | Certificate No: D5GHzV2-1237_Aug18 #### **DASY5 Validation Report for Head TSL** Date: 10.08.2018 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1237 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.61$ S/m; $\epsilon_r = 35.6$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.98$ S/m; $\epsilon_r = 35.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.14$ S/m; $\epsilon_r = 34.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.51, 5.51, 5.51) @ 5250 MHz, ConvF(5.05, 5.05, 5.05) @ 5600 MHz, ConvF(4.98, 4.98, 4.98) @ 5750 MHz; Calibrated: 30.12.2017 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601 (5GHz); Calibrated: 26.10.2017 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439) ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan. dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.17 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 27.8 W/kg SAR(1 g) = 8.15 W/kg; SAR(10 g) = 2.36 W/kg Maximum value of SAR (measured) = 18.4 W/kg ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.53 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 32.4 W/kg SAR(1 g) = 8.6 W/kg; SAR(10 g) = 2.46 W/kg Maximum value of SAR (measured) = 20.2 W/kg #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 73.04 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 31.1 W/kg SAR(1 g) = 8.09 W/kg; SAR(10 g) = 2.32 W/kg Maximum value of SAR (measured) = 19.9 W/kg Certificate No: D5GHzV2-1237_Aug18 P 0 dB = 19.9 W/kg = 12.99 dBW/kg #### Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 10.08.2018 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1237 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f=5250 MHz; $\sigma=5.49$ S/m; $\epsilon_r=46.9$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5600 MHz; $\sigma=5.96$ S/m; $\epsilon_r=46.3$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5750 MHz; $\sigma=6.16$ S/m; $\epsilon_r=46$; $\rho=1000$ kg/m 3 Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4
SN3503; ConvF(5.26, 5.26, 5.26) @ 5250 MHz, ConvF(4.65, 4.65, 4.65) @ 5600 MHz, ConvF(4.57, 4.57, 4.57) @ 5750 MHz; Calibrated: 30.12.2017 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601 (5GHz); Calibrated: 26.10.2017 - Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 - DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439) # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.22 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 28.5 W/kg SAR(1 g) = 7.62 W/kg; SAR(10 g) = 2.14 W/kg Maximum value of SAR (measured) = 17.3 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.51 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 32.1 W/kg SAR(1 g) = 7.91 W/kg; SAR(10 g) = 2.22 W/kg Maximum value of SAR (measured) = 18.5 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.91 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 31.7 W/kg SAR(1 g) = 7.65 W/kg; SAR(10 g) = 2.14 W/kg Maximum value of SAR (measured) = 18.0 W/kg Certificate No: D5GHzV2-1237_Aug18 Page 11 of 13 0 dB = 18.0 W/kg = 12.55 dBW/kg # Impedance Measurement Plot for Body TSL ### PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D5GHzV2 – SN: 1237 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extended Calibration date: 08/09/2019 Description: SAR Validation Dipole at 5GHz Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|-----------|---|------------|--------------|------------|---------------| | Agilent | 8753ES | S-Parameter Network Analyzer | 10/2/2018 | Annual | 10/2/2019 | US39170118 | | Agilent | N5182A | MXG Vector Signal Generator | 6/27/2019 | Annual | 6/27/2020 | US46240505 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 343972 | | Anritsu | ML2495A | Power Meter | 10/21/2018 | Annual | 10/21/2019 | 941001 | | Anritsu | MA2411B | Pulse Power Sensor | 10/30/2018 | Annual | 10/30/2019 | 1207470 | | Anritsu | MA2411B | Pulse Power Sensor | 11/20/2018 | Annual | 11/20/2019 | 1339007 | | Control Company | 4040 | Temperature / Humidity Monitor | 2/28/2018 | Biennial | 2/28/2020 | 150761911 | | Control Company | 4352 | Ultra Long Stem Thermometer | 2/28/2018 | Biennial | 2/28/2020 | 170330160 | | Keysight | 772D | Dual Directional Coupler | CBT | N/A | CBT | MY52180215 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 7/2/2019 | Annual | 7/2/2020 | MY53401181 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | MiniCircuits | VLF-6000+ | Low Pass Filter | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Pasternack | PE2209-10 | Bidirectional Coupler | CBT | N/A | CBT | N/A | | Pasternack | NC-100 | Torque Wrench | 5/23/2018 | Biennial | 5/23/2020 | N/A | | SPEAG | EX3DV4 | SAR Probe | 2/19/2019 | Annual | 2/19/2020 | 7417 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 2/13/2019 | Annual | 2/13/2020 | 665 | | SPEAG | EX3DV4 | SAR Probe | 7/15/2019 | Annual | 7/15/2020 | 7547 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 7/11/2019 | Annual | 7/11/2020 | 1323 | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 9/11/2018 | Annual | 9/11/2019 | 1091 | #### Measurement Uncertainty = $\pm 23\%$ (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Test Engineer | BRODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 30K | | Object: | Date Issued: | Daga 1 of 1 | |--------------------|--------------|-------------| | D5GHzV2 – SN: 1237 | 08/09/2019 | Page 1 of 4 | #### **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Frequ
(M | uency
IHz) | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Head (1g)
W/kg @ 17.0
dBm | Measured
Head SAR (1g)
W/kg @ 17.0
dBm | (96) | Certificate
SAR Target
Head (10g)
W/kg @ 17.0
dBm | (10a) M//ka @ | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |-------------|---------------|---------------------|----------------|---|--|---|--------|---|---------------|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 52 | 250 | 8/10/2018 | 8/9/2019 | 1.195 | 4.065 | 3.81 | -6.27% | 1.18 | 1.09 | -7.23% | 47.5 | 46.5 | 1 | -3.5 | -7.5 | 4 | -27 | -22.2 | 17.70% | PASS | | 56 | 000 | 8/10/2018 | 8/9/2019 | 1.195 | 4.285 | 4.06 | -5.25% | 1.23 | 1.15 | -6.12% | 50.1 | 50.9 | 0.8 | 4.7 | 0.8 | 3.9 | -26.7 | -30.1 | -12.80% | PASS | | 57 | 50 | 8/10/2018 | 8/9/2019 | 1.195 | 4.03 | 3.8 | -5.71% | 1.16 | 1.07 | -7.36% | 52.7 | 51.4 | 1.3 | 0.8 | -1.4 | 2.2 | -31.2 | -30.4 | 2.60% | PASS | | Frequ
(M | uency
IHz) | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Body (1g)
W/kg @ 17.0
dBm | Measured
Body SAR (1g)
W/kg @ 17.0
dBm | (96) | Certificate
SAR Target
Body (10g)
W/kg @ 17.0
dBm | (10a) M/ka @ | Deviation 10g
(%) | Certificate
Impedance
Body (Ohm)
Real | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 52 | 250 | 8/10/2018 | 8/9/2019 | 1.195 | 3.78 | 3.52 | -6.88% | 1.06 | 0.981 | -7.45% | 46.5 | 47.4 | 0.9 | -1.3 | -5.9 | 4.6 | -28.2 | -23.6 | 16.20% | PASS | | 56 | 600 | 8/10/2018 | 8/9/2019 | 1.195 | 3.925 | 3.81 | -2.93% | 1.1 | 1.05 | -4.55% | 53.1 | 51.2 | 1.9 | 6.2 | 4.6 | 1.6 | -23.5 | -26.4 | -12.40% | PASS | | 57 | 50 | 8/10/2018 | 8/9/2019 | 1.195 | 3.795 | 3.58 | -5.67% | 1.06 | 1 | -5.66% | 53.6 | 53.8 | 0.2 | 2.1 | 0.2 | 1.9 | -27.9 | -28.7 | -3.00% | PASS | | Object: | Date Issued: | Page 2 of 4 | |--------------------|--------------|-------------| | D5GHzV2 - SN: 1237 | 08/09/2019 | Page 2 01 4 | #### Impedance & Return-Loss Measurement Plot for Head TSL ### Impedance & Return-Loss Measurement Plot for Body TSL ### **PCTEST** 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D5GHzV2 – SN: 1237 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extended Calibration date: 08/10/2020 Description: SAR Validation Dipole at 5GHz Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |--------------------|---------------|---|------------|--------------|------------|---------------| | Control Company | 4040 | Therm./Clock/Humidity Monitor | 6/29/2019 | Biennial | 6/29/2021 | 192291470 | | Control Company | 4352 | Ultra Long Stem Thermometer | 11/29/2018 | Biennial | 11/29/2020 | 181766816 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Agilent | 85033E | 3.5mm Standard Calibration Kit | 6/6/2020 | Annual | 6/6/2021 | MY53402352 | | Rohde & Schwarz | ZNLE6 | Vector Network Analyzer | 10/11/2019 | Annual | 10/11/2020 | 101307 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | SPEAG | DAKS-3.5 | Portable DAK | 9/10/2019 | Annual | 9/10/2020 | 1045 | | Anritsu | MA2411B | Pulse Power Sensor | 8/14/2019 | Annual | 8/14/2020 | 1315051 | | Anritsu | MA2411B | Pulse Power Sensor | 8/27/2019 | Annual | 8/27/2020 | 1339027 | | Anritsu | ML2495A | Power Meter |
12/17/2019 | Annual | 12/17/2020 | 941001 | | Agilent | N5182A | MXG Vector Signal Generator | 8/19/2019 | Annual | 8/19/2020 | MY47420837 | | Seekonk Inc | NC-100 | Torque Wrench | 8/4/2020 | Biennial | 8/4/2022 | N/A | | MiniCircuits | ZHDC-16-63-S+ | Bidirectional Coupler | CBT | N/A | CBT | N/A | | MiniCircuits | VLF-6000+ | Low Pass Filter | CBT | N/A | CBT | N/A | | SPEAG | EX3DV4 | SAR Probe | 4/21/2020 | Annual | 4/21/2021 | 7357 | | SPEAG | EX3DV4 | SAR Probe | 5/18/2020 | Annual | 5/18/2021 | 7538 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 6/1/2020 | Annual | 7/15/2021 | 1322 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 6/6/2020 | Annual | 4/15/2021 | 1407 | # Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Test Engineer | BRODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 304 | | Object: | Date Issued: | Daga 1 of 1 | |--------------------|--------------|-------------| | D5GHzV2 – SN: 1237 | 08/10/2020 | Page 1 of 4 | # **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date: | Frequency
(MHz) | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Head (1g)
W/kg @ 17.0
dBm | Measured
Head SAR (1g)
W/kg @ 17.0
dBm | (0/.) | Certificate
SAR Target
Head (10g)
W/kg @ 17.0
dBm | (10a) M/ka @ | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |--------------------|---------------------|----------------|---|--|---|--------|---|--|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 5250 | 8/10/2018 | 8/10/2020 | 1.195 | 4.065 | 3.69 | -9.23% | 1.18 | 1.06 | -9.79% | 47.5 | 51.5 | 4 | -3.5 | -5.1 | 1.6 | -27 | -25.6 | 5.20% | PASS | | 5600 | 8/10/2018 | 8/10/2020 | 1.195 | 4.285 | 4 | -6.65% | 1.23 | 1.13 | -7.76% | 50.1 | 49.1 | 1 | 4.7 | 2.7 | 2 | -26.7 | -30.9 | -15.70% | PASS | | 5750 | 8/10/2018 | 8/10/2020 | 1.195 | 4.03 | 3.71 | -7.94% | 1.16 | 1.06 | -8.23% | 52.7 | 53.2 | 0.5 | 0.8 | 2.7 | 1.9 | -31.2 | -27.8 | 10.90% | PASS | | Frequency
(MHz) | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Body (1g)
W/kg @ 17.0
dBm | Measured
Body SAR (1g)
W/kg @ 17.0
dBm | (96) | Certificate
SAR Target
Body (10g)
W/kg @ 17.0
dBm | Measured
Body SAR
(10g) W/kg @
17.0 dBm | Deviation 10g
(%) | Certificate
Impedance
Body (Ohm)
Real | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 5250 | 8/10/2018 | 8/10/2020 | 1.195 | 3.78 | 3.58 | -5.29% | 1.06 | 1 | -5.66% | 46.5 | 48.7 | 2.2 | -1.3 | -2.4 | 1.1 | -28.2 | -31.6 | -12.00% | PASS | | 5600 | 8/10/2018 | 8/10/2020 | 1.195 | 3.925 | 3.72 | -5.22% | 1.1 | 1.04 | -5.45% | 53.1 | 48.3 | 4.8 | 6.2 | 5.8 | 0.4 | -23.5 | -24.4 | -3.70% | PASS | | 5750 | 8/10/2018 | 8/10/2020 | 1.195 | 3.795 | 3.57 | -5.93% | 1.06 | 0.99 | -6.51% | 53.6 | 54.7 | 1.1 | 2.1 | 3.5 | 1.4 | -27.9 | -24.7 | 11.50% | PASS | | Object: | Date Issued: | Page 2 of 4 | |--------------------|--------------|-------------| | D5GHzV2 – SN: 1237 | 08/10/2020 | Page 2 01 4 | #### Impedance & Return-Loss Measurement Plot for Head TSL # Impedance & Return-Loss Measurement Plot for Body TSL | Object: | Date Issued: | Dogo 4 of 4 | |--------------------|--------------|-------------| | D5GHzV2 – SN: 1237 | 08/10/2020 | Page 4 of 4 | # Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **PC Test** Certificate No: D750V3-1003_Mar20 # CALIBRATION CERTIFICATE Object D750V3 - SN:1003 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: March 16, 2020 BNV 130 12020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---|---|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 03-Apr-19 (No. 217-02892/02893) | Apr-20 | | Power sensor NRP-Z91 | SN: 103244 | 03-Apr-19 (No. 217-02892) | Apr-20 | | Power sensor NRP-Z91 | SN: 103245 | 03-Apr-19 (No. 217-02893) | Apr-20 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-19 (No. 217-02894) | Apr-20 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-19 (No. 217-02895) | Apr-20 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-19 (No. EX3-7349_Dec19) | Dec-20 | | DAE4 | SN: 601 | 27-Dec-19 (No. DAE4-601_Dec19) | Dec-20 | | | • | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 |
| | Name | Function | Signature | | Calibrated by: | Jeton Kastrati | Laboratory Technician | | | | | | 1/4_ | | | pilotejitettiliki listituasen jittaatasen ja vest | | V | | Approved by: | Katja Pokovic | Technical Manager | ALC | | de de la constant | | | | Issued: March 16, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D750V3-1003_Mar20 Page 1 of 8 ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates # Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D750V3-1003_Mar20 Page 2 of 8 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.5 ± 6 % | 0.88 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### **SAR** result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.17 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.78 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.43 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.77 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54. 7 ± 6 % | 0.96 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | naw. | No ale sas Ma | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.16 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 8.61 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.42 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 5.67 W/kg ± 16.5 % (k=2) | Certificate No: D750V3-1003_Mar20 # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.9 Ω - 0.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.7 dB | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 51.8 Ω - 2.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 30.6 dB | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.043 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | | | ### **DASY5 Validation Report for Head TSL** Date: 16.03.2020 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1003 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.88 \text{ S/m}$; $\varepsilon_r = 42.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(10.07, 10.07, 10.07) @ 750 MHz; Calibrated: 31.12.2019 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.12.2019 Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 • DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.72 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.27 W/kg ### SAR(1 g) = 2.17 W/kg; SAR(10 g) = 1.43 W/kg Smallest distance from peaks to all points 3 dB below = 16.5 mm Ratio of SAR at M2 to SAR at M1 = 66.2% Maximum value of SAR (measured) = 2.90 W/kg 0 dB = 2.90 W/kg = 4.62 dBW/kg # Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 16.03.2020 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1003 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.96 \text{ S/m}$; $\varepsilon_r = 54.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(10.61, 10.61, 10.61) @ 750 MHz; Calibrated: 31.12.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.60 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 3.23 W/kg ### SAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.42 W/kg Smallest distance from peaks to all points 3 dB below = 21.2 mm Ratio of SAR at M2 to SAR at M1 = 66.6% Maximum value of SAR (measured) = 2.87 W/kg 0 dB = 2.87 W/kg = 4.58 dBW/kg # Impedance Measurement Plot for Body TSL # **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited
by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client PC Test Accreditation No.: SCS 0108 Certificate No: D750V3-1054_Mar20 # **CALIBRATION CERTIFICATE** Object D750V3 - SN:1054 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: March 11, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). V The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|------------------------|--|--| | Power meter NRP | SN: 104778 | 03-Apr-19 (No. 217-02892/02893) | Apr-20 | | Power sensor NRP-Z91 | SN: 103244 | 03-Apr-19 (No. 217-02892) | Apr-20 | | Power sensor NRP-Z91 | SN: 103245 | 03-Apr-19 (No. 217-02893) | Apr-20 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-19 (No. 217-02894) | Apr-20 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-19 (No. 217-02895) | Apr-20 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-19 (No. EX3-7349_Dec19) | Dec-20 | | DAE4 | SN: 601 | 27-Dec-19 (No. DAE4-601_Dec19) | Dec-20 | | | ı | | | | Secondary Standards | 1D # | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 | | | Name | Function | Signature | | Calibrated by: | Claudio Leubler | ent processor and the State Market State and the control of co | A STATE OF THE STA | | Calibrated by. | Ciaddio Fedhiei | Laboratory Technician | 1 Ku | | | | | 40 | | Approved by: | Katja Pok o vic | Technical Manager | | | | | | | | | | | | Issued: March 19, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D750V3-1054_Mar20 ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook ### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D750V3-1054 Mar20 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | # **Head TSL
parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.5 ± 6 % | 0.88 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.13 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.63 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.41 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.69 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.7 ± 6 % | 0.96 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.14 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 8.53 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.41 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 5.63 W/kg ± 16.5 % (k=2) | Certificate No: D750V3-1054_Mar20 # Appendix (Additional assessments outside the scope of SCS 0108) # **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 53.6 Ω - 1.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 28.2 dB | # Antenna Parameters with Body TSL | Impedance, transformed to feed point | 49.8 Ω - 4.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.6 dB | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.005 == | |----------------------------------|----------| | , (===== | 1.035 ns | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|---------| | | J SFLAG | | | | # DASY5 Validation Report for Head TSL Date: 11.03.2020 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.88$ S/m; $\epsilon_r = 42.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(10.07, 10.07, 10.07) @ 750 MHz; Calibrated: 31.12.2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.12.2019 Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.98 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.19 W/kg SAR(1 g) = 2.13 W/kg; SAR(10 g) = 1.41 W/kg Smallest distance from peaks to all points 3 dB below = 17.1 mm Ratio of SAR at M2 to SAR at M1 = 66.8% Maximum value of SAR (measured) = 2.82 W/kg 0 dB = 2.82 W/kg = 4.50 dBW/kg # Impedance Measurement Plot for Head TSL # **DASY5 Validation Report for Body TSL** Date: 11.03.2020 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1054 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.96$ S/m; $\varepsilon_r = 54.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### **DASY52** Configuration: Probe: EX3DV4 - SN7349; ConvF(10.61, 10.61, 10.61) @ 750 MHz; Calibrated: 31.12.2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 27,12,2019 Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.15 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.22 W/kg ### SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.41 W/kg Smallest distance from peaks to all points 3 dB below = 16.1 mm Ratio of SAR at M2 to SAR at M1 = 66.7% Maximum value of SAR (measured) = 2.85 W/kg 0 dB = 2.85 W/kg = 4.55 dBW/kg # Impedance Measurement Plot for Body TSL # Appendix: Transfer Calibration at Four Validation Locations on SAM Head¹ ### **Evaluation Condition** | Phantom | SAM Head Phantom | For usage with cSAR3D v2 -R/L | |---------|------------------|--------------------------------------| # SAR result with SAM Head (Top \cong C0) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 7.66 W/kg ± 17.5 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | | CARC | Soriation | | # SAR for nominal Head TSL parameters normalized to 1W 5.14 W/kg ± 16.9 % (k=2) # SAR result with SAM Head (Mouth ≅ F90) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 8.42 W/kg ± 17.5 % (k=2) | | | | | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | # SAR result with SAM Head (Neck \cong H0) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 7.89 W/kg ± 17.5 % (k=2) | | | | | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | # SAR result with SAM Head (Ear \cong D90) | SAR for nominal Head TSL parameters normalized to 1W 6.82 W/kg ± 17. | 5 % (k=2) | |--|-----------| SAR for nominal Head TSL parameters normalized to 1W 4.63 W/kg ± 16.9 % (k=2) Certificate No: D750V3-1054_Mar20 $^{^{\}mathrm{1}}$ Additional assessments outside the current scope of SCS 0108 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client **PC Test** Certificate No: D750V3-1161_Oct18 | | D750V3 - SN:11 | 5 :1 | | |---|---|---|--| | On the continue of the continue (a) | O 4 - O 1 - O 1 - O 1 - O 1 | | 5 Vantos (CO 2010) a 24 a 27 a a 64 a 65 a | | Calibration procedure(s) | QA CAL-05.v10 | dure for dipole validation kits abo | ₩0.700 MH 2 | | | Cambianon proce | dure for dipole validation has abo | ve 700 Will2 | | | | | | | • W | | | BN 10-30-10 lg 10-30-10 lg its of measurements (SI). BNV d are part of the certificate. 10-20-9 | | Calibration date: | October 19, 2018 | 3 | 3018 | | | | | 10-30-20 | | This calibration certificate documer | nts the traceability to nat | onal standards, which realize the physical uni | its of measurements (SI). BNV | | | | robability are given on the following pages an | d are part of the certificate. 10-20- | | | | | 2014 | | All calibrations have been conducte | ed in the closed laborato | ry facility:
environment temperature (22 \pm 3)°C | C and humidity < 70%. BN 10-23-20 | | | | | | | Calibration Equipment used (M&TE | critical for calibration) | | | | Primary Standards | ID# | Cai Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-18 (No. 217-02673) | Apr-19 | | Datamana on JD AB | SN: 5058 (20k) | 04-Apr-18 (No. 217-02682) | Apr-19 | | Heterence 20 ab Attenuator | | | | | | SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02683) | Apr-19 | | Type-N mismatch combination | SN: 5047.2 / 06327
SN: 7349 | • • | Apr-19
Dec-18 | | Type-N mìsmatch combination
Reference Probe EX3DV4 | | 04-Apr-18 (No. 217-02683)
30-Dec-17 (No. EX3-7349_Dec17)
04-Oct-18 (No. DAE4-601_Oct18) | Apr-19
Dec-18
Oct-19 | | Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | SN: 7349 | 30-Dec-17 (No. EX3-7349_Dec17) | Dec-18 | | Type-N mismatch combination
Reference Probe EX3DV4
DAE4
Secondary Standards | SN: 7349
SN: 601 | 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) | Dec-18
Oct-19
Scheduled Check | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A | SN: 7349
SN: 601 | 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) | Dec-18 Oct-19 Scheduled Check In house check: Oct-20 | | Type-N mismatch combination
Reference Probe EX3DV4
DAE4 | SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783 | 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (In house check Oct-18) 07-Oct-15 (in house check Oct-18) | Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A | SN: 7349
SN: 601
ID#
SN: GB37480704 | 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (In house check Oct-18) 07-Oct-15 (In house check Oct-18) 07-Oct-15 (In house check Oct-18) | Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783
SN: MY41092317 | 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (In house check Oct-18) 07-Oct-15 (in house check Oct-18) | Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A | SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477 | 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) | Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-19 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477 | 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) | Dec-18 Oct-19 Scheduled Check In house check: Oct-20 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477
Name | 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (In house check Oct-18) 07-Oct-15 (In house check Oct-18) 15-Jun-15 (In house check Oct-18) 31-Mar-14 (in house check Oct-18) Function Laboratory Technician | Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-19 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by: | SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name Manu Seitz | 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (In house check Oct-18) 07-Oct-15 (In house check Oct-18) 15-Jun-15 (In house check Oct-18) 31-Mar-14 (in house check Oct-18) Function Laboratory Technician | Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-19 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by: | SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477
Name | 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (In house check Oct-18) 07-Oct-15 (In house check Oct-18) 15-Jun-15 (In house check Oct-18) 31-Mar-14 (in house check Oct-18) Function Laboratory Technician | Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-19 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name Manu Seitz | 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) Function Laboratory Technician | Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-19 | Certificate No: D750V3-1161_Oct18 Page 1 of 8 ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D750V3-1161_Oct18 Page 2 of 8 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 |
V52.10.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 750 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | | |---|-----------------|--------------|------------------|--| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.8 ± 6 % | 0.89 mho/m ± 6 % | | | Head TSL temperature change during test | < 0.5 °C | | | | ### SAR result with Head TSL | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.02 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.03 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.32 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.26 W/kg ± 16.5 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity 0.96 mho/m | | |---|-----------------|--------------|-------------------------|--| | Nominal Body TSL parameters | 22.0 °C | 55.5 | | | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.1 ± 6 % | 0.96 mho/m ± 6 % | | | Body TSL temperature change during test | < 0.5 °C | | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.11 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 8.43 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.39 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 5.55 W/kg ± 16.5 % (k=2) | Certificate No: D750V3-1161_Oct18 Page 3 of 8 # Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 55.6 Ω - 1.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.0 dB | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 50.6 Ω - 4.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.6 dB | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.032 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | November 19, 2015 | Certificate No: D750V3-1161_Oct18 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Date: 19.10.2018 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1161 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.89 \text{ S/m}$; $\varepsilon_r = 40.8$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63,19-2011) # DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(10.22, 10.22, 10.22) @ 750 MHz; Calibrated: 30.12.2017 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.10.2018 • Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.51 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.04 W/kg SAR(1 g) = 2.02 W/kg; SAR(10 g) = 1.32 W/kg Maximum value of SAR (measured) = 2.70 W/kg 0 dB = 2.70 W/kg = 4.31 dBW/kg Certificate No: D750V3-1161_Oct18 # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 19.10.2018 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1161 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.96 \text{ S/m}$; $\varepsilon_r = 55.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(10.19, 10.19, 10.19) @ 750 MHz; Calibrated: 30.12.2017 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 04.10.2018 • Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.57 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.18 W/kg SAR(1 g) = 2.11 W/kg; SAR(10 g) = 1.39 W/kg Maximum value of SAR (measured) = 2.83 W/kg 0 dB = 2.83 W/kg = 4.52 dBW/kg # Impedance Measurement Plot for Body TSL # PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D750V3 – SN:1161 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extended Calibration date: October 18, 2019 Description: SAR Validation Dipole at 750 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|---------------|---|------------|--------------|------------|---------------| | Control Company | 4040 | Therm./Clock/Humidity Monitor | 6/29/2019 | Biennial | 6/29/2021 | 192291470 | | Control Company | 4352 | Ultra Long Stem Thermometer | 8/2/2018 | Biennial | 8/2/2020 | 181334684 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 7/2/2019 | Annual | 7/2/2020 | MY53401181 | | Rohde & Schwarz | ZNLE6 | Vector Network Analyzer | 10/11/2019 | Annual | 10/11/2020 | 101307 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | SPEAG | DAKS-3.5 | Portable Dielectric Assessment Kit | 8/13/2019 | Annual | 8/13/2020 | 1041 | | Anritsu | MA2411B | Pulse Power Sensor | 8/14/2019 | Annual | 8/14/2020 | 1315051 | | Anritsu | MA2411B | Pulse Power Sensor | 8/8/2019 | Annual | 8/8/2020 | 1339008 | | Anritsu | ML2495A | Power Meter | 11/20/2018 | Annual | 11/20/2019 | 1039008 | | Agilent | N5182A | MXG Vector Signal Generator | 8/19/2019 | Annual | 8/19/2020 | MY47420837 | | Seekonk | NC-100 | Torque Wrench | 5/9/2018 | Biennial | 5/9/2020 | 22217 | | Mini-Circuits | NLP-2950+ | Low Pass Filter DC to 2700 MHz | CBT | N/A | CBT | N/A | | MiniCircuits | ZHDC-16-63-S+ | Bidirectional Coupler | CBT | N/A | CBT | N/A | | MiniCircuits | VLF-6000+ | Low Pass Filter | CBT | N/A | CBT | N/A | | SPEAG | EX3DV4 | SAR Probe | 4/24/2019 | Annual | 4/24/2020 | 7357 | | SPEAG | EX3DV4 | SAR Probe | 7/16/2019 | Annual | 7/16/2020 | 7410 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 7/11/2019 | Annual | 7/11/2020 | 1322 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 4/18/2019 | Annual | 4/18/2020 | 1407 | Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. ### Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Team Lead Engineer | BRODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 20K | | Object: | Date Issued: | Page 1 of 4 | |------------------|--------------|-------------| | D750V3 - SN:1161 | 10/18/2019 | Page 1 of 4 | # **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The
measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Head (1g)
W/kg @ 23.0
dBm | Head SAR (1g) | (96) | Certificate
SAR Target
Head (10g)
W/kg @ 23.0
dBm | (10a) W/ka @ | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|----------------|---|--|---|-------|---|---------------|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 10/19/2018 | 10/18/2019 | 1.032 | 1.61 | 1.64 | 2.12% | 1.05 | 1.08 | 2.66% | 55.6 | 53.2 | 2.4 | -1.9 | -3.4 | 1.5 | -25 | -26.8 | -7.30% | PASS | | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Body (1g)
W/kg @ 23.0
dBm | Measured
Body SAR (1g)
W/kg @ 23.0
dBm | (0/) | Certificate
SAR Target
Body (10g)
W/kg @ 23.0
dBm | (40-) M(4 (C) | Deviation 10g
(%) | Certificate
Impedance
Body (Ohm)
Real | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 10/19/2018 | 10/18/2019 | 1.032 | 1.69 | 1.76 | 4.39% | 1.11 | 1.17 | 5.41% | 50.6 | 50 | 0.6 | -4.2 | -4 | 0.2 | -27.6 | -28.1 | -1.60% | PASS | | Object: | Date Issued: | Page 2 of 4 | |------------------|--------------|-------------| | D750V3 - SN:1161 | 10/18/2019 | Fage 2 01 4 | ### Impedance & Return-Loss Measurement Plot for Head TSL 15:34:00 18.10.2019 | Object: | Date Issued: | Page 3 of 4 | |------------------|--------------|-------------| | D750V3 - SN:1161 | 10/18/2019 | rage 3 014 | # Impedance & Return-Loss Measurement Plot for Body TSL 15:35:04 18.10.2019 | Object: | Date Issued: | Page 4 of 4 | | |------------------|--------------|-------------|--| | D750V3 - SN:1161 | 10/18/2019 | rage 4 01 4 | | ### **PCTEST** 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D750V2 – SN: 1161 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extension Calibration date: 10/18/2020 Description: SAR Validation Dipole at 750 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |--------------------|---------------|---|------------|--------------|------------|---------------| | Control Company | 4040 | Therm./Clock/Humidity Monitor | 6/29/2019 | Biennial | 6/29/2021 | 192291470 | | Control Company | 4352 | Ultra Long Stem Thermometer | 11/29/2018 | Biennial | 11/29/2020 | 181766816 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Agilent | 85033E | 3.5mm Standard Calibration Kit | 6/6/2020 | Annual | 6/6/2021 | MY53402352 | | Rohde & Schwarz | ZNLE6 | Vector Network Analyzer | 9/29/2020 | Annual | 9/29/2021 | 101307 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 5/12/2020 | Annual | 5/12/2021 | 1070 | | Anritsu | MA2411B | Pulse Power Sensor | 8/12/2020 | Annual | 8/12/2021 | 1207364 | | Anritsu | MA2411B | Pulse Power Sensor | 9/22/2020 | Annual | 9/22/2021 | 1315051 | | Anritsu | ML2495A | Power Meter | 1/15/2020 | Annual | 1/15/2021 | 1328004 | | Anritsu | ML2495A | Power Meter | 12/17/2019 | Annual | 12/17/2020 | 941001 | | Agilent | N5182A | MXG Vector Signal Generator | 5/13/2020 | Annual | 5/13/2021 | MY47420603 | | Pasternack | NC-100 | Torque Wrench | 8/4/2020 | Biennial | 8/4/2022 | N/A | | Mini-Circuits | NLP-2950+ | Low Pass Filter DC to 2700 MHz | CBT | N/A | CBT | N/A | | MiniCircuits | ZHDC-16-63-S+ | Bidirectional Coupler | CBT | N/A | CBT | N/A | | SPEAG | EX3DV4 | SAR Probe | 6/23/2020 | Annual | 6/23/2021 | 7406 | | SPEAG | EX3DV4 | SAR Probe | 8/19/2020 | Annual | 8/19/2021 | 7547 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 8/12/2020 | Annual | 8/12/2021 | 1323 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 5/14/2020 | Annual | 5/14/2021 | 1583 | ### Measurement Uncertainty = $\pm 23\%$ (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Test Engineer | BRODTE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 30K | | Object: | Date Issued: | Page 1 of 4 | |-------------------|--------------|-------------| | D750V2 – SN: 1161 | 10/18/2020 | rage 1014 | # **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date: | Calibratio
Date | n Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Head (1g)
W/kg @ 23.0
dBm | Head SAR (1g) | (0/) | | (40-) M(4 (9) | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |--------------------|------------------|---|--|---------------|-------|------|---------------|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 10/19/201 | 8 10/18/2020 | 1.032 | 1.61 | 1.73 | 7.72% | 1.05 | 1.12 | 6.46% | 55.6 | 54.2 | 1.4 | -1.9 | -1.4 | 0.5 | -25.0 | -27.4 | -9.50% | PASS | | Calibratio
Date | n Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Body (1g)
W/kg @ 23.0
dBm | M/kg @ 22.0 | (9/) | | (10a) W/ka @ | Deviation 10g
(%) | | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 10/19/201 | 8 10/18/2020 | 1.032 | 1.69 | 1.80 | 6.76% | 1.11 | 1.18 | 6.31% | 50.6 | 50.8 | 0.2 | -4.2 | -4.0 | 0.2 | -27.6 | -27.8 | -0.90% | PASS | | Object: | Date Issued: | Page 2 of 4 | |-------------------|--------------|-------------| | D750V2 – SN: 1161 | 10/18/2020 | raye 2 01 4 | #### Impedance & Return-Loss Measurement Plot for Head TSL # Impedance & Return-Loss Measurement Plot for Body TSL # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client PC Test Certificate No: D835V2-4d047 Mar19 #### CALIBRATION CERTIFICATE Object Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C
and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) 1D# Primary Standards Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 04-Apr-18 (No. 217-02672/02673) Арг-19 Power sensor NRP-Z91 SN: 103244 04-Apr-18 (No. 217-02672) Apr-19 Power sensor NRP-Z91 SN: 103245 04-Apr-18 (No. 217-02673) Apr-19 Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-18 (No. 217-02682) Apr-19 Type-N mismatch combination SN: 5047.2 / 06327 04-Apr-18 (No. 217-02683) Apr-19 Reference Probe EX3DV4 SN: 7349 31-Dec-18 (No. EX3-7349_Dec18) Dec-19 DAE4 SN: 601 04-Oct-18 (No. DAE4-601_Oct18) Oct-19 Secondary Standards ID# Check Date (in house) Scheduled Check Power meter E4419B SN: GB39512475 07-Oct-15 (in house check Feb-19) In house check: Oct-20 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-18) In house check: Oct-20 Power sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-18) In house check: Oct-20 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-18) in house check: Oct-20 SN: US41080477 Network Analyzer Agilent E8358A 31-Mar-14 (in house check Oct-18) In house check: Oct-19 Name Function Signature Calibrated by: Manu Seitz Laboratory Technician Approved by: Katia Pokovic Technical Manager Issued: March 13, 2019 Certificate No: D835V2-4d047_Mar19 Page 1 of 8 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. # **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D835V2-4d047_Mar19 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.9 ± 6 % | 0.91 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.37 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.42 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.54 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.13 W/kg ± 16.5 % (k=2) | **Body TSL parameters**The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.3 ± 6 % | 1.01 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | **** | | # **SAR** result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.45 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 9.47 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.61 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.27 W/kg ± 16.5 % (k=2) | Certificate No: D835V2-4d047_Mar19 Page 3 of 8 # Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 51.4 Ω - 2.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 30.7 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 46.8 Ω - 6.1 jΩ | | | |--------------------------------------|-----------------|--|--| | Return Loss | - 22.9 dB | | | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.387 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D835V2-4d047_Mar19 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Date: 13.03.2019 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d047 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.91$ S/m; $\varepsilon_r = 41.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(10, 10, 10) @ 835 MHz; Calibrated: 31.12.2018 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 04.10.2018 • Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 • DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) # Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 62.48 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 3.60 W/kg SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.54 W/kg Maximum value of SAR (measured) = 3.18 W/kg 0 dB = 3.18 W/kg = 5.02 dBW/kg # **Impedance Measurement Plot for Head TSL** #### **DASY5 Validation Report for Body TSL** Date: 13.03.2019 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d047 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.01 \text{ S/m}$; $\varepsilon_r = 54.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### **DASY52 Configuration:** Probe: EX3DV4 - SN7349; ConvF(10.15, 10.15, 10.15) @ 835 MHz; Calibrated:
31.12.2018 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.10.2018 • Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005 • DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) # Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.49 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.58 W/kg SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.61 W/kg Maximum value of SAR (measured) = 3.23 W/kg 0 dB = 3.23 W/kg = 5.09 dBW/kg Certificate No: D835V2-4d047_Mar19 # Impedance Measurement Plot for Body TSL #### **PCTEST** 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D835V2 – SN: 4d047 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extension Calibration date: 3/13/2020 Description: SAR Validation Dipole at 835 MHz Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|---------------|---|------------|--------------|------------|---------------| | Control Company | 4040 | Therm./Clock/Humidity Monitor | 6/29/2019 | Biennial | 6/29/2021 | 192291470 | | Control Company | 4352 | Ultra Long Stem Thermometer | 8/2/2018 | Biennial | 8/2/2020 | 181334684 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 7/2/2019 | Annual | 7/2/2020 | MY53401181 | | Rohde & Schwarz | ZNLE6 | Vector Network Analyzer | 10/11/2019 | Annual | 10/11/2020 | 101307 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | SPEAG | DAKS-3.5 | Portable DAK | 9/10/2019 | Annual | 9/10/2020 | 1045 | | Anritsu | MA2411B | Pulse Power Sensor | 8/14/2019 | Annual | 8/14/2020 | 1315051 | | Anritsu | MA2411B | Pulse Power Sensor | 8/8/2019 | Annual | 8/8/2020 | 1339008 | | Anritsu | ML2495A | Power Meter | 12/17/2019 | Annual | 12/17/2020 | 941001 | | Agilent | N5182A | MXG Vector Signal Generator | 8/19/2019 | Annual | 8/19/2020 | MY47420837 | | Seekonk | NC-100 | Torque Wrench | 5/9/2018 | Biennial | 5/9/2020 | 22217 | | MiniCircuits | ZHDC-16-63-S+ | Bidirectional Coupler | CBT | N/A | CBT | N/A | | MiniCircuits | VLF-6000+ | Low Pass Filter | CBT | N/A | CBT | N/A | | SPEAG | EX3DV4 | SAR Probe | 9/19/2019 | Annual | 9/19/2020 | 7551 | | SPEAG | EX3DV4 | SAR Probe | 1/21/2020 | Annual | 1/21/2021 | 7488 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 9/17/2019 | Annual | 9/17/2020 | 1333 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 1/13/2020 | Annual | 1/13/2021 | 1530 | # Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Test Engineer | BRODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 304 | | Object: | Date Issued: | Page 1 of 4 | |--------------------|--------------|-------------| | D835V2 - SN: 4d047 | 03/13/2020 | Page 1 of 4 | #### **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | | Measured
Head SAR (1g)
W/kg @ 20.0
dBm | Deviation 1g
(%) | Certificate
SAR Target
Head (10g)
W/kg @ 20.0
dBm | Measured
Head SAR
(10g) W/kg @
20.0 dBm | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|----------------|---|-------|---|---------------------|---|--|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 3/13/2019 | 3/13/2020 | 1.387 | 1.884 | 1.87 | -0.74% | 1.226 | 1.22 | -0.49% | 51.4 | 48.8 | 2.6 | -2.6 | -3.6 | 1.0 | -30.7 | -28.4 | 7.60% | PASS | | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | | Measured
Body SAR (1g)
W/kg @ 20.0
dBm | Deviation 1g
(%) | Certificate
SAR Target
Body (10g)
W/kg @ 20.0
dBm | Measured
Body SAR
(10g) W/kg @
20.0 dBm | Deviation 10g
(%) | Certificate
Impedance
Body (Ohm)
Real | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 3/13/2019 | 3/13/2020 | 1.387 | 1.894 | 1.91 | 0.84% | 1.254 | 1.26 | 0.48% | 46.8 | 45.6 | 1.2 | -6.1 | -2.2 | 3.9 | -22.9 | -25.9 | -12.90% | PASS | | Object: | Date Issued: | Page 2 of 4 | |--------------------|--------------|-------------| | D835V2 - SN: 4d047 | 03/13/2020 | Faye 2 01 4 | #### Impedance & Return-Loss Measurement Plot for Head TSL # Impedance & Return-Loss Measurement Plot for Body TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client C Test Certificate No: D835V2-4d133_Oct18 | Object | D835V2 - SN:4d | 133 | | |---|---|--|---| | Calibration procedure(s) | QA CAL-05.v10
Calibration proce | dure for dipole validation kits abo | ove 700 MHz BN /
yo 30/ 20/ | | allbration date: | October 19, 2018 | 3 | 10-20-20 | | | | ional standards, which realize the physical un
robability are given on the following pages an | • • | | Il calibrations have been conducte | ed in the closed laborator | ry facility: environment temperature (22 ± 3)°0 | C and humidity < 70%. | | alibration Equipment used (M&TE | E critical for calibration) | | | | | | | • | | rimary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | | ID #
SN: 104778 | Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) | Scheduled Calibration Apr-19 | | ower meter NRP | · | | | | ower meter NRP
ower sensor NRP-Z91 | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Арг-19 | | ower meter NRP
ower sensor NRP-Z91
ower sensor NRP-Z91 | SN: 104778
SN: 103244 | 04-Apr-18 (No. 217-02672/02673)
04-Apr-18 (No. 217-02672) | A pr-19
Apr-19 | | rimary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Poye-N mismatch combination | SN: 104778
SN: 103244
SN: 103245 | 04-Apr-18 (No. 217-02672/02673)
04-Apr-18 (No. 217-02672)
04-Apr-18 (No. 217-02673) | Apr-19
Apr-19
Apr-19 | | rower meter NRP
Power sensor NRP-Z91
Power sensor NRP-Z91
Reference 20 dB Attenuator | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k) | 04-Apr-18 (No. 217-02672/02673)
04-Apr-18 (No. 217-02672)
04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682) | Apr-19
Apr-19
Apr-19
Apr-19 | | ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 leference 20 dB
Attenuator lype-N mismatch combination leference Probe EX3DV4 | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02672/02673)
04-Apr-18 (No. 217-02672)
04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682)
04-Apr-18 (No. 217-02683) | Apr-19
Apr-19
Apr-19
Apr-19
Apr-19 | | ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349 | 04-Apr-18 (No. 217-02672/02673)
04-Apr-18 (No. 217-02672)
04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682)
04-Apr-18 (No. 217-02683)
30-Dec-17 (No. EX3-7349_Dec17) | Apr-19
Apr-19
Apr-19
Apr-19
Apr-19
Dec-18 | | ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 deference 20 dB Attenuator ope-N mismatch combination | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) | Apr-19
Apr-19
Apr-19
Apr-19
Apr-19
Dec-18
Oct-19 | | ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter EPM-442A | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (In house) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check | | ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (In house) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 | | ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (In house) 07-Oct-15 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 | | ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06 | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783
SN: MY41092317 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (In house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 | | ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783
SN: MY41092317
SN: 100972 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (In house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 leference 20 dB Attenuator ype-N mismatch combination leference Probe EX3DV4 lAE4 lecondary Standards ower meter EPM-442A ower sensor HP 8481A life generator R&S SMT-06 | SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (In house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-19 | issued: October 22, 201 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D835V2-4d133_Oct18 Page 1 of 8 #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D835V2-4d133_Oct18 Page 2 of 8 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.6 ± 6 % | 0.91 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.39 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.43 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---
--------------------|--------------------------| | SAR measured | 250 mW input power | 1.54 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.10 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.9 ± 6 % | 0.98 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | aif on the tax | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.46 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 9.75 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.61 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.40 W/kg ± 16.5 % (k=2) | Certificate No: D835V2-4d133_Oct18 #### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 50.6 Ω - 2.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 32,2 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 45.0 Ω - 6.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.1 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.397 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|---------------| | Manufactured on | July 22, 2011 | Certificate No: D835V2-4d133_Oct18 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Date: 19.10.2018 Test Laboratory: The name of your organization #### DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d133 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.91$ S/m; $\varepsilon_r = 40.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(9.9, 9.9, 9.9) @ 835 MHz; Calibrated: 30.12.2017 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.10.2018 Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 • DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) # Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 63.02 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.68 W/kg SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.54 W/kg Maximum value of SAR (measured) = 3.24 W/kg 0 dB = 3.24 W/kg = 5.11 dBW/kg # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 19.10.2018 Test Laboratory: SPEAG, Zurich, Switzerland #### **DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d133** Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.98$ S/m; $\varepsilon_r = 54.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) # DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(10.05, 10.05, 10.05) @ 835 MHz; Calibrated: 30.12.2017 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.10.2018 Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) #### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 61.61 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.69 W/kg SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.61 W/kg Maximum value of SAR (measured) = 3.28 W/kg 0 dB = 3.28 W/kg = 5.16 dBW/kg Certificate No: D835V2-4d133_Oct18 # **Impedance Measurement Plot for Body TSL** # PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D835V2 – SN:4d133 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extended Calibration date: October 18, 2019 Description: SAR Validation Dipole at 835 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|---------------|---|------------|--------------|------------|---------------| | Control Company | 4040 | Therm./Clock/Humidity Monitor | 6/29/2019 | Biennial | 6/29/2021 | 192291470 | | Control Company | 4352 | Ultra Long Stem Thermometer | 8/2/2018 | Biennial | 8/2/2020 | 181334684 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 7/2/2019 | Annual | 7/2/2020 | MY53401181 | | Rohde & Schwarz | ZNLE6 | Vector Network Analyzer | 10/11/2019 | Annual | 10/11/2020 | 101307 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | SPEAG | DAKS-3.5 | Portable Dielectric Assessment Kit | 8/13/2019 | Annual | 8/13/2020 | 1041 | | Anritsu | MA2411B | Pulse Power Sensor | 8/14/2019 | Annual | 8/14/2020 | 1315051 | | Anritsu | MA2411B | Pulse Power Sensor | 8/8/2019 | Annual | 8/8/2020 | 1339008 | | Anritsu | ML2495A | Power Meter | 11/20/2018 | Annual | 11/20/2019 | 1039008 | | Agilent | N5182A | MXG Vector Signal Generator | 8/19/2019 | Annual | 8/19/2020 | MY47420837 | | Seekonk | NC-100 | Torque Wrench | 5/9/2018 | Biennial | 5/9/2020 | 22217 | | Mini-Circuits | NLP-2950+ | Low Pass Filter DC to 2700 MHz | CBT | N/A | CBT | N/A | | MiniCircuits | ZHDC-16-63-S+ | Bidirectional Coupler | CBT | N/A | CBT | N/A | | MiniCircuits | VLF-6000+ | Low Pass Filter | CBT | N/A | CBT | N/A | | SPEAG | EX3DV4 | SAR Probe | 9/19/2019 | Annual | 9/19/2020 | 7551 | | SPEAG | EX3DV4 | SAR Probe | 4/24/2019 | Annual | 4/24/2020 | 7357 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 9/17/2019 | Annual | 9/17/2020 | 1333 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 4/18/2019 | Annual | 4/18/2020 | 1407 | Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. # Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Team Lead Engineer | BRODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 20K | | Object: | Date Issued: | Page 1 of 4 | |-------------------|--------------|-------------| | D835V2 - SN:4d133 | 10/18/2019 | Page 1 of 4 | # **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Head (1g)
W/kg @ 23.0
dBm | Measured
Head SAR (1g)
W/kg @ 23.0
dBm | (0/) | Certificate
SAR Target
Head (10g)
W/kg @ 23.0
dBm | (40-) M(4 © | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|----------------|---|--|---|-------|---|--------------
----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 10/19/2018 | 10/18/2019 | 1.397 | 1.886 | 2.03 | 7.64% | 1.22 | 1.32 | 8.20% | 50.6 | 49.5 | 1.1 | -2.4 | -3.2 | 0.8 | -32.2 | -29.8 | 7.50% | PASS | | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Body (1g)
W/kg @ 23.0
dBm | Measured
Body SAR (1g)
W/kg @ 23.0
dBm | (96) | | (10a) W/ka @ | Deviation 10g
(%) | Certificate
Impedance
Body (Ohm)
Real | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 10/19/2018 | 10/18/2019 | 1.397 | 1.95 | 2.07 | 6.15% | 1.28 | 1.36 | 6.25% | 45 | 45.1 | 0.1 | -6.7 | -5.1 | 1.6 | -21.1 | -22.6 | -6.90% | PASS | | Object: | Date Issued: | Page 2 of 4 | |-------------------|--------------|-------------| | D835V2 - SN:4d133 | 10/18/2019 | Fage 2 01 4 | ### Impedance & Return-Loss Measurement Plot for Head TSL 15:29:41 18.10.2019 | Object: | Date Issued: | Page 2 of 4 | |-------------------|--------------|-------------| | D835V2 - SN:4d133 | 10/18/2019 | Page 3 of 4 | # Impedance & Return-Loss Measurement Plot for Body TSL 15:30:43 18.10.2019 | Object: | Date Issued: | Page 4 of 4 | |-------------------|--------------|-------------| | D835V2 - SN:4d133 | 10/18/2019 | Page 4 of 4 | #### **PCTEST** 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D835V2 – SN: 4d133 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extension Calibration date: 10/18/2020 Description: SAR Validation Dipole at 835 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |--------------------|---------------|---|------------|--------------|------------|---------------| | Control Company | 4040 | Therm./Clock/Humidity Monitor | 6/29/2019 | Biennial | 6/29/2021 | 192291470 | | Control Company | 4352 | Ultra Long Stem Thermometer | 11/29/2018 | Biennial | 11/29/2020 | 181766816 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Agilent | 85033E | 3.5mm Standard Calibration Kit | 6/6/2020 | Annual | 6/6/2021 | MY53402352 | | Rohde & Schwarz | ZNLE6 | Vector Network Analyzer | 9/29/2020 | Annual | 9/29/2021 | 101307 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 5/12/2020 | Annual | 5/12/2021 | 1070 | | Anritsu | MA2411B | Pulse Power Sensor | 8/12/2020 | Annual | 8/12/2021 | 1207364 | | Anritsu | MA2411B | Pulse Power Sensor | 9/22/2020 | Annual | 9/22/2021 | 1315051 | | Anritsu | ML2495A | Power Meter | 1/15/2020 | Annual | 1/15/2021 | 1328004 | | Anritsu | ML2495A | Power Meter | 12/17/2019 | Annual | 12/17/2020 | 941001 | | Agilent | N5182A | MXG Vector Signal Generator | 5/13/2020 | Annual | 5/13/2021 | MY47420603 | | Pasternack | NC-100 | Torque Wrench | 8/4/2020 | Biennial | 8/4/2022 | N/A | | Mini-Circuits | NLP-2950+ | Low Pass Filter DC to 2700 MHz | CBT | N/A | CBT | N/A | | MiniCircuits | ZHDC-16-63-S+ | Bidirectional Coupler | CBT | N/A | CBT | N/A | | MiniCircuits | VLF-6000+ | Low Pass Filter | CBT | N/A | CBT | N/A | | SPEAG | EX3DV4 | SAR Probe | 1/21/2020 | Annual | 1/21/2021 | 3589 | | SPEAG | EX3DV4 | SAR Probe | 12/11/2019 | Annual | 12/11/2020 | 7570 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 3/12/2020 | Annual | 3/12/2021 | 1368 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 6/23/2020 | Annual | 1/13/2021 | 1558 | # Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Test Engineer | BRODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 30K | | Object: | Date Issued: | Daniel of A | |--------------------|--------------|-------------| | D835V2 – SN: 4d133 | 10/18/2020 | Page 1 of 4 | # **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date: | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Head (1g)
W/kg @ 23.0
dBm | Head SAR (1g) | (0/) | | (40-) M(4 (9) | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|----------------|---|--|---------------|--------|------|---------------|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 10/19/2018 | 10/18/2020 | 1.397 | 1.886 | 2.00 | 6.04% | 1.22 | 1.28 | 4.92% | 50.6 | 49.4 | 1.2 | -2.4 | -1.5 | 0.9 | -32.2 | -35.7 | -10.90% | PASS | | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Body (1g)
W/kg @ 23.0
dBm | M/kg @ 22.0 | (9/) | | (10a) W/ka @ | Deviation 10g
(%) | | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 10/19/2018 | 10/18/2020 | 1.397 | 1.95 | 1.85 | -5.13% | 1.28 | 1.22 | -4.69% | 45.0 | 45.0 | 0.0 | -6.7 | -4.0 | 2.7 | -21.1 | -23.4 | -10.90% | PASS | | Object: | Date Issued: | Page 2 of 4 | |--------------------|--------------|-------------| | D835V2 - SN: 4d133 | 10/18/2020 | raye 2 01 4 | #### Impedance & Return-Loss Measurement Plot for Head TSL # Impedance & Return-Loss Measurement Plot for Body TSL #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client C Tes Certificate No: D1750V2-1150_Oct18 | Object | D1750V2 - SN:11 | 50 | | |---|--|--|---| | Calibration procedure(s) | QA CAL-05.v10 | | | | | Calibration proce | dure for dipole validation kits abo | | | | | | BNY | | Calibustian data. | October 22, 2018 | | 10 30 20 18
10 30 20 18
PSN
10-20-2 | | Calibration date: | October 22, 2016 | Managanika musi ing kangangan na mangana bangan na ma | BAL | | • | | | 10-70-5 | | This calibration certificate documer | nts the traceability to nati | onal standards, which realize the physical unl | its of measurements (SI). | | he measurements and the uncerta | aintles with confidence p | robability are given on the following
pages an | d are part of the certificate. BN* | | | | | 10 11 | | All calibrations have been conducte | ed in the closed laborator | ry facility: environment temperature (22 ± 3)°C | C and humidity < 70%. | | | | | | | Calibration Equipment used (M&TE | critical for calibration) | | | | | | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | | 1D #
SN: 104778 | Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) | Scheduled Calibration Apr-19 | | Power meter NRP | ···· | | | | Power meter NRP
Power sensor NRP-Z91 | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19
Apr-19 | | Power meter NRP
Power sensor NRP-Z91
Power sensor NRP-Z91 | SN: 104778
SN: 103244
SN: 103245 | 04-Apr-18 (No. 217-02672/02673)
04-Apr-18 (No. 217-02672)
04-Apr-18 (No. 217-02673) | Apr-19 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k) | 04-Apr-18 (No. 217-02672/02673)
04-Apr-18 (No. 217-02672)
04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682) | Apr-19 _
Apr-19
Apr-19
Apr-19 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02672/02673)
04-Apr-18 (No. 217-02672)
04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682)
04-Apr-18 (No. 217-02683) | Apr-19 _
Apr-19
Apr-19
Apr-19
Apr-19 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k) | 04-Apr-18 (No. 217-02672/02673)
04-Apr-18 (No. 217-02672)
04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682) | Apr-19 _
Apr-19
Apr-19
Apr-19 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX3DV4 DAE4 | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601 | 04-Apr-18 (No. 217-02672/02673)
04-Apr-18 (No. 217-02672)
04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682)
04-Apr-18 (No. 217-02683)
30-Dec-17 (No. EX3-7349_Dec17)
04-Oct-18 (No. DAE4-601_Oct18) | Apr-19
Apr-19
Apr-19
Apr-19
Apr-19
Dec-18
Oct-19 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601
ID # | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dsc-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A | SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dac-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-19 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agitent E8358A | SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agitent E8358A | SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dac-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-19 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID #
SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dac-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-19 | Certificate No: D1750V2-1150_Oct18 Page 1 of 8 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. # **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossarv: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 1750 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.8 ± 6 % | 1.33 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.02 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 36.5 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.76 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.2 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.5 ± 6 % | 1.46 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.04 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 36.6 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.82 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 19.4 W/kg ± 16.5 % (k=2) | Certificate No: D1750V2-1150_Oct18 Page 3 of 8 # Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 50.9 Ω - 0.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 40.1 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 46.6 Ω - 0.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 29.2 dB | # **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.217 ns | | |----------------------------------|----------|--| | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|----------------| | Manufactured on | April 10, 2015 | #### **DASY5 Validation Report for Head TSL** Date: 22.10.2018 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1150 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.33 \text{ S/m}$; $\varepsilon_r = 38.8$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.5, 8.5, 8.5) @ 1750 MHz; Calibrated: 30.12.2017 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electromics: DAE4 Sn601; Calibrated: 04.10.2018 • Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 • DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.1 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 16.7 W/kg SAR(1 g) = 9.02 W/kg; SAR(10 g) = 4.76 W/kg Maximum value of SAR (measured) = 14.0 W/kg 0 dB = 14.0 W/kg = 11.46 dBW/kg ## Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 22.10.2018 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1150 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.46 \text{ S/m}$; $\varepsilon_r = 53.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(8.35, 8.35, 8.35) @ 1750 MHz; Calibrated: 30.12.2017 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 04.10.2018 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.1 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 16.0 W/kg SAR(1 g) = 9.04 W/kg; SAR(10 g) = 4.82 W/kg Maximum value of SAR (measured) = 13.6 W/kg 0 dB = 13.6 W/kg = 11.34 dBW/kg # Impedance Measurement Plot for Body TSL ## PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com #
Certification of Calibration Object D1750V2 – SN:1150 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extended Calibration date: October 18, 2019 Description: SAR Validation Dipole at 1750 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|---------------|---|------------|--------------|------------|---------------| | Control Company | 4040 | Therm./Clock/Humidity Monitor | 6/29/2019 | Biennial | 6/29/2021 | 192291470 | | Control Company | 4352 | Ultra Long Stem Thermometer | 8/2/2018 | Biennial | 8/2/2020 | 181334684 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 7/2/2019 | Annual | 7/2/2020 | MY53401181 | | Rohde & Schwarz | ZNLE6 | Vector Network Analyzer | 10/11/2019 | Annual | 10/11/2020 | 101307 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | SPEAG | DAKS-3.5 | Portable Dielectric Assessment Kit | 8/13/2019 | Annual | 8/13/2020 | 1041 | | Anritsu | MA2411B | Pulse Power Sensor | 8/14/2019 | Annual | 8/14/2020 | 1315051 | | Anritsu | MA2411B | Pulse Power Sensor | 8/8/2019 | Annual | 8/8/2020 | 1339008 | | Anritsu | ML2495A | Power Meter | 11/20/2018 | Annual | 11/20/2019 | 1039008 | | Agilent | N5182A | MXG Vector Signal Generator | 8/19/2019 | Annual | 8/19/2020 | MY47420837 | | Seekonk | NC-100 | Torque Wrench | 5/9/2018 | Biennial | 5/9/2020 | 22217 | | Mini-Circuits | NLP-2950+ | Low Pass Filter DC to 2700 MHz | CBT | N/A | CBT | N/A | | MiniCircuits | ZHDC-16-63-S+ | Bidirectional Coupler | CBT | N/A | CBT | N/A | | MiniCircuits | VLF-6000+ | Low Pass Filter | CBT | N/A | CBT | N/A | | SPEAG | EX3DV4 | SAR Probe | 8/16/2019 | Annual | 8/16/2020 | 7308 | | SPEAG | EX3DV4 | SAR Probe | 4/24/2019 | Annual | 4/24/2020 | 7357 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 4/18/2019 | Annual | 4/18/2020 | 1407 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 8/14/2019 | Annual | 8/14/2020 | 1450 | Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. ### Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Team Lead Engineer | BRODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 20K | | Object: | Date Issued: | Page 1 of 4 | |-------------------|--------------|-------------| | D1750V2 - SN:1150 | 10/18/2019 | Page 1 of 4 | ## **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Head (1g)
W/kg @ 20.0
dBm | Measured
Head SAR (1g)
W/kg @ 20.0
dBm | | Certificate
SAR Target
Head (10g)
W/kg @ 20.0
dBm | (10a) W/ka @ | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|----------------|---|--|---|-------|---|--------------|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 10/22/2018 | 10/18/2019 | 1.217 | 3.65 | 3.8 | 4.11% | 1.92 | 2 | 4.17% | 50.9 | 49.3 | 1.6 | 0.4 | -0.7 | 1.1 | -40.1 | -40.2 | -0.20% | PASS | | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Body (1g)
W/kg @ 20.0
dBm | Measured
Body SAR (1g)
W/kg @ 20.0
dBm | | Certificate
SAR Target
Body (10g)
W/kg @ 20.0
dBm | (10a) W/ka @ | Deviation 10g
(%) | Certificate
Impedance
Body (Ohm)
Real | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 10/22/2018 | 10/18/2019 | 1.217 | 3.66 | 3.82 | 4.37% | 1.94 | 2.02 | 4.12% | 46.6 | 44.7 | 1.9 | -0.1 | -0.8 | 0.7 | -29.2 | -25 | 14.40% | PASS | | Object: | Date Issued: | Page 2 of 4 | |-------------------|--------------|-------------| | D1750V2 - SN:1150 | 10/18/2019 | Fage 2 01 4 | ### Impedance & Return-Loss Measurement Plot for Head TSL 15:15:52 18.10.2019 | Object: | Date Issued: | Page 3 of 4 | |-------------------|--------------|-------------| | D1750V2 - SN:1150 | 10/18/2019 | rage 3 01 4 | ## Impedance & Return-Loss Measurement Plot for Body TSL 15:19:09 18.10.2019 | Object: | Date Issued: | Page 4 of 4 | |-------------------|--------------|-------------| | D1750V2 – SN:1150 | 10/18/2019 | Page 4 of 4 | #### **PCTEST** 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D1750V2 – SN: 1150 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extension Calibration date: 10/18/2020 Description: SAR Validation Dipole at 1750 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |--------------------|---------------|---|------------|--------------|------------|---------------| | Control Company | 4040 | Therm./Clock/Humidity Monitor | 6/29/2019 | Biennial | 6/29/2021 | 192291470 | | Control Company | 4352 | Ultra Long Stem Thermometer | 11/29/2018 | Biennial | 11/29/2020 | 181766816 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Agilent | 85033E | 3.5mm Standard Calibration Kit | 6/6/2020 | Annual | 6/6/2021 | MY53402352 | | Rohde & Schwarz | ZNLE6 | Vector Network Analyzer | 9/29/2020 | Annual | 9/29/2021 | 101307 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 5/12/2020 | Annual | 5/12/2021 | 1070 | | Anritsu | MA2411B | Pulse Power Sensor | 8/12/2020 | Annual | 8/12/2021 | 1207364 | | Anritsu | MA2411B | Pulse Power Sensor | 9/22/2020 | Annual | 9/22/2021 | 1315051 | | Anritsu | ML2495A | Power Meter | 1/15/2020 | Annual | 1/15/2021 | 1328004 | | Anritsu | ML2495A | Power Meter | 12/17/2019 | Annual | 12/17/2020 | 941001 | | Agilent | N5182A | MXG Vector Signal Generator | 5/13/2020 | Annual | 5/13/2021 | MY47420603 | | Pasternack | NC-100 | Torque Wrench | 8/4/2020 | Biennial | 8/4/2022 | N/A | | Mini-Circuits | NLP-2950+ | Low Pass Filter DC to 2700 MHz | CBT | N/A | CBT | N/A | | MiniCircuits | ZHDC-16-63-S+ | Bidirectional Coupler | CBT | N/A | CBT | N/A | | SPEAG | EX3DV4 | SAR Probe | 7/31/2020 | Annual | 7/31/2021 | 7308 | | SPEAG | EX3DV4 | SAR Probe | 6/23/2020 | Annual | 6/23/2021 | 7406 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 8/11/2020 | Annual | 8/11/2021 | 1450 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 5/14/2020 | Annual | 5/14/2021 | 1583 | ## Measurement Uncertainty = $\pm 23\%$ (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Test Engineer | BRODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 304 | | Object: | Date Issued: | Page 1 of 4 | |--------------------|--------------|-------------| | D1750V2 – SN: 1150 | 10/18/2020 | Page 1 of 4 | ## **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. -
3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date: | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | | Measured
Head SAR (1g)
W/kg @ 20.0
dBm | (0/) | Certificate
SAR Target
Head (10g)
W/kg @ 20.0
dBm | (40-) 14(4 (9) | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|----------------|---|------|---|-------|---|----------------|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 10/22/2018 | 10/18/2020 | 1.217 | 3.65 | 3.72 | 1.92% | 1.92 | 1.96 | 2.08% | 50.9 | 48.7 | 2.2 | 0.4 | 0.6 | 0.2 | -40.1 | -37.5 | 6.50% | PASS | | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | | Measured
Body SAR (1g)
W/kg @ 20.0
dBm | (0/) | Certificate
SAR Target
Body (10g)
W/kg @ 20.0
dBm | (40m) M(4m @) | Deviation 10g
(%) | Certificate
Impedance
Body (Ohm)
Real | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 10/22/2018 | 10/18/2020 | 1.217 | 3.66 | 3.79 | 3.55% | 1.94 | 1.97 | 1.55% | 46.6 | 45.8 | 0.8 | -0.1 | 0.4 | 0.5 | -29.2 | -27.1 | 7.10% | PASS | | Object: | Date Issued: | Page 2 of 4 | |--------------------|--------------|-------------| | D1750V2 – SN: 1150 | 10/18/2020 | rage 2 01 4 | ### Impedance & Return-Loss Measurement Plot for Head TSL ## Impedance & Return-Loss Measurement Plot for Body TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client PC Test Certificate No: D1765V2-1008 May18 | <u>ALIBRATION C</u> | | | | |-------------------------------------|---|--|---| | pject | D1765V2-SN-10 | 008 | | | | | | | | alibration procedure(s) | QA CAL-05 vi 0 | | Dive 700 MHz 716/2018 BN 06 (2012 BN alls of measurements (SI). 05 20 | | | Calibration proce | dure for dipole validation kits abo | ove 700 MHz 31(6)2013 | | | | | n. V | | | 15 (44 (45 (45 (45 (45 (45 (45 (45 (45 (4 | | Dra 0/2 12 0 12 | | Calibration date: | May 23, 2018 | | 08 / | | | | | ₽NV | | This calibration cartificate docume | onto the transability to Bat | ional standards, which realize the physical ur | nits of magniformants (SI) 8 1 20 | | | - | robability are given on the following pages ar | and are part of the certificate. US_1 | | | | , | | | All calibrations have been conduc | ted in the closed laborato | ry facility: environment temperature (22 ± 3)° | C and humidity < 70%. | | | | | | | Calibration Equipment used (M&T | E critical for calibration) | | | | rimary Standards | 1D # | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-18 (No. 217-02673) | Apr-19 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-18 (No. 217-02682) | Apr-19 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02683) | Apr-19 | | Reference Probe EX3DV4 | SN: 7349 | 30-Dec-17 (No. EX3-7349_Dec17) | Dec-18 | | DAE4 | SN: 601 | 26-Oct-17 (No. DAE4-601_Oct17) | Oct-18 | | Secondary Standards | 1:0# | Check Date (in house) | Scheduled Check | | Power meter EPM-442A | SN: GB37480704 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-16) | in house check: Oci-18 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-16) | In house check: Oct-18 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-17) | In house check: Oct-18 | | | Name | Function | Signature | | Callbrated by | Manu Seitz | Laboratory Technician | | | Calibrated by: | WIND SHIZ | scandaldiv (Bullinas) | FF. | | Accessed from | | | | | Approved by: | Katja Poković | Technical Manager | KUK | | | | | | | | | | issued: May 23, 2018 | This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook ### **Methods Applied and Interpretation of Parameters:** - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1765V2-1008_May18 Page 2 of 11 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.1 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5.0 mm | | | Frequency | 1750 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permitti∨ity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.0 ± 6 % | 1.34 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## **SAR** result with Head TSL | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 8.94 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 36.2 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------
--------------------------| | SAR measured | 250 mW input power | 4.71 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.0 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.2 ± 6 % | 1.46 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # **SAR** result with Body TSL | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.21 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 37.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.92 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 19.9 W/kg ± 16.5 % (k=2) | Certificate No: D1765V2-1008_May18 Page 3 of 11 ## Appendix (Additional assessments outside the scope of SCS 0108) ### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 47.7 Ω - 6.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.0 dB | ## **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 43.3 Ω - 6.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 20.3 dB | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.210 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|------------------| | Manufactured on | October 06, 2005 | Certificate No: D1765V2-1008_May18 Page 4 of 11 # Appendix (Additional assessments outside the scope of SCS 0108) ### **Measurement Conditions** DASY system configuration, as far as not given on page 1 and 3. ## SAR result with SAM Head (Top) | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.26 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 37.4 W/kg ± 17.5 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.95 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.9 W/kg ± 16.9 % (k=2) | # SAR result with SAM Head (Mouth) | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.47 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 38.2 W/kg ± 17.5 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.06 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.4 W/kg ± 16.9 % (k=2) | ## SAR result with SAM Head (Neck) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.26 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 37.4 W/kg ± 17.5 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.02 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.2 W/kg ± 16.9 % (k=2) | # SAR result with SAM Head (Ear) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 7 .12 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 28.7 W/kg ± 17.5 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.01 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 16.1 W/kg ± 16.9 % (k=2) | Certificate No: D1765V2-1008_May18 Page 5 of 11 ### **DASY5 Validation Report for Head TSL** Date: 15.05.2018 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 1765 MHz; Type: D1765V2; Serial: D1765V2 - SN:1008 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.34 \text{ S/m}$; $\varepsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(8.5, 8.5, 8.5) @ 1750 MHz; Calibrated: 30.12.2017 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 26.10.2017 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 • DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.6 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 16.4 W/kg SAR(1 g) = 8.94 W/kg; SAR(10 g) = 4.71 W/kg Maximum value of SAR (measured) = 13.8 W/kg 0 dB = 13.8 W/kg = 11.40 dBW/kg # Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 15.05.2018 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 1765 MHz; Type: D1765V2; Serial: D1765V2 - SN:1008 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.46 \text{ S/m}$; $\varepsilon_r = 53.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.35, 8.35, 8.35) @ 1750 MHz; Calibrated: 30.12.2017 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 26.10.2017 • Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 • DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.4 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 16.1 W/kg SAR(1 g) = 9.21 W/kg; SAR(10 g) = 4.92 W/kg Maximum value of SAR (measured) = 13.7 W/kg 0 dB = 13.7 W/kg = 11.37 dBW/kg Certificate No: D1765V2-1008_May18 Page 8 of 11 # Impedance Measurement Plot for Body TSL ### **DASY5 Validation Report for SAM Head** Date: 23.05.2018 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 1765 MHz; Type: D1765V2; Serial: D1765V2 - SN:1008 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.37 \text{ S/m}$; $\varepsilon_r = 41.8$; $\rho = 1000 \text{ kg/m}^3$ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(8.5, 8.5, 8.5) @ 1750 MHz; Calibrated: 30.12.2017 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 26.10.2017 · Phantom: SAM Head • DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439) ### SAM/Head/Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 105.8 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 16.4 W/kg SAR(1 g) = 9.26 W/kg; SAR(10 g) = 4.95 W/kg Maximum value of SAR (measured) = 13.9 W/kg ### SAM/Head/Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 104.2 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 16.6 W/kg SAR(1 g) = 9.47 W/kg; SAR(10 g) = 5.06 W/kg Maximum value of SAR (measured) = 13.7 W/kg ### SAM/Head/Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 104.7 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 15.8 W/kg SAR(1 g) = 9.26 W/kg; SAR(10 g) = 5.02 W/kg Maximum value of SAR (measured) = 13.8 W/kg ### SAM/Head/Ear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 90.46 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 11.8 W/kg SAR(1 g) = 7.12 W/kg; SAR(10 g) = 4.01 W/kg Maximum value of SAR (measured) = 10.3 W/kg Certificate No: D1765V2-1008_May18 0 dB = 10.3 W/kg = 10.13 dBW/kg # PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D1765V2 – SN: 1008 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extension Calibration date: 5/17/2019 Description: SAR
Validation Dipole at 1750 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|-----------|---|------------|--------------|------------|---------------| | Agilent | 8753ES | S-Parameter Network Analyzer | 3/11/2019 | Annual | 3/11/2020 | US39170122 | | Agilent | N5182A | MXG Vector Signal Generator | 11/28/2018 | Annual | 11/28/2019 | MY47420603 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Anritsu | MA2411B | Pulse Power Sensor | 11/20/2018 | Annual | 11/20/2019 | 1027293 | | Anritsu | MA2411B | Pulse Power Sensor | 10/30/2018 | Annual | 10/30/2019 | 1126066 | | Anritsu | ML2495A | Power Meter | 10/21/2018 | Annual | 10/21/2019 | 941001 | | Control Company | 4040 | Therm./ Clock/ Humidity Monitor | 10/9/2018 | Biennial | 10/9/2020 | 181647811 | | Control Company | 4352 | Ultra Long Stem Thermometer | 6/6/2018 | Biennial | 6/6/2020 | 181334678 | | Keysight | 772D | Dual Directional Coupler | CBT | N/A | CBT | MY52180215 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 6/4/2018 | Annual | 6/4/2019 | MY53401181 | | MiniCircuits | VLF-6000+ | Low Pass Filter | CBT | N/A | CBT | N/A | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Pasternack | PE2209-10 | Bidirectional Coupler | CBT | N/A | CBT | N/A | | Seekonk | NC-100 | Torque Wrench | 7/11/2018 | Annual | 7/11/2019 | N/A | | SPEAG | EX3DV4 | SAR Probe | 6/25/2018 | Annual | 6/25/2019 | 7409 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 6/18/2018 | Annual | 6/18/2019 | 1334 | | SPEAG | EX3DV4 | SAR Probe | 2/19/2019 | Annual | 2/19/2020 | 3914 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 2/14/2019 | Annual | 2/14/2020 | 1272 | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 9/11/2018 | Annual | 9/11/2019 | 1091 | ## Measurement Uncertainty = $\pm 23\%$ (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Test Engineer | BRODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 20K | | Object: | Date Issued: | Page 1 of 4 | |--------------------|--------------|-------------| | D1765V2 – SN: 1008 | 05/17/2019 | rage 1014 | ### **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Head (1g)
W/kg @ 20.0
dBm | W/kg @ 20.0 | (94) | Certificate
SAR Target
Head (10g)
W/kg @ 20.0
dBm | Measured
Head SAR
(10g) W/kg @
20.0 dBm | Deviation 10g
(%) | | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|----------------|---|--|-------------|-------|---|--|----------------------|------|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 5/23/2018 | 5/17/2019 | 1.21 | 3.62 | 3.63 | 0.28% | 1.9 | 1.92 | 1.05% | 47.7 | 47 | 0.7 | -6.5 | -6 | 0.5 | -23 | -23.3 | -1.20% | PASS | | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Body (1g)
W/kg @ 20.0
dBm | W/kg @ 20.0 | (%) | Certificate
SAR Target
Body (10g)
W/kg @ 20.0
dBm | Measured
Body SAR
(10g) W/kg @
20.0 dBm | Deviation 10g
(%) | | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 5/23/2018 | 5/17/2019 | 1.21 | 3.74 | 3.95 | 5.61% | 1.99 | 2.08 | 4.52% | 43.3 | 44.6 | 1.3 | -6 | -7 | 1 | -20.3 | -20.5 | -0.90% | PASS | | Object: | Date Issued: | Page 2 of 4 | |--------------------|--------------|-------------| | D1765V2 - SN: 1008 | 05/17/2019 | Fage 2 01 4 | ### Impedance & Return-Loss Measurement Plot for Head TSL # Impedance & Return-Loss Measurement Plot for Body TSL ### **PCTEST** 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D1765V2 – SN: 1008 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extension Calibration date: 5/23/2020 Description: SAR Validation Dipole at 1750 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|---------------|---|------------|--------------|------------|---------------| | Control Company | 4040 | Therm./Clock/Humidity Monitor | 6/29/2019 | Biennial | 6/29/2021 | 192291470 | | Control Company | 4352 | Ultra Long Stem Thermometer | 8/2/2018 | Biennial | 8/2/2020 | 181334684 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 7/2/2019 | Annual | 7/2/2020 | MY53401181 | | Rohde & Schwarz | ZNLE6 | Vector Network Analyzer | 10/11/2019 | Annual | 10/11/2020 | 101307 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | SPEAG | DAKS-3.5 | Portable DAK | 9/10/2019 | Annual | 9/10/2020 | 1045 | | Anritsu | MA2411B | Pulse Power Sensor | 8/14/2019 | Annual | 8/14/2020 | 1315051 | | Anritsu | MA2411B | Pulse Power Sensor | 8/8/2019 | Annual | 8/8/2020 | 1339008 | | Anritsu | ML2495A | Power Meter | 12/17/2019 | Annual | 12/17/2020 | 941001 | | Agilent | N5182A | MXG Vector Signal Generator | 8/19/2019 | Annual | 8/19/2020 | MY47420837 | | Seekonk | NC-100 | Torque Wrench (8" lb) | 5/23/2018 | Biennial | 5/23/2020 | 22217 | | MiniCircuits | ZHDC-16-63-S+ | Bidirectional Coupler | CBT | N/A | CBT | N/A | | MiniCircuits | VLF-6000+ | Low Pass Filter | CBT | N/A | CBT | N/A | | SPEAG | EX3DV4 | SAR Probe | 4/21/2020 | Annual | 4/21/2021 | 7357 | | SPEAG | EX3DV4 | SAR Probe | 7/16/2019 | Annual | 7/16/2020 | 7410 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 7/11/2019 | Annual | 7/11/2020 | 1322 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 3/12/2020 | Annual | 3/12/2021 | 1368 | # Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Test Engineer | BRODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 20K | | Object: | Date Issued: | Page 1 of 4 | |--------------------|--------------|-------------| | D1765V2 – SN: 1008 | 05/23/2020 | Page 1 of 4 | ## **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date: | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Head (1g)
W/kg @ 20.0
dBm | Measured
Head SAR (1g)
W/kg @ 20.0
dBm | (0/) | Certificate
SAR Target
Head (10g)
W/kg @ 20.0
dBm | (40=) M(4== (C) | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|----------------
---|--|---|---------------------|---|--|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 5/23/2018 | 5/23/2020 | 1.21 | 3.62 | 3.65 | 0.83% | 1.90 | 1.94 | 2.11% | 47.7 | 45.9 | 1.9 | -6.5 | -6.1 | 0.4 | -23 | -22.3 | 3.10% | PASS | | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | | Measured
Body SAR (1g)
W/kg @ 20.0
dBm | Deviation 1g
(%) | Certificate
SAR Target
Body (10g)
W/kg @ 20.0
dBm | Measured
Body SAR
(10g) W/kg @
20.0 dBm | Deviation 10g
(%) | Certificate
Impedance
Body (Ohm)
Real | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 5/23/2018 | 5/23/2020 | 1.21 | 3.74 | 4.00 | 6.95% | 1.99 | 2.12 | 6.53% | 43.3 | 43.7 | 0.4 | -6.0 | -4.8 | 1.2 | -20.3 | -21.5 | -5.80% | PASS | | Object: | Date Issued: | Page 2 of 4 | |--------------------|--------------|-------------| | D1765V2 - SN: 1008 | 05/23/2020 | Fage 2 01 4 | ### Impedance & Return-Loss Measurement Plot for Head TSL ## Impedance & Return-Loss Measurement Plot for Body TSL # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client C Test Certificate No: D1900V2-5d080 Oct18 | Calibration procedure(s) Calibration date: | QA CAL-05 v10
Calibration proce | dure for dipole validation kits abo | ve 700∶MHz | |---|---|---|---| | Calibration date: | Calibration proce | dure for dipole validation kits abo | ve 700 MHz | | Calibration date: | | | | | Calibration date: | | | ./ | | Jaiorauon vale, | October 23, 2018 | | BN 7 2018
10-30 -2018
BN 7
ts of measurements (SI). 10-20-2 | | | Obtober 20, 2010 | | 10-30 | | | | | 15N - 2m 2 | | | | onal standards, which realize the physical unl
robability are given on the following pages an | | | THE MERCHANISTING AND THE CHOCK | antios war contidence p | robability are given on the locoving pages are | d are part of the certificate. BN 10-23-20 | | All calibrations have been conducte | ed in the closed laborato | ry facility: environment temperature (22 ± 3)°C | and humidity < 70%. | | | | | | | Calibration Equipment used (M&TE | = critical for calibration) | | | | Primary Standards | ID# | Cai Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | Power sensor NRP- Z 91 | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-18 (No. 217-02673) | Apr-19 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-18 (No. 217-02682) | Apr-19 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02683) | Apr-19 | | Reference Probe EX3DV4 | SN: 7349 | 30-Dec-17 (No. EX3-7349_Dec17) | Dec-18 | | DAE4 | SN: 601 | 04 Oct 40 (No. DAE4 604 Oct40) | | | DAE4 | 011. 001 | 04-Oct-18 (No. DAE4-601_Oct18) | Oct-19 | | | ID # | Check Date (in house) | Oct-19 Scheduled Check | | Secondary Standards | | | | | Secondary Standards Power meter EPM-442A | ID# | Check Date (in house) 07-Oct-15 (in house check Oct-18) | Scheduled Check | | Secondary Standards Power meter EPM-442A Power sensor HP 8481A | ID #
SN: GB37480704 | Check Date (in house) | Scheduled Check
In house check: Oct-20 | | Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A | ID #
SN: GB37480704
SN: US37292783 | Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) | Scheduled Check
In house check: Oct-20
In house check: Oct-20 | | Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | ID #
SN: GB37480704
SN: US37292783
SN: MY41092317 | Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) | Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 | Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) | Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by: | ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 | Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) | Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-19 | | Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name | Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) Function Laboratory Technician | Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-19 | | Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by: | ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name Jeton/Kastrati | Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) Function Laboratory Technician | Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-19 Signature | | Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name Jeton Kastrati | Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) Function | Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-19 Signature | Certificate No: D1900V2-5d080_Oct18 Page 1 of 8 ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Additional Documentation:** e) DASY4/5 System Handbook ### Methods Applied and Interpretation
of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d080_Oct18 Page 2 of 8 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.3 ± 6 % | 1.40 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | do to to | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.93 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 39.8 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.18 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.7 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.9 ± 6 % | 1.47 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # **SAR result with Body TSL** | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | , , , , , , | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.62 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 39.2 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.09 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.6 W/kg ± 16.5 % (k=2) | Certificate No: D1900V2-5d080_Oct18 ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.5 Ω + 7.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.8 dB | ## **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 48.1 Ω + 8.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.5 dB | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.193 ns | | |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|---------------| | Manufactured on | June 28, 2006 | Certificate No: D1900V2-5d080_Oct18 ### **DASY5 Validation Report for Head TSL** Date: 23.10.2018 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d080 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.4 \text{ S/m}$; $\varepsilon_r = 40.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.18, 8.18, 8.18) @ 1900 MHz; Calibrated: 30.12.2017 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.10.2018 • Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 110.0 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 18.7 W/kg SAR(1 g) = 9.93 W/kg; SAR(10 g) = 5.18 W/kg Maximum value of SAR (measured) = 15.6 W/kg 0 dB = 15.6 W/kg = 11.93 dBW/kg # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 23.10.2018 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d080 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.47 \text{ S/m}$; $\varepsilon_r = 52.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.15, 8.15, 8.15) @ 1900 MHz; Calibrated: 30.12.2017 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 04.10.2018 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 • DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.86 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 9.62 W/kg; SAR(10 g) = 5.09 W/kg Maximum value of SAR (measured) = 14.1 W/kg 0 dB = 14.1 W/kg = 11.49 dBW/kg ## Impedance Measurement Plot for Body TSL ## PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com ## **Certification of Calibration** Object D1900V2 – SN:5d080 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extended Calibration date: October 18, 2019 Description: SAR Validation Dipole at 1900 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|---------------|---|------------|--------------|------------|---------------| | Control Company | 4040 | Therm./Clock/Humidity Monitor | 6/29/2019 | Biennial | 6/29/2021 | 192291470 | | Control Company | 4352 | Ultra Long Stem Thermometer | 8/2/2018 | Biennial | 8/2/2020 | 181334684 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 7/2/2019 | Annual | 7/2/2020 | MY53401181 | | Rohde & Schwarz | ZNLE6 | Vector Network Analyzer | 10/11/2019 | Annual | 10/11/2020 | 101307 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | SPEAG | DAKS-3.5 | Portable Dielectric Assessment Kit | 8/13/2019 | Annual | 8/13/2020 | 1041 | | Anritsu | MA2411B | Pulse Power Sensor | 8/14/2019 | Annual | 8/14/2020 | 1315051 | | Anritsu | MA2411B | Pulse Power Sensor | 8/8/2019 | Annual | 8/8/2020 | 1339008 | | Anritsu | ML2495A | Power Meter | 11/20/2018 | Annual | 11/20/2019 | 1039008 | | Agilent | N5182A | MXG Vector Signal Generator | 8/19/2019 | Annual | 8/19/2020 | MY47420837 | | Seekonk | NC-100 | Torque Wrench | 5/9/2018 | Biennial | 5/9/2020 | 22217 | | Mini-Circuits | NLP-2950+ | Low Pass Filter DC to 2700 MHz | CBT | N/A | CBT | N/A | | MiniCircuits | ZHDC-16-63-S+ | Bidirectional Coupler | CBT | N/A | CBT | N/A | | MiniCircuits | VLF-6000+ | Low Pass Filter | CBT | N/A | CBT | N/A | | SPEAG | EX3DV4 | SAR Probe | 2/19/2019 | Annual | 2/19/2020 | 3914 | | SPEAG | EX3DV4 | SAR Probe | 5/16/2019 | Annual |
5/16/2020 | 7406 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 5/8/2019 | Annual | 5/8/2020 | 859 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 2/14/2019 | Annual | 2/14/2020 | 1272 | Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. #### Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Team Lead Engineer | BRODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 304 | | Object: | Date Issued: | Page 1 of 4 | |---------------------|--------------|-------------| | D1900V2 - SN: 5d080 | 10/18/2019 | Page 1 of 4 | ## **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration
Date | Extension Date | | Certificate
SAR Target
Head (1g)
W/kg @ 20.0
dBm | Measured
Head SAR (1g)
W/kg @ 20.0
dBm | (0/) | | (40-) M(4 G) | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|----------------|-------|--|---|-------|------|--|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 10/23/2018 | 10/18/2019 | 1.193 | 3.98 | 4.16 | 4.52% | 2.07 | 2.13 | 2.90% | 52.5 | 50.4 | 2.1 | 7.9 | 6.2 | 1.7 | -21.8 | -24.2 | -10.90% | PASS | | Calibration
Date | Extension Date | | Certificate
SAR Target
Body (1g)
W/kg @ 20.0
dBm | Measured
Body SAR (1g)
W/kg @ 20.0
dBm | (0/) | | Measured
Body SAR
(10g) W/kg @
20.0 dBm | Deviation 10g
(%) | Certificate
Impedance
Body (Ohm)
Real | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 10/23/2018 | 10/18/2019 | 1.193 | 3.92 | 4.21 | 7.40% | 2.06 | 2.16 | 4.85% | 48.1 | 46.5 | 1.6 | 8.1 | 6.6 | 1.5 | -21.5 | -22.2 | -3.40% | PASS | | Object: | Date Issued: | Page 2 of 4 | |---------------------|--------------|-------------| | D1900V2 - SN: 5d080 | 10/18/2019 | Fage 2 01 4 | #### Impedance & Return-Loss Measurement Plot for Head TSL 14:46:49 18.10.2019 | Object: | Date Issued: | Page 3 of 4 | |---------------------|--------------|-------------| | D1900V2 - SN: 5d080 | 10/18/2019 | raye 3 014 | ## Impedance & Return-Loss Measurement Plot for Body TSL 14:48:18 18.10.2019 | Object: | Date Issued: | Page 4 of 4 | |---------------------|--------------|-------------| | D1900V2 - SN: 5d080 | 10/18/2019 | Page 4 of 4 | #### **PCTEST** 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D1900V2 – SN: 5d080 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extension Calibration date: 10/18/2020 Description: SAR Validation Dipole at 1900 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |--------------------|---------------|---|------------|--------------|------------|---------------| | Control Company | 4040 | Therm./Clock/Humidity Monitor | 6/29/2019 | Biennial | 6/29/2021 | 192291470 | | Control Company | 4352 | Ultra Long Stem Thermometer | 11/29/2018 | Biennial | 11/29/2020 | 181766816 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Agilent | 85033E | 3.5mm Standard Calibration Kit | 6/6/2020 | Annual | 6/6/2021 | MY53402352 | | Rohde & Schwarz | ZNLE6 | Vector Network Analyzer | 9/29/2020 | Annual | 9/29/2021 | 101307 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 5/12/2020 | Annual | 5/12/2021 | 1070 | | Anritsu | MA2411B | Pulse Power Sensor | 8/12/2020 | Annual | 8/12/2021 | 1207364 | | Anritsu | MA2411B | Pulse Power Sensor | 9/22/2020 | Annual | 9/22/2021 | 1315051 | | Anritsu | ML2495A | Power Meter | 1/15/2020 | Annual | 1/15/2021 | 1328004 | | Anritsu | ML2495A | Power Meter | 12/17/2019 | Annual | 12/17/2020 | 941001 | | Agilent | N5182A | MXG Vector Signal Generator | 5/13/2020 | Annual | 5/13/2021 | MY47420603 | | Pasternack | NC-100 | Torque Wrench | 8/4/2020 | Biennial | 8/4/2022 | N/A | | Mini-Circuits | NLP-2950+ | Low Pass Filter DC to 2700 MHz | CBT | N/A | CBT | N/A | | MiniCircuits | ZHDC-16-63-S+ | Bidirectional Coupler | CBT | N/A | CBT | N/A | | SPEAG | EX3DV4 | SAR Probe | 3/18/2020 | Annual | 3/18/2021 | 7526 | | SPEAG | EX3DV4 | SAR Probe | 12/11/2019 | Annual | 12/11/2020 | 7570 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 12/18/2019 | Annual | 12/18/2020 | 859 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 3/12/2020 | Annual | 3/12/2021 | 1368 | #### Measurement Uncertainty = $\pm 23\%$ (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Test Engineer | BRODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 304 | | Object: | Date Issued: | Page 1 of 4 | |---------------------|--------------|-------------| | D1900V2 - SN: 5d080 | 10/18/2020 | Page 1 of 4 | ## **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date: | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | | Measured
Head SAR (1g)
W/kg @ 20.0
dBm | Deviation 1g
(%) | Certificate
SAR Target
Head (10g)
W/kg @ 20.0
dBm | Measured
Head SAR
(10g) W/kg @
20.0 dBm | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|----------------|---|------|---|---------------------|---|--|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 10/23/2018 | 10/18/2020 | 1.193 | 3.98 | 4.01 | 0.75% | 2.07 | 2.05 | -0.97% | 52.5 | 48.5 | 4 | 7.9 | 6 | 1.9 | -21.8 | -24.1 | -10.60% | PASS | | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | | Measured
Body SAR (1g)
W/kg @ 20.0
dBm | Deviation 1g
(%) | Certificate
SAR Target
Body (10g)
W/kg @ 20.0
dBm | Measured
Body SAR
(10g) W/kg @
20.0 dBm | Deviation 10g
(%) | Certificate
Impedance
Body (Ohm)
Real | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body
(Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 10/23/2018 | 10/18/2020 | 1.193 | 3.92 | 4.24 | 8.16% | 2.06 | 2.18 | 5.83% | 48.1 | 46.1 | 2 | 8.1 | 5.2 | 2.9 | -21.5 | -23.3 | -8.50% | PASS | | Object: | Date Issued: | Page 2 of 4 | |---------------------|--------------|-------------| | D1900V2 - SN: 5d080 | 10/18/2020 | rage 2 01 4 | #### Impedance & Return-Loss Measurement Plot for Head TSL ## Impedance & Return-Loss Measurement Plot for Body TSL | Object: | Date Issued: | Page 4 of 4 | |---------------------|--------------|-------------| | D1900V2 - SN: 5d080 | 10/18/2020 | raye 4 01 4 | ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client PC Test Certificate No: D1900V2=5d148_Feb19 | | | .Ce | milicate No: E/1900V/2-50 148 FED 19 | |--|---|---|--| | CALIBRATION C | ERTIFICATI | | | | Object | D1900V2 - SN:5 | d148 | | | Calibration procedure(s) | QA CAL-05.v11
Calibration Proc | edure for SAR Validation | Sources between 0.7-3 GHz | | Calibration date: | February 21, 20 | (9 | Physical units of measurements (SI). $0.2-26-2$ | | This calibration certificate docume
The measurements and the uncert | nts the traceability to nat
tainties with confidence p | ional standards, which realize the p
probability are given on the followin | physical units of measurements (SI). 02-26-2
g pages and are part of the certificate. | | All calibrations have been conduct | | | | | Calibration Equipment used (M&TE | E critical for calibration) | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Callbration | | Power meter NRP | SN: 104778 | 04-Apr-18 (No. 217-02672/0267 | 73) Apr-19 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-18 (No. 217-02673) | Apr-19 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-18 (No. 217-02682) | Apr-19 | | ype-N mlsmatch combination | SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02683) | Apr-19 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-18 (No. EX3-7349_Dec | | | DAE4 | SN: 601 | 04-Oct-18 (No. DAE4-601_Oct1 | · · · · · · · · · · · · · · · · · · · | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | ower meter E4419B | SN: GB39512475 | 07-Oct-15 (in house check Feb- | *····································· | | ower sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct- | , | | ower sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (In house check Oct- | , | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct- | | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct- | · | | | Nome | سر | | | Colibrated but | Name | Function | Signature | | Calibrated by: | Manu Seltz | Laboratory Technici | lan J | | Approved by: | Kalja Pokovic | Technical Manager | | | | | | | | 40 | | | Issued: February 21, 2019 | This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1900V2-5d148_Feb19 Page 1 of 8 #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d148_Feb19 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.9 ± 6 % | 1.38 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.65 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 39.1 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.05 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.4 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.6 ± 6 % | 1.47 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.56 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 39.1 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.05 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.5 W/kg ± 16.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.8 Ω + 6.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.2 dB | ## **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 48.4 Ω + 7.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.9 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 4 4 = 0 | |----------------------------------|----------------| | Licetical Delay (one direction) | 1.170 ns | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial
cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | - | | #### **DASY5 Validation Report for Head TSL** Date: 21.02,2019 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.38 \text{ S/m}$; $\varepsilon_r = 40.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### **DASY52 Configuration:** Probe: EX3DV4 - SN7349; ConvF(8.26, 8.26, 8.26) @ 1900 MHz; Calibrated: 31.12.2018 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 04.10.2018 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 109.4 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 17.8 W/kg SAR(1 g) = 9.65 W/kg; SAR(10 g) = 5.05 W/kg Maximum value of SAR (measured) = 15.0 W/kg 0 dB = 15.0 W/kg = 11.76 dBW/kg ## Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 21.02.2019 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.47 \text{ S/m}$; $\varepsilon_r = 53.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.23, 8.23, 8.23) @ 1900 MHz; Calibrated: 31.12.2018 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.10,2018 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.7 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 17.0 W/kg SAR(1 g) = 9.56 W/kg; SAR(10 g) = 5.05 W/kg Maximum value of SAR (measured) = 14.4 W/kg 0 dB = 14.4 W/kg = 11.58 dBW/kg ## Impedance Measurement Plot for Body TSL #### **PCTEST** 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D1900V2 – SN: 5d148 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extension Calibration date: 2/21/2020 Description: SAR Validation Dipole at 1900 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|---------------|---|------------|--------------|------------|---------------| | Control Company | 4040 | Therm./Clock/Humidity Monitor | 6/29/2019 | Biennial | 6/29/2021 | 192291470 | | Control Company | 4352 | Ultra Long Stem Thermometer | 8/2/2018 | Biennial | 8/2/2020 | 181334684 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 7/2/2019 | Annual | 7/2/2020 | MY53401181 | | Rohde & Schwarz | ZNLE6 | Vector Network Analyzer | 10/11/2019 | Annual | 10/11/2020 | 101307 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | SPEAG | DAKS-3.5 | Portable DAK | 9/10/2019 | Annual | 9/10/2020 | 1045 | | Anritsu | MA2411B | Pulse Power Sensor | 8/14/2019 | Annual | 8/14/2020 | 1315051 | | Anritsu | MA2411B | Pulse Power Sensor | 8/8/2019 | Annual | 8/8/2020 | 1339008 | | Anritsu | ML2495A | Power Meter | 12/17/2019 | Annual | 12/17/2020 | 941001 | | Agilent | N5182A | MXG Vector Signal Generator | 8/19/2019 | Annual | 8/19/2020 | MY47420837 | | Seekonk | NC-100 | Torque Wrench | 5/9/2018 | Biennial | 5/9/2020 | 22217 | | MiniCircuits | ZHDC-16-63-S+ | Bidirectional Coupler | CBT | N/A | CBT | N/A | | MiniCircuits | VLF-6000+ | Low Pass Filter | CBT | N/A | CBT | N/A | | SPEAG | EX3DV4 | SAR Probe | 9/19/2019 | Annual | 9/19/2020 | 7551 | | SPEAG | EX3DV4 | SAR Probe | 7/16/2019 | Annual | 7/16/2020 | 7410 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 9/17/2019 | Annual | 9/17/2020 | 1333 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 7/11/2019 | Annual | 7/11/2020 | 1322 | ## Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Test Engineer | BRODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 306 | | Object: | Date Issued: | Page 1 of 4 | |---------------------|--------------|-------------| | D1900V2 - SN: 5d148 | 02/21/2020 | Page 1 of 4 | #### **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Head (1g)
W/kg @ 20.0
dBm | Measured
Head SAR (1g)
W/kg @ 20.0
dBm | (0/) | Certificate
SAR Target
Head (10g)
W/kg @ 20.0
dBm | (40=) M(4== (C) | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|----------------|---|--|---|---------------------|---|--|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 2/21/2019 | 2/21/2020 | 1.17 | 3.91 | 4.15 | 6.14% | 2.04 | 2.13 | 4.41% | 51.8 | 53.7 | 1.9 | 6.8 | 2.7 | 4.1 | -23.2 | -27.1 | -16.70% | PASS | | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | | Measured
Body SAR (1g)
W/kg @ 20.0
dBm | Deviation 1g
(%) | Certificate
SAR Target
Body (10g)
W/kg @ 20.0
dBm | Measured
Body SAR
(10g) W/kg @
20.0 dBm | Deviation 10g
(%) | Certificate
Impedance
Body (Ohm)
Real | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 2/21/2019 | 2/21/2020 | 1.17 | 3.91 | 4.06 | 3.84% | 2.05 | 2.08 | 1.46% | 48.4 | 50.9 | 2.5 | 7.8 | 5.4 | 2.4 | -21.9 | -25.3 | -15.60% | PASS | | Object: | Date Issued: | Page 2 of 4 | |---------------------|--------------|-------------| | D1900V2 - SN: 5d148 | 02/21/2020 | Fage 2 01 4 | #### Impedance & Return-Loss Measurement Plot for Head TSL ## Impedance & Return-Loss Measurement Plot for Body TSL 14:33:44 21.02.2020 | Object: | Date Issued: | Page 4 of 4 | |---------------------|--------------|-------------| | D1900V2 - SN: 5d148 | 02/21/2020 | Page 4 of 4 | #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client **PC Test** Certificate No: D1900V2-5d149_Oct18 | CALIBRATION C | The second secon | | • |
---|--|---|--| | Object | D1900V2 - SN:5 | 1149 | | | Calibration procedure(s) | QA CAL-05.v10 | | | | | Galibration proce | dure for dipole validation kits abo | we 700 MHz | | | | | - V | | | | | Bnv
10-30-2018
10-20-20 | | Calibration date: | October 23, 2018 | 3 | 10-30-200 | | | | | BN | | | | | 10-20-00 | | his calibration certificate documen | nts the traceability to nat | ional standards, which realize the physical uni | Its of measurements (SI). | | The measurements and the uncert | ainties with confidence p | robability are given on the following pages an | d are part of the certificate. 10-23-2 | | All calibrations have been conduct | nd in the elected inhomte | ry facility: environment temperature (22 ± 3)°C | Cond humidity - 700/ | | All Calibrations have been conducti | ed itt tile ciosed iabotato | ry racinty. environment temperature (22 ± 5)-0 | Jana Humidity < 70%. | | Calibration Equipment used (M&T) | E critical for calibration) | | | | | | | | | Dailo and Edgibines is a sed final i | • | | | | , , | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Primary Standards | ID #
SN: 104778 | Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673) | Scheduled Calibration Apr-19 | | Primary Standards Power meter NRP | | · · · · · · · · · · · · · · · · · · · | | | Primary Standards
Power meter NRP
Power sensor NRP-Z91 | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | Primary Standards
Power meter NRP
Power sensor NRP-Z91
Power sensor NRP-Z91 | SN: 104778
SN: 103244 | 04-Apr-18 (No. 217-02672/02673)
04-Apr-18 (No. 217-02672) | Apr-19
Apr-19 | | Primary Standards
Power meter NRP
Power sensor NRP-Z91
Power sensor NRP-Z91
Reference 20 dB Attenuator | SN: 104778
SN: 103244
SN: 103245 | 04-Apr-18 (No. 217-02672/02673)
04-Apr-18 (No. 217-02672)
04-Apr-18 (No. 217-02673) | Apr-19
Apr-19
Apr-19 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k) | 04-Apr-18 (No. 217-02672/02673)
04-Apr-18 (No. 217-02672)
04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682) | Apr-19
Apr-19
Apr-19
Apr-19 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02672/02673)
04-Apr-18 (No. 217-02672)
04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682)
04-Apr-18 (No. 217-02683) | Apr-19
Apr-19
Apr-19
Apr-19
Apr-19 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601 | 04-Apr-18 (No. 217-02672/02673)
04-Apr-18 (No. 217-02672)
04-Apr-18 (No. 217-02673)
04-Apr-18 (No. 217-02682)
04-Apr-18 (No. 217-02683)
30-Dec-17 (No. EX3-7349_Dec17)
04-Oct-18 (No. DAE4-601_Oct18) | Apr-19
Apr-19
Apr-19
Apr-19
Apr-19
Dec-18
Oct-19 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A | SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
SN: GB37480704
SN: US37292783 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A | SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 | | Primary Standards Power meter NRP Power
sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-19 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Callibrated by: | SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-19 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by; | SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name Jeton Kastrati | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) Function Laboratory Technician | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-19 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name | 04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) | Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-19 | Certificate No: D1900V2-5d149_Oct18 Page 1 of 8 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 1900 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.3 ± 6 % | 1.40 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | MALE | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.80 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 39.3 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.11 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.5 W/kg ± 16.5 % (k=2) | #### **Body TSL parameters** The
following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.9 ± 6 % | 1.47 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.68 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 39.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.11 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.7 W/kg ± 16.5 % (k=2) | #### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 52.9 Ω + 6.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.4 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 48.5 Ω + 8.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.5 dB | #### **General Antenna Parameters and Design** | | |
 | | |-----------------|-------------------|----------|--| | Electrical Dela | y (one direction) | 1.193 ns | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|----------------| | Manufactured on | March 11, 2011 | Certificate No: D1900V2-5d149_Oct18 ## **DASY5 Validation Report for Head TSL** Date: 23.10.2018 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d149 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.4 \text{ S/m}$; $\varepsilon_r = 40.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.18, 8.18, 8.18) @ 1900 MHz; Calibrated: 30.12.2017 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.10.2018 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 110.0 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 18.5 W/kg SAR(1 g) = 9.8 W/kg; SAR(10 g) = 5.11 W/kg Maximum value of SAR (measured) = 15.4 W/kg 0 dB = 15.4 W/kg = 11.88 dBW/kg ## Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 23,10,2018 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d149 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.47 \text{ S/m}$; $\varepsilon_r = 52.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.15, 8.15, 8.15) @ 1900 MHz; Calibrated: 30.12.2017 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.10.2018 • Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 • DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.1 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 17.5 W/kg SAR(1 g) = 9.68 W/kg; SAR(10 g) = 5.11 W/kg Maximum value of SAR (measured) = 14.2 W/kg 0 dB = 14.2 W/kg = 11.52 dBW/kg ## Impedance Measurement Plot for Body TSL #### PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com ## **Certification of Calibration** Object D1900V2 – SN:5d149 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extended Calibration date: October 18, 2019 Description: SAR Validation Dipole at 1900 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|---------------|---|------------|--------------|------------|---------------| | Control Company | 4040 | Therm./Clock/Humidity Monitor | 6/29/2019 | Biennial | 6/29/2021 | 192291470 | | Control Company | 4352 | Ultra Long Stem Thermometer | 8/2/2018 | Biennial | 8/2/2020 | 181334684 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 7/2/2019 | Annual | 7/2/2020 | MY53401181 | | Rohde & Schwarz | ZNLE6 | Vector Network Analyzer | 10/11/2019 | Annual | 10/11/2020 | 101307 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | SPEAG | DAKS-3.5 | Portable Dielectric Assessment Kit | 8/13/2019 | Annual | 8/13/2020 | 1041 | | Anritsu | MA2411B | Pulse Power Sensor | 8/14/2019 | Annual | 8/14/2020 | 1315051 | | Anritsu | MA2411B | Pulse Power Sensor | 8/8/2019 | Annual | 8/8/2020 | 1339008 | | Anritsu | ML2495A | Power Meter | 11/20/2018 | Annual | 11/20/2019 | 1039008 | | Agilent | N5182A | MXG Vector Signal Generator | 8/19/2019 | Annual | 8/19/2020 | MY47420837 | | Seekonk | NC-100 | Torque Wrench | 5/9/2018 | Biennial | 5/9/2020 | 22217 | | Mini-Circuits | NLP-2950+ | Low Pass Filter DC to 2700 MHz | CBT | N/A | CBT | N/A | | MiniCircuits | ZHDC-16-63-S+ | Bidirectional Coupler | CBT | N/A | CBT | N/A | | MiniCircuits | VLF-6000+ | Low Pass Filter | CBT | N/A | CBT | N/A | | SPEAG | EX3DV4 | SAR Probe | 2/19/2019 | Annual | 2/19/2020 | 3914 | | SPEAG | EX3DV4 | SAR Probe | 5/16/2019 | Annual | 5/16/2020 | 7406 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 5/8/2019 | Annual | 5/8/2020 | 859 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 2/14/2019 | Annual | 2/14/2020 | 1272 | Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. #### Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Team Lead Engineer | BRODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 20K | | Object: | Date Issued: | Page 1 of 4 | |---------------------|--------------|-------------| | D1900V2 - SN: 5d149 | 10/18/2019 | Page 1 of 4 | ## **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | | Measured
Head SAR (1g)
W/kg @ 20.0
dBm | (96) | | (10a) W/ka @ | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|----------------|---|--|---|-------|------|--------------|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 10/23/2018 | 10/18/2019 | 1.193 |
3.93 | 4.24 | 7.89% | 2.05 | 2.18 | 6.34% | 52.9 | 51.8 | 1.1 | 6.3 | 6.4 | 0.1 | -23.4 | -23.8 | -1.80% | Pass | | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Body (1g)
W/kg @ 20.0
dBm | Measured
Body SAR (1g)
W/kg @ 20.0
dBm | (0/) | | (40-) M(4 © | Deviation 10g
(%) | Certificate
Impedance
Body (Ohm)
Real | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 10/23/2018 | 10/18/2019 | 1.193 | 3.94 | 4.2 | 6.60% | 2.07 | 2.15 | 3.86% | 48.5 | 48.4 | 0.1 | 8.2 | 7.6 | 0.6 | -21.5 | -22.1 | -2.60% | PASS | | Object: | Date Issued: | Page 2 of 4 | |---------------------|--------------|-------------| | D1900V2 - SN: 5d149 | 10/18/2019 | Fage 2 01 4 | #### Impedance & Return-Loss Measurement Plot for Head TSL 14:33:19 18.10.2019 | Object: | Date Issued: | Page 3 of 4 | |---------------------|--------------|-------------| | D1900V2 - SN: 5d149 | 10/18/2019 | rage 3 01 4 | ## Impedance & Return-Loss Measurement Plot for Body TSL 14:40:34 18.10.2019 | Object: | Date Issued: | Page 4 of 4 | |---------------------|--------------|-------------| | D1900V2 - SN: 5d149 | 10/18/2019 | Page 4 of 4 | #### **PCTEST** 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D1900V2 – SN: 5d149 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extension Calibration date: 10/18/2020 Description: SAR Validation Dipole at 1900 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Interval | Cal Due | Serial Number | | |--------------------|---------------|---|--------------|----------------------|---------------|------------| | Control Company | 4040 | Therm./Clock/Humidity Monitor | 6/29/2019 | Biennial | 6/29/2021 | 192291470 | | Control Company | 4352 | Ultra Long Stem Thermometer | 11/29/2018 | Biennial | 11/29/2020 | 181766816 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Agilent | 85033E | 3.5mm Standard Calibration Kit | 6/6/2020 | Annual | 6/6/2021 | MY53402352 | | Rohde & Schwarz | ZNLE6 | Vector Network Analyzer | 9/29/2020 | Annual | 9/29/2021 | 101307 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 5/12/2020 | Annual | 5/12/2021 | 1070 | | Anritsu | MA2411B | Pulse Power Sensor | 8/12/2020 | Annual | 8/12/2021 | 1207364 | | Anritsu | MA2411B | Pulse Power Sensor | 9/22/2020 | Annual | 9/22/2021 | 1315051 | | Anritsu | ML2495A | Power Meter | 1/15/2020 | Annual | 1/15/2021 | 1328004 | | Anritsu | ML2495A | Power Meter | 12/17/2019 | Annual | 12/17/2020 | 941001 | | Agilent | N5182A | MXG Vector Signal Generator | 5/13/2020 | 5/13/2020 Annual | | MY47420603 | | Pasternack | NC-100 | Torque Wrench | 8/4/2020 | Biennial | 8/4/2022 | N/A | | Mini-Circuits | NLP-2950+ | Low Pass Filter DC to 2700 MHz | CBT | N/A | CBT | N/A | | MiniCircuits | ZHDC-16-63-S+ | Bidirectional Coupler | CBT | N/A | CBT | N/A | | MiniCircuits | VLF-6000+ | Low Pass Filter | CBT | N/A | CBT | N/A | | SPEAG | EX3DV4 | SAR Probe | 12/11/2019 | 12/11/2019 Annual | | 7570 | | SPEAG | EX3DV4 | SAR Probe | 12/11/2019 | 12/11/2019 Annual 12 | | 7571 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 3/12/2020 | Annual | 3/12/2021 | 1368 | | SPEAG | DAE4 | Data Acquisition Electronics | 6/22/2020 | Annual | 12/7/2019 | 1533 | ## Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Test Engineer | BRODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 20K | | Object: | Date Issued: | Page 1 of 4 | |---------------------|--------------|-------------| | D1900V2 - SN: 5d149 | 10/18/2020 | rage 1014 | #### **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date: | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | | Measured
Head SAR (1g)
W/kg @ 20.0
dBm | (0/) | Certificate
SAR Target
Head (10g)
W/kg @ 20.0
dBm | (40-) M(4 @ | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|----------------|---|------|---|-------|---|--------------|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 10/23/2018 | 10/18/2020 | 1.193 | 3.93 | 4.02 | 2.29% | 2.05 | 2.05 | 0.00% | 52.9 | 49.1 | 3.8 | 6.3 | 4.6 | 1.7 | -23.4 | -26.5 | -13.10% | PASS | | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | | Measured
Body SAR (1g)
W/kg @ 20.0
dBm | (9/) | | (10a) W/ka @ | Deviation 10g
(%) | Certificate
Impedance
Body (Ohm)
Real | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 10/23/2018 | 10/18/2020 | 1.193 | 3.94 | 4.07 | 3.30% | 2.07 | 2.08 | 0.48% | 48.5 | 47.3 | 1.2 | 8.2 | 4.7 | 3.5 | -21.5 | -25.1 | -16.60% | PASS | | Object: | Date Issued: | Page 2 of 4 | |---------------------|--------------|-------------| | D1900V2 - SN: 5d149 | 10/18/2020 | raye 2 01 4 | #### Impedance & Return-Loss Measurement Plot for Head TSL | Object: | Date Issued: | Page 3 of 4 | |---------------------|--------------|-------------| | D1900V2 - SN: 5d149 | 10/18/2020 | rage 3 of 4 | ### Impedance & Return-Loss Measurement Plot for Body TSL ## Calibration Laboratory of Schmid & Partner Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **PC Test** Certificate No: D2300V2-1073_Aug18 ## BRATION CERTIFICATE Object D2300V2 - SN:1073 Calibration procedure(s) QA CAL-05.v10 Calibration procedure for dipole validation kits above 700 MHz Calibration date: August 13, 2018 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. BIN 06-20-20- All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------
--|---|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-18 (No. 217-02672/02673) | Apr-19 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-18 (No. 217-02672) | Apr-19 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-18 (No. 217-02673) | • | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-18 (No. 217-02682) | Apr-19 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02683) | Apr-19 | | Reference Probe EX3DV4 | SN: 7349 | 30-Dec-17 (No. EX3-7349_Dec17) | Apr-19 | | DAE4 | SN: 601 | | Dec-18 | | | 1 511, 501 | 26-Oct-17 (No. DAE4-601_Oct17) | Oct-18 | | Secondary Standards | ID# | Check Date (in house) | • | | Power meter EPM-442A | SN: GB37480704 | | Scheduled Check | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | Power sensor HP 8481A | 1 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | RF generator R&S SMT-06 | SN: MY41092317 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | I . | SN: 100972 | 15-Jun-15 (in house check Oct-16) | Iπ house check: Oct-18 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-17) | In house check: Oct-18 | | | Name | Function | Signature | | Calibrated by: | Michael Weber | Laboratory Technician | | | | | to some manifestation and a configuration | 17.102 | | Approved by: | Katja Pokovic | Technical Manager | AM. | | | the comment of the second t | A CONTRACTOR OF THE STATE OF | | Issued: August 13, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2300V2-1073_Aug18 Page 2 of 8 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.1 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2300 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.5 | 1.67 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.2 ± 6 % | 1.70 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## **SAR result with Head TSL** | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.5 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 49.2 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.02 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.8 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.9 | 1.81 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.2 ± 6 % | 1.85 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.1 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 47.7 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.86 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.2 W/kg ± 16.5 % (k=2) | #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.1 Ω - 5.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.7 dB | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 45.5 Ω - 4.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.9 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.171 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the
dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | November 16, 2015 | Page 4 of 8 ## **DASY5 Validation Report for Head TSL** Date: 13.08.2018 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN: 1073 Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; $\sigma = 1.7$ S/m; $\epsilon_r = 38.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.08, 8.08, 8.08) @ 2300 MHz; Calibrated: 30.12.2017 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 26.10.2017 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 115.9 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 24.1 W/kg SAR(1 g) = 12.5 W/kg; SAR(10 g) = 6.02 W/kg Maximum value of SAR (measured) = 20.2 W/kg 0 dB = 20.2 W/kg = 13.05 dBW/kg ## Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 13.08.2018 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN: 1073 Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; $\sigma = 1.85$ S/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.08, 8.08, 8.08) @ 2300 MHz; Calibrated: 30.12.2017 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 26.10.2017 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 • DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.5 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 22.9 W/kg SAR(1 g) = 12.1 W/kg; SAR(10 g) = 5.86 W/kg Maximum value of SAR (measured) = 19.1 W/kg 0 dB = 19.1 W/kg = 12.81 dBW/kg ## Impedance Measurement Plot for Body TSL ## PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com ## **Certification of Calibration** Object D2300V2 – SN: 1073 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Calibration date: 08/09/2019 Description: SAR Validation Dipole at 2300 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|-----------|---|------------|--------------|------------|---------------| | Agilent | 8753ES | S-Parameter Network Analyzer | 10/2/2018 | Annual | 10/2/2019 | US39170118 | | Agilent | N5182A | MXG Vector Signal Generator | 6/27/2019 | Annual | 6/27/2020 | US46240505 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 343972 | | Anritsu | ML2495A | Power Meter | 10/21/2018 | Annual | 10/21/2019 | 941001 | | Anritsu | MA2411B | Pulse Power Sensor | 10/30/2018 | Annual | 10/30/2019 | 1207470 | | Anritsu | MA2411B | Pulse Power Sensor | 11/20/2018 | Annual | 11/20/2019 | 1339007 | | Control Company | 4040 | Temperature / Humidity Monitor | 2/28/2018 | Biennial | 2/28/2020 | 150761911 | | Control Company | 4352 | Ultra Long Stem Thermometer | 2/28/2018 | Biennial | 2/28/2020 | 170330160 | | Keysight | 772D | Dual Directional Coupler | CBT | N/A | CBT | MY52180215 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 7/2/2019 | Annual | 7/2/2020 | MY53401181 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | Mini-Circuits | NLP-2950+ | Low Pass Filter DC to 2700 MHz | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Pasternack | PE2209-10 | Bidirectional Coupler | CBT | N/A | CBT | N/A | | Pasternack | NC-100 | Torque Wrench | 5/23/2018 | Biennial | 5/23/2020 | N/A | | SPEAG | EX3DV4 | SAR Probe | 2/19/2019 | Annual | 2/19/2020 | 7417 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 2/13/2019 | Annual | 2/13/2020 | 665 | | SPEAG | EX3DV4 | SAR Probe | 7/15/2019 | Annual | 7/15/2020 | 7547 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 7/11/2019 | Annual | 7/11/2020 | 1323 | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 9/11/2018 | Annual | 9/11/2019 | 1091 | #### Measurement Uncertainty = $\pm 23\%$ (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Test Engineer | BRODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 20K | | Object: | Date Issued: | Page 1 of 4 | |--------------------|--------------|-------------| | D2300V2 – SN: 1073 | 08/09/2019 | Page 1 of 4 | #### **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Head (1g)
W/kg @ 20.0
dBm | Measured
Head SAR (1g)
W/kg @ 20.0
dBm | (0/) | Certificate
SAR Target
Head (10g)
W/kg @ 20.0
dBm | (40-) M(4 (C) | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|----------------|---|--|---|---------------------|---|--|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 8/13/2018 | 8/9/2019 | 1.171 | 4.92 | 5.21 | 5.89% | 2.38 | 2.49 | 4.62% | 50.1 | 47.5 | 2.6 | -5.2 | -4.2 | 1 | -25.7 | -26.1 | -1.60% | PASS | | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | | Measured
Body SAR (1g)
W/kg @ 20.0
dBm | Deviation 1g
(%) | Certificate
SAR Target
Body (10g)
W/kg @ 20.0
dBm | Measured
Body SAR
(10g) W/kg @
20.0 dBm | Deviation 10g
(%) | Certificate
Impedance
Body (Ohm)
Real | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 8/13/2018 | 8/9/2019 | 1.171 | 4.77 | 5.05 | 5.87% | 2.32 | 2.4 | 3.45% | 45.5 | 44.4 | 1.1 | -4.1 | -3.3 | 0.8 | -23.9 | -23.2 | 2.80% | PASS | | Object: | Date Issued: | Page 2 of 4 | |--------------------|--------------|-------------| | D2300V2 – SN: 1073 | 08/09/2019 | Fage 2 01 4 | ### Impedance & Return-Loss Measurement Plot for Head TSL CENTER 2 300.000 000 MHz SPAN 400.000 000 MHz ### Impedance & Return-Loss Measurement Plot for Body TSL CENTER 2 300.000 000 MHz SPAN 400.000 000 MHz #### **PCTEST** 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com ## **Certification of Calibration** Object D2300V2 – SN: 1073 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extension Calibration date: 8/13/2020 Description: SAR Validation Dipole at 2300 MHz Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |--------------------|-----------|---|------------|--------------|------------|---------------| | Agilent | 8753ES | S-Parameter Network Analyzer | 1/16/2020 | Annual | 1/16/2021 | US39170118 | | Agilent | N5182A | MXG Vector Signal Generator | 8/19/2019 | Annual | 8/19/2020 | MY47420837 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A |
CBT | 343972 | | Anritsu | MA2411B | Pulse Power Sensor | 1/21/2020 | Annual | 1/21/2021 | 1207470 | | Anritsu | MA2411B | Pulse Power Sensor | 1/21/2020 | Annual | 1/21/2021 | 1339007 | | Anritsu | ML2495A | Power Meter | 1/15/2020 | Annual | 1/15/2021 | 1328004 | | Control Company | 62344-734 | Therm./ Clock/ Humidity Monitor | 3/18/2019 | Biennial | 3/18/2021 | 192038436 | | Control Company | 4352 | Ultra Long Stem Thermometer | 11/29/2018 | Biennial | 11/29/2020 | 181766816 | | Agilent | 85033E | 3.5mm Standard Calibration Kit | 6/6/2020 | Annual | 6/6/2021 | MY53402352 | | MiniCircuits | VLF-6000+ | Low Pass Filter | CBT | N/A | CBT | N/A | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Pasternack | PE2208-6 | Bidirectional Coupler | CBT | N/A | CBT | N/A | | Pasternack | NC-100 | Torque Wrench | 8/4/2020 | Biennial | 8/4/2022 | N/A | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 5/12/2020 | Annual | 5/12/2021 | 1070 | | SPEAG | EX3DV4 | SAR Probe | 9/19/2019 | Annual | 9/19/2020 | 7551 | | SPEAG | EX3DV4 | SAR Probe | 6/23/2020 | Annual | 6/23/2021 | 7409 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 9/17/2019 | Annual | 9/17/2020 | 1333 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 6/18/2020 | Annual | 6/18/2021 | 1334 | ## Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Test Engineer | BRODTE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 30K | | Object: | Date Issued: | Page 1 of 4 | |--------------------|--------------|-------------| | D2300V2 - SN: 1073 | 08/13/2020 | Page 1 of 4 | ### **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date: | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | | Measured
Head SAR (1g)
W/kg @ 20.0
dBm | (9/.) | Certificate
SAR Target
Head (10g)
W/kg @ 20.0
dBm | (10a) W/ka @ | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|----------------|---|------|---|--------|---|--------------|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 8/13/2018 | 8/13/2020 | 1.171 | 4.92 | 4.69 | -4.67% | 2.38 | 2.26 | -5.04% | 50.1 | 47.9 | 2.3 | -5.2 | -6.0 | 0.8 | -25.7 | -23.7 | 7.70% | PASS | | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | | Measured
Body SAR (1g)
W/kg @ 20.0
dBm | (9/.) | | (10a) W/ka @ | Deviation 10g
(%) | Certificate
Impedance
Body (Ohm)
Real | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 8/13/2018 | 8/13/2020 | 1.171 | 4.77 | 5.12 | 7.34% | 2.32 | 2.43 | 4.74% | 45.5 | 42.1 | 3.4 | -4.1 | -1.9 | 2.2 | -23.9 | -21.1 | 11.50% | PASS | | Object: | Date Issued: | Page 2 of 4 | |--------------------|--------------|-------------| | D2300V2 - SN: 1073 | 08/13/2020 | raye 2 01 4 | #### Impedance & Return-Loss Measurement Plot for Head TSL ### Impedance & Return-Loss Measurement Plot for Body TSL ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **PC Test** Certificate No: D2450V2-719 Aug20 ## CALIBRATION CERTIFICATE Object D2450V2 - SN:719 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz 8-28-2ú Calibration date: August 14, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--|--|------------------------| | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 31-Mar-20 (No. 217-03106) | Apr-21 | | Type-N mismatch combination | SN: 310982 / 06327 | 31-Mar-20 (No. 217-03104) | Apr-21 | | Reference Probe EX3DV4 | SN: 7349 | 29-Jun-20 (No. EX3-7349_Jun20) | Jun-21 | | DAE4 | SN: 601 | 27-Dec-19 (No. DAE4-601_Dec19) | Dec-20 | | | | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | in house check: Oct-20 | | | Name | Function | Signature | | Calibrated by: | Claudio Leubler | Laboratory Technician | | | , | | | UYU | | | und septemb <u>e</u> De drei Medic Research ann Said | Salahan kabanyan daramatan Salah dari 1902 dari 1907 dari kabanya katalan dari 1908 dari 1908 dari 1908 dari 1 | | | Approved by: | Katja Pok ovi c | Technical Manager | ALC. | | | | | | Issued: August 14, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are
measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | To following parameters and career and specific | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.9 ± 6 % | 1.84 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.0 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 51.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.09 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.2 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.5 ± 6 % | 2.03 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.0 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 50.7 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.07 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.9 W/kg ± 16.5 % (k=2) | Certificate No: D2450V2-719_Aug20 ## Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 55.9 Ω + 5.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.3 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 50.0 Ω + 7.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.2 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.150 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D2450V2-719_Aug20 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Date: 13.08.2020 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:719 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.84 \text{ S/m}$; $\varepsilon_r = 38.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.74, 7.74, 7.74) @ 2450 MHz; Calibrated: 29.06.2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.12.2019 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 • DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 115.2 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 25.3 W/kg #### SAR(1 g) = 13 W/kg; SAR(10 g) = 6.09 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 51.6% Maximum value of SAR (measured) = 21.0 W/kg 0 dB = 21.0 W/kg = 13.22 dBW/kg ## Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 14.08.2020 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:719 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.03 \text{ S/m}$; $\varepsilon_r = 51.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### **DASY52 Configuration:** Probe: EX3DV4 - SN7349; ConvF(7.82, 7.82, 7.82) @ 2450 MHz; Calibrated: 29.06.2020 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.12.2019 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 • DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.8 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 24.7 W/kg #### SAR(1 g) = 13 W/kg; SAR(10 g) = 6.07 W/kg Smallest distance from peaks to all points 3 dB below = 8.5 mm Ratio of SAR at M2 to SAR at M1 = 53.5% Maximum value of SAR (measured) = 20.6 W/kg 0 dB = 20.6 W/kg = 13.14 dBW/kg ## Impedance Measurement Plot for Body TSL #### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **PC Test** Certificate No: D2450V2-797_Sep20 ## CALIBRATION CERTIFICATE Object D2450V2 - SN:797 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: September 09, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 31-Mar-20 (No. 217-03106) | Apr-21 | | Type-N mismatch combination | SN: 310982 / 06327 | 31-Mar-20 (No. 217-03104) | Apr-21 | | Reference Probe EX3DV4 | SN: 7349 | 29-Jun-20 (No. EX3-7349_Jun20) | Jun-21 | | DAE4 | SN: 601 | 27-Dec-19 (No. DAE4-601_Dec19) | Dec-20 | | | l | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 | | | Name | Function | Signature | |
Calibrated by: | Jeffrey Katzman | Laboratory Technician | 11.4 | | | | | U. Y. | | Approved by: | Katja Pokovic | Technical Manager | | | | | | July 1 | | | | | | Issued: September 10, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52,10,4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2450 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.2 ± 6 % | 1.85 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | *** | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.4 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.22 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.6 W/kg ± 16.5 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.8 ± 6 % | 2.02 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.6 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 49.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.92 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.4 W/kg ± 16.5 % (k=2) | Certificate No: D2450V2-797_Sep20 #### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 53.0 Ω + 6.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.9 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 49.1 Ω + 9.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 20.6 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.152 ns | |----------------------------------|----------| | - ' | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by SPEAG | · · · · · · · · · · · · · · · · · · · | | |-----------------------|---------------------------------------|-------| | | Manufactured by | SPEAG | Certificate No: D2450V2-797_Sep20 #### **DASY5 Validation Report for Head TSL** Date: 08.09.2020 Test Laboratory: SPEAG, Zurich, Switzerland **DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:797** Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.85 \text{ S/m}$; $\varepsilon_r = 38.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.74, 7.74, 7.74) @ 2450 MHz; Calibrated: 29.06.2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.12.2019 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 115.0 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 26.2 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.22 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 51.2% Maximum value of SAR (measured) = 21.8 W/kg 0 dB = 21.8 W/kg = 13.39 dBW/kg ## Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 09.09.2020 Test Laboratory: SPEAG, Zurich, Switzerland **DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:797** Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.02 \text{ S/m}$; $\varepsilon_r = 51.8$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### **DASY52** Configuration: Probe: EX3DV4 - SN7349; ConvF(7.82, 7.82, 7.82) @ 2450 MHz; Calibrated: 29.06.2020 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 27.12.2019 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.8 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 23.9 W/kg #### SAR(1 g) = 12.6 W/kg; SAR(10 g) = 5.92 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 53.7% Maximum value of SAR (measured) = 20.0 W/kg 0 dB = 20.0 W/kg = 13.01 dBW/kg ## Impedance Measurement Plot for Body TSL #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerlscher Katibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss
Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client PC Test certificate No. D2600V2-1004_April 8 Object Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Cal Date (Certificate No.) ID# Primary Standards 04-Apr-18 (No. 217-02672/02673) Apr-19 SN: 104778 Power meter NRP Apr-19 SN: 103244 04-Apr-18 (No. 217-02672) Power sensor NRP-Z91 04-Apr-18 (No. 217-02673) Apr-19 SN: 103245 Power sensor NRP-Z91 04-Apr-18 (No. 217-02682) Apr-19 SN: 5058 (20K) Reference 20 dB Attenuator 04-Apr-18 (No. 217-02683) Apr-19 SN: 5047.2 / 06327 Type-N mismatch combination 30-Dec-17 (No. EX3-7349_Dec17) Dec-18 SN: 7349 Reference Probe EX3DV4 SN: 601 26-Oct-17 (No. DAE4-601_Oct17) Oct-18 DAE4 Scheduled Check ID# Check Date (in house) Secondary Standards SN: GB37480704 07-Oct-15 (in house check Oct-16) in house check: Oct-18 Power meter EPM-442A In house check: Oct-18 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-16) In house check: Oct-18 07-Oct-15 (in house check Oct-16) SN: MY41092317 Power sensor HP 8481A In house check: Oct-18 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-16) In house check: Oct-18 1.8-Oct-01 (in house check Oct-17) Network Analyzer HP 8753E SN: US37390585 Function Name Laboratory: Technician Calibrated by: Approved by: Issued: April 12, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2600V2-1004_Apr18 Page 1 of 8 #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 S Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2600V2-1004_Apr18 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.0 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | · | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | **Head TSL parameters**The following parameters and calculations were applied. | | Temperature Permittivity | | Conductivity | | |---|--------------------------|------------|------------------|--| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.8 ± 6 % | 2.03 mho/m ± 6 % | | | Head TSL temperature change during test | < 0.5 °C | | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.3 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 55.9 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.35 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.1 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Temperature Permittivity | | |---|-----------------|--------------------------|------------| | Nominal Body TSL parameters | 22.0 °C | 52.5 | 2.16 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.1 ± 6 % 2.19 mho/m ± | | | Body TSL temperature change during test | < 0.5 °C | | | # **SAR result with Body TSL** | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.8 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 54.8 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.20 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 24.7 W/kg ± 16.5 % (k=2) | Certificate No: D2600V2-1004_Apr18 Page 3 of 8 #### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 47.7 Ω - 5.7 jΩ | | | |--------------------------------------|-----------------|--|--| | Return Loss | - 24.1 dB | | | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 46.0 Ω - 3.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.9 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | ļ | 1.149 ns | |----------------------------------|---|----------| | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | December 23, 2006 | #### **DASY5 Validation Report for Head TSL** Date: 11.04.2018 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1004 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.03 \text{ S/m}$; $\varepsilon_r = 37.8$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.7, 7.7, 7.7); Calibrated: 30.12.2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 26.10.2017 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 118.5 V/m; Power Drift = -0.04
dB Peak SAR (extrapolated) = 28.6 W/kg SAR(1 g) = 14.3 W/kg; SAR(10 g) = 6.35 W/kg Maximum value of SAR (measured) = 23.9 W/kg 0 dB = 23.9 W/kg = 13.78 dBW/kg # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 11.04.2018 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1004 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.19 \text{ S/m}$; $\varepsilon_r = 52.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.81, 7.81, 7.81); Calibrated: 30.12.2017; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 26.10.2017 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 • DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.5 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 28.3 W/kg SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.2 W/kg Maximum value of SAR (measured) = 22.9 W/kg 0 dB = 22.9 W/kg = 13.60 dBW/kg # Impedance Measurement Plot for Body TSL # PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D2600V2 – SN: 1004 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extension Calibration date: 4/11/2019 Description: SAR Validation Dipole at 2600 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|-----------|---|------------|--------------|------------|---------------| | Agilent | 8753ES | S-Parameter Network Analyzer | 3/11/2019 | Annual | 3/11/2020 | US39170122 | | Agilent | N5182A | MXG Vector Signal Generator | 4/18/2018 | Annual | 4/18/2019 | MY47420800 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Anritsu | MA2411B | Pulse Power Sensor | 11/20/2018 | Annual | 11/20/2019 | 1027293 | | Anritsu | MA2411B | Pulse Power Sensor | 10/30/2018 | Annual | 10/30/2019 | 1126066 | | Anritsu | ML2495A | Power Meter | 10/21/2018 | Annual | 10/21/2019 | 941001 | | Control Company | 4040 | Therm./ Clock/ Humidity Monitor | 10/9/2018 | Biennial | 10/9/2020 | 181647811 | | Control Company | 4352 | Ultra Long Stem Thermometer | 5/2/2017 | Biennial | 5/2/2019 | 170330156 | | Keysight | 772D | Dual Directional Coupler | CBT | N/A | CBT | MY52180215 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 6/4/2018 | Annual | 6/4/2019 | MY53401181 | | MiniCircuits | VLF-6000+ | Low Pass Filter | CBT | N/A | CBT | N/A | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Pasternack | PE2209-10 | Bidirectional Coupler | CBT | N/A | CBT | N/A | | Seekonk | NC-100 | Torque Wrench | 7/11/2018 | Annual | 7/11/2019 | N/A | | SPEAG | EX3DV4 | SAR Probe | 6/25/2018 | Annual | 6/25/2019 | 7409 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 6/18/2018 | Annual | 6/18/2019 | 1334 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 2/13/2019 | Annual | 2/13/2020 | 665 | | SPEAG | EX3DV4 | SAR Probe | 2/19/2019 | Annual | 2/19/2020 | 7417 | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 9/11/2018 | Annual | 9/11/2019 | 1091 | #### Measurement Uncertainty = $\pm 23\%$ (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Test Engineer | BRODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 304 | | Object: | Date Issued: | Page 1 of 4 | |--------------------|--------------|-------------| | D2600V2 – SN: 1004 | 04/11/2019 | Page 1 of 4 | #### **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Head (1g)
W/kg @ 20.0
dBm | Measured
Head SAR (1g)
W/kg @ 20.0
dBm | (0/) | Certificate
SAR Target
Head (10g)
W/kg @ 20.0
dBm | (40-) M(4 (C) | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|----------------|---|--|---|---------------------|---|--|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 4/11/2018 | 4/11/2019 | 1.149 | 5.59 | 5.51 | -1.43% | 2.51 | 2.47 | -1.59% | 47.7 | 48.5 | 0.8 | -5.7 | -5.1 | 0.6 | -24.1 | -25.6 | -6.30% | PASS | | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | | Measured
Body SAR (1g)
W/kg @ 20.0
dBm | Deviation 1g
(%) | Certificate
SAR Target
Body (10g)
W/kg @ 20.0
dBm | Measured
Body SAR
(10g) W/kg @
20.0 dBm | Deviation 10g
(%) | Certificate
Impedance
Body (Ohm)
Real | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 4/11/2018 | 4/11/2019 | 1.149 | 5.48 | 5.65 | 3.10% | 2.47 | 2.48 | 0.40% | 46 | 46.6 | 0.6 | -3.8 | -4.7 | 0.9 | -24.9 | -24.5 | 1.80% | PASS | | Object: | Date Issued: | Page 2 of 4 | | |--------------------|--------------|-------------|--| | D2600V2 – SN: 1004 | 04/11/2019 | Fage 2 01 4 | | #### Impedance & Return-Loss Measurement Plot for Head TSL # Impedance & Return-Loss Measurement Plot for Body TSL CENTER 2 600.000 000 MHz SPAN 400.000 000 MHz #### **PCTEST** 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D2600V2 – SN: 1004 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extension Calibration date: 4/11/2020 Description: SAR Validation Dipole at 2600 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|---------------|---|------------|--------------|------------|---------------| | Control Company | 4040 | Therm./Clock/Humidity Monitor | 6/29/2019 | Biennial | 6/29/2021 | 192291470 | | Control Company | 4352 | Ultra Long Stem Thermometer | 8/2/2018 | Biennial | 8/2/2020 | 181334684 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 7/2/2019 | Annual | 7/2/2020 | MY53401181 | | Rohde & Schwarz | ZNLE6 | Vector Network Analyzer | 10/11/2019 | Annual | 10/11/2020 | 101307 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | SPEAG | DAKS-3.5 | Portable DAK | 9/10/2019 | Annual | 9/10/2020 | 1045 | | Anritsu | MA2411B | Pulse Power Sensor | 8/14/2019 | Annual | 8/14/2020 | 1315051 | | Anritsu | MA2411B | Pulse Power Sensor | 8/8/2019 | Annual | 8/8/2020 | 1339008 | | Anritsu | ML2495A | Power Meter | 12/17/2019 | Annual | 12/17/2020 | 941001 | | Agilent | N5182A | MXG Vector Signal Generator | 8/19/2019 | Annual | 8/19/2020 | MY47420837 | | Seekonk | NC-100 | Torque Wrench (8" lb) | 5/23/2018 | Biennial | 5/23/2020 | 22217 | | MiniCircuits | ZHDC-16-63-S+ | Bidirectional Coupler | CBT | N/A | CBT | N/A | | MiniCircuits | VLF-6000+ | Low Pass Filter | CBT | N/A | CBT | N/A | | SPEAG | EX3DV4 | SAR Probe | 1/21/2020 | Annual | 1/21/2021 | 3589 | | SPEAG | EX3DV4 | SAR Probe | 9/19/2019 | Annual | 9/19/2020 | 7552 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 9/12/2019 | Annual | 9/12/2020 | 1449 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 1/13/2020 | Annual | 1/13/2021 | 1558 | # Measurement Uncertainty = ±23% (k=2) | |
Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Test Engineer | BRODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 20K | | Object: | Date Issued: | Page 1 of 4 | |--------------------|--------------|-------------| | D2600V2 – SN: 1004 | 04/11/2020 | Page 1 of 4 | #### **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date: | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Head (1g)
W/kg @ 20.0
dBm | Measured
Head SAR (1g)
W/kg @ 20.0
dBm | (0/) | Certificate
SAR Target
Head (10g)
W/kg @ 20.0
dBm | (40-) M(4 (C) | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|----------------|---|--|---|---------------------|---|--|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 4/11/2018 | 4/11/2020 | 1.419 | 5.59 | 5.78 | 3.40% | 2.51 | 2.59 | 3.19% | 47.7 | 49.0 | 1.3 | -5.7 | -4.5 | 1.2 | -24.1 | -26.6 | -10.50% | PASS | | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | | Measured
Body SAR (1g)
W/kg @ 20.0
dBm | Deviation 1g
(%) | Certificate
SAR Target
Body (10g)
W/kg @ 20.0
dBm | Measured
Body SAR
(10g) W/kg @
20.0 dBm | Deviation 10g
(%) | Certificate
Impedance
Body (Ohm)
Real | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 4/11/2018 | 4/11/2020 | 1.149 | 5.48 | 5.16 | -5.84% | 2.47 | 2.36 | -4.45% | 46 | 47.6 | 1.6 | -3.8 | -2.7 | 1.1 | -24.9 | -28.6 | -14.80% | PASS | | Object: | Date Issued: | Page 2 of 4 | |--------------------|--------------|-------------| | D2600V2 - SN: 1004 | 04/11/2020 | Fage 2 01 4 | #### Impedance & Return-Loss Measurement Plot for Head TSL ### Impedance & Return-Loss Measurement Plot for Body TSL #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client **PC Test** Certificate No: D2600V2-1064_Jun19 # **CALIBRATION CERTIFICATE** Object D2600V2 - SN:1064 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz 44 06-70-7 Calibration date: June 14, 2019 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 03-Apr-19 (No. 217-02892/02893) | Apr-20 | | Power sensor NRP-Z91 | SN: 103244 | 03-Apr-19 (No. 217-02892) | Apr-20 | | Power sensor NRP-Z91 | SN: 103245 | 03-Apr-19 (No. 217-02893) | Apr-20 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-19 (No. 217-02894) | Apr-20 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-19 (No. 217-02895) | Apr-20 | | Reference Probe EX3DV4 | SN: 7349 | 29-May-19 (No. EX3-7349_May19) | May-20 | | DAE4 | SN: 601 | 30-Apr-19 (No. DAE4-601_Apr19) | Apr-20 | | Secondary Oter Andr | l.s. | 0 | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 | | | Name | Function | Signature | | Calibrated by: | Michael Weber | Laboratory Technician | //11// | | | | | MIKKS | | Approved by: | Katja Pokovic | Technical Manager | an | | | | | / Le 1/3- | Issued: June 20, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not ap not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2600 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity |
---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.3 ± 6 % | 2.03 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.9 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 58.1 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.59 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 26.0 W/kg ± 16.5 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.5 | 2.16 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 50.5 ± 6 % | 2.22 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.2 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 55.6 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.33 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 25.0 W/kg ± 16.5 % (k=2) | Certificate No: D2600V2-1064_Jun19 Page 3 of 8 #### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 49.8 Ω - 6.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.2 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 46.6 Ω - 4.4 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24.9 dB | | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.151 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D2600V2-1064_Jun19 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Date: 14.06.2019 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1064 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.03 \text{ S/m}$; $\varepsilon_r = 37.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.69, 7.69, 7.69) @ 2600 MHz; Calibrated: 29.05.2019 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 30.04.2019 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 120.9 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 30.2 W/kg SAR(1 g) = 14.9 W/kg; SAR(10 g) = 6.59 W/kg Maximum value of SAR (measured) = 25.1 W/kg 0 dB = 25.1 W/kg = 14.00 dBW/kg # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 14.06.2019 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1064 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.22 \text{ S/m}$; $\varepsilon_r = 50.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### **DASY52 Configuration:** Probe: EX3DV4 - SN7349; ConvF(7.8, 7.8, 7.8) @ 2600 MHz; Calibrated: 29.05.2019 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 30.04.2019 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470) #### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 110.6 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 28.9 W/kg SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.33 W/kg Maximum value of SAR (measured) = 23.6 W/kg 0 dB = 23.6 W/kg = 13.73 dBW/kg # Impedance Measurement Plot for Body TSL 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D2600V2 – SN: 1064 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extended Calibration date: June 14, 2020 Description: SAR Validation Dipole at 2600 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|---------------|---|------------|--------------|------------|---------------| | Control Company | 4040 | Therm./Clock/Humidity Monitor | 6/29/2019 | Biennial | 6/29/2021 | 192291470 | | Control Company | 4352 | Ultra Long Stem Thermometer | 8/2/2018 | Biennial | 8/2/2020 | 181334684 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 7/2/2019 | Annual | 7/2/2020 | MY53401181 | | Rohde & Schwarz | ZNLE6 | Vector Network Analyzer | 10/11/2019 | Annual | 10/11/2020 | 101307 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | SPEAG | DAKS-3.5 | Portable DAK | 9/10/2019 | Annual | 9/10/2020 | 1045 | | Anritsu | MA2411B | Pulse Power Sensor | 8/14/2019 | Annual | 8/14/2020 | 1315051 | | Anritsu | MA2411B | Pulse Power Sensor | 8/8/2019 | Annual | 8/8/2020 | 1339008 | | Anritsu | ML2495A | Power Meter | 12/17/2019 | Annual | 12/17/2020 | 941001 | | Agilent | N5182A | MXG Vector Signal Generator | 8/19/2019 | Annual | 8/19/2020 | MY47420837 | | Seekonk | NC-100 | Torque Wrench | 7/18/2019 | Annual | 7/18/2020 | N/A | | MiniCircuits | ZHDC-16-63-S+ | Bidirectional Coupler | CBT | N/A | CBT | N/A | | MiniCircuits | VLF-6000+ | Low Pass Filter | CBT | N/A | CBT | N/A | | SPEAG | EX3DV4 | SAR Probe | 1/21/2020 | Annual | 1/21/2021 | 3589 | | SPEAG | EX3DV4 | SAR Probe | 7/15/2019 | Annual | 7/15/2020 | 7547 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 7/11/2019 | Annual | 7/11/2020 | 1323 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 1/13/2020 | Annual | 1/13/2021 | 1558 | ### Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-----------------|-------------------|-------------------| | Calibrated By: | Test Engineer | Test Engineer | BRODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Managing Director | 20K | | Object: | Date Issued: | Page 1 of 4 | |--------------------|--------------|-------------| | D2600V2 – SN: 1064 | 6/14/2020 | Page 1 of 4 | #### **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Head (1g)
W/kg @ 20.0
dBm | Measured
Head SAR (1g)
W/kg @ 20.0
dBm | (0/) | Certificate
SAR Target
Head (10g)
W/kg @ 20.0
dBm | (40-) M(4 (C) | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL |
---------------------|----------------|---|--|---|---------------------|---|--|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 6/14/2019 | 6/14/2020 | 1.151 | 5.81 | 5.68 | -2.24% | 2.6 | 2.56 | -1.54% | 49.8 | 48.6 | 1.2 | -6.9 | -5.8 | 1.1 | -23.2 | -24.4 | -5.00% | PASS | | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | | Measured
Body SAR (1g)
W/kg @ 20.0
dBm | Deviation 1g
(%) | Certificate
SAR Target
Body (10g)
W/kg @ 20.0
dBm | Measured
Body SAR
(10g) W/kg @
20.0 dBm | Deviation 10g
(%) | Certificate
Impedance
Body (Ohm)
Real | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 6/14/2019 | 6/14/2020 | 1.151 | 5.56 | 5.43 | -2.34% | 2.5 | 2.39 | -4.40% | 46.6 | 48.1 | 1.5 | -4.4 | -3.6 | 0.8 | -24.9 | -27.6 | -10.80% | PASS | | Object: | Date Issued: | Page 2 of 4 | |--------------------|--------------|-------------| | D2600V2 - SN: 1064 | 6/14/2020 | Fage 2 01 4 | # Impedance & Return-Loss Measurement Plot for Head TSL ### Impedance & Return-Loss Measurement Plot for Body TSL ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **PC Test** Certificate No: D3500V2-1097_Jan20 # CALIBRATION CERTIFICATE Object D3500V2 - SN:1097 Calibration procedure(s) MCCAL (22,44 Subburgeon Brown of the Collins of Arministration Communic Enterprise C. C. (7) Calibration date: January 21, 2020 BN 01-23-21 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|--|------------------------| | Power meter NRP | SN: 104778 | 03-Apr-19 (No. 217-02892/02893) | Apr-20 | | Power sensor NRP-Z91 | SN: 103244 | 03-Apr-19 (No. 217-02892) | Apr-20 | | Power sensor NRP-Z91 | SN: 103245 | 03-Apr-19 (No. 217-02893) | Apr-20 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-19 (No. 217-02894) | Apr-20 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-19 (No. 217-02895) | Apr-20 | | Reference Probe EX3DV4 | SN: 3503 | 31-Dec-19 (No. EX3-3503_Dec19) | Dec-20 | | DAE4 | SN: 601 | 27-Dec-19 (No. DAE4-601_Dec19) | Dec-20 | | | | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | in house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 | | | Name | Function | Signature | | Calibrated by: | Jeton Kastrati | Laboratory Technician | | | | | and the state of t | | | Approved by: | Katja Pokovic | Technical Manager | V and | | | | | | Issued: January 23, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D3500V2-1097_Jan20 Page 2 of 8 # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.3 | |------------------------------|------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx,
dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3500 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.9 | 2.91 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.0 ± 6 % | 2.90 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.67 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 66.4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.50 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.9 W/kg ± 19.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 51.3 | 3.31 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 49.8 ± 6 % | 3.33 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.47 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 64.2 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.40 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.8 W/kg ± 19.5 % (k=2) | Certificate No: D3500V2-1097_Jan20 Page 3 of 8 #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.4 Ω + 3.0 jΩ | |--------------------------------------|-----------------| | Return Loss | -30.2 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 48.8 Ω + 4.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.3 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.133 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D3500V2-1097_Jan20 Page 4 of 8 #### DASY5 Validation Report for Head TSL Date: 21,01,2020 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN:1097 Communication System: UID 0 - CW; Frequency: 3500 MHz Medium parameters used: f = 3500 MHz; $\sigma = 2.9 \text{ S/m}$; $\varepsilon_r = 37$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN3503; ConvF(7.91, 7.91, 7.91) @ 3500 MHz; Calibrated: 31.12.2019 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 27.12.2019 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 • DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) ## Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3500MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.89 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 18.3 W/kg #### SAR(1 g) = 6.67 W/kg; SAR(10 g) = 2.5 W/kg Smallest distance from peaks to all points 3 dB below = 8.4 mm Ratio of SAR at M2 to SAR at M1 = 74.1% Maximum value of SAR (measured) = 12.7 W/kg 0 dB = 12.7 W/kg = 11.04 dBW/kg # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 21.01.2020 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN:1097 Communication System: UID 0 - CW; Frequency: 3500 MHz Medium parameters used: f = 3500 MHz; $\sigma = 3.33 \text{ S/m}$; $\varepsilon_r = 49.8$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN3503; ConvF(7.46, 7.46, 7.46) @ 3500 MHz; Calibrated: 31.12.2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.12.2019 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) Dipole Calibration for Body Tissue/Pin=100 mW, d=10mm, f=3500MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.34 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 17.5 W/kg SAR(1 g) = 6.47 W/kg; SAR(10 g) = 2.4 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 75.1% Maximum value of SAR (measured) = 12.3 W/kg 0 dB = 12.3 W/kg = 10.90 dBW/kg Certificate No: D3500V2-1097_Jan20 # Impedance Measurement Plot for Body TSL #### **PCTEST** 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D3500V2 – SN: 1097 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extension Calibration date: 1/21/2021 Description: SAR Validation Dipole at 3500 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Description Cal Date | | | | |--------------------|---------------|---|----------------------|----------|------------|------------| | Control Company | 4040 | Therm./Clock/Humidity Monitor | 6/29/2019 | Biennial | 6/29/2021 | 192291470 | | Control Company | 4353 | Long Stem Thermometer | 10/28/2020 | Biennial | 10/28/2022 | 200670623 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Agilent | 85033E | 3.5mm Standard Calibration Kit | 6/6/2020 | Annual | 6/6/2021 | MY53402352 | | Rohde & Schwarz | ZNLE6 | Vector Network Analyzer | 9/29/2020 | Annual | 9/29/2021 | 101307 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 5/12/2020 | Annual | 5/12/2021 | 1070 | | Anritsu | MA2411B | Pulse Power Sensor | 8/12/2020 | Annual | 8/12/2021 | 1207364 | | Anritsu | MA2411B | Pulse Power Sensor | 9/22/2020 | Annual | 9/22/2021 | 1315051 | | Anritsu | ML2495A | Power Meter | 11/3/2020 | Annual | 11/3/2021 | 1039008 | | Anritsu | ML2495A | Power Meter | 1/18/2021 | Annual | 1/18/2022 | 941001 | | Agilent | N5182A | MXG Vector Signal Generator | 5/13/2020 | Annual | 5/13/2021 | MY47420603 | | Pasternack | NC-100 | Torque Wrench | 8/4/2020 | Biennial | 8/4/2022 | N/A | | MiniCircuits | ZHDC-16-63-S+ | Bidirectional Coupler | CBT | N/A | CBT | N/A | | MiniCircuits | VLF-6000+ | Low Pass Filter | CBT | N/A | CBT | N/A | | SPEAG | EX3DV4 | SAR Probe | 10/20/2020 | Annual | 10/20/2021 | 7551 | | SPEAG | EX3DV4 | SAR Probe | 10/20/2020 | Annual | 10/20/2021 | 7539 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 10/16/2020 | Annual | 10/16/2021 | 1333 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 5/20/2020 | Annual | 5/20/2021 | 728 | #### Measurement Uncertainty = $\pm 23\%$ (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Test Engineer | BRODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 306 | | Object: | Date Issued: | Page 1 of 4 | |--------------------|--------------|-------------| | D3500V2 – SN: 1097 | 1/21/2021 | Page 1 of 4 | ### **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | | Measured
Head SAR (1g)
W/kg @
20.0
dBm | Deviation 1g
(%) | Certificate
SAR Target
Head (10g)
W/kg @ 20.0
dBm | Measured
Head SAR
(10g) W/kg @
20.0 dBm | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|----------------|---|------|---|---------------------|---|--|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 1/21/2020 | 1/21/2021 | 1.133 | 6.64 | 6.83 | 2.86% | 2.49 | 2.59 | 4.02% | 49.4 | 47.5 | 1.9 | 3.0 | 3.4 | 0.4 | -30.2 | -27.0 | 10.50% | PASS | | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | | Measured
Body SAR (1g)
W/kg @ 20.0
dBm | Deviation 1g
(%) | Certificate
SAR Target
Body (10g)
W/kg @ 20.0
dBm | Measured
Body SAR
(10g) W/kg @
20.0 dBm | Deviation 10g
(%) | Certificate
Impedance
Body (Ohm)
Real | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 1/21/2020 | 1/21/2021 | 1.133 | 6.42 | 6.5 | 1.25% | 2.38 | 2.43 | 2.10% | 48.8 | 50.6 | 1.8 | 4.1 | 5.8 | 1.7 | -27.3 | -24.9 | 8.80% | PASS | | Object: | Date Issued: | Page 2 of 4 | |--------------------|--------------|-------------| | D3500V2 - SN: 1097 | 1/21/2021 | raye 2 01 4 | #### Impedance & Return-Loss Measurement Plot for Head TSL ## Impedance & Return-Loss Measurement Plot for Body TSL ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **PC Test** Certificate No: D3700V2-1067_Jan20 ## **CALIBRATION CERTIFICATE** Object D3700V2 - SN:1067 Calibration procedure(s) GA CAL 22.ca Calibration date: January 21, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. BN 01-23-21 All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | 1D # | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 03-Apr-19 (No. 217-02892/02893) | Apr-20 | | Power sensor NRP-Z91 | SN: 103244 | 03-Apr-19 (No. 217-02892) | Apr-20 | | Power sensor NRP-Z91 | SN: 103245 | 03-Apr-19 (No. 217-02893) | Apr-20 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-19 (No. 217-02894) | Apr-20 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-19 (No. 217-02895) | Apr-20 | | Reference.Probe EX3DV4 | SN: 3503 | 31-Dec-19 (No. EX3-3503_Dec19) | Dec-20 | | DAE4 | SN: 601 | 27-Dec-19 (No. DAE4-601_Dec19) | Dec-20 | | Connector Stondards | ID# | Charle Data (in house) | Scheduled Check | | Secondary Standards | | Check Date (in house) | | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 | | | Name | Function | Signature | | Calibrated by: | Jeton Kastrati | Laboratory Technician | | | | | | +- 112 | | Approved by: | Katja Pokovic | Technical Manager | AMC | | | | | | Issued: January 22, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D3700V2-1067_Jan20 Page 1 of 8 ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D3700V2-1067_Jan20 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.3 | |------------------------------|------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3700 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.7 | 3.12 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.8 ± 6 % | 3.05 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.72 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 67.2 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.44 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.3 W/kg ± 19.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 51.0 | 3.55 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 49.5 ± 6 % | 3.54
mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.56 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 65.2 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.34 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.3 W/kg ± 19.5 % (k=2) | Certificate No: D3700V2-1067_Jan20 Page 3 of 8 ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 48.7 Ω - 0.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 37.4 dB | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 47.6 Ω + 1.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 30.2 dB | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.141 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: D3700V2-1067_Jan20 Page 4 of 8 ### **DASY5 Validation Report for Head TSL** Date: 21.01.2020 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN:1067 Communication System: UID 0 - CW; Frequency: 3700 MHz Medium parameters used: f = 3700 MHz; $\sigma = 3.05 \text{ S/m}$; $\varepsilon_r = 36.8$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN3503; ConvF(7.73, 7.73, 7.73) @ 3700 MHz; Calibrated: 31.12.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) ## Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.34 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 19.4 W/kg SAR(1 g) = 6.72 W/kg; SAR(10 g) = 2.44 W/kg Smallest distance from peaks to all points 3 dB below = 8.4 mm Ratio of SAR at M2 to SAR at M1 = 72.9% Maximum value of SAR (measured) = 13.4 W/kg 0 dB = 13.4 W/kg = 11.27 dBW/kg ## Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 21.01.2020 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN:1067 Communication System: UID 0 - CW; Frequency: 3700 MHz Medium parameters used: f = 3700 MHz; $\sigma = 3.54 \text{ S/m}$; $\varepsilon_r = 49.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EX3DV4 - SN3503; ConvF(7.31, 7.31, 7.31) @ 3700 MHz; Calibrated: 31.12.2019 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 27.12.2019 • Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) ## Dipole Calibration for Body Tissue/Pin=100 mW, d=10mm/Zoom Scan, dist=1.4mm (9x9x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.54 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 18.1 W/kg SAR(1 g) = 6.56 W/kg; SAR(10 g) = 2.34 W/kg Smallest distance from peaks to all points 3 dB below = 7.9 mm Ratio of SAR at M2 to SAR at M1 = 74.3% Maximum value of SAR (measured) = 13.3 W/kg 0 dB = 13.3 W/kg = 11.24 dBW/kg ## Impedance Measurement Plot for Body TSL #### **PCTEST** 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com # **Certification of Calibration** Object D3700V2 – SN: 1067 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extension Calibration date: 1/21/2021 Description: SAR Validation Dipole at 3700 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | | |--------------------|---------------|---|------------|--------------|------------|---------------|--| | Control Company | 4040 | Therm./Clock/Humidity Monitor | 6/29/2019 | Biennial | 6/29/2021 | 192291470 | | | Control Company | 4353 | Long Stem Thermometer | 10/28/2020 | Biennial | 10/28/2022 | 200670623 | | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 433971 | | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | | Agilent | 85033E | 3.5mm Standard Calibration Kit | 6/6/2020 | Annual | 6/6/2021 | MY53402352 | | | Rohde & Schwarz | ZNLE6 | Vector Network Analyzer | 9/29/2020 | Annual | 9/29/2021 | 101307 | | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 5/12/2020 | Annual | 5/12/2021 | 1070 | | | Anritsu | MA2411B | Pulse Power Sensor | 8/12/2020 | Annual | 8/12/2021 | 1207364 | | | Anritsu | MA2411B | Pulse Power Sensor | 9/22/2020 | Annual | 9/22/2021 | 1315051 | | | Anritsu | ML2495A | Power Meter | 11/3/2020 | Annual | 11/3/2021 | 1039008 | | | Anritsu | ML2495A | Power Meter | 1/18/2021 | Annual | 1/18/2022 | 941001 | | | Agilent | N5182A | MXG Vector Signal Generator | 5/13/2020 | Annual | 5/13/2021 | MY47420603 | | | Pasternack | NC-100 | Torque Wrench | 8/4/2020 | Biennial | 8/4/2022 | N/A | | | MiniCircuits | ZHDC-16-63-S+ | Bidirectional Coupler | CBT | N/A | CBT | N/A | | | MiniCircuits | VLF-6000+ | Low Pass Filter | CBT | N/A | CBT | N/A | | | SPEAG | EX3DV4 | SAR Probe | 10/20/2020 | Annual | 10/20/2021 | 7551 | | | SPEAG | EX3DV4 | SAR Probe | 10/20/2020 | Annual | 10/20/2021 | 7539 | | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 10/16/2020 | Annual | 10/16/2021 | 1333 | | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 5/20/2020 | Annual | 5/20/2021 | 728 | | ## Measurement Uncertainty = $\pm 23\%$ (k=2) | | Name | Function | Signature | |----------------|-------------------|-----------------------------|-------------------| | Calibrated By: | Brodie Halbfoster | Test Engineer | BRODIE HALBFOSTER | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 306 | | Object: | Date Issued: | Page 1 of 4 | |--------------------|--------------|-------------| | D3700V2 – SN: 1067 | 1/21/2021 | Page 1 of 4 | ## **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | | Measured
Head SAR (1g)
W/kg @ 20.0
dBm | Deviation 1g
(%) | Certificate
SAR Target
Head (10g)
W/kg @ 20.0
dBm | Measured
Head SAR
(10g) W/kg @
20.0 dBm | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|----------------|---|------|---|---------------------|---|--|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 1/21/2020 | 1/21/2021 | 1.141 | 6.72 | 7.11 | 5.80% | 2.43 | 2.6 | 7.00% | 48.7 | 51 | 2.3 | -0.4 | -2 | 1.6 | -37.4 | -33.7 | 9.80% | PASS | | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | | Measured
Body SAR (1g)
W/kg @ 20.0
dBm | Deviation
1g
(%) | Certificate
SAR Target
Body (10g)
W/kg @ 20.0
dBm | Measured
Body SAR
(10g) W/kg @
20.0 dBm | Deviation 10g
(%) | Certificate
Impedance
Body (Ohm)
Real | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 1/21/2020 | 1/21/2021 | 1.141 | 6.52 | 6.48 | -0.61% | 2.33 | 2.34 | 0.43% | 47.6 | 45.3 | 2.3 | 1.9 | 2.7 | 0.8 | -30.2 | -24.9 | 17.70% | PASS | | Object: | Date Issued: | Page 2 of 4 | | |--------------------|--------------|-------------|--| | D3700V2 - SN: 1067 | 1/21/2021 | rage 2 01 4 | | #### Impedance & Return-Loss Measurement Plot for Head TSL ## Impedance & Return-Loss Measurement Plot for Body TSL