

TESTING CENTRE TE		
	TEST REPO	RT
FCC ID	2APJ4-SLM550	
Test Report No:	TCT220714E035	
Date of issue:	Aug. 02, 2022	
Testing laboratory:	SHENZHEN TONGCE TESTI	ING LAB
Testing location/ address:		tory Renshan Industrial Zone, Fuha nenzhen, Guangdong, 518103,
Applicant's name:	MeiG Smart Technology Co.,	Ltd
Address:	2nd Floor, Office Building, No Fuyong Street, Bao'an Distric	
Manufacturer's name :	MeiG Smart Technology Co.,	Ltd
Address:	2nd Floor, Office Building, No Fuyong Street, Bao'an Distric	t, shenzhen, China
Standard(s):	FCC CFR Title 47 Part 15 Sul KDB 662911 D01 Multiple Tra KDB 789033 D02 General U- v02r01	
Product Name::	Smart module	
Trade Mark:	MEIGLink	
Model/Type reference:	SLM550	
Rating(s):	DC 3.8V	
Date of receipt of test item	Jul. 14, 2022	
Date (s) of performance of test:	Jul. 14, 2022 - Aug. 02, 2022	
Tested by (+signature) :	Rleo LIU	Preo Un ronger
Check by (+signature) :	Beryl ZHAO	Boy 10 TCT
Approved by (+signature):	Tomsin	Tomsin 33 35
General disclaimer:		

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

					Report	t No.: TCT22071	<i>1EU35</i>
		TABL	<u>_E OF CO</u>	<u>NIENIS</u>			
	(G)						
•	General Product					•••••	3
	1.1. EUT descriptio						3
	1.2. Model(s) list 1.3. Test Frequency						3
•	Test Result Sum						
•	General Information						
	3.1. Test environme						
	3.2. Description of						
•	Facilities and Ac						
	4.1. Facilities	\bigcirc				\sim	8
	4.2. Location						-
	4.3. Measurement L						
	Test Results and	d Measurem	nent Data .				9
	5.1. Antenna requir	ement					9
	5.2. Conducted Em	ission					1(
	5.3. Maximum Cond	ducted Outpu	ıt Power				11
	5.4. 6dB Emission I						
	5.5. 26dB Bandwidt	th and 99% O	ccupied Ba	ndwidth			14
	5.6. Power Spectral	I Density	<u>(0)</u>		<u>(0)</u>		1
	5.7. Band edge						16
	5.8. Unwanted Emis						3′
	5.9. Frequency Stal	bility Measur	ement	<u>(6)</u>		(\mathbf{G})	52
F	Appendix A: Test						
	Appendix B: Phot						
	Appendix C: Photo						
		ographic er					

Page 2 of 217

1. General Product Information

Report No.: TCT220714E035

1.1. EUT description

1.1. EUI description			
Product Name:	Smart module		
Model/Type reference:	SLM550		
Sample Number:	TCT220714E017-0101		
Operation Frequency:	Band 1: 5180 MHz ~ 5240 MHz Band 2A: 5260 MHz ~ 5320 MHz Band 2C: 5500 MHz ~ 5700 MHz Band 3: 5745 MHz ~ 5825 MHz		Ĩ
Channel Bandwidth:	802.11a: 20MHz 802.11n: 20MHz, 40MHz 802.11ac: 20MHz, 40MHz, 80MHz		
Modulation Technology:	Orthogonal Frequency Division Mu	Itiplexing(OFDM)	
Modulation Type:	256QAM, 64QAM, 16QAM, BPSK,	QPSK	
Antenna Type:	External Antenna		0
Antenna Gain:	2.52dBi		
Rating(s):	DC 3.8V		

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.

1.3. Test Frequency

Band 1

1					
20N	20MHz		40MHz		MHz
Channel	Frequency	Channel	Frequency	Channel	Frequency
36	5180	38	5190	42	5210
40	5200	46	5230		(.c)
48	5240				

Band 2A

E A					
20M	1Hz	40MHz		80	MHz
Channel	Frequency	Channel	Frequency	Channel	Frequency
52	5260	54	5270	58	5290
60	5300	62	5310		
64	5320	5)			

Band 2C

20M	1Hz	40MHz		80MHz	
Channel	Frequency	Channel	Frequency	Channel	Frequency
100	5500	102	5510	106	5530
120	5600	118	5590	122	5610
140	5700	134	5670		
			X		X V

Band 3

20N	1Hz	40MHz		80MHz	
Channel	Frequency	Channel	Frequency	Channel	Frequency
149	5745	151	5755	155	5775
157	5785	159	5795		
165	5825				

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Report No.: TCT220714E035

Page 4 of 217

2. Test Result Summary

CT 通测检测 TESTING CENTRE TECHNOLOGY

Report No	o.: TCT220	714E035
-----------	------------	---------

Requirement	CFR 47 Section	Result	
Antenna requirement	§15.203	PASS	
AC Power Line Conducted Emission	§15.207	N/A	
Maximum Conducted Output Power	§15.407(a)	PASS	6
6dB Emission Bandwidth	§15.407(a)	PASS	
26dB Emission Bandwidth& 99% Occupied Bandwidth	§15.407(a)	PASS	
Power Spectral Density	§15.407(a)	PASS	
Restricted Bands around fundamental frequency	§15.407(b)	PASS	
Radiated Emission	§15.407(b)	PASS	
Frequency Stability	§15.407(g)	PASS	
		(.0.)	

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

5.For the band 5.15-5.25GHz,EUT meet the requirements of 15.407(a)(ii).

Page 5 of 217

General Information)n
. Test environment and	
Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
est Software:	
Software Information:	QRCTExternal Licensed
Power Level:	13
est Mode:	
Engineer mode:	Keep the EUT in continuous transmitting by select channel
During the test, each emissic vorking, investigated all open considered typical configurat cables, rotating the turntable	in both horizontal and vertical polarities were performed. on was maximized by: having the EUT continuously rating modes, rotated about all 3 axis (X, Y & Z) and ion to obtain worst position, manipulating interconnecting , varying antenna height from 1m to 4m in both horizontal e emissions worst-case are shown in Test Results of the
During the test, each emissic vorking, investigated all open considered typical configurat cables, rotating the turntable	on was maximized by: having the EUT continuously rating modes, rotated about all 3 axis (X, Y & Z) and ion to obtain worst position, manipulating interconnecting
During the test, each emissic vorking, investigated all oper considered typical configurat cables, rotating the turntable and vertical polarizations. The ollowing pages.	on was maximized by: having the EUT continuously rating modes, rotated about all 3 axis (X, Y & Z) and ion to obtain worst position, manipulating interconnecting , varying antenna height from 1m to 4m in both horizontal e emissions worst-case are shown in Test Results of the ction and function in typical operation. All the test modes T in transmitting operation, which was shown in this test
Ouring the test, each emissic vorking, investigated all oper considered typical configurat cables, rotating the turntable and vertical polarizations. The ollowing pages. We have verified the constru- vere carried out with the EU eport and defined as follows	on was maximized by: having the EUT continuously rating modes, rotated about all 3 axis (X, Y & Z) and ion to obtain worst position, manipulating interconnecting , varying antenna height from 1m to 4m in both horizontal e emissions worst-case are shown in Test Results of the ction and function in typical operation. All the test modes T in transmitting operation, which was shown in this test
During the test, each emissic vorking, investigated all oper considered typical configurat cables, rotating the turntable and vertical polarizations. The ollowing pages. We have verified the constru- vere carried out with the EU eport and defined as follows Per-scan all kind of data rate	on was maximized by: having the EUT continuously rating modes, rotated about all 3 axis (X, Y & Z) and ion to obtain worst position, manipulating interconnecting , varying antenna height from 1m to 4m in both horizontal e emissions worst-case are shown in Test Results of the ction and function in typical operation. All the test modes T in transmitting operation, which was shown in this test
Ouring the test, each emissic vorking, investigated all oper considered typical configurat cables, rotating the turntable and vertical polarizations. The ollowing pages. We have verified the constru- vere carried out with the EU eport and defined as follows Per-scan all kind of data ran vas worst case.	on was maximized by: having the EUT continuously rating modes, rotated about all 3 axis (X, Y & Z) and ion to obtain worst position, manipulating interconnecting , varying antenna height from 1m to 4m in both horizontal e emissions worst-case are shown in Test Results of the ction and function in typical operation. All the test modes T in transmitting operation, which was shown in this test te in lowest channel, and found the follow list which it
During the test, each emissic vorking, investigated all oper considered typical configurat cables, rotating the turntable and vertical polarizations. The ollowing pages. We have verified the constru- vere carried out with the EU eport and defined as follows Per-scan all kind of data rations vas worst case.	on was maximized by: having the EUT continuously rating modes, rotated about all 3 axis (X, Y & Z) and ion to obtain worst position, manipulating interconnecting , varying antenna height from 1m to 4m in both horizontal e emissions worst-case are shown in Test Results of the ction and function in typical operation. All the test modes T in transmitting operation, which was shown in this test te in lowest channel, and found the follow list which it Data rate
Ouring the test, each emission vorking, investigated all oper considered typical configurat cables, rotating the turntable and vertical polarizations. The ollowing pages. We have verified the constru- vere carried out with the EU eport and defined as follows Per-scan all kind of data rations vas worst case. Mode 802.11a	on was maximized by: having the EUT continuously rating modes, rotated about all 3 axis (X, Y & Z) and ion to obtain worst position, manipulating interconnecting , varying antenna height from 1m to 4m in both horizontal e emissions worst-case are shown in Test Results of the ction and function in typical operation. All the test modes T in transmitting operation, which was shown in this test te in lowest channel, and found the follow list which it Data rate 6 Mbps
Ouring the test, each emission vorking, investigated all oper considered typical configurat cables, rotating the turntable and vertical polarizations. The ollowing pages. We have verified the constru- vere carried out with the EU eport and defined as follows Per-scan all kind of data ran vas worst case. Mode 802.11a 802.11n(HT20)	on was maximized by: having the EUT continuously rating modes, rotated about all 3 axis (X, Y & Z) and ion to obtain worst position, manipulating interconnecting , varying antenna height from 1m to 4m in both horizontal e emissions worst-case are shown in Test Results of the ction and function in typical operation. All the test modes T in transmitting operation, which was shown in this test te in lowest channel, and found the follow list which it Data rate 6 Mbps 6.5 Mbps
During the test, each emissic vorking, investigated all oper considered typical configurat cables, rotating the turntable and vertical polarizations. The ollowing pages. We have verified the constru- vere carried out with the EU eport and defined as follows Per-scan all kind of data rations Mode 802.11a 802.11n(HT20) 802.11n(HT40)	on was maximized by: having the EUT continuously rating modes, rotated about all 3 axis (X, Y & Z) and ion to obtain worst position, manipulating interconnecting , varying antenna height from 1m to 4m in both horizontal e emissions worst-case are shown in Test Results of the ction and function in typical operation. All the test modes T in transmitting operation, which was shown in this test te in lowest channel, and found the follow list which it Data rate 6 Mbps 6.5 Mbps 13.5 Mbps
During the test, each emissic vorking, investigated all oper considered typical configurate constructions. The construction of the construct	on was maximized by: having the EUT continuously rating modes, rotated about all 3 axis (X, Y & Z) and ion to obtain worst position, manipulating interconnecting , varying antenna height from 1m to 4m in both horizontal e emissions worst-case are shown in Test Results of the ction and function in typical operation. All the test modes T in transmitting operation, which was shown in this test te in lowest channel, and found the follow list which it Data rate 6 Mbps 6.5 Mbps 13.5 Mbps 6.5 Mbps

Page 6 of 217

Report No.: TCT220714E035

Page 7 of 217

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name	
Mother board	MEIG_EVB_V2.03	/	/	1	
WIFI Antenna	SKYLINK			/	
Notebook Computer	G3 3500	00342-36088-9 9832-AAOEM		DELL	

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Report No.: TCT220714E035

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 645098
 SHENZHEN TONGCE TESTING LAB

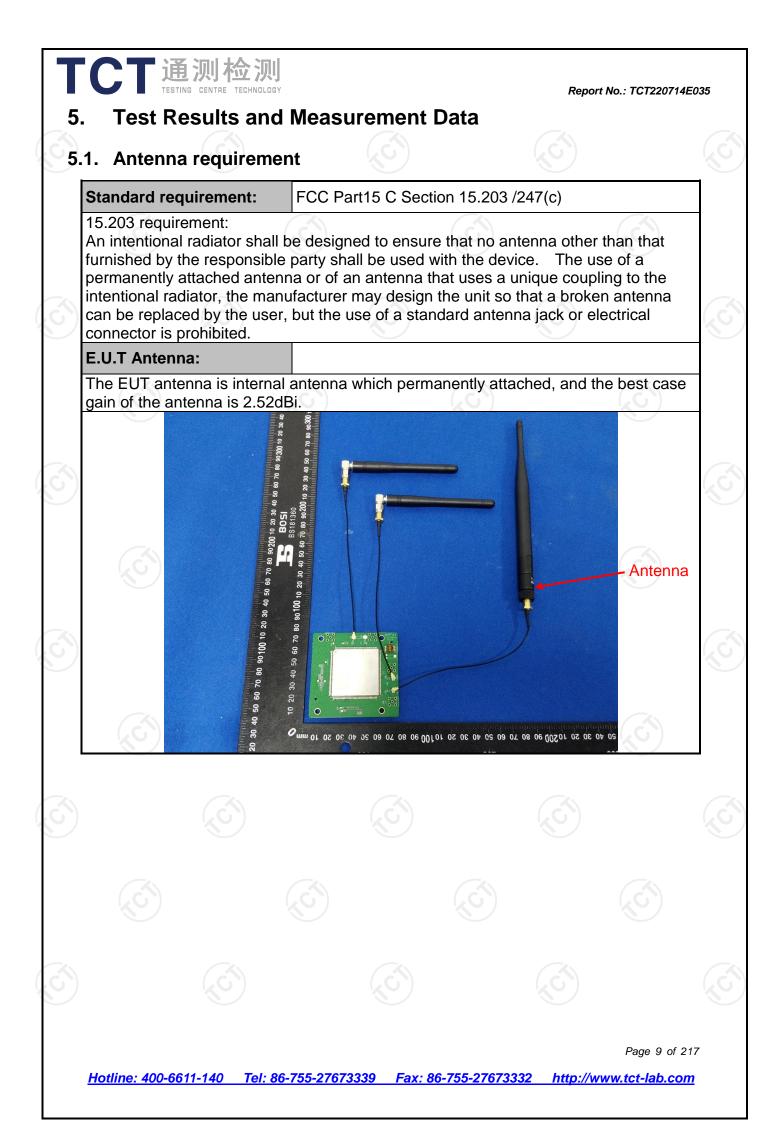
Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

 IC - Registration No.: 10668A-1 SHENZHEN TONGCE TESTING LAB CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location


SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU	
1	Conducted Emission	± 3.10 dB	
2	RF power, conducted	± 0.12 dB	
3	Spurious emissions, conducted	± 0.11 dB	
4	All emissions, radiated(<1 GHz)	± 4.56 dB	
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB	
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB	S

2. Conducted Emissi 2.1. Test Specification	on				
Test Requirement:	FCC Part15 C Section	15.207			
Test Method:	ANSI C63.10:2013	$\langle \mathcal{C}^{(n)} \rangle$	$\left(\mathcal{C}^{\prime}\right)$		
Frequency Range:	150 kHz to 30 MHz				
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto				
_imits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (o Quasi-peak 66 to 56* 56 60	dBuV) Average 56 to 46* 46 50		
	Reference	e Plane			
Гest Setup:	E.U.T AC powe Test table/Insulation plane Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Ne Test table height=0.8m	EMI Receiver	— AC power		
Fest Mode:	Transmitting Mode				
Гest Procedure:	 The E.U.T and simulation power through a line (L.I.S.N.). This proving the peripheral device power through a LI coupling impedance refer to the block photographs). Both sides of A.C. conducted interferer emission, the relative the interface cables 	e impedance stab ovides a 500hm neasuring equipme ces are also conne SN that provides with 500hm term diagram of the line are checke nce. In order to fir	ilization network /50uH coupling ent. ected to the main a 50ohm/50uH nination. (Please test setup and d for maximum d the maximum ipment and all of ed according to		
	ANSI C63.10: 2013	on conducted mea	asurement.		

Page 10 of 217

3.1. Test Specification		
Test Requirement:	FCC Part15 E Section 2.1046	on 15.407(a)& Part 2 J Section
Test Method:		Itiple Transmitter Output v02r01 neral UNII Test Procedures New n E
	Frequency Band (MHz)	Limit
	5180 - 5240	24dBm(250mW) for client device
Limit:	5260 - 5320	24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz
	5470 - 5725	24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz
	5745 - 5825	30dBm(1W)
Test Setup:	Power meter	EUT
Test Mode:	Transmitting mode w	vith modulation
Test Procedure:	KDB789033 D02 Rules v02r01 Set 2. The RF output of meter by RF cab compensated to 3. Set to the maximu EUT transmit cor	EUT was connected to the power le and attenuator. The path loss was the results for each measurement. Im power setting and enable the attinuously. lucted output power and record the
Test Result:	PASS	
Remark:	+10log(1/x) X is duty	ower= measurement power cycle=1, so 10log(1/1)=0 ower= measurement power

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Page 11 of 217

Report No.: TCT220714E035

5.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Power Meter	Agilent	E4418B	MY45100357	Jul. 04, 2023
Power Sensor	Agilent	8481A	MY41091497	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	/	/

Page 12 of 217

4. 6dB Emission Bar	ndwidth
4.1. Test Specification	
Test Requirement:	FCC CFR47 Part 15 Section 15.407(e)& Part 2 J Section 2.1049
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C
Limit:	>500kHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

5.4.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	1	/

5.5. 26dB Bandwidth and 99% Occupied Bandwidth

5.5.1. Test Specification

Test Requirement:	47 CFR Part 15C Section 15.407 (a)& Part 2 J Section 2.1049
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D
Limit:	No restriction limits
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 1% to 5% of the OBW. Set the Video bandwidth (VBW) = 3 *RBW. In order to make an accurate measurement. Measure and record the results in the test report.
Test Result:	PASS

5.5.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	/	/

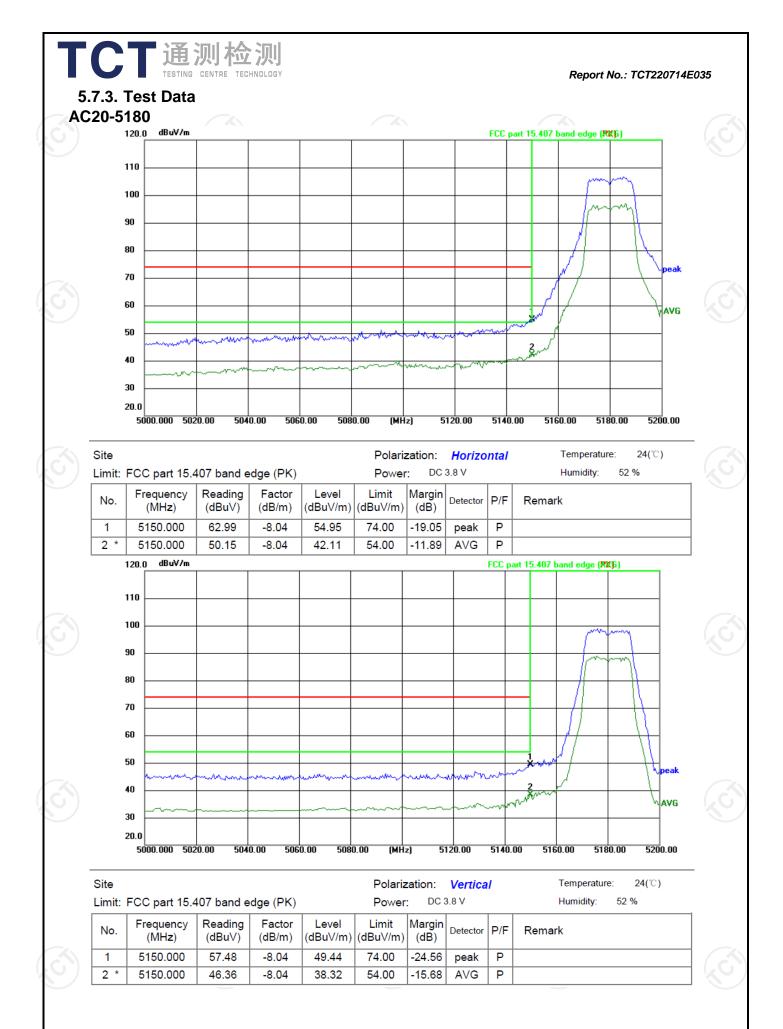
Report No.: TCT220714E035

5.6. Power Spectral Density

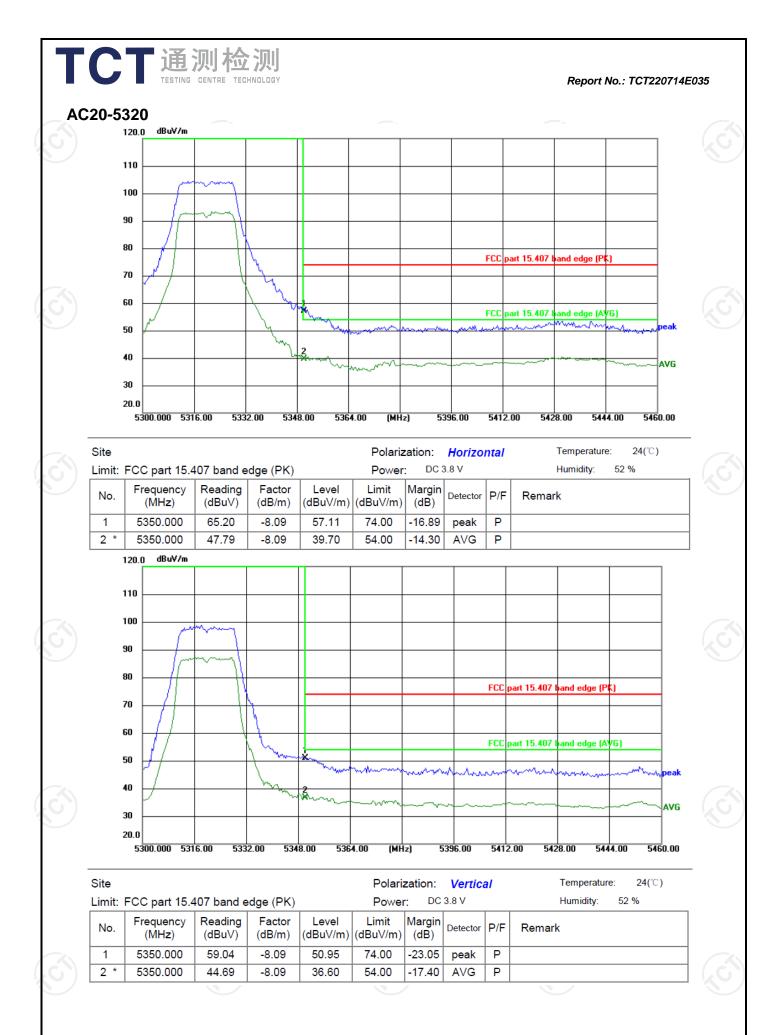
5.6.1. Test Specification		
Test Requirement:	FCC Part15 E Section 15.407 (a)	
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F	
Limit:	 ≤11.00dBm/MHz for Band 1 5150MHz-5250MHz(client device) ≤11.00dBm/MHz for Band 2A&2C 5250-5350&5470-5725 ≤30.00dBm/500KHz for Band 3 5725MHz-5850MHz 	
Test Setup:	Spectrum Analyzer	
Test Mode:	Transmitting mode with modulation	
Test Procedure:	 Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. Allow the sweeps to continue until the trace stabilizes. Use the peak marker function to determine the maximum amplitude level. 	
Test Result:	PASS	

5.6.2. Test Instruments

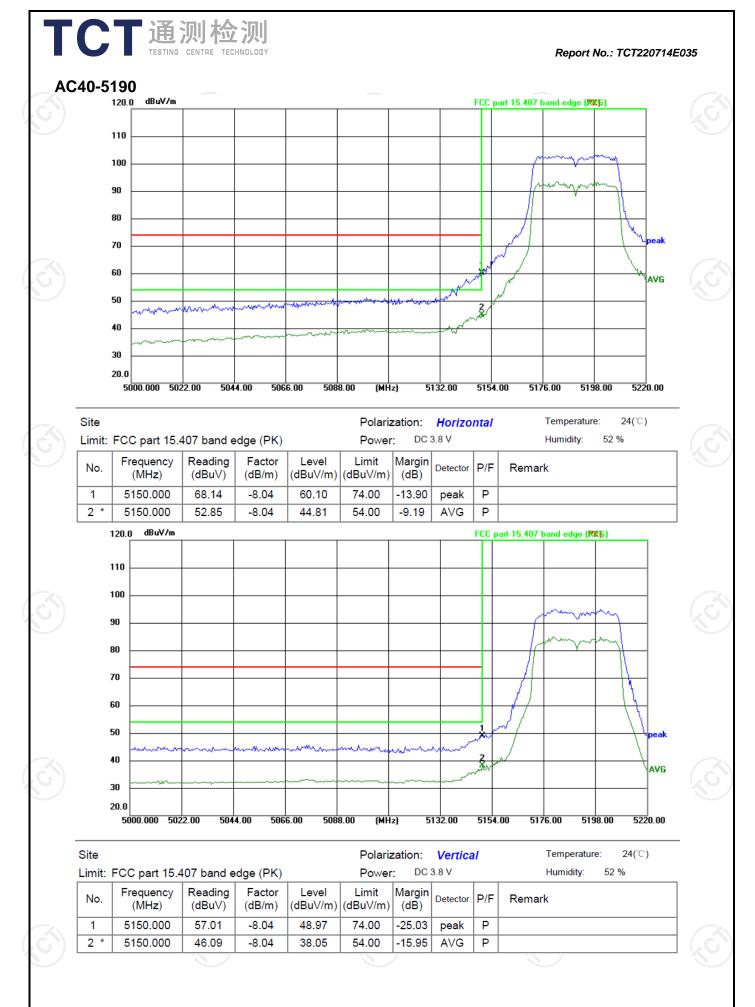
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB		\sim

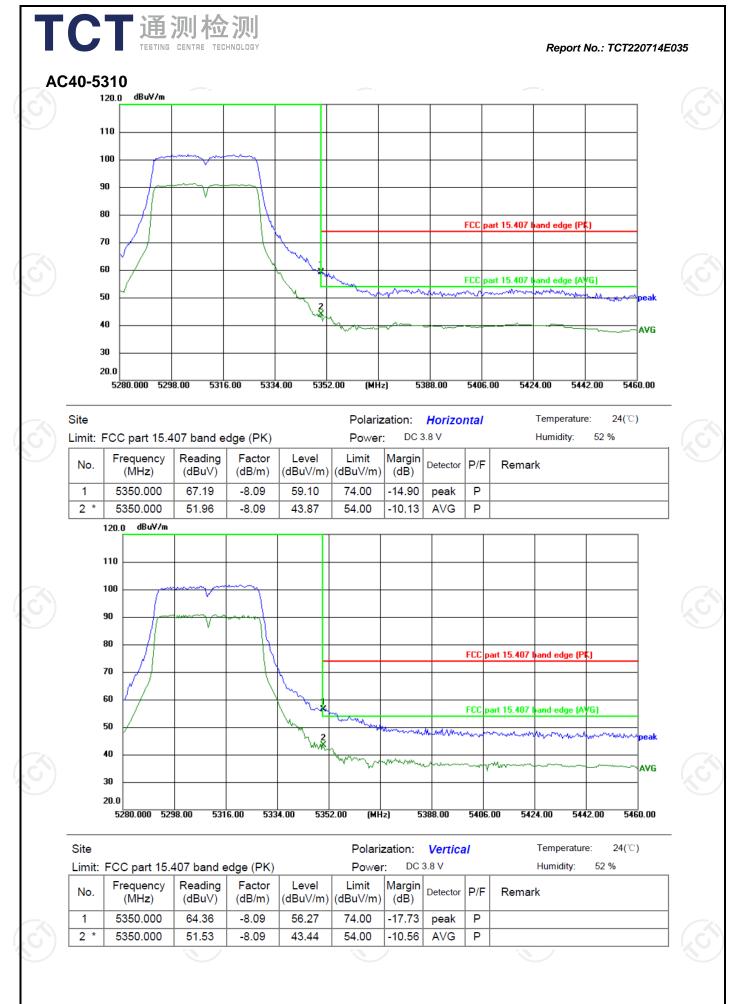

Report No.: TCT220714E035 5.7. Band edge 5.7.1. Test Specification **Test Requirement:** FCC CFR47 Part 15E Section 15.407 **Test Method:** ANSI C63.10 2013 In un-restricted band: For Band 1&2A&2C: -27dBm/MHz For Band 3: Frequency Limit Frequency Limit (dBm/MHz) (MHz) (MHz) (dBm/MHz) -27 5850~5855 27~15.6 < 5650 650~5700 -27~10 5855~5875 15.6~10 Limit: 5700~5720 10~15.6 5875~5925 10~-27 5720~5725 15.6~27 > 5925 -27 $E[dB\mu V/m] = E[RP[dBm] + 95.2 @3m]$ In restricted band: Detector Limit@3m Peak 74dBuV/m AVG 54dBµV/m **Test Setup:** Test Receiver Test Mode: Transmitting mode with modulation 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum Test Procedure: value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold

Page 16 of 217

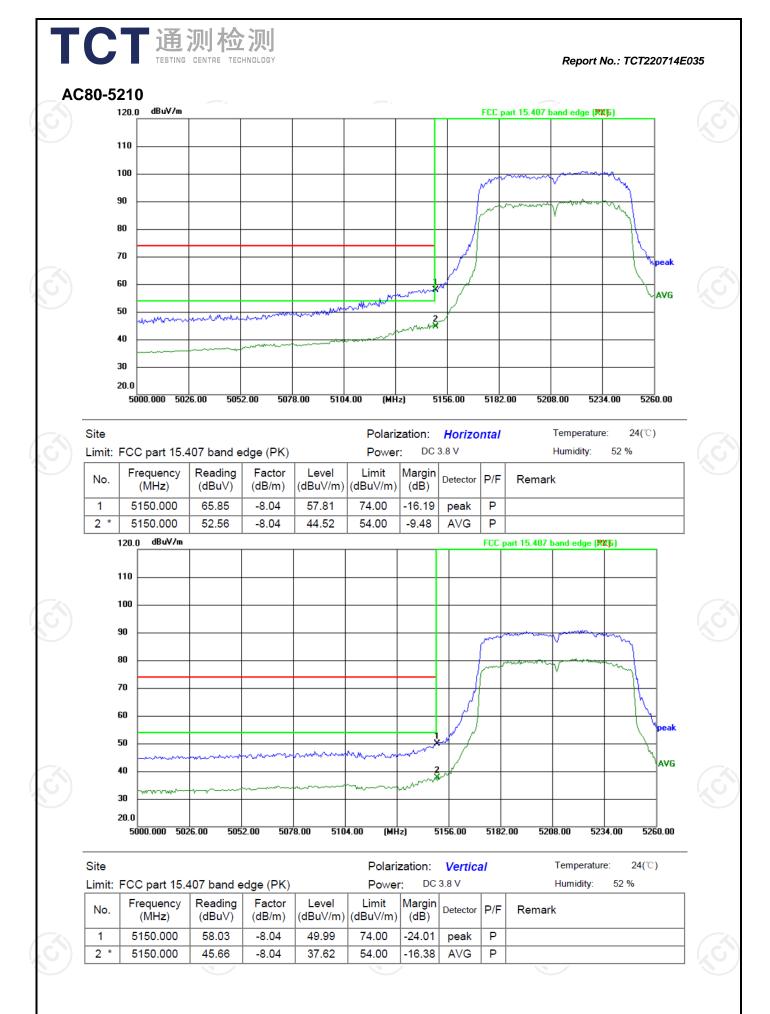

	NG CENTRE TECHNOLOG	Mode. 6. If the 10dB lo stopped reporte 10dB m quasipe reporte	d and the pe d. Otherwise	e limit speci eak values o e the emissi l be re-teste ige method	UT in peak ified, then te of the EUT w ions that did ed one by on	esting could b vould be I not have ne using peak	be
est Result:		PASS					

5.7.2. Test Instruments

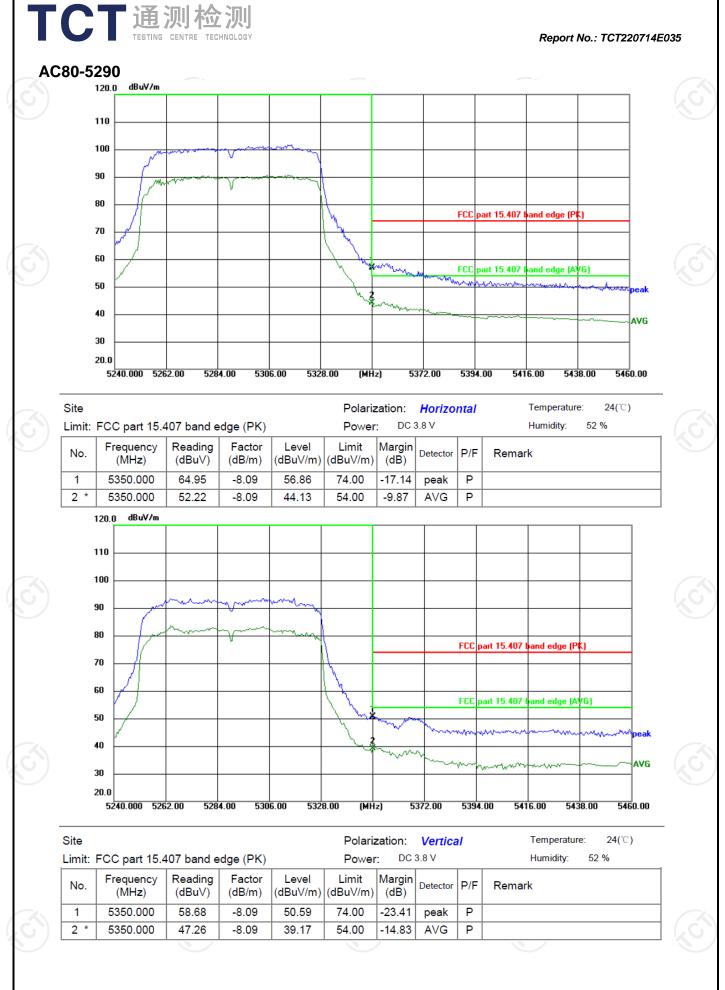

	Radiated Er	nission Test Sit	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESIB7	100197	Jul. 03, 2023
Spectrum Analyzer	R&S	FSQ40	200061	Jul. 03, 2023
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Pre-amplifier	SKET	LNPA_0118G- 45	SK202101210 2	Feb. 24, 2023
Pre-amplifier	SKET	LNPA_1840G- 50	SK202109203 500	Feb. 24, 2023
Pre-amplifier	HP	8447D	2727A05017	Jul. 03, 2023
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 11, 2024
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 05, 2024
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 05, 2024
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Apr. 10, 2023
Coaxial cable	SKET	RC-18G-N-M		Feb. 24, 2024
Coaxial cable	SKET	RC_40G-K-M	/	Feb. 24, 2024
Antenna Mast	Keleto	CC-A-4M	1	/
EMI Test Software	Shurple Technology	EZ-EMC	1	/


Page 19 of 217

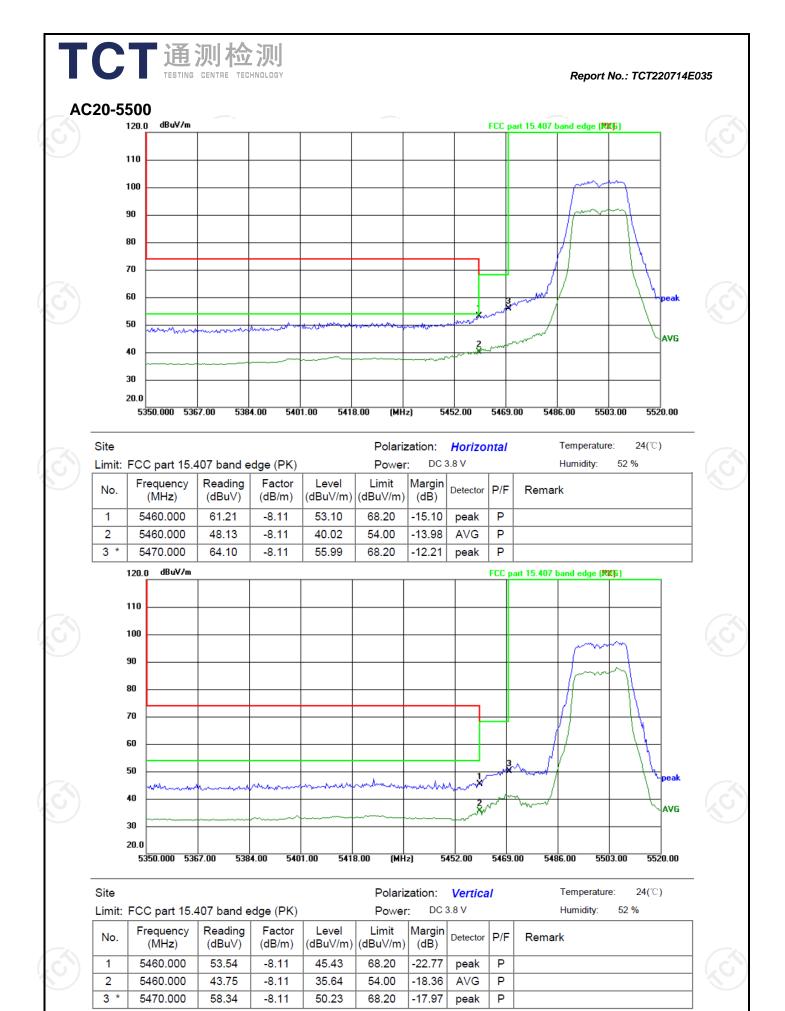
Page 20 of 217

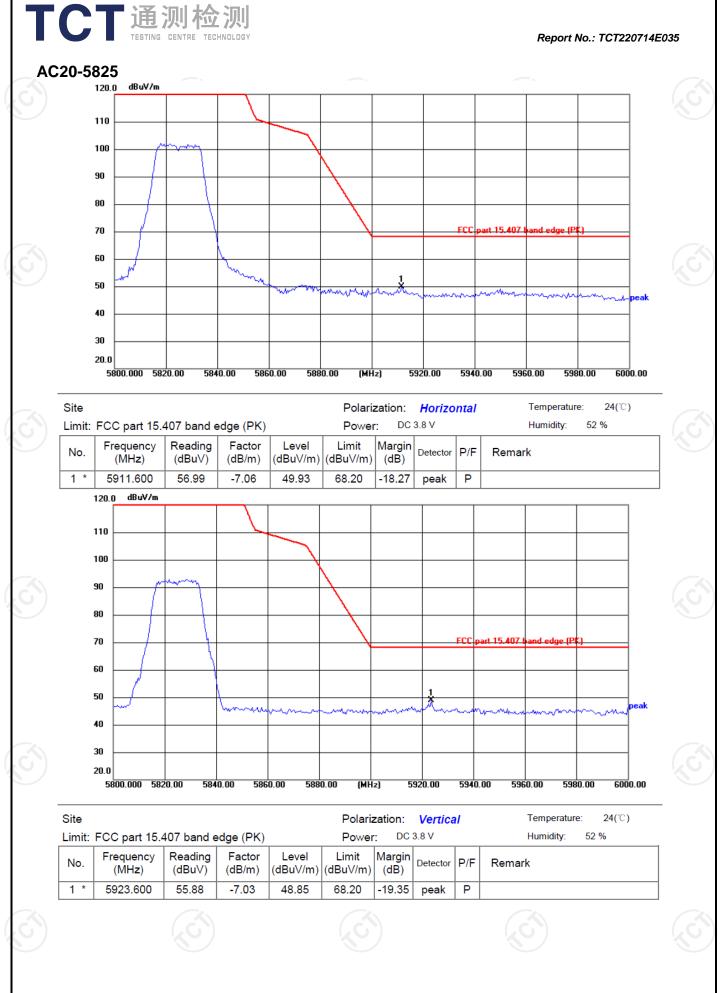


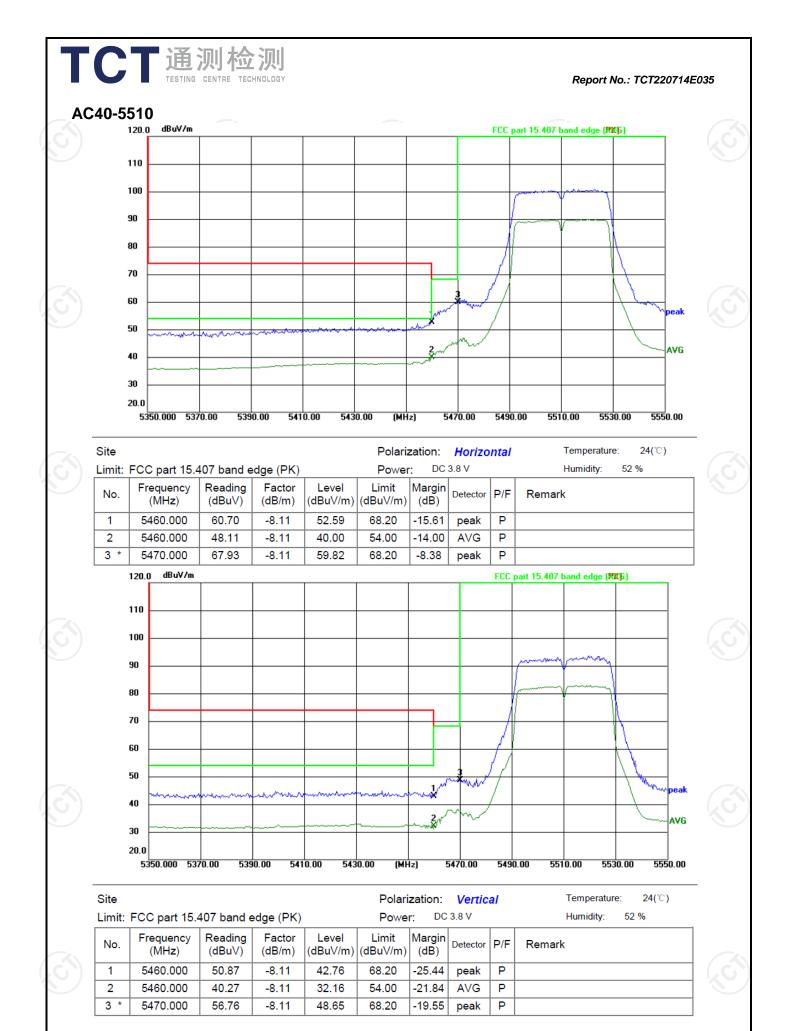
Page 21 of 217

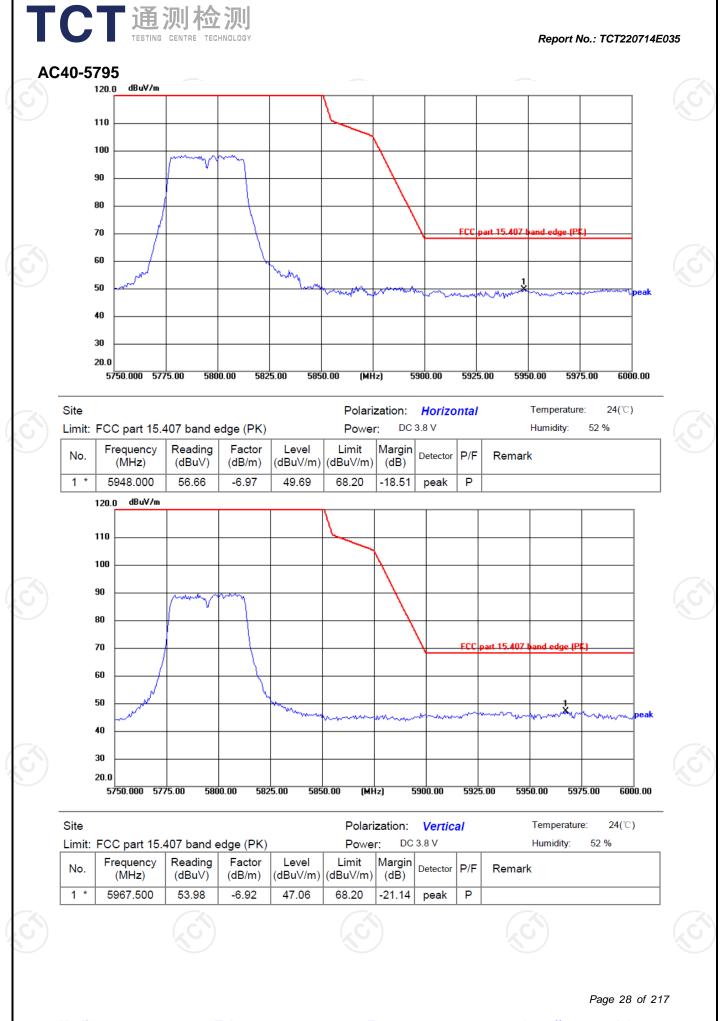


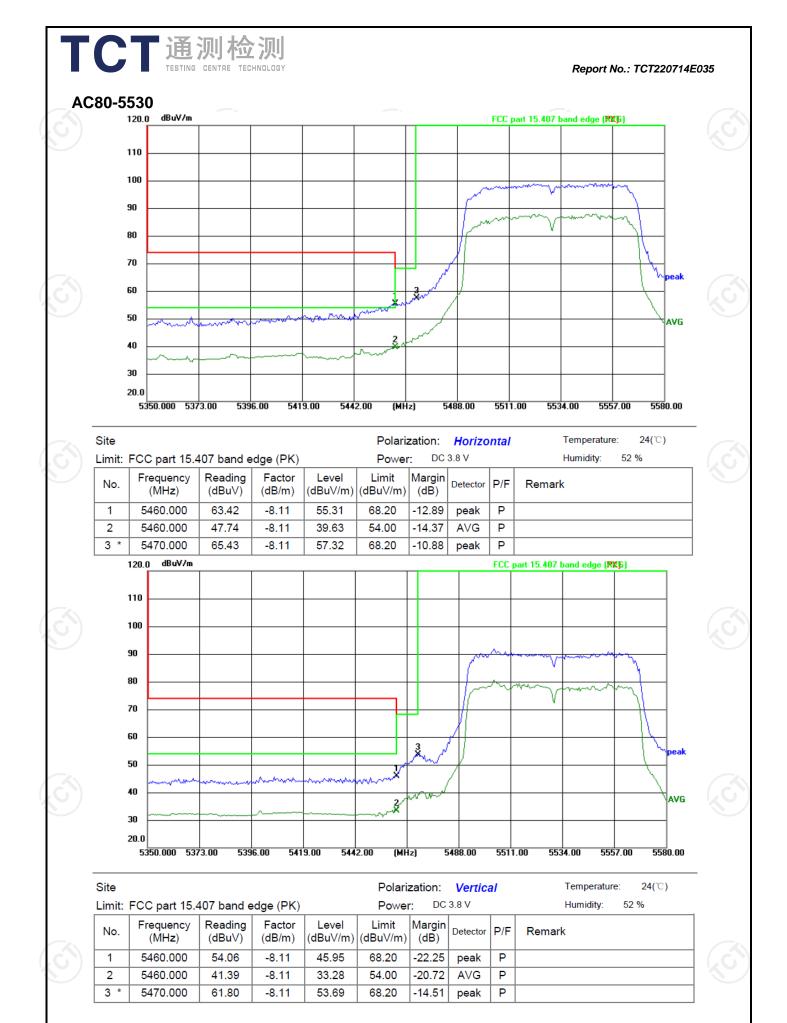
Page 22 of 217


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

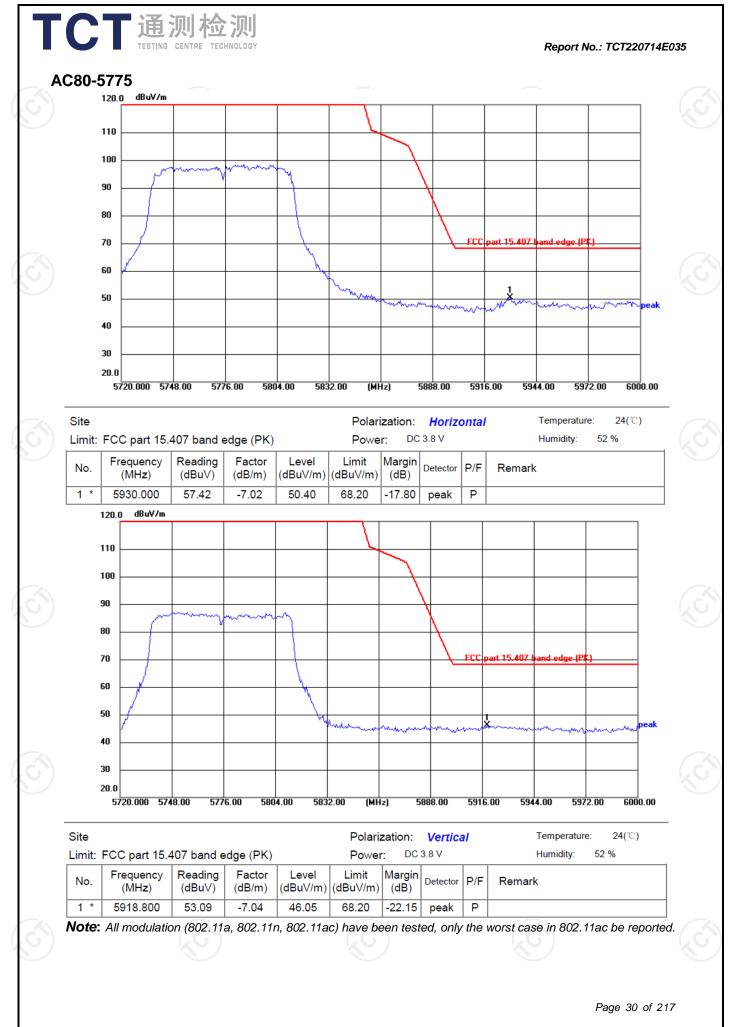

Page 23 of 217


Page 24 of 217


Page 25 of 217



Page 26 of 217

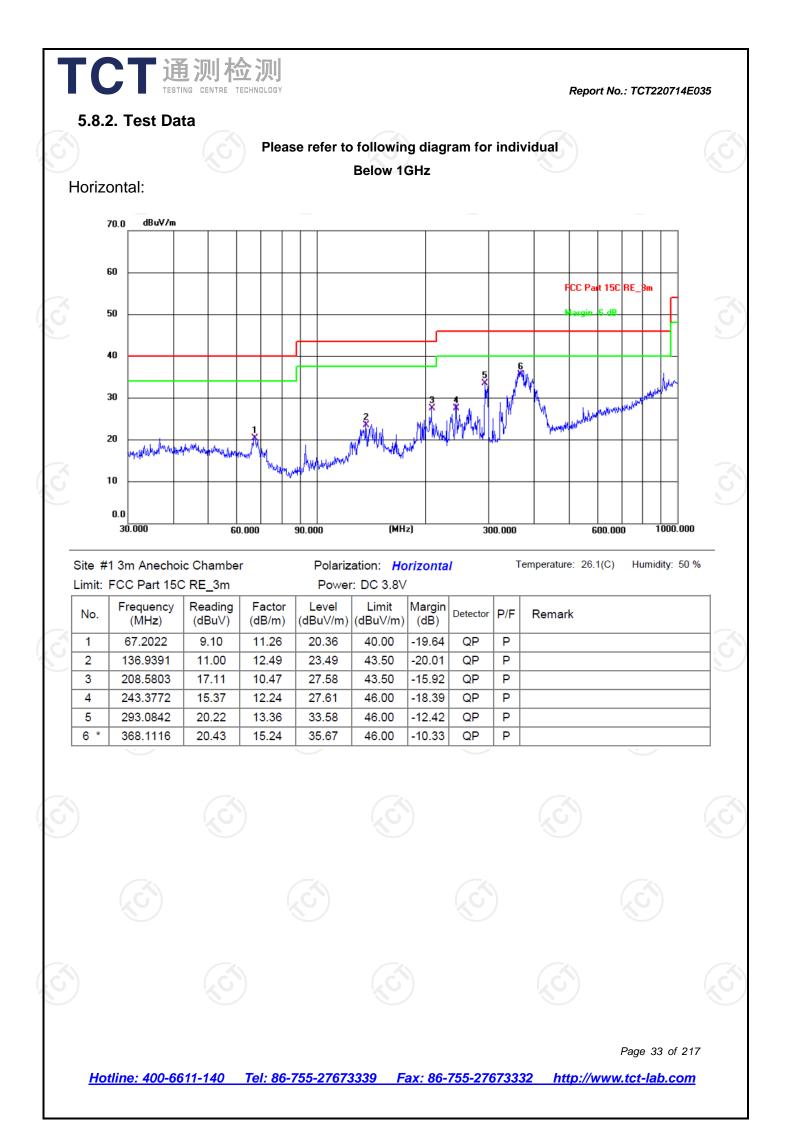


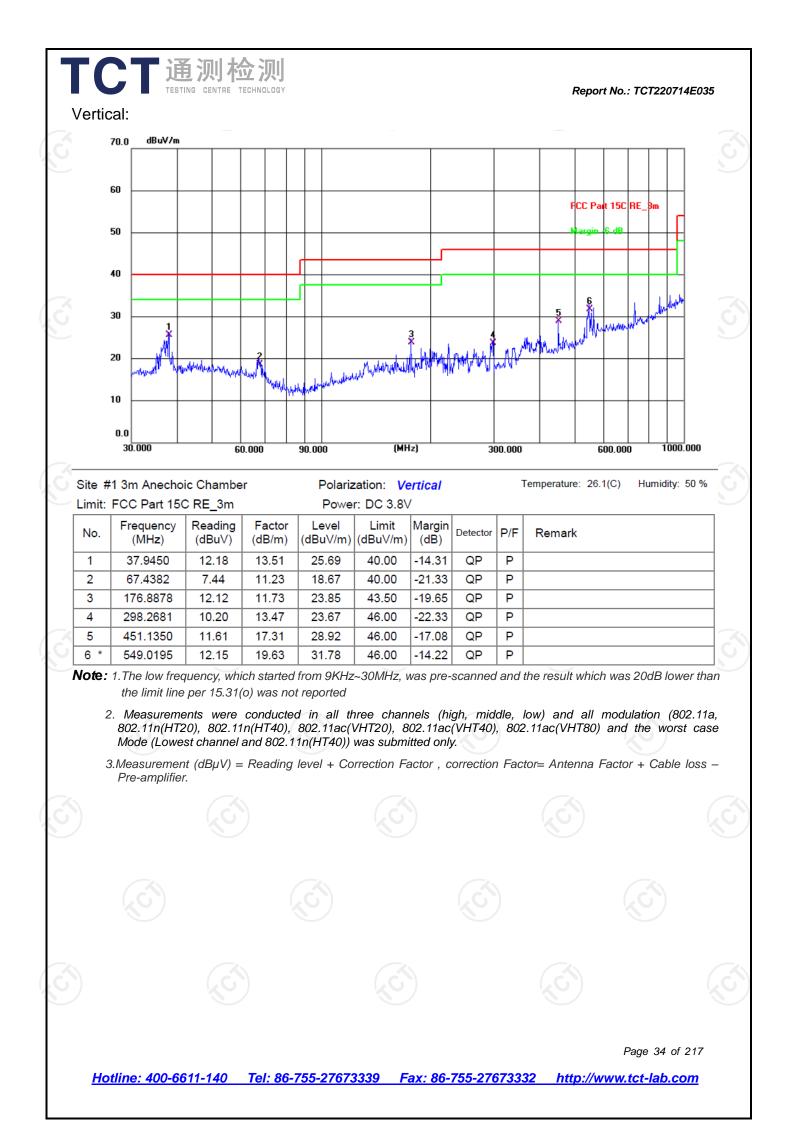
Page 27 of 217

Page 29 of 217

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

_


Report No.: TCT220714E035


5.8. Unwanted Emissions

Receiver Setup: 30MHz Image: Setup	Test Requirement:	FCC CFR47	Part 15 S	Section 15.	407 & 1	5.209 & 15.205	
Measurement Distance: 3 m Antenna Polarization: Horizontal & Vertical Operation mode: Transmitting mode with modulation Receiver Setup:	Test Method:	KDB 789033	D02 v02	r01			
Antenna Polarization: Horizontal & Vertical Operation mode: Transmitting mode with modulation Frequency Detector RBW VBW Remark. Seceiver Setup: Solutized classipeak 200Hz 118Hz 200Hz 200Hz 118Hz Quasipeak V8 30MHz Quasipeak 9kHz 150kHz Quasipeak 9kHz 30kHz Quasipeak V8 30MHz Quasipeak 9kHz 30kHz Quasipeak V8 30kHz Quasipeak V8 30MHz Quasipeak 9kHz 30kHz Quasipeak V8 30kHz Quasipeak V8 30MHz Quasipeak 9kHz 30kHz Quasipeak V8 30kHz Quasipeak V8 30MHz Quasipeak 9kHz 10kHz Quasipeak V8 New Y8 New Y8 New Y8 Unwanted spurious emissions fallen in restricted bands: In restricted bands: In restricted bands: New Y6 New Y6 </td <td>Frequency Range:</td> <td>9kHz to 40G</td> <td>Hz</td> <td>6</td> <td></td> <td></td>	Frequency Range:	9kHz to 40G	Hz	6			
Antenna Polarization: Horizontal & Vertical Operation mode: Transmitting mode with modulation Frequency Detector RBW VBW Remark. 9kHz-150kHz Quasi-peak 200Hz 1kHz Quasi-peak Va 30MHz Quasi-peak 9kHz 30kHz Quasi-peak VBW Remark. 30MHz Quasi-peak 9kHz 30kHz Quasi-peak 9kHz 30kHz Quasi-peak Va 30MHz Quasi-peak 9kHz 30kHz Quasi-peak Va 30kHz Quasi-peak Va 30MHz Quasi-peak 120kHz 30kHz Quasi-peak Va 30kHz Quasi-peak Va 30MHz Quasi-peak 140kHz Peak 1MHz 30kHz Quasi-peak Va 30MHz Quasi-peak 16Hz Quasi-peak 110kHz Average Val Above 1GHz Peak 1MHz 30hHz Average Val Peak 15.209 below table. In restricted bands: In restricted bands: In restricted bands: Masurement Peak 74dByVm Above 1G Peak 100 <td< td=""><td>Measurement Distance:</td><td>3 m</td><td></td><td></td><td></td><td></td></td<>	Measurement Distance:	3 m					
Operation mode: Transmitting mode with modulation Frequency Detector RBW VBW Remark. 9KHz-150KHz Quasi-peak 200Hz 1KHz Quasi-peak Value 150KHz Quasi-peak 9KHz 30KHz Quasi-peak Value 30MHz Ousi-peak 9KHz 30KHz Quasi-peak Value 30MHz Ousi-peak 11KHz 30KHz Quasi-peak Value 30MHz Ousi-peak 12KHz 30KHz Quasi-peak Value 30MHz Ousi-peak 11KHz 30KHz Quasi-peak Value 30MHz Ousi-peak 12KHz 30KHz Quasi-peak Value 30MHz Ousi-peak 11KHz 30KHz Quasi-peak Value 4bove 1GHz Peak 11MHz 30Hz Addgu/Vm Frequency Frequency Frequency Detector Limit@3m Above 1G AVG 540Bu/Vm Measurement Distance (mete 0.009-0.4400.07(KHz) 30 1.705-30 30 30 30 30 30 30 30 1.705-30 30	Antenna Polarization:		Vertical				
Frequency Detector RBW VBW Remark 9kHz-150kHz Quasi-peak 200Hz 1kHz Quasi-peak VBW Remark 30MHz-1GHz Quasi-peak 9kHz 30kHz Quasi-peak VBW VBW Reat VBW VBW VBW							
9kHz: 150kHz Quasi-peak 200Hz 1kHz Quasi-peak Value 30MHz Quasi-peak 9kHz 30kHz Quasi-peak Value 30MHz Quasi-peak 120KHz 30kHz Quasi-peak Value 30MHz Quasi-peak 120KHz 30kHz Quasi-peak Value Above 1GHz Peak 1MHz 30Hz Peak Value Above 1GHz Peak 1MHz 10Hz Average Value Unwanted spurious emissions fallen in restricted bands: In restricted bands: In restricted bands: Frequency Peak 74dBµVm AddpµVm Above 1G Peak 74dBµVm AddpµVm Above 1G Peak 74dBµVm AddpµVm Frequency Field Strength Measurement Distance (met 0.0490-1.705 24000/F(KHz) 300 30 30 30-88 100 3 88-216 150 3 216-960 200 3 1 1 1 1 1 216-960 200 3 1 1 1 1 1							
Receiver Setup: 150kHz- 30MHz Quasi-peak 9kHz 30kHz Quasi-peak / Value 30MHz Quasi-peak 120kHz 300KHz Quasi-peak / Value Above 1GHz Peak 1MHz 30Hz Quasi-peak / Value Above 1GHz Peak 1MHz 30Hz Peak / Value Above 1GHz Peak 1MHz 30Hz Peak / Value general field strength limits set forth in § 15.209 below table, In restricted bands: In restricted bands: Frequency Detector Limit@am Above 1G Avg 54dBµV/m Measurement 0.009-0.490 2400/F(KHz) 300 30 0.490-1.705 24000/F(KHz) 30 30 0.490-1.705 24000/F(KHz) 30 30 30-88 100 3 88-216 150 3 11.705-30 30 30 30 30 30 30-88 100 3 88-216 150 3 2 126-960 200 30 30 30 30 3							
30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value Above 1GHz Peak 1MHz 30Hz Peak Value Unwanted spurious emissions fallen in restricted bar per FCC Part15.205 shall comply with the general field strength limits set forth in § 15.209 below table. In restricted bands: In restricted bands: Frequency Detector Limit@3m Above 1G Avg 54dBµV/m Above 1G Avg 54dBµV/m Frequency Field Strength Measurement 0.009-0.490 2400/F(KHz) 30 30 30-490 2400/F(KHz) 30 30 30-88 100 3 38-216 30 30-88 100 3 30 30 30-88 100 3 30 30 30-88 100 3 3 3 10-960 200 3 3 3 216-960 200 3 3 3 Above 960 500 3 3 4 Test setup: In un-restricted bands: 68.2dBuV/m	Receiver Setup:	150kHz-				Quasi-peak Value	
Above 1GH2 Peak 1MHz 10Hz Average Value Unwanted spurious emissions fallen in restricted bails per FCC Part15.205 shall comply with the general field strength limits set forth in § 15.209 below table. In restricted bands: In restricted bands: Frequency Detector Limit@3m Above 1G Peak 74dBµV/m Frequency Field Strength Measurement (microvolls/meter) Distance (meter) 0.009-0.490 2400/F(KHz) 300 30 30 17.055-30 30 30 30 30 30-88 100 3 88-216 150 3 216-960 200 3 30 30 30 Above 960 500 3 30 30 30 In un-restricted bands: 68.2dBuV/m For radiated emissions below 30MHz For radiated emissions below 30MHz End For radiated emissions below 30MHz			Quasi-peak	120KHz	300KHz	Quasi-peak Value	
Limit: Peak 1MHz 10Hz Average Value of the per FCC Part15.205 shall comply with the general field strength limits set forth in § 15.209 below table, In restricted bands: Frequency Detector Limit@3m Above 1G Peak 74dBµV/m Above 1G Peak 74dBµV/m Frequency Field Strength Measurement (microvolts/meter) Distance (meter) 0.490-1.705 2400/F(KHz) 300 0.490-1.705 2400/F(KHz) 30 30 30-88 100 3 38-216 150 216-960 200 3 30 30 Above 960 500 30 3 3 In un-restricted bands: 68.2dBuV/m For radiated emissions below 30MHz For radiated emissions below 30MHz Eutre Tum table Unitage = 3m Computer Commeter Computer <td></td> <td></td> <td></td> <td></td> <td></td> <td>Peak Value</td>						Peak Value	
per FCC Part15.205 shall comply with the general field strength limits set forth in § 15.209 below table, In restricted bands: Frequency Detector Above 1G Peak AvG 54dBµV/m Frequency Field Strength Measurement Measurement 0.009-0.490 2400/F(KHz) 300 300 0.490-1.705 24000/F(KHz) 30-88 100 30-88 100 30-88 100 30-86 100 30-86 100 30-86 100 30-86 100 30-86 100 30-86 100 30-86 100 30-86 100 30-87 30 30-88 100 100 3 88-216 150 216-960 200 200 3 Above 960 500 10 10 10 10 10 10 10 10			Peak	1MHz	10Hz	Average Value	
Limit: Prequency (microvolts/meter) Distance (meter) 0.009-0.490 2400/F(KHz) 300 0.490-1.705 24000/F(KHz) 3 1.705-30 30 30 30-88 100 3 88-216 150 3 216-960 200 3 Above 960 500 3 In un-restricted bands: 68.2dBuV/m For radiated emissions below 30MHz Distance = 3m Computer Image: the setup: Image: the setup			G	Peak AVG		Limit@3m 74dBµV/m 54dBµV/m	
Image: Computer of the second state							
0.490-1.705 24000/F(KHz) 3 1.705-30 30 30 30-88 100 3 88-216 150 3 216-960 200 3 Above 960 500 3 In un-restricted bands: 68.2dBuV/m For radiated emissions below 30MHz In un-restricted bands: Usance = 3m Computer Image: Unit of the second	Limit:	(microvolts/			neter)	Distance (meters)	
1.705-30 30 30 30-88 100 3 88-216 150 3 216-960 200 3 Above 960 500 3 In un-restricted bands: 68.2dBuV/m For radiated emissions below 30MHz Ustance = 3m Computer Image: Computer of the second							
30-88 100 3 88-216 150 3 216-960 200 3 Above 960 500 3 In un-restricted bands: 68.2dBuV/m For radiated emissions below 30MHz Distance = 3m Computer Image: provide the second state of		· · · · · · · · · · · · · · · · · · ·					
88-216 150 3 216-960 200 3 Above 960 500 3 In un-restricted bands: 68.2dBuV/m For radiated emissions below 30MHz Distance = 3m Computer Image: the setup: Image: the setup: Test setup: Image: the setup: Image: the setup: Image: the setup:							
Above 960 500 3 In un-restricted bands: 68.2dBuV/m For radiated emissions below 30MHz Distance = 3m Computer Image: Computer of the second s							
In un-restricted bands: 68.2dBuV/m For radiated emissions below 30MHz Distance = 3m Computer Image: transmission of the second		216-960		200		3	
Test setup:		Above 960	500		3		
Test setup:		In un-restrict	ed bands:	: 68.2dBu	V/m		
Test setup:		For radiated	emissions	s below 30	MHz		
Test setup:		I	Distance = 3m			Computer	
EUT Im Turn table Receiver							
Ground Plane				()		The symposition	
	Test setup:	EUT	 Turn table				
	Test setup:	EUT					
3010112 10 10112	Test setup:		Gro				

	UGY Report No.: TCT220714E03
	EUT Turm Table NSm Turm Table Comparison Compar
	Ground Plane Above 1GHz
	Horn Antenna Tower Horn Antenna Tower Horn Antenna Tower Horn Antenna Tower Test Receiver Trest Receiver Controller
	1. The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation.
Test Procedure:	 The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak values of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasi-peak or average method as specified andthen reported in a data sheet.
Test results:	PASS

Page 32 of 217

	TESTING		LOGY				Rep	port No.: TCT2	20714E03
			P	Modulation T	Type: Band	1			
					: 5180MHz				
		Peak	AV	Correctio					
Frequency	Ant. Pol.	reading	reading	n Factor	Emissic	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
				, ,	(dBµV/m)	(dBµV/m)			
10360	Н	38.57		8.02	46.59		68.2	-4-63	-21.61
15540	Н	38.02		9.87	47.89	<u> </u>	74	54	-6.11
	Н								
Į		·	J	<u>ا</u>	ii	4	Į	4	
10360	V	38.34		8.02	46.36		68.2		-21.84
15540	V	38.15		9.87	48.02		74	54	-5.98
	V								
	•			11a CH40:					
		Dook	A\/	1					
Frequency	Ant. Pol.	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Emission Level Peak AV		Peak limit (dBµV/m)		Margin (dB)
(MHz)	H/V								
		(abp V)	(0000)	(ab/m)		(dBµV/m)			
10400	Н	39.56		7.97	47.53	(68.2		-20.67
15600	H	38.24		9.83	48.07		74	54	-5.93
	H			9.03	40.07				-5.95
/	Π				<u> </u>			<u> </u>	
10400	V	40.69		7.97	40.66	Τ	68.2		10 54
10400	V				48.66		1		-19.54
	V	38.41		9.83	48.24		74	54	-5.76
(v							72	
				11a CH48:	5240MHz				
Frequency	Ant. Pol.	Peak	AV	Correctio n Factor	Emission Level		Peak limit	AV limit	Margin
(MHz)	H/V	reading	reading		Deak	Δ\/	(dBµV/m)		(dB)
		(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	,		
10480	Н	38.71		7.97	46.68		68.2		-21.52
15720	Н	37.68		9.83	47.51		74	54	-6.49
	Н								
(3						-		<u> </u>
10480	V	38.25	L'O'	7.97	46.22	<u>ko:</u>	68.2		-21.98
15720	V V	36.14		9.83	45.97		74	54	-8.03
	V								
			11	n(HT20) C⊦	136: 5180M	lHz			
_		Peak	AV	Correctio	E minoir				
Frequency	Ant. Pol.	n reading	reading	n Factor	Emission Level		Peak limit AV limit	Margin	
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
					(dBµV/m)	(dBµV/m)			
10360	— Н	41.47		8.02	49.49		68.2		-18.71
45540	Н	37.16		9.87	47.03		74	54	-6.97
15540	И								/
15540 									
								T	
0	V	42,79		8.02	50.81		68.2		-17.39
	V V	42.79 37.24		8.02 9.87	50.81 47.11		68.2 74	 54	-17.39 -6.89

Page 35 of 217

		TESTING	则检测 CENTRE TECHNO		n(HT20) CF	140· 5200N/	1H7	Rep	ort No.: TCT	<u>220714E03</u>
			Peak	AV	<u>, </u>		11 12			
Frequency	Ant. Pol.	reading	AV reading	Correctio n Factor	Emissio	on Level	Peak limit		Margin	
(MI	Hz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
			(abh v)	(aph v)		(dBµV/m)				
104	100	Н	40.57		7.97	48.54	/	68.2		-19.66
156		H	38.12		9.83	47.95		74	54	-6.05
	- ()	Н				(6	
)								/
104	400	V	40.48		7.97	48.45		68.2		-19.75
156	500	V	37.22		9.83	47.05		74	54	-6.95
		V	4		(·				
				11	n(HT20) CH	148: 5240N	IHz			
_			Peak	AV	Correctio					
	uency	Ant. Pol.	reading	reading	n Factor			Peak limit		Margin
(MI	ΠZ)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
						(dBµV/m)	(dBµV/m)			
104	180	Н	41.14		7.97	49.11	<u> </u>	68.2		-19.09
157	720	Н	39.85		9.83	49.68		74	54	-4.32
		Н								
						X				
104	480	V	40.66		7.97	48.63		68.2		-19.57
157	720	V	39.29		9.83	49.12		74	54	-4.88
		V								
				11	n(HT40) C⊦	138: 5190N	1Hz			
Frog	uency	Ant. Pol.	Peak	AV	Correctio	Emissio	on Level	Peak limit	AV limit	Margin
(MI		H/V	reading	reading	n Factor			(dBµV/m)		(dB)
(,		(dBµV)	(dBµV)	(dB/m)	Peak	AV	(((0.2)
						· · /	(dBµV/m)			
	380	H	39.16		7.75	46.91		68.2		-21.29
155	570	H	37.52		9.87	47.39		74	54	-6.61
		Н				/				
4.00	000	14	40.00		775	40.40	1	<u> </u>		
103	570	V V	40.38		7.75	48.13		68.2		-20.07
		V	37.21		9.87	47.08		74	54 	-6.92
		V			n(HT40) CF					
	<u> </u>		Deels	-	<u>, ,</u>	140. 52301V				
Frequency	Ant. Pol.	ol. Peak , reading	AV reading	Correctio n Factor	Emission Level		Peak limit		Margin	
(MI	(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
		(ubpv)	(abpv)			(dBµV/m)				
104	460	Н	41.84		7.97	49.81		68.2		-18.39
	590	H	38.13		9.83	47.96		74	54	-6.04
										-0.04
										<u> </u>
104	160	V	41.57		7.97	49.54		68.2		-18.66
	590 590	V	38.46		9.83	48.29		74	54	-5.71
		V	00.70							

	通 TESTING	CENTRE TECHNO		c(VHT20) C	126. 5190		Rep	oort No.: TCT2	220714E03
		Deek	AV	· /					
requency	Ant. Pol.	Peak reading	reading	Correctio n Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
		(abpv)	(abh v)		(dBµV/m)				
10360	Н	40.39		8.02	48.41		68.2		-19.79
15540		37.21		9.87	47.08		74	54	-6.92
(.)	Н				(
10360	V	38.13		8.02	46.15		68.2		-22.05
15540	V	39.55		9.87	49.42		74	54	-4.58
	V								
			11a	c(VHT20) C	H40: 5200	MHz			
roquopov	Ant. Pol.	Peak	AV	Correctio	Emissio	on Level	Peak limit	AV limit	Morgin
requency (MHz)	H/V	reading	reading	n Factor			(dBµV/m)		Margin (dB)
(1011 12)	I 1/ V	(dBµV)	(dBµV)	(dB/m)	Peak	AV			(UD)
					(dBµV/m)	(dBµV/m)			
10400	Н	39.12		7.97	47.09		68.2		-21.11
15600	Н	38.28		9.83	48.11		74	54	-5.89
	Н								
						1			
10400	V	39.65		7.97	47.62		68.2		-20.58
15600	V	38.49		9.83	48.32		74	54	-5.68
	V								
				1ac(VHT20) CH48:524	10			
requency	Ant. Pol.	Peak	AV	Correctio n Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	(dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
		(abp v)	(0000)			(dBµV/m)			
10480	Н	37.57		7.97	45.54		68.2		-22.66
15720	Н	37.14		9.83	46.97		74	54	-7.03
	Н				/				
10480	V	38.48		7.97	46.45		68.2		-21.75
15720	V	38.69		9.83	48.52		74	54	-5.48
(V)
			1	1ac(VHT40) CH38:519	90			
roquenev	Ant. Pol.	Peak	AV	Correctio	Emissio	on Level	Peak limit	AV limit	Morgin
requency (MHz)	H/V	reading	reading	n Factor			(dBµV/m)		Margin (dB)
(1011 12)	1 I/ V	(dBµV)	(dBµV)	(dB/m)	Peak	AV			(UD)
						(dBµV/m)			
10380	Н	40.41		7.75	48.16		68.2		-20.04
15570	Н	39.05		9.87	48.92		74	54	-5.08
	— Н								
	G`)		60			$\langle G \rangle$	1	6)
10380	V	38.38		7.75	46.13		68.2		-22.07
15570	V	38.12		9.87	47.99		74	54	-6.01
	V								

Page 37 of 217

			则检测 CENTRE TECHNOI					Ror	oort No.: TCT2	220714E035
Ē					1ac(VHT40) CH46:523	30			.207142033
F	Frequency	Ant. Pol. H/V	Peak reading	AV reading	Correctio n Factor	Emissio	on Level	Peak limit		Margin
	(MHz)	Π/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
	10460	Н	38.24		7.97	46.21		68.2		-21.99
	15690	H	38.06		9.83	47.89		74	54	-6.11
	(_(Н				(. C 1			
	0	フ								
Ĺ	10460	V	39.58		7.97	47.55		68.2		-20.65
	15690	V	37.19		9.83	47.02		74	54	-6.98
		V	<u> </u>			~				
				1	1ac(VHT80)) CH42:521	0			
F	Frequency		Peak reading	AV reading	Correctio n Factor	Emissio	on Level	Peak limit		Margin
	(MHz)	H/V	(dBµV)́	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
	10420	Л	41.33		7.96	49.29	S	68.2		-18.91
	15630	Н	39.17		9.84	49.01		74	54	-4.99
		Н								
						X				
	10420	V	41.95		7.96	49.91		68.2		-18.29
	15630	V	39.24		9.84	49.08		74	54	-4.92
		V								

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dBµV/m)-Average limit (dBµV/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

	TESTING	则检》 CENTRE TECHNO	LOGY				Rep	oort No.: TCT2	220714E03
			M	odulation T	ype: Band 2	2A			
				11a CH52:	5260MHz				
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10520	Н	38.28		7.97	46.25	<u> </u>	68.2		-21.95
15780	Н	36.41		9.83	46.24	<u></u>	74	54	-7.76
	Н								
10520	V	41.05		7.97	49.02		68.2		-19.18
15780	V	38.36		9.83	48.19		74	54	-5.81
	V								
			l	11a CH60:	5300MHz				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Emissic Peak	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
40000		00.50		7.00	· · /	(ubµ v/m)	74	F 4	7.40
10600	Н	38.56		7.98	46.54		74	54	-7.46
15900	H	38.37		9.85	48.22		74	54	-5.78
	Н)				
				<u> </u>		1			
10600	V	39.19		7.98	47.17		74	54	-6.83
15900	V	37.64		9.85	47.49		74	54	-6.51
	V								
				11a CH64:	5320MHz		-		
Frequency	Ant. Pol.	Peak	AV	Correctio	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	n Factor (dB/m)	Peak (dBuV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10640	Н	40.38		7.98	48.36	(* * · /	74	54	-5.64
15960	H	37.71		9.85	47.56		74	54	-6.44
	H								
									<u>_</u>
10640	V	39.93	<u></u>	7.98	47.91	<u>, G</u>	74	54	-6.09
15960	V	35.04		9.85	44.89		74	54	-9.11
	V								
				In(HT20) C					
Frequency	Ant. Pol.	Peak	AV	Correctio		on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	n Factor (dB/m)	Peak	AV (dBµV/m)	(dBµV/m)		(dB)
40500		44.00		7.07			<u> </u>		40.54
10520	Н	41.69		7.97	49.66		68.2		-18.54
15780	Н	38.23		9.83	48.06	C^{-}	74	54	-5.94
0	Н								
10520	V	38.81		7.97	46.78		68.2		-21.42
15780	V	35.35		9.83	45.18		74	54	-8.82
			·		10.1				

Page 39 of 217

		TESTING	CENTRE TECHNO	LOGY				Rep	oort No.: TCT	220714E03
					n(HT20) CH	160: 5300N	1Hz			
J	Frequency	Ant. Pol.	Peak	AV	Correctio	Emissio	on Level	Peak limit	AV limit	Margin
ľ	(MHz)	H/V	reading	reading	n Factor			(dBµV/m)		(dB)
-	(11112)		(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(02,07,11)	(abp 7/11)	(42)
	10600	Н	38.14		7.98	46.12		74	54	-7.88
	15900	H	37.28		9.85	47.13		74	54	-6.87
	(Н				(<u>, 6)</u>			
╞	10000	v	40.20		7.00	40.04		74	EA	5.00
-	10600	V V	40.36		7.98	48.34		74	54	-5.66
-	15900	V V	39.42		9.85	49.27		74	54	-4.73
		V	<u> </u>		 n(HT20) CH	 164: 5320M	 1Hz			
ł			Peak	AV	Correctio					
	Frequency	Ant. Pol.	reading	reading	n Factor	Emissio	on Level	Peak limit		Margin
	(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
			(((,		(dBµV/m)			
Ľ	10640	ΖН	37.55		7.98	45.53	··· /	74	54	-8.47
┢	15960	Н	35.12		9.85	44.97		74	54	-9.03
F		 H								
2	I					2				
	10640	V	39.36		7.98	47.34		74	54	-6.66
	15960	V	39.74		9.85	49.59		74	54	-4.41
		V								
				. 11	n(HT40) CH	I54: 5270N	1Hz	-		
	_		Peak	AV	Correctio					
1	Frequency	Ant. Pol. H/V	reading	reading	n Factor	Emissio	on Level	Peak limit		Margin
	(MHz)	Π/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBuV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
ľ	10540	Н	41.59		7.97	49.56		68.2		-18.64
	15810	Н	37.24		9.83	47.07		74	54	-6.93
ľ		H								
T	I								1 1	
F	10540	V	37.47		7.97	45.44		68.2		-22.76
	15810	V	36.81		9.83	46.64	- k	74	54	-7.36
	(V							<u>-</u>	*)
П	<u>e</u>									/
			D		n(HT40) CH	102: 5310IV	IHZ			
	Frequency	Ant. Pol.	Peak	AV	Correctio	Emissio	on Level	Peak limit	AV limit	Margin
	(MHz)	H/V	reading (dBµV)	reading (dBµV)	n Factor (dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
-			(UDµV)	(UDµV)	(ub/iii)		(dBµV/m)			
- P	10620	Н	40.61		7.98	48.59		74	54	-5.41
	15930	—, Н	38.04		9.85	47.89		74	54	-6.11
	()	Э							-)
					7.00	40.54		74	5 4	
			00.50			1661		74	54	-7.49
	10620	V	38.53		7.98	46.51				
		V V V	38.53 36.78		7.98 9.85	46.63		74	54	-7.49 -7.37

Page 40 of 217

requer (MHz) 10520 15780 10520 15780 requer (MHz) 10600 15900 10600 15900 10600 15900 	$\begin{array}{c c} H/V \\ H/V \\ H/V \\ H \\ $	reading (dBµV) 40.77 39.14 40.85 37.23 	AV reading (dBμV) 	ac(VHT20) (Correctio n Factor (dB/m) 7.97 9.83 7.97 9.83 c(VHT20) C Correctio n Factor (dB/m) 7.98 9.85 	Emissio Peak (dBµV/m) 48.74 48.97 48.82 47.06 CH60: 5300 Emissio Peak	on Level AV (dBµV/m) 	Peak limit (dBµV/m) 68.2 74 68.2 74 Peak limit (dBµV/m) 74 74	(dBµV/m) 54 54 AV limit	Margir (dB) -19.46 -5.03 -19.38 -6.94 Margir (dB) -7.89 -6.29
(MHz) 10520 15780 10520 15780 10520 15900 10600 15900 10600 15900 10600 15900 10500 10600 10500 10500 10500 10500 10500 10500 10600 	$\begin{array}{c c} & H/V \\ \hline H/V \\ \hline H/V \\ \hline H \\ \hline H/V \\ \hline H \\ \hline \hline \hline H \\ \hline \hline \hline H \\ \hline \hline \hline \hline$	reading (dBμV) 40.77 39.14 40.85 37.23 Peak reading (dBμV) 38.13 37.86 37.57	reading (dBµV)	n Factor (dB/m) 7.97 9.83 7.97 9.83 c(VHT20) C Correctio n Factor (dB/m) 7.98 9.85 	Peak (dBµV/m) 48.74 48.97 48.82 47.06 CH60: 5300 Emissio Peak (dBµV/m) 46.11 47.71	AV (dBμV/m) MHz on Level AV (dBμV/m) 	(dBµV/m) 68.2 74 68.2 74 Peak limit (dBµV/m) 74	(dBµV/m) 54 54 AV limit (dBµV/m) 54	(dB) -19.46 -5.03 -19.38 -6.94 Margir (dB) -7.89
10520 15780 10520 15780 requer (MHz) 10600 15900 15900 10600 15900 	0 H 0 H 0 H 0 V 0 V 0 V 0 H 0 H 0 H 0 H 0 V	40.77 39.14 40.85 37.23 Peak reading (dBμV) 38.13 37.86 	 11a AV reading (dBµV)	7.97 9.83 9.83 c(VHT20) C Correctio n Factor (dB/m) 7.98 9.85 	(dBµV/m) 48.74 48.97 48.82 47.06 Emissio Peak (dBµV/m) 46.11 47.71	(dBµV/m) MHz on Level AV (dBµV/m) 	68.2 74 68.2 74 Peak limit (dBµV/m) 74	 54 54 AV limit (dBµV/m) 54	-19.46 -5.03 -19.38 -6.94 Margir (dB) -7.89
15780 10520 15780 requer (MHz) 10600 15900 10600 15900 requer (MHz) 15900	H H H V	39.14 40.85 37.23 Peak reading (dBµV) 38.13 37.86 37.57	 11a AV reading (dBµV)	9.83 9.83 c(VHT20) C Correctio n Factor (dB/m) 7.98 9.85 	48.97 48.82 47.06 Emissio Peak (dBµV/m) 46.11 47.71	 MHz on Level AV (dBµV/m)	74 68.2 74 Peak limit (dBµV/m) 74	54 54 AV limit (dBµV/m) 54	-5.03 -19.38 -6.94 Margir (dB) -7.89
 10520 15780 requer (MHz) 10600 15900 10600 10600 requer (MHz) 10640	H H V V V N N N N N N N N N N N N N	 40.85 37.23 Peak reading (dBμV) 38.13 37.86 37.57	 11a AV reading (dBµV) 	 7.97 9.83 c(VHT20) C Correctio n Factor (dB/m) 7.98 9.85 	 48.82 47.06 CH60: 5300 Emissio Peak (dBµV/m) 46.11 47.71	 MHz on Level AV (dBµV/m) 	 68.2 74 Peak limit (dBµV/m) 74	 54 AV limit (dBµV/m) 54	 -19.38 -6.94 Margir (dB)
10520 15780 requer (MHz) 10600 15900 10600 15900 requer (MHz) 10640	V V	40.85 37.23 Peak reading (dBμV) 38.13 37.86 37.57	 11a AV reading (dBµV) 	7.97 9.83 c(VHT20) C Correctio n Factor (dB/m) 7.98 9.85 	48.82 47.06 ΣH60: 5300 Emissio Peak (dBμV/m) 46.11 47.71	 MHz on Level AV (dBµV/m) 	68.2 74 Peak limit (dBµV/m) 74	 54 AV limit (dBµV/m) 54	-19.38 -6.94 Margir (dB)
15780 (MHz) 10600 15900 10600 15900 requer (MHz) 10640	V V Icy Ant. Pol H/V H H H V V	37.23 Peak reading (dBμV) 38.13 37.86 37.57	 11a AV reading (dBµV) 	9.83 c(VHT20) C Correctio n Factor (dB/m) 7.98 9.85 	47.06 Emissic Peak (dBμV/m) 46.11 47.71	 MHz on Level AV (dBµV/m) 	74 Peak limit (dBµV/m) 74	54 AV limit (dBµV/m) 54	-6.94 Margir (dB)
15780 (MHz) 10600 15900 10600 15900 requer (MHz) 10640	V V Icy Ant. Pol H/V H H H V V	37.23 Peak reading (dBμV) 38.13 37.86 37.57	 11a AV reading (dBµV) 	9.83 c(VHT20) C Correctio n Factor (dB/m) 7.98 9.85 	47.06 Emissic Peak (dBμV/m) 46.11 47.71	 MHz on Level AV (dBµV/m) 	74 Peak limit (dBµV/m) 74	54 AV limit (dBµV/m) 54	-6.94 Margir (dB)
 requer (MHz) 10600 15900 10600 15900 requer (MHz) 10640	V Ant. Pol H/V H H H H	 Peak reading (dBμV) 38.13 37.86 37.57	 AV reading (dBµV) 	 c(VHT20) C Correctio n Factor (dB/m) 7.98 9.85 	 Emissio Peak (dBµV/m) 46.11 47.71	 MHz on Level AV (dBµV/m) 	Peak limit (dBµV/m) 74	AV limit (dBµV/m) 54	 Margir (dB)
requer (MHz) 10600 15900 10600 requer (MHz) 10640	Ant. Pol H/V H/V H H H V V V	Peak reading (dBµV) 38.13 37.86 37.57	11a AV reading (dBµV)	Correctio n Factor (dB/m) 7.98 9.85 	EH60: 5300 Emissio Peak (dBµV/m) 46.11 47.71	MHz on Level AV (dBµV/m) 	Peak limit (dBµV/m) 74	AV limit (dBµV/m) 54	Margir (dB)
(MHz) 10600 15900 10600 15900 requer (MHz) 10640	H/V H/V H/V H <td>reading (dBμV) 38.13 37.86 37.57</td> <td>AV reading (dBµV)</td> <td>Correctio n Factor (dB/m) 7.98 9.85 </td> <td>Emissio Peak (dBµV/m) 46.11 47.71</td> <td>on Level AV (dBµV/m) </td> <td>(dBµV/m) 74</td> <td>(dBµV/m) 54</td> <td>(dB)</td>	reading (dBμV) 38.13 37.86 37.57	AV reading (dBµV)	Correctio n Factor (dB/m) 7.98 9.85 	Emissio Peak (dBµV/m) 46.11 47.71	on Level AV (dBµV/m) 	(dBµV/m) 74	(dBµV/m) 54	(dB)
(MHz) 10600 15900 10600 15900 requer (MHz) 10640	H/V H/V H/V H <td>reading (dBμV) 38.13 37.86 37.57</td> <td>reading (dBµV)</td> <td>n Factor (dB/m) 7.98 9.85 </td> <td>Peak (dBµV/m) 46.11 47.71</td> <td>AV (dBµV/m) </td> <td>(dBµV/m) 74</td> <td>(dBµV/m) 54</td> <td>(dB)</td>	reading (dBμV) 38.13 37.86 37.57	reading (dBµV)	n Factor (dB/m) 7.98 9.85 	Peak (dBµV/m) 46.11 47.71	AV (dBµV/m) 	(dBµV/m) 74	(dBµV/m) 54	(dB)
(MHz) 10600 15900 10600 15900 requer (MHz) 10640	H/V H/V H/V H <td>reading (dBµV) 38.13 37.86 37.57</td> <td>(dBµV)</td> <td>(dB/m) 7.98 9.85 </td> <td>Peak (dBµV/m) 46.11 47.71</td> <td>AV (dBµV/m) </td> <td>(dBµV/m) 74</td> <td>(dBµV/m) 54</td> <td>(dB)</td>	reading (dBµV) 38.13 37.86 37.57	(dBµV)	(dB/m) 7.98 9.85 	Peak (dBµV/m) 46.11 47.71	AV (dBµV/m) 	(dBµV/m) 74	(dBµV/m) 54	(dB)
10600 15900 10600 15900 requer (MHz) 10640	H H H H H V V V V	38.13 37.86 37.57		7.98 9.85 	(dBµV/m) 46.11 47.71	(dBµV/m) 	74	54	-7.89
15900 10600 15900 requer (MHz) 10640	0 H H 0 V 0 V	37.86 37.57		9.85	46.11 47.71				
15900 10600 15900 requer (MHz) 10640	0 H H 0 V 0 V	37.86 37.57		9.85	47.71				
 10600 15900 requer (MHz) 10640	H 0 V 0 V	37.57					74	54	-6.29
10600 15900 requer (MHz) 10640) V) V	37.57	1						
15900 requer (MHz) 10640) V			6					
15900 requer (MHz) 10640) V								
requer (MHz)		36.02		7.98	45.55		74	54	-8.45
requer (MHz) 10640	V			9.85	45.87		74	54	-8.13
(MHz) 10640									
(MHz) 10640		-	11a	c(VHT20) C	H64: 5320	MHz	·		
(MHz) 10640		Peak	AV	Correctio	Emionia	on Level	De als line it		Manain
10640		reading	reading	n Factor	LIIISSIC		Peak limit (dBµV/m)		Margin (dB)
		(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(ασμ ν/π)	(ασμ ν/π)	(ub)
15960) Н	40.37		7.98	48.35		74	54	-5.65
) Н	39.46		9.85	49.31		74	54	-4.69
	Н			()	7				
10640) V	40.58		7.98	48.56		74	54	-5.44
15960	V	35.12		9.85	44.97	- A	74	54	-9.03
	V		- (C))
			11a	c(VHT40) C	H54: 5270	MHz			
requer		Peak reading	AV reading	Correctio n Factor		on Level	Peak limit	AV limit	Margir
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10540) Н	40.14		7.97	48.11		68.2		-20.09
15810		37.89		9.83	47.72		74	54	-6.28
	H								
		1					1		Ì
10540		39.72		7.97	47.69		68.2		-20.51
15810	V			9.83	47.48		74	54	-6.52
		37.65	ļ						

Page 41 of 217

			则检测					Ror	oort No.: TCT2	220714E035
Ē					c(VHT40) C	H62: 5310	MHz	Nep	<u>iont no 1012</u>	.201142033
F	Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	1	on Level	Peak limit		Margin
	(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
	10620	Н	38.69		7.98	46.67		74	54	-7.33
	15930	Н	36.12		9.85	45.97		74	54	-8.03
	(, (Н				(. C 1			
	0	\mathcal{I}								/
	10620	V	39.77		7.98	47.75		74	54	-6.25
	15930	V	37.38		9.85	47.23		74	54	-6.77
5		V				Ø				
				11a	ac(VHT80)	C58:5290N	1Hz			
F		Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	on Level	Peak limit		Margin
	(MHz)	H/V	(dBµV)	(dBµV)́	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
	10580	Н	41.11		7.98	49.09	S	74	54	-4.91
	15870	Н	39.96		9.85	49.81		74	54	-4.19
		Н								
						X				
	10580	V	40.45		7.98	48.43		74	54	-5.57
/	15870	V	37.86		9.85	47.71		74	54	-6.29
		V								

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dBµV/m)-Average limit (dBµV/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.

5. Data of measurement shown "----"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

	TESTING	则检 测 GENTRE TECHNO	LOGY				Rep	port No.: TCT2	220714E0:
				. .					
				odulation Ty 11a CH100					
		Deak	1	1					
Frequency		Peak reading	AV reading	Correctio n Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
		(~~~~~)	(((dBµV/m)	(dBµV/m)			
11000	н	39.58		8.03	47.61	· · · ·	74	54	-6.39
16500	Эн	39.21		9.76	48.97		68.2		-19.23
	Н								
11000	V	40.04		8.03	48.07		74	54	-5.93
16500	V	40.69		9.76	50.45		68.2		-17.75
	V				·				
				11a CH120	: 5600MHz				
Frequency	Ant. Pol.	Peak	AV	Correctio	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading	reading	n Factor		-	(dBµV/m)		(dB)
(,		(dBµV)	(dBµV)	(dB/m)	Peak	AV (dBu)//m)	((,	
44000		40.00		2.04	(dBµV/m)	(dBµV/m)	74	F 4	5 70
11200	H	40.23		8.04	48.27		74 68.2	54	-5.73
16800	H H	40.71		9.74	50.45		68.2		-17.75
<u> </u>	П				<u> </u>				
11200	V	38.05		8.04	46.09		74	54	-7.91
16800	V	39.83		9.74	40.09		68.2		-18.63
	V								-10.03
				11a CH140	: 5700MHz				
		Peak	AV	Correctio					
	Ant. Pol. H/V	reading	reading	n Factor	Emissic	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
					(dBµV/m)	(dBµV/m)			
11400	Н	38.17		8.05	46.22		74	54	-7.78
17100	Н	40.36		9.72	50.08		68.2		-18.12
	Н								
		<u> </u>		T			<u> </u>		
11400	V	38.28		8.05	46.33	<u> </u>	74	54	-7.67
17100	V	40.66	<u> </u>	9.72	50.38	<u></u>	68.2		-17.82
	V								
		Deals	-	n(HT20) CH	100: 55001	/IHZ	1	- 	
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	on Level	Peak limit	AV limit	Margir
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
		(0.0 µ 1)	(0201)	(02/11)	(dBµV/m)	(dBµV/m)			
11000	Н	40.29		8.03	48.32		74	54	-5.68
16500	Н	39.51		9.76	49.27		68.2		-18.93
8	Н					<u> </u>			/
				,a					
11000	V	38.86		8.03	46.89		74	54	-7.11
16500	V	41.17		9.76	50.93		68.2		-17.27
	V								

Page 43 of 217

	TESTING	则检》		n(HT20) CH	120. 26001	ЛНz	Rep	ort No.: TCT	220714E03
		Peak	AV	Correctio					
Frequency		reading	reading	n Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11200	Н	39.12		8.04	47.16		74	54	-6.84
16800	—, Н	40.47		9.74	50.21		68.2		-17.99
(. (Н				(
0									
11200	V	38.29		8.04	46.33		74	54	-7.67
16800	V	39.53		9.74	49.27		68.2		-18.93
	V	4							
			11r	(HT20) CH	140: 5700N	ЛНz			
	Ant Dal	Peak	AV	Correctio	Emicoid	on Level	Dealdinait	A \ / line it	Marain
Frequency (MHz)	Ant. Pol. H/V	reading	reading	n Factor	EIIISSIC		Peak limit (dBµV/m)		Margin (dB)
	Π/ V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(ασμν/Π)	(dBµV/m)	(ub)
					(dBµV/m)	(dBµV/m)			
11400	Н	39.27		8.05	47.32	<u> </u>	74	54	-6.68
17100	Н	40.34		9.72	50.06		68.2		-18.14
	Н								
					X				
11400	V	38.13		8.05	46.18		74	54	-7.82
17100	V	39.92		9.72	49.64		68.2		-18.56
	V								
			11r	(HT40) CH	102: 5510N	ЛНz			
		Peak	AV	Correctio	Eminoid	on Level	Deal Parts		
Frequency (MHz)	Ant. Pol. H/V	reading	reading	n Factor	EIIIISSIC		Peak limit		Margin
(IVITIZ)		(dBµV)	(dBµV)	(dB/m)	Peak	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11020	H	39.88		8.03	· · /	· · · /	74	Ε Λ	6.00
					47.91		74 68.2	54	-6.09
16530	H H	39.15		9.76	48.91		00.2		-19.29
11020	V	39.96		8.03	47.99		74	54	-6.01
16530	V	39.90		9.76	46.78				-0.01
()	V			9.70	40.70	 	68.2		4
1	V			 n(HT40) CH	110, 55001)
		Deals			116. 00901	/IПZ			
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
		(ubµv)	(ασμν)			(dBµV/m)			
11180	Н	39.85		8.04	47.89		74	54	-6.11
16770	H	39.85		9.74	49.51		68.2		-18.69
	H			9.74					-16.69
							I		·
		37.23	KO.	8.04	45.27		74	54	-8.73
	V			0.04	40.27	-4-		54	-0.13
 11180	V			0.74	50 00		600		17 04
	V V V	41.15		9.74	50.89		68.2 		-17.31

Page 44 of 217

	通 TESTING	CENTRE TECHNO		n(HT40) CH	131.56701	117	Rep	oort No.: TCT2	220714E0
		Deek	AV	<u>`</u>	134. 3070	/11/12			
requency		Peak reading	reading	Correctio n Factor	Emissio	on Level	Peak limit	AV limit	Margir
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
		(abh v)	(abh v)			(dBµV/m)			
11340	Н	40.66		8.05	48.71		74	54	-5.29
17010	—, Н	41.13		9.72	50.85		68.2		-17.35
(.(Н				(
	\mathcal{I}								/
11340	V	39.24		8.05	47.29		74	54	-6.71
17010	V	38.09		9.72	47.81		68.2		-20.39
	V	Ŧ							
			11ac	(VHT20) C	H100: 5500	MHz			
		Peak	AV	Correctio	Eminoid	on Level	Deal Parts		Maria
	Ant. Pol. H/V	reading	reading	n Factor	EIIIISSIC		Peak limit		Margir
(MHz)	Π/ V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
					(dBµV/m)	(dBµV/m)			
11000	Н	37.15		8.03	45.18	<u> </u>	74	54	-8.82
16500	Н	39.28		9.76	49.04		68.2		-19.16
	Н								
					X				
11000	V	39.56		8.03	47.59		74	54	-6.41
16500	V	39.37		9.76	49.13		68.2		-19.07
	V								
			11ac	(VHT20) C	H120: 5600)MHz			
	Ant Dal	Peak	AV	Correctio	Emicoid	on Level	Peak limit		Morair
requency (MHz)	Ant. Pol. H/V	reading	reading	n Factor	LIIISSIC		(dBµV/m)		Margir (dB)
(11112)	1 I/ V	(dBµV)	(dBµV)	(dB/m)	Peak	AV		(uph v/m)	(uD)
					(dBµV/m)	(dBµV/m)			
11200	H	40.29		8.04	48.33		74	54	-5.67
16800	Н	39.11		9.74	48.85		68.2		-19.35
	Н)				
				1	-	1	•		
11200	V	39.89		8.04	47.93		74	54	-6.07
16800	V	39.34		9.74	49.08		68.2		-19.12
	V							-+)
		-		(VHT20) C	H140: 5700)MHz	-	-	
requency	Ant. Pol.	Peak	AV	Correctio	Emissio	on Level	Peak limit	AV limit	Margir
(MHz)	H/V	reading	reading	n Factor			(dBµV/m)		(dB)
()		(dBµV)	(dBµV)	(dB/m)	Peak	AV			(-)
						(dBµV/m)			
11400	H	39.82		8.05	47.87		74	54	-6.13
17100	H	38.13		9.72	47.85		68.2		-20.35
	H								
	<u>6)</u>		6			$\langle G \rangle$	— -		`)
11400	V	40.66		8.05	48.71	<u> </u>	74	54	-5.29
17100	V V	39.47		9.72	49.19		68.2		-19.01

Page 45 of 217

	通 TESTING	CENTRE TECHNO		(VHT40) CI	H102: 5510)MHz	Rep	oort No.: TCT2	20714E0
		Peak	AV	Correctio					
	Ant. Pol.	reading	reading	n Factor	Emissio	on Level	Peak limit		Margir
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11020	Н	38.44		8.03	46.47		74	54	-7.53
16530	H	39.25		9.76	49.01		68.2		-19.19
(, (Н				(. G - 1			
	\mathcal{I}						-		
11020	V	41.01		8.03	49.04		74	54	-4.96
16530	V	38.39		9.76	48.15		68.2		-20.05
	V				·				
			11ac	(VHT40) CI	H118: 5590	MHz			
requency	Ant. Pol.	Peak	AV	Correctio	Emissio	on Level	Peak limit	AV limit	Margir
(MHz)	H/V	reading	reading	n Factor		-	(dBµV/m)		(dB)
()		(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(((0.2)
11180	Н	38.59		8.04	46.63		74	54	-7.37
16770	Н	36.12		9.74	45.86		68.2		-22.34
	Н								
11180	V	38.27		8.04	46.31		74	54	-7.69
16770	V	37.45		9.74	47.19		68.2		-21.01
	V								
			11ac	(VHT40) Cl	H134: 5670)MHz			
requency	Ant. Pol.	Peak	AV	Correctio	Emissio	on Level	Peak limit	AV limit	Margi
(MHz)	H/V	reading	reading	n Factor			(dBµV/m)		(dB)
· · ·		(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)		× 1 /	
11340	Н	37.13		8.05	45.18		74	54	-8.82
17010	Н	36.56		9.72	46.28		68.2		-21.92
	Н)				
				1	1		1		
11340	V	37.31		8.05	45.36		74	54	-8.64
17010	V	39.29		9.72	49.01		68.2		-19.19
	V					<u> </u>		-+20	
				(VHT80) CI	H106: 5530	MHz	-		
requency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correctio n Factor		on Level	Peak limit (dBµV/m)		Margiı (dB)
(10112)	11/ 0	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)			(ub)
11060	H	39.45		8.03	47.48		74	54	-6.52
16590	Н	40.27		9.75	50.02		68.2		-18.18
	H								
	ci)					(\mathbf{G})		(.G	•
11060	V	40.36		8.03	48.39	<u> </u>	74	54	-5.61
16590	V	41.88		9.75	51.63		68.2		-16.57
	V								

Page 46 of 217

				MHz	H122: 5610	(VHT80) Cł	11ac			
	Margin	-	Peak limit	on Level	Emissic	Correctio n Factor	AV reading	Peak reading	Ant. Pol.	Frequency
	(dB)	(dBµV/m)	(dBµV/m)	AV (dBµV/m)	Peak (dBµV/m)	(dB/m)	(dBµV)	(dBµV)́	H/V	(MHz)
	-5.82	54	74		48.18	8.05		40.13	Н	11220
	-19.52		68.2		48.68	9.72		38.96	— Н	16830
		- .		G 1	((Н	(, (
									\mathcal{I}	0
	-6.91	54	74		47.09	8.05		39.04	V	11220
	-18.91		68.2		49.29	9.72		39.57	V	16830
/								4-	V	

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Page 47 of 217

	TESTING	则检 测 CENTRE TECHNO	LOGY				Ref	oort No.: TCT2	220714E03
				As durations 7		0			
				Nodulation T	• •				
		Peak	AV	Correctio					
Frequency		reading	reading	n Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
			((dBµV/m)	(dBµV/m)			
11490	Н	37.23	(8.09	45.32		74	54	-8.68
17235	Эн	37.41		9.67	47.08		68.2		-21.12
	Н								
11490	V	40.58		8.09	48.67		74	54	-5.33
17235	V	38.76		9.67	48.43		68.2		-19.77
	V				Z				
				11a CH157	7: 5785MHz				
Frequency	Ant. Pol.	Peak	AV	Correctio	Emissi	on Level	Peak limit	AV limit	Margin
Frequency (MHz)	H/V	reading	reading	n Factor		-	(dBµV/m)		(dB)
(101112)	11/ V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(αυμ ν/ιι.)		(00)
					(dBµV/m)	(dBµV/m)			
11570	H	39.25		8.10	47.35		74	54	-6.65
17355	H	38.84		9.65	48.49		68.2		-19.71
)	Н	$(2G^2)$		6)				
	· . ,							<u> </u>	
11570	V	38.03		8.10	46.13		74	54	-7.87
17355	V	39.79		9.65	49.44		68.2		-18.76
	V					<u></u>			
		Durk	-	11a CH165	: 5825MHz				
Frequency	Ant. Pol.	Peak	AV	Correctio	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	n Factor (dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
		(ubpv)	(ubpv)			(dBµV/m)			
11650	Н	37.51		8.12	45.63		74	54	-8.37
17475	H	36.14		9.62	45.76		68.2		-22.44
	H								
		<u>. </u>		<u> </u>	<u> </u>				-
11650	V	38.77		8.12	46.89	[.G]	74	54	-7.11
17475	V	38.36		9.62	47.98		68.2		-20.22
	V								
			11r	n(HT20) CH	149: 5745	ЛНz			
_		Peak	AV	Correctio					
	Ant. Pol. H/V	reading	reading	n Factor	Emissic	on Level	Peak limit		Margin
(MHz)	П/ V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
					(dBµV/m)	(dBµV/m)			
11490	H	38.52		8.09	46.61		74	54	-7.39
17235	Н	38.47		9.67	48.14		68.2		-20.06
``	Н								/
11490	V	39.86		8.09	47.95		74	54	-6.05
17235	V	37.29		9.67	46.96		68.2		-21.24
	V	(, C-+-)		(. C			<u> </u>		

Page 48 of 217

	TESTING	则检》	LOGY				Rep	oort No.: TCT2	220714E03
			11r	n(HT20) CH	157: 5785N	ЛНz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Emissic Peak	on Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
		((()		(dBµV/m)			
11570	H	38.34		8.10	46.44		74	54	-7.56
17355	Н	39.16		9.65	48.81		68.2		-19.39
(Н					<u> </u>			
11570	V	38.28		8.10	46.38		74	54	-7.62
17355	V	39.93		9.65	49.58		68.2		-18.62
)	V	(<u>,</u> G)		/20))				
			11r	(HT20) CH	165: 58251	ЛНz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correctio n Factor		on Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
(11112)	11/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(αυμν/ιιι)	(dbµ v/m)	(UD)
11650	Н	38.35		8.12	46.47		74	54	-7.53
17475	Н	37.41		9.62	47.03		68.2		-21.17
	Н	<u> </u>							
		(G)		0.0			(G)		
11650	V	38.17		8.12	46.29		74	54	-7.71
17475	V	39.92		9.62	49.54		68.2		-18.66
	V								
			11r	n(HT40) CH	151: 5755N	ЛНz			
Frequency	Ant. Pol.	Peak	AV	Correctio	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	n Factor (dB/m)	Peak	AV (dBµV/m)	(dBµV/m)		(dB)
11510	Н	40.25		8.09	48.34		74	54	-5.66
17265	Н	37.41		9.67	47.08		68.2		-21.12
	Н								
11510	V	41.06	77	8.09	49.15		74	54	-4.85
17265	V	38.82		9.67	48.49	$\langle G^{} \rangle$	68.2	-+.G	-19.71
Ú	V								
			11r	(HT40) CH	159: 5795N	ЛНz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Emissic Peak	on Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
			(ασμν)		(dBµV/m)	(dBµV/m)			
11590	H	38.47		8.10	46.57		74	54	-7.43
17385	Н	38.52		9.65	48.17		68.2		-20.03
(Н							-t.G)
		a =			4				/
11590	V	38.78		8.10	46.88		74	54	-7.12
17385	V	37.04		9.65	46.69		68.2		-21.51
	V								

Page 49 of 217

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

	TESTING	则检测 GENTRE TECHNO		(VHT20) C	H140· 5745	MH7	Rep	ort No.: TCT2	220714E03
		Peak	AV	Correctio					
requency	Ant. Pol.	reading	reading	n Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
		(00000)	(00001)	(02,111)		(dBµV/m)			
11490	Н	40.25		8.09	48.34		74	54	-5.66
17235	H	37.66		9.67	47.33		68.2		-20.87
(. (Н				(
11490	V	40.37		8.09	48.46		74	54	-5.54
17235	V	38.84		9.67	48.51		68.2		-19.69
	V	4			~				
			11ac	(VHT20) C	H157: 5785	MHz			
		Peak	AV	Correctio	Emionia	on Level	De als lins it		
requency (MHz)	Ant. Pol. H/V	reading	reading	n Factor	EIIISSIC		Peak limit		Margin
(IVIFIZ)	Π/ V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
					(dBµV/m)	(dBµV/m)			
11570	Н	38.39		8.10	46.49	-	74	54	-7.51
17355	Н	36.14		9.65	45.79		68.2		-22.41
	Н								
					Z				
11570	V	37.56		8.10	45.66		74	54	-8.34
17355	V	38.87		9.65	48.52		68.2		-19.68
	V								
			11ac	(VHT20) C	H165: 5825	ōMHz			
requency	Ant. Pol.	Peak	AV	Correctio	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading	reading	n Factor			(dBµV/m)		(dB)
()		(dBµV)	(dBµV)	(dB/m)	Peak	AV	(((0.2)
11050		40.0-			,	(dBµV/m)			
11650	H	40.25		8.12	48.37		74	54	-5.63
17475	H	38.41		9.62	48.03		68.2		-20.17
	Н				/		·		
11650	V	38.17		8.12	40.00		74	E 4	7 74
17475	V	40.59		9.62	46.29 50.21		74 68.2	54 	-7.71 -17.99
	V	40.59		9.02		 		C	-17.99
	V			 (VHT40) C			<u> </u>		
		Peak	AV	, ,					
requency	Ant. Pol.	reading	reading	Correctio n Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
		(0.00,00)	(0.0 μ.)	(((())))		(dBµV/m)			
11510	Н	39.62		8.09	47.71		74	54	-6.29
17265	H	37.48		9.67	47.15		68.2		-21.05
	- <u>,</u> H								
									<u> </u>
11510	V	40.93		8.09	49.02		74	54	-4.98
	V	36.11		9.67	45.78		68.2		-22.42
17265					1 .0.70		30.2		
17265	V								

Page 50 of 217

		思え	则位况	八 リ				Der		000744E005
Ī		TESTING	JENTRE TEGNINO		(VHT40) CI	H159: 5795	MHz	Кер	oort No.: TCT2	207142035
Į	Frequency		Peak reading	AV reading	Correctio n Factor	Emission Level		Peak limit		Margin
-	(MHz)	H/V	(dBµV)́	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
Γ	11590	Н	40.05		8.10	48.15		74	54	-5.85
Γ	17385	H	37.14		9.65	46.79		68.2		-21.41
Γ	(,)	Н				(. G - 1		-	
	0	\mathcal{I}			,					
	11590	V	39.78		8.10	47.88		74	54	-6.12
	17385	V	38.92		9.65	48.57		68.2		-19.63
1		V	4			·				
				11ac	(VHT80) CI	H155: 5775	MHz		-	
ľ	Frequency		Peak reading	AV reading	Correctio n Factor	Emissio	on Level	Peak limit		Margin
	(MHz)	H/V	(dBµV)́	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
ľ	11550	Н	40.24		8.09	48.33	~ -	74	54	-5.67
Γ	17325	Н	38.81		9.66	48.47		68.2		-19.73
Γ		Н								
						X				
0	11550	V	41.03		8.09	49.12		74	54	-4.88
	17325	V	38.66		9.66	48.32		68.2		-19.88
		V								

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

)	Test Procedure:	Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
)	Test Result:	PASS
	Remark:	Pre-scan was performed at all models(11a,11n,11ac), the worst case (11ac) was found and test data was shown in this report.
	Hotline: 400-6611-140 Tel: 86-1	Page 52 of 217 755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

5.9. Frequency Stability Measurement

5.9.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15 Section 15.407(g) &Part2 J Section 2.1055
Test Method:	ANSI C63.10: 2013
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.
Test Setup:	Spectrum Analyzer EUT
Test Procedure:	AC/DC Power supply The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. b. Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
Test Result:	PASS
Remark:	Pre-scan was performed at all models(11a,11n,11ac), the worst case (11ac) was found and test data was shown in this report.

Test plots as follows:

Test mode:	802.11ac	:(HT20)	Freque	ency(MHz):	5180
Temperature (°C)	Voltage(VDC)		irement hcy(MHz)	Delta Frequency(H	Hz) Result
45		517	9.98	-20000	PASS
35		517	9.98	-20000	PASS
25	2.01/	517	9.98	-20000	PASS
15	3.8V	51	180	0	PASS
5		517	9.98	-20000	PASS
0		51	80	0	PASS
)	3.5V	51	80	0	PASS
25	3.8V	517	9.98	-20000	PASS
	4.2V	51	80	0	PASS

Test mode:	802.11a	ac(HT20)	Freque	ency(MHz):	5200
Temperature (°C)) Measu	•	Delta Frequency(H	lz) Result
45		5200		20000	PASS
35	(\mathbf{G})	52	00	0	PASS
25	3.8V	52	00	0	PASS
15	3.6V	52	00		PASS
5		52	00	0	PASS
0		520	0.02	20000	PASS
	3.5V 🚫	52	00	0	PASS
25	3.8V	52	00	0	PASS
	4.2V	5199	9.98	-20000	PASS
		C		C	

Test mode:	802.11ac(HT20)	Freque	ency(MHz):	5240
Temperature (°C)	nperature (°C) Voltage(VDC)		rement cy(MHz)	Delta Frequency(H	Hz) Result
45		52	40	0	PASS
35	KC.	52	40	0	PASS
25	2.01/	52	40	0	PASS
15	3.8V	5239	5239.98 -20000		PASS
5		52	40	0	PASS
0	$(\mathbf{z}\mathbf{G})$	52	40	0	PASS
	3.5V	52	40	0	PASS
25	3.8V	52	40	0	PASS
	4.2V	52	40	0	PASS
(G)	(.c)			(\mathbf{G})	(\mathbf{G})

	测检测 CENTRE TECHNOLOGY			F	Report No.: TCT220714E035
Test mode:	802.11ac	:(HT20)	Freque	ency(MHz):	5745
Temperature (°C)	Voltage(VDC)		rement icy(MHz)	Delta Frequency(Hz)	Result
45		57	'45	0	PASS
35		574	4.98	-20000	PASS
25	0.01/	57	'45	0	PASS
15	3.8V	574	4.98	-20000	PASS
5		57	'45	0	PASS
0		574	4.98	-20000	PASS
	3.5V	574	4.96	-40000	PASS
25	3.8V	57	45	0	PASS
1	4.2V	574	4.96	-40000	PASS

Test mode:		802.11ac(HT20)	Freque	ency(MHz):		5785
Temperature (°C)	Vc	ltage(VDC)	Measurement Frequency(MHz) 5784.98		Delta Frequency(Hz) -20000		Result
45	-						PASS
35			57	85	0		PASS
25		2.01/	578	5.02	20000		PASS
15		3.8V	57	85	0		PASS
5			57	85	0		PASS
0			578	5.02	20000		PASS
(\mathbf{G})		3.5V	57	85	0		PASS
25		3.8V	57	85	0		PASS
		4.2V	57	85	0		PASS

Test mode:	Test mode: 802.11ac(Test mode: 802.11ac(HT20)		Freque	ency(MHz):	5825
Temperature (°C)	ture (°C) Voltage(VDC)		rement cy(MHz)	Delta Frequency(I	Hz) Result		
45		58	25	0	PASS		
35	C	58	25	0	PASS		
25	2.01/	58	25	0	PASS		
15	3.8V	58	25	0	PASS		
5		58	25	0	PASS		
0		582	4.98	-20000	PASS		
	3.5V	582	4.98	-20000	PASS		
25	3.8V	582	4.98	-20000	PASS		
	4.2V	582	4.98	-20000	PASS		

Page 54 of 217

Voltage(VDC)	Measurement	Delta	Result
	Frequency(MHz)	Frequency(Hz)	
	5190	0	PASS
	5190	0	PASS
	5190	0	PASS
] 3.87	5190	0	PASS
	5190	0	PASS
]	5190	0	PASS
3.5V	5189.96	-40000	PASS
3.8V	5190	0	PASS
4.2V	5190	0	PASS
	3.8V 3.5V 3.8V	Voltage(VDC) Frequency(MHz) 5190 5190 3.8V 5190 5190 5190 5190 5190 5190 5190 5190 5190 5190 5190 5190 5190 5190 5190 3.5V 5189.96 3.8V 5190	$\begin{tabular}{ c c c c c } \hline Voltage(VDC) & Frequency(MHz) & Frequency(Hz) \\ \hline Frequency(MHz) & Frequency(Hz) & 0 \\ \hline 5190 & 0 \\ \hline 3.5V & 5189.96 & -40000 \\ \hline 3.8V & 5190 & 0 \\ \hline \end{tabular}$

TCT 通测检测 TESTING CENTRE TECHNOLOGY

lest mode:	802.11ac	(HI40) Frequ	ency(MHz):	5230
Temperature (°C)	Voltage(VDC)	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5230	0	PASS
35		5230	0	PASS
25	3.8V	5230.04	40000	PASS
15	3.0V	5230	0	PASS
5		5230	0	PASS
0		5230	0	PASS
(G)	3.5V	5230	0	PASS
25	3.8V 🔪	5230	0	PASS
	4.2V	5230	0	PASS

Test mode:		802.11ac(HT40)	Freque	ency(MHz):		5755
Temperature (°C)	Vo	ltage(VDC)		rement cy(MHz)	Delta Frequency(I	Hz)	Result
45			57	55	0		PASS
35			57	55	0		PASS
25		2.01/	57	55	0		PASS
15		3.8V	57	55			PASS
5			57	55	0		PASS
0			57	55	0	2	PASS
)	K	3.5V	57	55	0	\mathbf{O}	PASS
25		3.8V	57	55	0		PASS
		4.2V	57	55	0		PASS

Page 55 of 217

Report No.: TCT220714E035

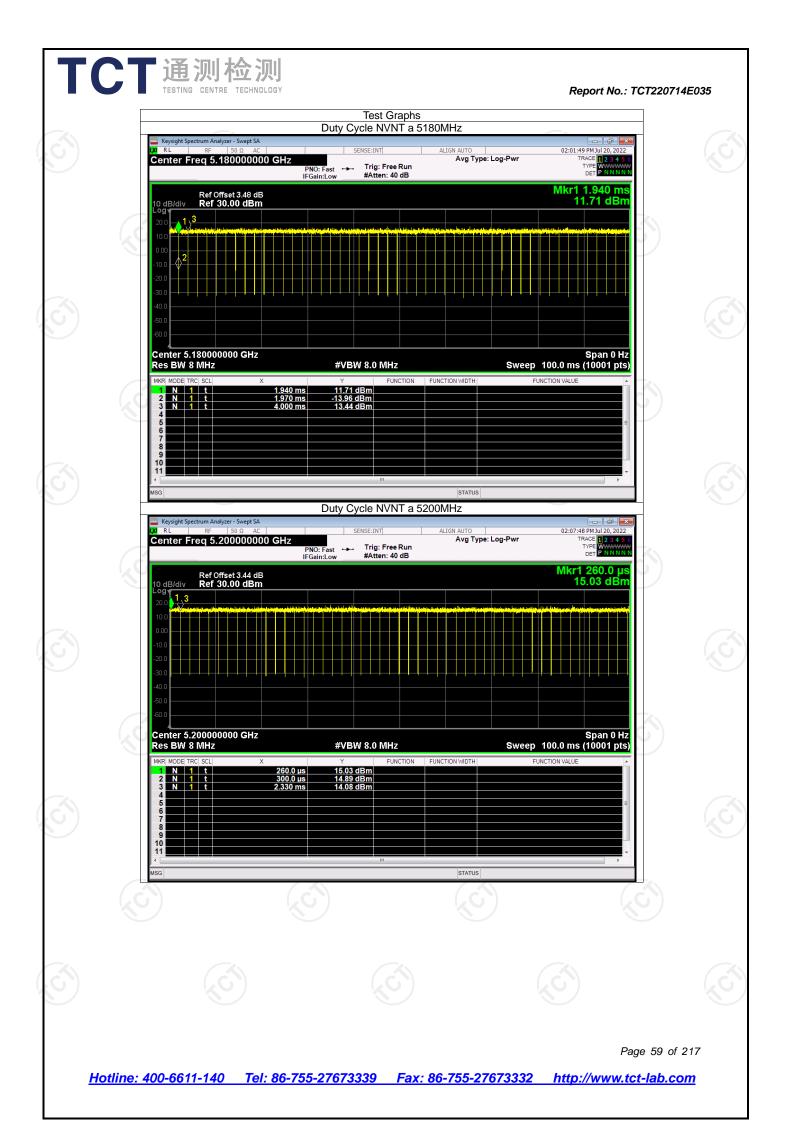
Test mode:	802.11ac(HT40)	Freque	ency(MHz):	5795
Temperature (°C)	Voltage(VDC)		rement cy(MHz)	Delta Frequency(H	lz) Result
45		57	95	0	PASS
35		57	95	0	PASS
25	2.01/	57	95	0	PASS
15	3.8V	57	95	0	PASS
5		57	95	0	PASS
0		57	95		PASS
	3.5V	57	95	0	PASS
25	3.8V	57	95	0	PASS
	4.2V	57	95	0	PASS
		•			
Test mode:	802.11ac(\	/HT80)	Freque	ency(MHz):	5210
		Moasu	romont	Delta	

	rest mode.	002.1140(1	TIOU) FIEQUE		5210
	Temperature (°C)	Voltage(VDC)	Measurement	Delta	Result
		voltage(vDC)	Frequency(MHz)	Frequency(Hz)	INESUI
	45		5210	0	PASS
	35		5210	0	PASS
	25	3.8V	5210	0	PASS
-	15	3.00	5210	0	PASS
	5		5210	0	PASS
	0		5210	0	PASS
	(2G)	3.5V	5210	0	PASS
	25	3.8V 🔍	5210.08	80000	PASS
		4.2V	5210	0	PASS

Test mode:	802.11ac(\	/HT80)	Freque	ency(MHz):	5775
Temperature (°C)	Voltage(VDC)	Measur Frequent		Delta Frequency(H	z) Result
45		57	75	0	PASS
35		57	75	0	PASS
25	3.8V	57	75	0	PASS
15	3.0V	57	75	0	PASS
5		57	75	0	PASS
0		57	75	0	PASS
)	3.5V	57	75	0	PASS
25	3.8V	57	75	0	PASS
	4.2V	57	75	0	PASS

Page 56 of 217

Report No.: TCT220714E035


Report No.: TCT220714E035

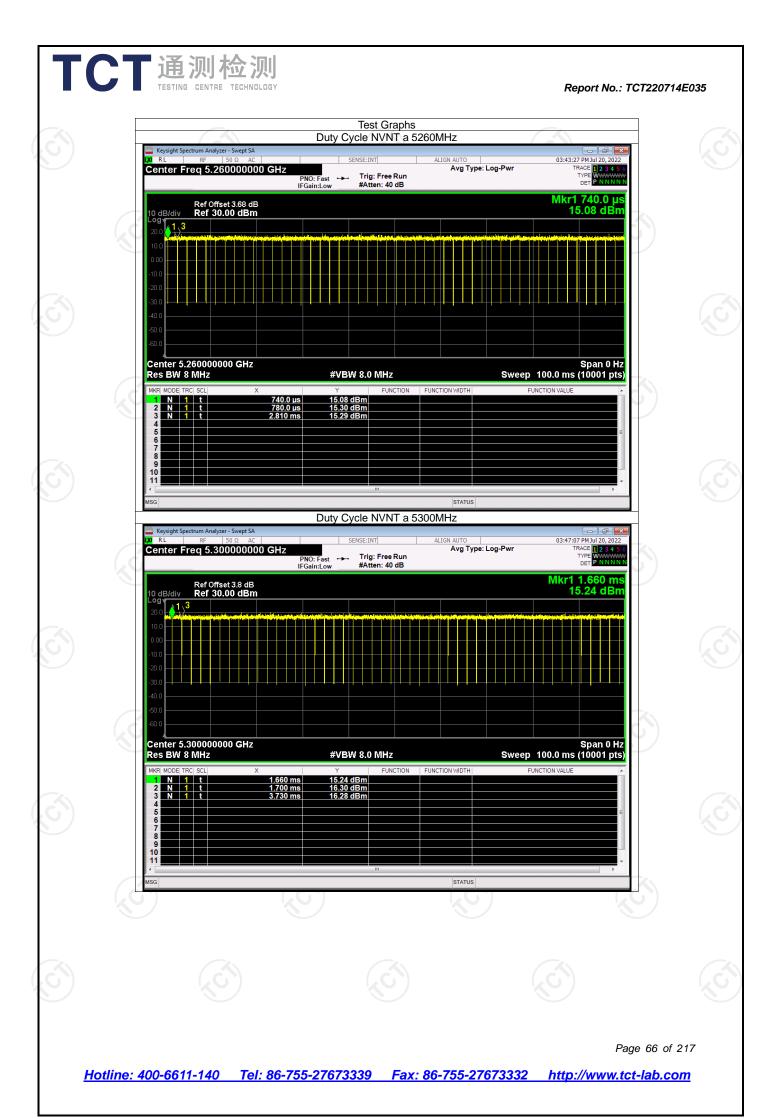
Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)
NVNT	а	5180	98.80	0
NVNT	а	5200	98.77	0
NVNT	а	5240	98.77	0
NVNT	n20	5180	98.70	0
NVNT	n20	5200	98.70	0
NVNT	n20	5240	98.70	0
NVNT	n40	5190	97.50	0
NVNT	n40	5230	97.30	0
NVNT	ac20	5180	98.70	0
NVNT	ac20	5200	98.69	0
NVNT	ac20	5240	98.71	0
NVNT	ac40	5190	97.32	0.12
NVNT	ac40	5230	97.32	0.12
NVNT	ac80	5210	94.71	0.24
NVNT	а	5260	98.77	0
NVNT	a	5300	98.80	0
NVNT	a	5320	98.53	0
NVNT	n20	5260	98.56	0
NVNT	n20	5300	98.70	0
NVNT	n20	5320	98.72	0
NVNT	n40	5270	97.50	0.11
NVNT	n40	5310	97.45	0.11
NVNT	ac20	5260	98.66	0
NVNT	ac20	5300	98.70	0
NVNT	ac20	5320	98.69	0
NVNT	ac40	5270	97.32	0.12
NVNT	ac40	5310	97.54	0.11
NVNT	ac80	5290	94.69	0.24
NVNT	а	5500	98.53	0
NVNT	а	5600	98.80	0
NVNT	а	5700	98.78	0
NVNT	n20	5500	98.70	0
NVNT	n20	5600	98.70	0
NVNT	n20	5700	98.69	0
NVNT	n40	5510	97.30	0.12
NVNT	n40	5590	97.30	0.12
NVNT	n40	5670	97.50	0.11
NVNT	ac20	5500	98.64	0 (G)
NVNT	ac20	5600	98.72	0
NVNT	ac20	5700	98.68	0
NVNT	ac40	5510	97.32	0.12
NVNT	ac40	5590	97.52	0.11
NVNT	ac40	5670	97.52	0.11
NVNT	ac80	5530	94.72	0.24

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Page 57 of 217

					04.00		ort No.: TCT22071	4E035
	NVNT NVNT	ac80 a	<u>5610</u> 5745		94.86 98.81	0.2		
	NVNT	a	5785		98.80	0		
	NVNT	a	5825		98.77	0		
	NVNT	n20	5745		98.73	0		
	NVNT	n20	5785		98.72	0		
	NVNT	n20	5825		98.70	0		
	NVNT	n40	5755		97.51	0.1	11 (0)	
	NVNT	n40	5795		97.48	0.1	11	
	NVNT	ac20	5745		98.70	0)	
	NVNT	ac20	5785		98.70	0		
	NVNT	ac20	5825		98.71	0		
	NVNT	ac40	5755		97.53	0.1		
	NVNT	ac40	5795		97.35	0.1		
	NVNT	ac80	5775		95.13	0.2	22	
							Page 58 of	217
H	otline: 400-66	11-140 Tel.	: 86-755-27673	3339 Fax	: 86-755-27673	332 http://v	Page 58 of www.tct-lab.co	

Keysight Spectrum Analyzer - So			02:16:23 PM Jul 20, 2022	
Center Freq 5.2400		ALIGN AUTO Avg Type: Log-Pwr	02:16:23 PM JU 20, 2022 TRACE 1 2 3 4 5 6 TYPE WWWWWW DET P NNNNN	
Ref Offset 3 10 dB/div Ref 30.00	61 dB dBm		Mkr1 20.00 µs 14.29 dBm	
-10.0 -20.0 -30.0				
-40.0 -50.0 -60.0				
Center 5.240000000 Res BW 8 MHz	GHz #VBW 8.0 MHz	Sweep 1	Span 0 Hz 00.0 ms (10001 pts)	
MKR MODE TRC SCL 1 N 1 t 2 N 1 t 3 N 1 t	X Y FUNCTION 20.00 µs 14.29 dBm 60.00 µs 15.09 dBm 2.090 ms 13.44 dBm		CTION VALUE	
4 5 6 7			E	
8 9 10 11				
MSG	Duty Cycle NVNT n20	status 5180MHz		
Keysight Spectrum Analyzer - Su K RL RF 50 9 Center Freq 5.1800	PNO: Fast → Trig: Free Run	ALIGN AUTO Avg Type: Log-Pwr	02:21:06 PM Jul 20, 2022 TRACE 12:34 5 6 TYPE WWWWWW DET P NNNNN	
Ref Offset 3 10 dB/div Ref 30.00			Mkr1 750.0 µs 13.87 dBm	
-10.0				
-30.0 + + + + + + + + + + + + + + + + + +				
Center 5.180000000 Res BW 8 MHz	GHz #VBW 8.0 MHz	Swaan	Span 0 Hz 00.0 ms (10001 pts)	
	X Y FUNCTION 750.0 µs 13.87 dBm 790.0 µs 14.35 dBm 2.680 ms 13.09 dBm 13.09 dBm 13.09 dBm			
3 N 1 t 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2.680 ms 13.09 dBm		E	
8 9 9 10 10 11 11 11 11 11 11 11 11 11 11 11			•	
MSG	117	STATUS	•	


Keysight Spectrum Analy		n20 5200MHz	02:24:55 PM Jul 20, 2022	
Center Freq 5.2		Avg Type: Log-Pwr Run	TRACE 123456 TYPE WWWWWWW DET PNNNNN	
LOC	set 3.44 dB 0.00 dBm		Mkr1 680.0 µs 15.32 dBm	
-20.0				
-40.0 -50.0				
-60.0 Center 5.200000	000 GHz		Span 0 Hz	
Res BW 8 MHz			100.0 ms (10001 pts)	
2 N 1 t 3 N 1 t 4	680.0 µs 15.32 dBm 720.0 µs 14.78 dBm 2.610 ms 12.79 dBm			
6 7 8				
9 10 11			•	
MSG	" Duty Cycle NVNT	STATUS		
	zer - Swept SA 50 Ω AC SENSE:INT	ALIGN AUTO	02:28:27 PM Jul 20, 2022	
Center Freq 5.2	40000000 GHz PNO: Fast ++- Trig: Free I IFGain:Low #Atten: 40		TRACE 1 2 3 4 5 6 TYPE WWWWWW DET P NNNNN	
10 dB/div Ref Off Log	set 3.61 dB 0.00 dBm		Mkr1 1.700 ms 15.51 dBm	
Center 5.240000 Res BW 8 MHz	000 GHz #VBW 8.0 MHz	Sweep	Span 0 Hz 100.0 ms (10001 pts)	
MKR MODE TRC SCL 1 N 1 t 2 N 1 t			UNCTION VALUE	
3 N 1 t 4 5 6	3.620 ms 13.13 dBm		E	
7				
10 11 • •	m	STATUS	*	
	(4)			

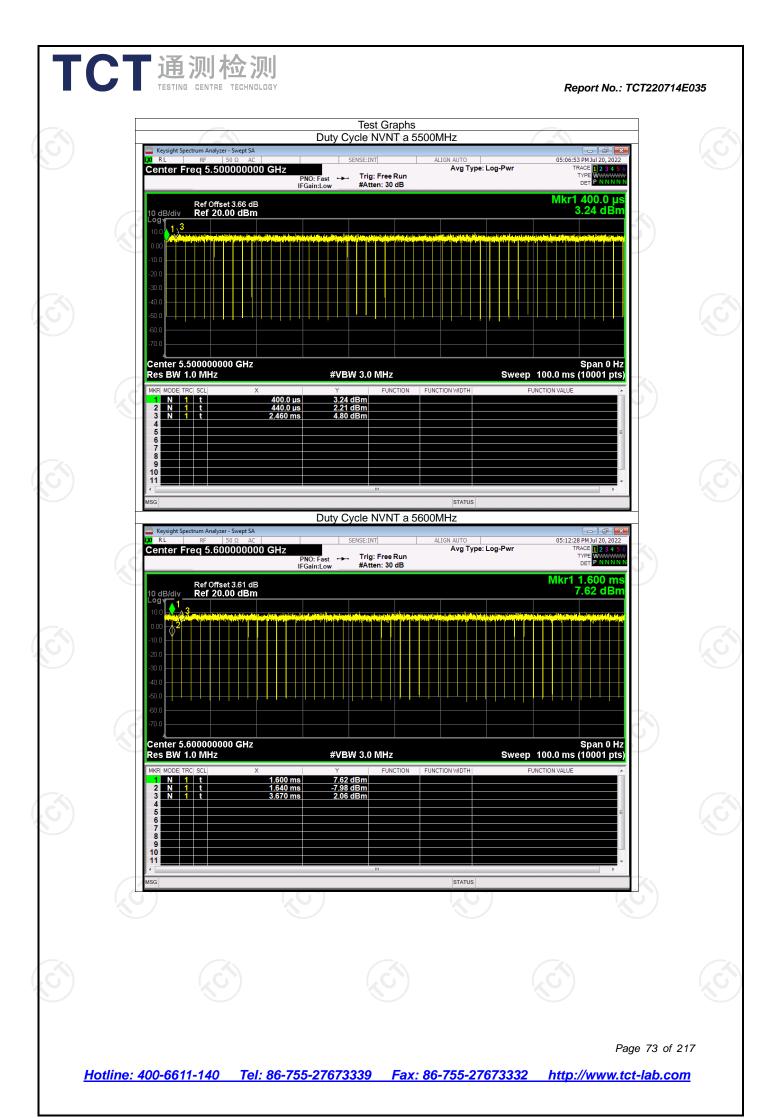
Т	СТ	通测机 TESTING CENTRE				R	eport No.: TCT22	20714E035
	LX/		Swept SA	SENSE:INT	ALIGN AUTO	02:46	29 PM Jul 20, 2022	
0		enter Freq 5.190	PNO: IFGair	Fast ↔ Trig: Free F a:Low #Atten: 40	Avg Type: Run dB		TRACE 123456 TYPE WWWWWW DET PNNNNN 1 310.0 μs	
		Ref Offset 0 dB/div Ref 30.0	3.45 dB 0 dBm				11.80 dBm	
J.J.	(Se							
		enter 5.19000000 es BW 8 MHz) GHz	#VBW 8.0 MHz		Sweep 100.0 ms	Span 0 Hz s (10001 pts)	
	R.	INR 1 t 1 N 1 t 2 N 1 t 3 N 1 t 5 - - - 6 - - - 7 - - - 9 - - - 1 - - -	× 310.0 µs 350.0 µs 1.280 ms	Y FUNC 11.80 dBm 6.64 dBm 9.75 dBm	TION FUNCTION WIDTH	FUNCTION VALUE		
(\mathbf{G})	MS	G		Outy Cycle NVNT	status n40 5230MHz			
	LX/	Keysight Spectrum Analyzer - RL RF 5 enter Freq 5.230	Swept SA	SENSE:INT	ALIGN AUTO Avg Type:	02:55 Log-Pwr	05 PM Jul 20, 2022 TRACE 1 2 3 4 5 6	
			PNO: IFGair	Fast ↔ Trig: Free F :Low #Atten: 40	Run dB	Mkr	TRACE 123456 TYPE WWWWWW DET PNNNNN 1 320.0 μs	
		Ref Offset 0 dB/div Ref 30.0 99 20.0	0 dBm			1	12.93 dBm	
S)		10 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					Span 0 Hz	
			X		TION FUNCTION WIDTH	Sweep 100.0 ms	s (10001 pts)	
S)	17.2	1 N 1 t 2 N 1 t 3 N 1 t 4	320.0 µs 360.0 µs 1.290 ms	12.93 dBm 8.20 dBm 11.65 dBm	STATUS			
Ś								
							Page 62	? of 217
	<u>Hotline: 40</u>	<u>0-6611-140</u>	Tel: 86-755-2	2 <u>7673339 </u>	-ax: 86-755-27	673332 http	<u>://www.tct-lal</u>	<u>b.com</u>

~	Keysight Spectrum Anal	Duty Cycle NV	NT ac20 5180MHz	Report No.: TC	220714E035
	Center Freq 5.1	80000000 GHz	Free Run en: 40 dB		
		fset 3.48 dB 0.00 dBm		Mkr1 630.0 µs 14.89 dBm	
	200 XOS 100 0 100				
	-50.0				
	Center 5.180000 Res BW 8 MHz	#VBW 8.01	TUNCTION FUNCTION WIDTH	Span 0 Hz weep 100.0 ms (10001 pts)	
	1 N 1 t 2 N 1 t 3 N 1 t 5 6 7 8 9 9 10 11	630.0 µs 14.89 dBm 670.0 µs 14.00 dBm 2.570 ms 12.64 dBm			
	MSG	Duty Cycle NV	STATUS NT ac20 5200MHz		
		yzer - Swept SA 50 Ω AC SENSE:INT 200000000 GHz	ALIGN AUTO	02:37:22 PM Jul 20, 2022 Vr TRACE 1 2 3 4 5 6	
	Ref Of	IFGain:Low #Atte	Free Run n: 40 dB	Vr TRACE 12 3 4 5 6 TYPE WWWWWW DET PNNNN Mkr1 1.580 ms	
	10 dB/div Ref 3 20.0 1 3	fset 3.44 dB 0.00 dBm		13.31 dBm	
	10.0 10.0 0.00 10.0 -10.0 10.0 -20.0 10.0 -30.0 10.0 -40.0 10.0 -60.0 10.0				
	Center 5.200000 Res BW 8 MHz	#VBW 8.01		Span 0 Hz weep 100.0 ms (10001 pts)	
	MKR MODE TRC SCL 1 N 1 t 2 N 1 t 3 N 1 t	X Y <u>1.580 ms</u> <u>13.31 dBm</u> <u>1.620 ms</u> <u>14.19 dBm</u> <u>3.520 ms</u> <u>14.85 dBm</u>	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	
				E	
	8 9 10				
	MSG		III STATUS	Þ	
				_	63 of 217

	Keysight Spectrum Analyzer - Swept SA	y Cycle NVNT ac20 5240MH	Z	ort No.: TCT220714E035
	RL RF 50 Ω AC Center Freq 5.240000000 GHz PNO: Fas	at 🛶 Trig: Free Run	TO 02:41:24 PM g Type: Log-Pwr TRAC TYP	1Jul 20, 2022 E 1 2 3 4 5 6 E WWWWWW T P N N N N N
	IFGain:Lo Ref Offset 3.61 dB 10 dB/div Ref 30.00 dBm	W #Atten: 40 dB	Mkr1 1.	
		n still at her men står fra sen som star for frä star står at sen som star fra Starre Brittering for som som s Men som	Law and a start for a second	
	-20.0			
	-40.0			
	-60.0			pan 0 Hz
	Res BW 8 MHz	#VBW 8.0 MHz	Sweep 100.0 ms (1	0001 pts)
Ċ	1 1 1.620 ms 2 N 1 t 1.650 ms 3 N 1 t 3.550 ms	13.10 dBm 15.16 dBm 14.73 dBm		
No.	4 5 6 7			
	8 9 10			
	ISG	m	ATUS	
	Keysight Spectrum Analyzer - Swept SA Keysight RL RF 50 Ω AC	Y Cycle NVNT ac40 5190MH		二 (
	Center Freq 5.190000000 GHz PN0: Fas IFGain:Lo	Av st +++ Trig: Free Run	g Type: Log-Pwr TRAC TYP	E 1 2 3 4 5 6 E WWWWWW T P N N N N N
, ć	Ref Offset 3.45 dB 10 dB/div Ref 30.00 dBm		Mkr1 7 12.1	20.0 µs 13 dBm
	Log 20.0 / 1 ³ 10.0 ²² / ²	stars and the second starting of the se		
	10.0			
	-20.0			
	-40.0			
	-60.0 Center 5.190000000 GHz		S	pan 0 Hz
N.	Res BW 8 MHz MKRI MODEI TRCI SCLI X	#VBW 8.0 MHz Y FUNCTION FUNCTION WILL	Sweep 100.0 ms (1	0001 pts)
	1 N 1 t 720.0 µs 2 N 1 t 760.0 µs 3 N 1 t 1.690 ms 4 4 4 4	12.13 dBm 6.61 dBm 15.69 dBm		
	5 6 7 8			
	9 10 11			
	ISG	m ST	ATUS	
				Page 64 of 217

TC		刻检测 centre technolog	Y		Rep	oort No.: TCT220714	-035
	LXI RL	Spectrum Analyzer - Swept SA	SENSE:IN		03:05:30	□ @ X	
9		Freq 5.230000000 G	PNO: Fast ++++ Irig	: Free Run en: 40 dB	Mkr1	се 123456 гре жилинини нет Р. N.N.N.N.N. 110.0 µs 69 dBm	
	10 dB/div 20.0 13 10.0 27	Ref 30.00 dBm					
	-10.0 -20.0						
	-30.0 -40.0 -50.0				+++++++++++++++++++++++++++++++++++++++	****	
	Center : Res BW	5.230000000 GHz / 8 MHz	#VBW 8.0	MHz	s Sweep 100.0 ms (*	Span 0 Hz 10001 pts)	
		1 t 1 t	Υ 10.0 μs 12.69 dBm 40.0 μs 7.12 dBm .080 ms 13.41 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE		
	5 6 7 8 9					E	
3	10 11 • • • • • • • • • • • • • • • • • •			III		•	
	LXI RL	Spectrum Analyzer - Swept SA RF 50 Ω AC Freq 5.210000000 G	SENSE:IM	Avg Type	03:14:04	CE 2 3 4 5 6 PP Jul 20, 2022	
	10 dB/div	Ref Offset 3.45 dB	PNO East ++++ Trig	: Free Run en: 40 dB	mkr1 *	190.0 µs	
	20.0 × 1 - 10.0 × 1			tin an	en de la constant de La constant de la cons		
(()	-10.0 -20.0						
	-30.0 +++++ -40.0 -50.0						
	Center : Res BW	5.210000000 GHz / 8 MHz	#VBW 8.0	MHz	Sweep 100.0 ms (*	Span 0 Hz 10001 pts)	
	MKR MODE 1 N 2 N 3 N 4	1 t 1 t	90.0 µs 9.46 dBm 30.0 µs 6.13 dBm 80.0 µs 10.55 dBm	FUNCTION FUNCTION WDTH	FUNCTION VALUE		
J.J.	5 6 7 8 9						
	10 11 MSG			III STATUS			
(C)							
<u>Ho</u>	<u>tline: 400-66</u>	<u>11-140 Tel: 8</u>	6-755-27673339	Fax: 86-755-27	7673332 http://	Page 65 of 2 / <mark>www.tct-lab.con</mark>	

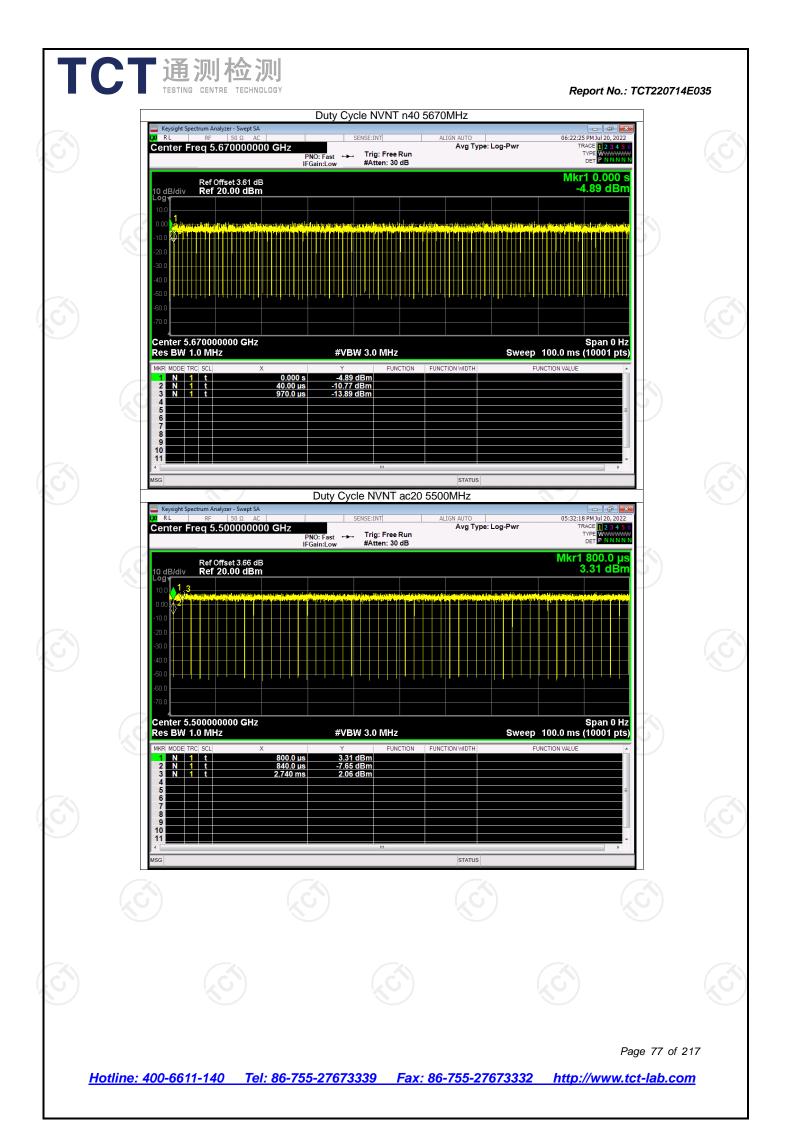
Keysight Spectrum Analyzer - S		NT a 5320MHz	03:51:34 PM Jul 20, 2022	
Center Freq 5.3200		Avg Type: Log-P ee Run		
10 dB/div Ref Offset 3 Log 1, 3	3.81 dB I dBm		Mkr1 220.0 µs 16.67 dBm	
				J)
-50.0				(
Center 5.320000000 Res BW 8 MHz	GHz #VBW 8.0 MH		Span 0 Hz weep 100.0 ms (10001 pts	
MKR MODE TRC SCL 1 N 1 t 2 N 1 t 3 N 1 t 4	X Y FI 220.0 µs 16.67 dBm 260.0 µs 15.39 dBm 2.280 ms 16.05 dBm	INCTION FUNCTION WIDTH	FUNCTION VALUE	3
9 10 11	m			
MSG	Duty Cycle NVN	status T n20 5260MHz		
Keysight Spectrum Analyzer - S RL RF 50 Center Freq 5.2600	Ω AC SENSE:INT	ALIGN AUTO Avg Type: Log-P	03:56:41 PM Jul 20, 2022 Wr TRACE 1 2.3 4 5 TYPE W	_
Ref Offset 3	IFGain:Low #Atten: 4		Mkr1 1.670 ms 14.43 dBm	
10 alg/div Ref 30.00 200 10 alg/div Ref 30.00 10 alg/div Ref 30				
Center 5.26000000 Res BW 8 MHz	GHz #VBW 8.0 MH	lz S	Span 0 Hz weep 100.0 ms (10001 pts	
MKR MODEl TCl SCL 1 N 1 t 2 N 1 t 3 N 1 t 4 5 6 6		UNCTION FUNCTION WIDTH	FUNCTION VALUE	
7 8 9 10				(
11 MSG	m	STATUS		
(C)	(C)		Q	3


~	CT 通测 TESTING CENTR	Duty Cycle NVNT er - Swept SA 50 Ω AC	ALIGN AUTO	Report No.: TCT22	
	Center Freq 5.3	DOOOOOOOO GHz PNO: Fast Trig: Free IFGain:Low #Atten: 40		TRACE 123456 TYPE WWWWWW DET PNNNNN	
		set 3.8 dB .00 dBm		Mkr1 290.0 µs 14.97 dBm	
	200 0 2 2 0 0 2 2 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0				
	Center 5.300000 Res BW 8 MHz	000 GHz #VBW 8.0 MHz	Swee	Span 0 Hz 0 100.0 ms (10001 pts)	
	MKR MODE TRC SCL 1 N 1 t 2 N 1 t 3 N 1 t 4 5 6 6 7 7 8 9 9 10 11 7 4 1 4 1 5 1 6 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7	X Y FUN 290.0 µs 14.97 dBm 320.0 µs -15.72 dBm 2.210 ms 15.79 dBm 	TION FUNCTION WIDTH	FUNCTION VALUE	
	MSG Keysight Spectrum Analy	Duty Cycle NVNT	n20 5320MHz		
	Center Freq 5.3	50 Ω AC SENSE:INT 20000000 GHz PN0: Fast IFGain:Low Trig: Free #Atten: 40 set 3.81 dB #Atten: 40 .00 dBm Free		04:03:14 PMJJ 20,2022 TRACE 12 3 4 5 6 TYPE DET P NNNNN Mkr1 1.860 ms 14.09 dBm	
	-100 -200 -300 -400 -500 -500 -500 -500 -500 -500 -5	00 GHz #VBW 8.0 MHz	Swee	Span 0 Hz 100.0 ms (10001 pts)	
	MKR MODE TRC SCL 1 N 1 t 2 N 1 t 3 N 1 t 3 N 1 t 6 6 7 8 9 9 10 9 11 4 KSG	X Y FUN 1.860 ms 14.09 dBm 1.900 ms 14.45 dBm 3,790 ms 14.15 dBm 	TION FUNCTION WIDTH	FUNCTION VALUE	
					8 of 217

T(Report No.: TC	T220714E035
	Keysight Spectrum Anal	yzer - Swept SA 50 Ω AC	SENSE:INT A		04:17:45 PM Jul 20, 2022	
	Center Freq 5.2	270000000 GHz PNO: Fast IFGain:Low	► Trig: Free Run #Atten: 40 dB	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE WWWWW DET P N N N N	
	10 dB/div Ref 3 Log	fset 3.71 dB 0.00 dBm			Mkr1 600.0 μs 13.15 dBm	
	200 1 100 2 100 2 10		/BW 8.0 MHz		Span 0 Hz 100.0 ms (10001 pts)	
	Kes Div S IM12 MKR MODE TRC SCL 1 N 1 t 2 N 1 t 3 N 1 t 4 5 5 5 6 7 7 8 9 9 9 10 11 11	Х Y 600.0 µs 13. 630.0 µs 7.			VCTION VALUE	
	MSG	Duty C	Cycle NVNT n40 5310	status DMHz		
	Keysight Spectrum Anal Kal RL RF Center Freq 5.3	50 Ω AC	Talas Dava	LIGN AUTO Avg Type: Log-Pwr	04:28:36 PM Jul 20, 2022 TRACE 1 2 3 4 5 6 TYPE WWWWWWW DET P N N N N N	
	Ref Of 10 dB/div Ref 3 200 - 1 3 10 0 200 - 1 3 - 10 0 - 200 - 1 3 - 200 - 200 - 1 3 - 200		#Atten: 40 dB	Sweep	Mkr1 210.0 µs 10.06 dBm	
	MKR MODE TRC SCL 1 N 1 t 2 N 1 t 3 N 1 t 4 5 6 6 7	X Y 210.0 µs 10. 250.0 µs 6. 1.170 ms 10.	PUNCTION FUNC 05 dBm 96 dBm 88 dBm 111 111 111 111 111 111 111 1	TION WIDTH FUI	NCTION VALUE	
					Page	69 of 217
Но	otline: 400-6611-140) Tel: 86-755-2767	7 <u>3339</u> Fax: 86	-755-27673332	http://www.tct-	

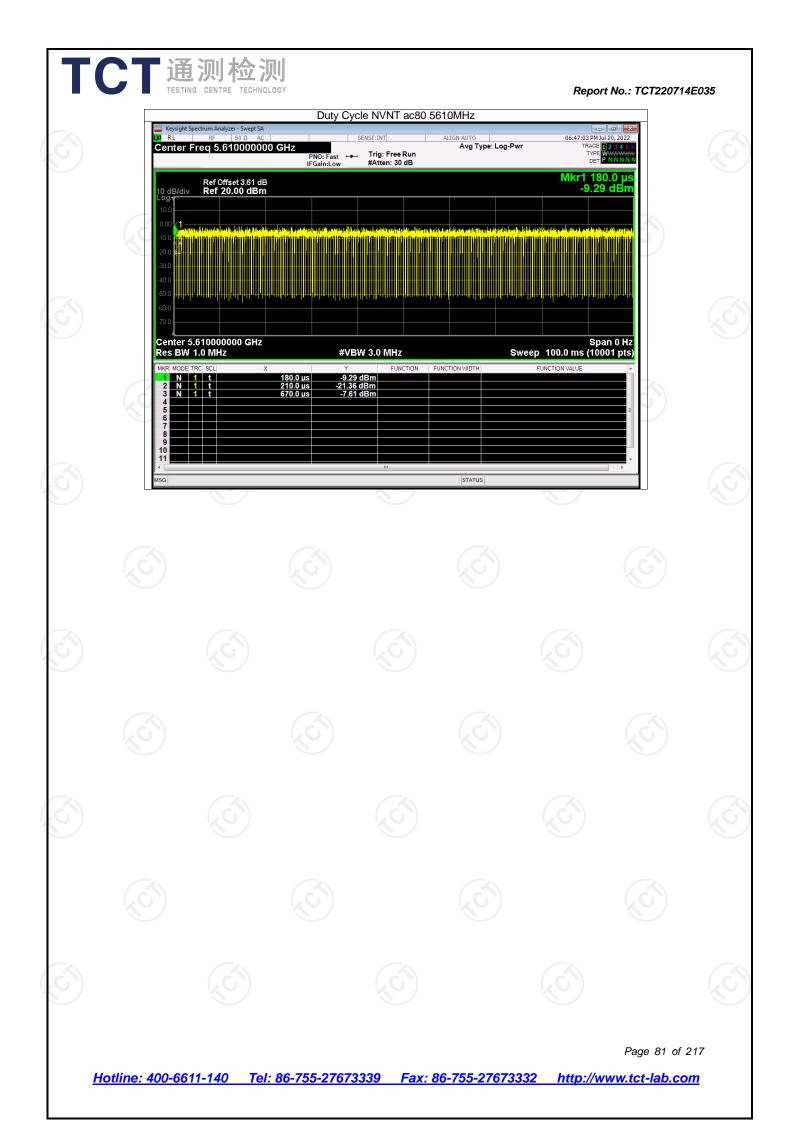
Keysigh	t Spectrum Analyzer - Swept SA RF 50 Ω AC	Duty C	ycle NVNT ac	20 5260MHz		04:07:03 PM Jul 20		
Center	Freq 5.26000000	PNO: Fast ← IFGain:Low		Avg Ty n	pe: Log-Pwr	TRACE 12 TYPE WW DET P N	3 4 5 6 WWWW N N N N	
10 dB/di Log						Mkr1 60.0 13.40 c	0 μs IBm	
-10.0 -20.0 -30.0								
-40.0 -50.0 -60.0								
Center	5.260000000 GHz V 8 MHz	#V	'BW 8.0 MHz		Sweep	Span 100.0 ms (10001		
1 N 2 N	E TRC SCL X 1 t 1 t 1 t	Υ 60.00 μs 13. 100.0 μs 14. 2.000 ms 11.	FUNCTIO 40 dBm 72 dBm 86 dBm	DN FUNCTION WIDTH	FUN	CTION VALUE		
4 5 6 7								
8 9 10 11								
MSG		Duty C	wcle NVNT ad	STATUS 20 5300MHz			Þ	
LXI RL	t Spectrum Analyzer - Swept SA) GHz	SENSE:INT	ALIGN AUTO	pe: Log-Pwr	04:10:25 PM Jul 20 TRACE 1 2 TYPE WW	, 2022	
10 dB/di	Ref Offset 3.8 dB	PNO: Fast ← IFGain:Low	#Atten: 40 dB			DET P N Mkr1 530.(12.80 c	0 µs	
20.0 1 10.0		Mémoire et le plant eux participations de la companya de la companya de la companya de la companya de la compa						
-10.0								
-30.0								
-50.0								
	5.30000000 GHz V 8 MHz	Y	BW 8.0 MHz	DN FUNCTION WIDTH		Span 100.0 ms (10001 ction value	0 Hz l pts)	
2 N 3 N 4	1 t 1 t 1 t	530.0 µs 12.3 560.0 µs 16.3 2.460 ms 15.3	80 dBm 36 dBm 91 dBm					
5 6 7 8 9								
10 11 •				STATUS				
				G				

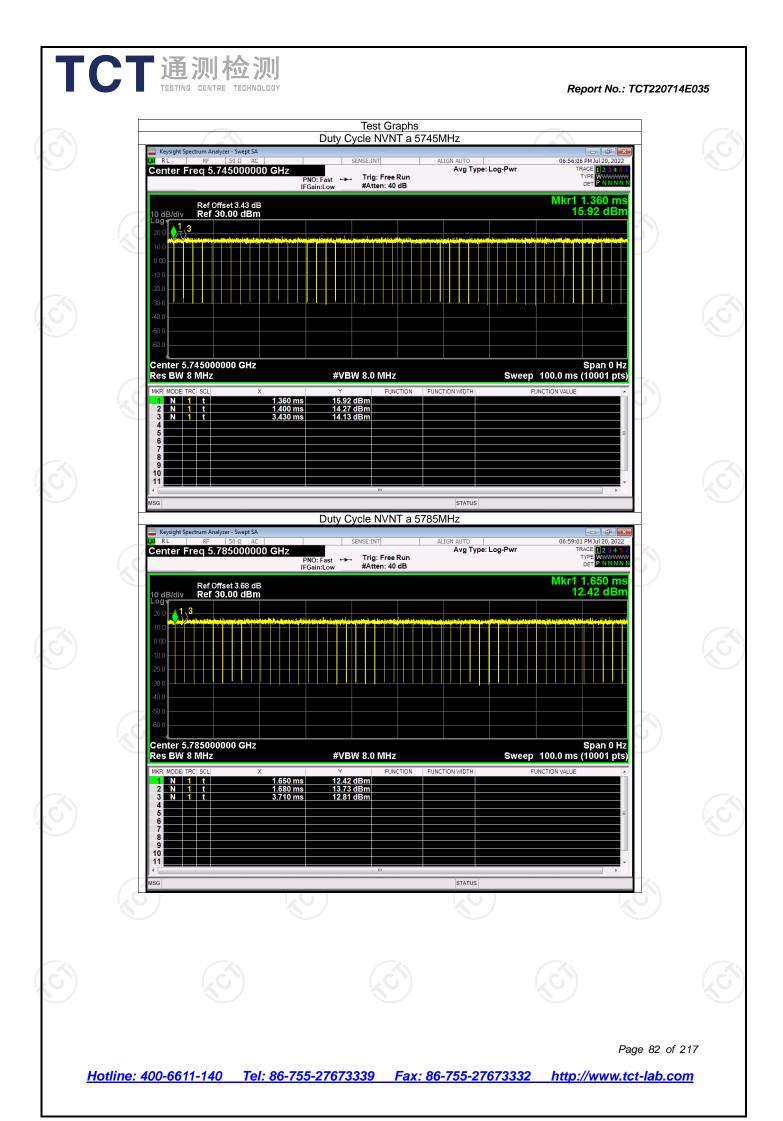
	Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω AC	Duty Cycle NVNT ac20 5	ALIGN AUTO	04:13:34 PM Jul 20, 2022	
	enter Freq 5.320000000 GHz	PNO: Fast ↔ Trig: Free Run Gain:Low #Atten: 40 dB	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE WWWWWW DET P NNNNN	
10 Lo	Ref Offset 3.81 dB dB/div Ref 30.00 dBm			Mkr1 1.110 ms 15.57 dBm	
2					
-10					
-30					
-50					
	enter 5.320000000 GHz es BW 8 MHz	#VBW 8.0 MHz	Sweep	Span 0 Hz 100.0 ms (10001 pts)	
MH	N 1 t 1.110 ms N 1 t 1.150 ms N 1 t 3.050 ms	Y FUNCTION F 15.57 dBm 15.28 dBm 15.04 dBm	FUNCTION WIDTH F	UNCTION VALUE	
	N 1 t 3.050 ms	15.04 dBm			
1					
1 MSC		m	STATUS	•	
	Keysight Spectrum Analyzer - Swept SA	Duty Cycle NVNT ac40 5	270MHz		
	RL RF 50Ω AC enter Freq 5.270000000 GHz	SENSE:INT PNO: Fast Trig: Free Run Gain:Low #Atten: 40 dB	ALIGN AUTO Avg Type: Log-Pwr	04:33:24 PM Jul 20, 2022 TRACE 1 2 3 4 5 6 TYPE WWWWWW DET P N N N N N	
	Ref Offset 3.71 dB dB/div Ref 30.00 dBm	Guineow		Mkr1 340.0 µs 10.26 dBm	
24	1.0 - 13	ter del ant, motoritoritoritari protocologi anti diferenzi e del anti-		den den sense and in sense de la serie	
0-10	00				
-20					
-40 -50 -61	.0				
	enter 5.270000000 GHz es BW 8 MHz	#VBW 8.0 MHz	Sweep	Span 0 Hz 100.0 ms (10001 pts)	
MH	R MODE TRC SCL X N 1 t 340.0 µs N 1 t 380.0 µs	10 26 dBm	-	UNCTION VALUE	
	N 1 t 1.310 ms	5.64 dBm 10.83 dBm		E	
1 ·		III	STATUS	• • •	
		N.		(Å	


Τ	CT通测检测 TESTING CENTRE TECHNOLOGY Duty Cycle NVNT ac40 5310MHz	Report No.: TCT220714E035
. (1)	Keysight Spectrum Analyzer - Swept SA K RF 50 Ω AC SENSE:INT ALIGN AUTO Center Freq 5.310000000 GHz Avg Type: Log-Pwr	04:38:29 PMJul 20, 2022 TRACE 12 3 45 6 TTPPE WWWW
	PNO: Fast \rightarrow Trig: Free Run IFGain:Low #Atten: 40 dB Ref Offset 3.81 dB 10 dB/div Ref 30.00 dBm	<u>мкг1 490.0 µs</u> 6.87 dBm
Ś	Log 200 13 10 10 10 10 10 10 10 10 10 10	Span 0 Hz 100.0 ms (10001 pts)
Ċi.		
S	MSG STATUS Duty Cycle NVNT ac80 5290MHz	
	Keysight Spectrum Analyzer - Swept SA Ref S0 Ω AC Sense:INT ALIGN AUTO Center Freq 5.290000000 GHz PNO: Fast IFGain:Low Trig: Free Run Ref Offset 3.78 dB O dB/div Ref 30.00 dBm Sense:INT Aution Automatic and the sense of the sen	04:45:16 PMJul 20, 2022 TRACE 12:34:56 TYPE WWWWWW DET PNNNN Mkr1 80.00 µs 7.18 dBm
Ś	-400	Span 0 Hz 100.0 ms (10001 pts) ICTION VALUE
Ś	4 1 0 1 0 <th></th>	
S)		
		Page 72 of 217
	Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332	http://www.tct-lab.com

T			/ Cycle NVNT a 57(0ML I-	Report No.: TCT22	20714E035
	LXI RL I	n Analyzer - Swept SA RF 50 Ω AC		ALIGN AUTO	05:16:53 PM Jul 20, 2022	
	Center Freq	5.700000000 GHz PNO: Fast IFGain:Low	↔ Trig: Free Run #Atten: 30 dB	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE WMMMMM DET P N N N N N	
	R 10 dB/div R Log v	ef Offset 3.67 dB ef 20.00 dBm			Mkr1 400.0 µs 2.21 dBm	20714E035
		ng di kana serupakan palawa ini kana dari kana dari Kana dari kana dari k	tere en dit verse et des beste et dit et se de se	Source of the second structure of the second structure of the second structure of the second structure of the s Source of the second structure of the second structure of the second structure of the second structure of the se		
	-10.0				E E E E E E E E E E E E E E E E E E E	
	-30.0					
	-50.0					
	-70.0					
	Center 5.700 Res BW 1.0	VIHz #	VBW 3.0 MHz		Span 0 Hz 100.0 ms (10001 pts)	
	MKR MODE TRC SI 1 N 1 2 N 1	400.0 μs 430.0 μs	2.21 dBm 3.08 dBm	UNCTION WIDTH FU	NCTION VALUE	
	3 N 1 1 4 5 6	2.460 ms	3.69 dBm		=	
	7 8 9					
	10				* •	
(\mathbf{G})	MSG	Duty	Cycle NVNT n20 55			
	LXI RL I	n Analyzer - Swept SA RF 50 Ω AC	SENSE:INT	ALIGN AUTO	05:20:32 PMJul 20, 2022	
	Center Freq	5.500000000 GHz PNO: Fast IFGain:Low	⊷⊷ Trig: Free Run #Atten: 30 dB	Avg Type: Log-Pwr	TRACE 123456 TYPE WWWWWW DET PNNNNN	
	10 dB/div R	ef Offset 3.66 dB ef 20.00 dBm			Mkr1 1.460 ms -0.87 dBm	
		un di se ante finanzi passi polo por estante di secolo per estante di secolo di secolo di secolo di secolo di s An di se alta di secolo di secolo di secolo polo polo polo polo polo polo di secolo di secolo di secolo di seco	en al a la constante pi produce al anciente de la constante de la constante de la constante de la constante de La constante de la constante de	n y na ferset kirk fill at the stars of the stars and a star stars in the star stars of the stars of the stars I stars for any starting the stars in the stars will be a star starting to be stars of the stars of the stars of		
	-10.0					
(\mathbf{c})	-30.0					
	-40.0					
	-60.0					
	Center 5.500 Res BW 1.0 I	000000 GHz MHz #	VBW 3.0 MHz	Sweep	Span 0 Hz 100.0 ms (10001 pts)	
	MKR MODE TRC SO	CL X 1.460 ms - 1.490 ms -	Y FUNCTION F D.87 dBm 7.97 dBm 4.25 dBm	UNCTION WIDTH FU	NCTION VALUE	
	2 N 1 3 N 1	3.380 ms	4.25 dBm			
$\left(\begin{array}{c} \\ \end{array} \right)$	6 7 8					
	9 10 11				•	
	MSG			STATUS		
					Page 74	
Ho	otline: 400-6611-1	140 Tel: 86-755-276	<u>73339 Fax: 8</u>	6-755-27673332	http://www.tct-lal	<u>o.com</u>

	Duty Cycle NVNT n20 5600 wept SA Ω SENSE:INT	MHz	t No.: TCT220714E035
Center Freq 5.6000	IOOOOO GHZ PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB		2 3 4 5 6 WWWWW N N N N N
Ref Offset 10 dB/div Ref 20.00 Log 1.3	3.61 dB dBm	Mkr1 130 3.55	0.0 μs dBm
10.0 -10.0 -10.0 -20.0 -20.0 -30.0 -40.0 -60.0 -70.0			
Center 5.60000000 Res BW 1.0 MHz	GHz #VBW 3.0 MHz	Spa Sweep 100.0 ms (1000	n 0 Hz 01 pts)
MKR MODE TRC SCL 1 N 1 t 2 N 1 t		ION WIDTH FUNCTION VALUE	
3 N 1 t 4 5 6 7 7 8 9 9 10 11	2.050 ms 4.95 dBm		
MSG	Duty Cycle NVNT n20 5700		
	wept SA Ω AC SENSE:INT ALL	GN AUTO 05:28:07 PM Jul	20,2022
Center Freq 5.7000	I000000 GHZ PNO: Fast →→ Trig: Free Run IFGain:Low #Atten: 30 dB	DET	2 3 4 5 6
10 dB/div Ref Offset 3 Log	3.67 dB d Bm	Mkr1 1.91 3.82	dBm
10.0 -10.0 -20.0 -30.0 -40.0 -50.0 -70.0			
Center 5.70000000 Res BW 1.0 MHz	#VBW 3.0 MHz	Sweep 100.0 ms (100	n 0 Hz 01 pts)
MKR MODE TRC SCL 1 N 1 t 2 N 1 t 3 N 1 t	X Y FUNCTION FUNCT 1.910 ms 3.82 dBm 1.950 ms -8.28 dBm 3.840 ms 4.38 dBm	ION WIDTH FUNCTION VALUE	
4	3.64V III3 4.36 UDIII		
7 8 9 10			
MSG	m	STATUS	


Keysight Spectrum Analyzer		Cycle NVNT n40 \$	5510MHz	- 6 -]	35
Center Freq 5.510	0 Ω AC 000000 GHz	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	05:56:42 PM Jul 20, 2022 TRACE 1 2 3 4 5 6		
B of Office	PNO: Fast ← IFGain:Low	#Atten: 30 dB		DET P NNNN		
Ref Offset 10 dB/div Ref 20.0	0 dBm			Mkr1 180.0 µs -5.92 dBm		
	i na je (je na je na Na je na j	s järendos Theologi takaran satara ^d irenta jaada jar Artikus karan takaran data data data data data data data da	te beter a statistic service and a statistical strategy	tuli bili mendela en en si menerale de la segle a la carda Na secona en especiale de la carda de la carda de la carda		
-10.0 2					\mathcal{P}	
-30.0 -40.0						
-50.0 -60.0		┼┼╄┼┼╹┼╎╹┼╵╵╫╹╎╎┞╿	****			
Center 5.51000000				Span 0 Hz		
Res BW 1.0 MHz	#V	BW 3.0 MHz		5 100.0 ms (10001 pts)		
1 N 1 t 2 N 1 t 3 N 1 t	210.0 us -20.	92 dBm 28 dBm 43 dBm			K)	
				11)	
7						
				•		
MSG	Duty C	Cycle NVNT n40 t	status 5590MHz	~ 7	-	
Keysight Spectrum Analyzer -	Swept SA	SENSE:INT	ALIGN AUTO	06:18:03 PM Jul 20, 2022		
Center Freq 5.590	000000 GHz PNO: Fast IFGain:Low	➡ Trig: Free Run #Atten: 30 dB	Avg Type: Log-Pwr	TRACE 123456 TYPE WWWWWWW DET PNNNNN		
10 dB/div Ref Offset Ref 20.0	3.61 dB 0 dBm			Mkr1 390.0 µs -3.91 dBm	(
10.0						
0.00 v ive phane and the same			an a	ana an tao ing kana ata kata da sa kata da sa kata kata kata kata kata kata kata		
-20.0						
-40.0						
-60.0						
Center 5.59000000 Res BW 1.0 MHz		/BW 3.0 MHz	Sweer	Span 0 Hz 0 100.0 ms (10001 pts)		
	Х Y 390.0 µs -3.	FUNCTION		FUNCTION VALUE	2	
2 N 1 t 3 N 1 t 4	420.0 µs -19.	79 dBm 37 dBm				
5				=		
8 9 10						
MSG		III	STATUS			
				Pag	e 76 of 217	



	もの人体のの ING CENTRE TECHNOLOGY tSpectrum Analyzer - Swept SA RF 50 Q AC	Duty Cycle NVNT a	AC20 5600MHz	05-47	13 PM Jul 20, 2022	
	r Freq 5.600000000 GH		Avg Type: I tun	.og-Pwr	TRACE 123456 TYPE WWWWWW DET PNNNNN	
10 dB/di Log	Ref Offset 3.61 dB Ref 20.00 dBm			Mkr1	1 1.670 ms 6.70 dBm	
10.0 0.00 -10.0 -20.0 -30.0 -40.0 -60.0 -70.0						
Res Bu	* 5.60000000 GHz N 1.0 MHz	#VBW 3.0 MHz	TION FUNCTION WIDTH	Sweep 100.0 ms		
2 N	1 t 1.71	0 ms 6.70 dBm 0 ms -7.96 dBm 0 ms 4.03 dBm				
MSG		Duty Cycle NVNT a	status ac20 5700MHz			
LXI RL	nt Spectrum Analyzer - Swept SA	Z PNO: Fast +++ Trig: Free R	ALIGN AUTO Avg Type: I	.og-Pwr	:36 PM Jul 20, 2022 TRACE 1 2 3 4 5 6 TYPE WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	
10 dB/dl 10.0 0.00 -10.0 -20.0 -30.0	Ref Offset 3.67 dB Ref 20.00 dBm	HGain:Low #Atten: 30 d			1 30.00 µs 3.91 dBm	
-40.0 -50.0 -60.0 -70.0						
Res BV	5.700000000 GHz N 1.0 MHz	#VBW 3.0 MHz		Sweep 100.0 m		
1 N 2 N	HE TRC SCL X 1 t 30. 1 t 70. 1 t 1.97	Y FUNCT 00 µs 3.91 dBm 00 µs -8.13 dBm '0 ms 3.33 dBm 	TION FUNCTION WIDTH	FUNCTION VALUE		
			(C))	Ś	

T(CT	通测检测 TESTING CENTRE TECHNOLOGY	-	t No.: TCT220714E035
		Duty Cycle NVNT ac40 Keysight Spectrum Analyzer - Swept SA R L RF 50 Ω AC SENSE:INT	ALIGN AUTO 06:30:09 PM Ju	120,2022
		Center Freq 5.510000000 GHz PNO: Fast IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr TRACE TYPE DET	2 3 4 5 6 WWWWWW NNNNN
		Ref Offset 3.65 dB 10 dB/div Ref 20.00 dBm -og ✔	Mkr1 620 -5.95	0.0 μs ∫dBm
		10.0 0.0	an namel war de bille waar in finnen gester gestele kalijing de gestele gester war in de se bie	haralana tanàna
	×			
		Center 5.51000000 GHz Res BW 1.0 MHz #VBW 3.0 MHz	Spa Sweep 100.0 ms (100	nn 0 Hz 01 pts)
	J.	MKR MODE TRC SCL X Y FUNCTION 1 N 1 t 620.0 µs -5.95 dBm -5.95 dBm 2 N 1 t 650.0 µs -19.67 dBm -19.67 dBm 3 N 1 t 1.590 ms -2.71 dBm -2.71 dBm 4 - - - - - - - 6 - <t< td=""><td>FUNCTION WIDTH FUNCTION VALUE</td><td></td></t<>	FUNCTION WIDTH FUNCTION VALUE	
		Duty Cycle NVNT ac40	STATUS	
		Keysight Spectrum Analyzer - Swept SA Duty Oycic Thermal advector RL RF 50 Ω AC SENSE:INT Center Freq 5.590000000 GHz The Depth of t	ALIGN AUTO 06:33:41 PM Ju	20, 2022 2 3 4 5 6
		PN0: Fast →→ Ing: Free kun IFGain:Low #Atten: 30 dB	Migriype: 20g r m oper Mkr1 33(
	No.	Ref Offset 3.61 dB 10 dB/div Ref 20.00 dBm	-3.86	dBm
		100 13 14 15 10 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
	6	Center 5.590000000 GHz Res BW 1.0 MHz #VBW 3.0 MHz	Sweep 100.0 ms (100	nn 0 Hz 01 pts)
		MKR MODE TRC SCL X Y FUNCTION 1 N 1 t 330.0 µs -3.86 dBm 2 N 1 t 360.0 µs -18.97 dBm 4 1 t 1.300 ms -3.97 dBm 5 6 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	FUNCTION WIDTH FUNCTION VALUE	
	K		(C)	(C)
				Page 79 of 217
<u>Ho</u>	otline: 4	00-6611-140 Tel: 86-755-27673339 Fax	<u>: 86-755-27673332 http://w</u>	<u>ww.tct-lab.com</u>

Τ	СТ	通测松 TESTING CENTRE TE				Report No.:	TCT220714E0	035
	LX.		Pept SA	SENSE:INT	670MHz	06:37:07 PM Jul 20, 2022	-	
0		Center Freq 5.6700	PNO: Fast ← IFGain:Low	► Trig: Free Run #Atten: 30 dB	Avg Type. Log-Fwi	TRACE 12 3 4 5 TYPE WWWWWW DET P NNNN Mkr1 310.0 µs	5	
		0 dB/div Ref 20.00	dBm			-5.49 dBn		
Č)	K)							
		Center 5.670000000 Res BW 1.0 MHz		BW 3.0 MHz		Span 0 Hz p 100.0 ms (10001 pts		
	Í	1 N 1 t 2 N 1 t 3 N 1 t 4 - - - 5 - - - 6 - - - 7 - - - 8 - - - 9 - - - 10 - - - 11 - - -	310.0 µs -5. 340.0 µs -20.	49 dBm 55 dBm 58 dBm			3	
S		SG Keysight Spectrum Analyzer - Sv		ycle NVNT ac80 5	status 530MHz			
		enter Freq 5.5300	PNO: Fast + IFGain:Low	SENSE:INT Trig: Free Run #Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr	06:41:40 PMJul 20,2022 TRACE 12 3 4 5 TYPE WWWWWW DET P NNNN Mkr1 290.0 µs		
		Ref Offset 3 0 dB/div Ref 20.00	dBm			-5.28 dBn		
S)		0.00 X U Angelander (* 1997) 10.0 X (* 1997) 20.0 X (* 1997) 30.0 X (* 1997) 40.0 X (* 1997) 50.0 X (*						
		Center 5.530000000 Res BW 1.0 MHz	#V	/BW 3.0 MHz		Span 0 Hz p 100.0 ms (10001 pts	6	
Ś		MKR MODE TRC SCL 1 N 1 t 2 N 1 t 3 N 1 t 5 5 6 9 9 9 10 9 10 5 5 6 5 7 8 9 9 9 10 5 10 5	330.0 μs -19.′	FUNCTION F 28 dBm 17 dBm 66 dBm 	STATUS	FUNCTION VALUE		
	C)				(,	3	
S								
						P	age 80 of 217	7
	Hotline: 40	00-6611-140	<u>Tel: 86-755-2767</u>	<u> 3339 Fax: 8</u>	36-755-27673332			

Τ	CT通测检测 TESTING CENTRE TECHNI	Duty Cycle NVNT a 5	825MHz	Report No.: TCT2207	714E035
	Keysight Spectrum Analyzer - Swept SA RL RF S0 Ω AC Center Freq 5.82500000	ON GHZ	ALIGN AUTO Avg Type: Log-Pwr	07:01:56 PM Jul 20, 2022	
9		PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 40 dB			
	Ref Offset 3.58 dt 10 dB/div Ref 30.00 dBm Log	3		Mkr1 230.0 µs 13.50 dBm	
	20.0 1 3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0				
	-10.0 -20.0 -30.0 -40.0 -50.0				
	-60.0				
	Center 5.825000000 GHz Res BW 8 MHz	#VBW 8.0 MHz	Sweep 1	Span 0 Hz 00.0 ms (10001 pts)	
	MKR MODE TRC SCL 1 N 1 t 2 N 1 t	X Y FUNCTION 230.0 µs 13.50 dBm 270.0 µs 12.30 dBm 2300 µs 12.35 dBm 2.35 dBm 2.35 dBm	FUNCTION WIDTH FUNC	TION VALUE	
	3 N 1 t 4 5	2.300 ms 12.35 dBm			
	6 7 8 8				
	9 10 11			· · ·	
(\mathbf{C})	MSG		STATUS	•	
	Keysight Spectrum Analyzer - Swept SA				
	t RL RF 50 Ω AC Center Freq 5.74500000	DO GHZ	ALIGN AUTO Avg Type: Log-Pwr	07:08:42 PM Jul 20, 2022 TRACE 1 2 3 4 5 6 TYPE WWWWWW DET P N N N N	
	Ref Offset 3.43 df	IFGain:Low #Atten: 40 dB		Mkr1 1.890 ms	
	10 dB/div Ref 30.00 dBm 20.0			-13.81 dBm	
	-10.0 -20.0				
	-30.0				
	-50.0				
	-60.0				
	Center 5.745000000 GHz Res BW 8 MHz	#VBW 8.0 MHz		Span 0 Hz 00.0 ms (10001 pts)	
	MKR MODE TRC SCL 1 N 1 t 2 N 1 t	x Y FUNCTION 1.890 ms -13.81 dBm 1.920 ms 13.86 dBm 3.810 ms 14.44 dBm	FUNCTION WIDTH FUNC	TION VALUE	
	3 N 1 t 4 5	3.810 ms 14.44 dBm		Ξ	
	6 7 8				
	9 10 11				
	MSG		STATUS	•	
				Daga 82 a	of 217
	Hino, 400 6644 440 T-		. 06 755 07670000	Page 83 c	
	otline: 400-6611-140 Te	<u>l: 86-755-27673339 Fax</u>	: 86-755-27673332	http://www.tct-lab.c	<u>;0111</u>

Keysight Spectrum Analyzer				
Center Freq 5.785	00.0. AC SENSE:INT 50000000 GHz PNO: Fast IFGain:Low #Atten: 40 dB	ALIGN AUTO Avg Type: Log-Pwr	07:12:58 PM Jul 20, 2022 TRACE 1 2 3 4 5 6 TYPE WWWWWW DET P N N N N N	
Ref Offse 10 dB/div Ref 30.0 Log	t 3.68 dB 10 dBm		Mkr1 1.820 ms 12.18 dBm	
20.0 1 3 10.0 1 3 10.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
-60.0				
Center 5.78500000 Res BW 8 MHz	#VBW 8.0 MHz		Span 0 Hz 100.0 ms (10001 pts)	
1 N 1 t 2 N 1 t 3 N 1 t 4 - - - 5 - 6 - 6 - - - 7 - - - 8 - - - 9 - - - 10 - - -	1.820 ms 12.18 dBm 1.860 ms 13.97 dBm 3.750 ms 10.50 dBm			
MSG	The second seco	STATUS	,	
RL RF Center Freq 5.82	- Swept SA 10 Q AC SENSE:INT 50000000 GHz	ALIGN AUTO Avg Type: Log-Pwr	07:17:12 PMJul 20, 2022 TRACE 1 2:3 4:5 6 TYPE WWWWWWW	
10 dB/div Ref Offse 20.0 1.3 10.0 1.3	PNO: Fast Trig: Free Run IFGain:Low #Atten: 40 dB 13.58 dB 10 dBm		Mkr1 1.660 ms 11.94 dBm	
-20.0 -30.0 -40.0 -60.0				
Center 5.82500000 Res BW 8 MHz	#VBW 8.0 MHz		Span 0 Hz 100.0 ms (10001 pts)	
MKR MODE TRC SCL 1 N 1 t 2 N 1 t 3 N 1 t 4 - - - 6 - - - 7 - - - 9 - - - 11 - - -	X Y FUNCTION 1.660 ms 11.94 dBm 1.700 ms 12.10 dBm 3.590 ms 11.96 dBm 		E F	
MSG	Ś	STATUS	Ś	