

TEST REPORT

FCC PART 15.247

Report Reference No. CTL2411191033-WF03

Compiled by: (position+printed name+signature)

(File administrators)
Wugiang Wu

Tested by: (position+printed name+signature)

(Test Engineer)

Happy Guo

Approved by: (position+printed name+signature)

Ivan Xie (Manager)

Product Name: laptop

Model/Type reference: T1568

T1567

Trade Mark.....: N/A

FCC ID...... 2BAGV-T1568

Applicant's name Shenzhen Forwell Electronics Technology Co., Ltd.

2nd Floor, Building A, Shatang Beifangyongfa Science and

Address of applicant Technology Park, Jincheng Rd., Shajing, Baoan, Shenzhen,

Guangdong, China

Test Firm...... Shenzhen CTL Testing Technology Co., Ltd.

Address of Test Firm Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road,

Nanshan District, Shenzhen, China 518055

Test specification....::

Standard : FCC Part 15.247: Operation within the bands 902-928 MHz,

2400-2483.5 MHz and 5725-5850 MHz.

TRF Originator Shenzhen CTL Testing Technology Co., Ltd.

Master TRF.....: Dated 2011-01

Date of receipt of test item: Nov. 22, 2024

Date of Test Date...... Nov. 22, 2024-Jan. 08, 2025

Date of Issue: Jan. 09, 2025

Result..... Pass

Shenzhen CTL Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

TEST REPORT

Test Report No. : CTL2411191033-WF03 Jan. 09, 2025

Date of issue

Equipment under Test : laptop

Sample No : CTL2411191033

Model /Type : T1568

Listed Models : T140R, T140H, T156R, T156H, T160H, T160R,

T173R, T173H, T1567

Applicant : Shenzhen Forwell Electronics Technology Co.,

Ltd.

2nd Floor, Building A, Shatang Beifangyongfa

Address Science and Technology Park, Jincheng Rd., Shajing,

Baoan, Shenzhen, Guangdong, China

Manufacturer : Shenzhen Forwell Electronics Technology Co.,

Ltd.

Address : 2nd Floor, Building A, Shatang Beifangyongfa

Science and Technology Park, Jincheng Rd., Shajing,

Baoan, Shenzhen, Guangdong, China

Test result Pass *

^{*} In the configuration tested, the EUT complied with the standards specified page 5.

The test results presented in this report relate only to the object tested.

This report shall not be reproduced, except in full, without the written approval of the issuing testing laboratory.

The device (Product Name: laptop) Models Name: T1568, T140R, T140H, T156R, T156H, T160H, T160R, T173R, T173H, T1567 have same electrical, PCB and BOM, only the colour and model's names are different for marketing requirements.

٠

** Modified History **

Report No.: CTL2411191033-WF03

Revisions	Description	Issued Data	Report No.	Remark
Version 1.0	Initial Test Report Release	2025-01-09	CTL2411191033-WF03	Tracy Qi
1 1 10		- 1		
1		123	China Control of the	
	100			
		Calls.		
				0 6
_	0 - 11		100	D - W
	Mary Inc.			B M D

	Table of Contents	Page
1. SU	JMMARY	5
1.1.	TEST STANDARDS	5
1.2.	TEST DESCRIPTION	5
1.3.	TEST FACILITY	ε
1.4.	STATEMENT OF THE MEASUREMENT UNCERTAINTY	
2. GE	ENERAL INFORMATION	8
2.1.	ENVIRONMENTAL CONDITIONS	8
2.2.	GENERAL DESCRIPTION OF EUT	8
2.3.	DESCRIPTION OF TEST MODES AND TEST FREQUENCY	
2.4.	EQUIPMENTS USED DURING THE TEST	10
2.5.	Related Submittal(s) / Grant (s)	10
2.6.	Modifications	
3. TE	ST CONDITIONS AND RESULTS	
3.1.	CONDUCTED EMISSIONS TEST	11
3.2.	RADIATED EMISSIONS AND BAND EDGE	
3.3.	MAXIMUM CONDUCTED OUTPUT POWER	23
3.4.	Power Spectral Density	24
3.5.	6dB Bandwidth	25
3.6.	Out-of-band Emissions	26
3.7.	Antenna Requirement	27
4. TE	ST SETUP PHOTOS OF THE EUT	28
5. EX	(TERNAL AND INTERNAL PHOTOS OF THE EUT	30

V1.0 Page 5 of 30 Report No.: CTL2411191033-WF03

1. SUMMARY

1.1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

ANSI C63.10: 2013: American National Standard for Testing Unlicensed Wireless Devices

KDB 558074 D01 v05r02: KDB558074 D01 15.247 Meas Guidance v05r02

1.2. Test Description

FCC PART 15.247		
FCC Part 15.207	AC Power Conducted Emission	PASS
FCC Part 15.247(a)(2)	6dB Bandwidth	PASS
FCC Part 15.247(d)	Spurious RF Conducted Emission	PASS
FCC Part 15.247(b)	Maximum Conducted Output Power	PASS
FCC Part 15.247(e)	Power Spectral Density	PASS
FCC Part 15.109/ 15.205/ 15.209	Radiated Emissions	PASS
FCC Part 15.247(d)	Band Edge	PASS
FCC Part 15.203/15.247 (b)	Antenna Requirement	PASS
		1

1.3. Test Facility

1.3.1 Address of the test laboratory

Shenzhen CTL Testing Technology Co.,Ltd.

Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road, Nanshan District, Shenzhen, China 518055

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.10 and CISPR 22/EN 55022 requirements.

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L7497

Shenzhen CTL Testing Technology Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No. 4343.01

Shenzhen CTL Testing Technology Co., Ltd, EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

IC Registration No.: 9618B

CAB identifier: CN0041

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements with Registration No.: 9618B.

FCC-Registration No.: 399832

Designation No.: CN1216

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 399832.

1.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTL laboratory is reported:

Test	Measurement Uncertainty	Notes
Transmitter power conducted	±0.57 dB	(1)
Transmitter power Radiated	±2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	±2.20 dB	(1)
Occupied Bandwidth	±0.01ppm	(1)
Radiated Emission9KHz~30MHz	±3.66dB	(1)
Radiated Emission 30~1000MHz	±4.10dB	(1)
Radiated Emission Above 1GHz	±4.32dB	(1)
Conducted Disturbance0.15~30MHz	±3.20dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

V1.0 Page 8 of 30 Report No.: CTL2411191033-WF03

2. GENERAL INFORMATION

2.1. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

2.2. General Description of EUT

Product Name:	laptop	- 4
Model/Type reference:	T1568	08
Power supply:	AC100V/60Hz&Powered by a 11.4V DC battery	1 1
Adapter information:	MODEL: JHD-AD065B-190342BA-A INPUT: 100-240V,50/60Hz 1.5A OUTPUT: 19V3.42A 64.98W	
2.4G WIFI	•	
Supported type:	802.11b/802.11g/802.11n(HT20)/802.11n(HT40)	
Modulation:	802.11b: DSSS 802.11g/802.11n(HT20)/802.11n(HT40): OFDM	
Operation frequency:	802.11b/802.11g/802.11n(HT20): 2412MHz~2462MHz 802.11n(HT40): 2422MHz~2452MHz	
Channel number:	802.11b/802.11g/802.11n(HT20): 11 802.11n(HT40): 7	
Channel separation:	802.11b/802.11g/802.11n(HT20)/802.11n(HT40)	
Antenna type:	ANT1: FPC Antenna ANT2: FPC Antenna	
Antenna gain:	ANT1: 1.35dBi ANT2: 1.37dBi	

Note1: For more details, please refer to the user's manual of the EUT.

Note2: Antenna gain provided by the applicant.

Note3: The device has two WIFI antennas, but WIFI Ant1 and Ant2 cannot transmit simultaneously in MIMO

mode.

V1.0 Page 9 of 30 Report No.: CTL2411191033-WF03

2.3. Description of Test Modes and Test Frequency

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing.

There are 11 channels provided to the EUT and Channel 01/03/06/09/11 were selected for WIFI test.

Operation Frequency WIFI:

Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432		0
6	2437		8-1
7	2442		W 100

Note: The line display in grey were the channel selected for testing

Data Rate Used:

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel
Maximum Conducted Output Power	11b/DSSS	1 Mbps	1/6/11
Power Spectral Density 6dB Bandwidth	11g/OFDM	6 Mbps	1/6/11
Spurious RF conducted emission Radiated Emission 9kHz~1GHz&	11n(20MHz)/OFDM	6.5Mbps	1/6/11
Radiated Emission 1GHz~10th Harmonic	11n(40MHz)/OFDM	13.5 Mbps	3/6/9
	11b/DSSS	1 Mbps	1/11
40 //	11g/OFDM	6 Mbps	1/11
Band Edge	11n(20MHz)/OFDM	6.5Mbps	1/11
	11n(40MHz)/OFDM	13.5 Mbps	3//9

There was 3 test Modes. TM1 to TM3 were shown below:

TM1 : Operate in 2.4G WIFI mode;TM2 : Operate in Charging mode;

TM3: Idle mode.

***Note:

1. All test modes were tested, but we only recorded the worst case in this report.

2.4. Equipments Used during the Test

				-0.1		
Test Equipment	Manufacturer	Model	No.	Serial No.	Calibration Date	Calibration Due Date
LISN	R&S	ESH2	2-Z5	860014/010	2024/04/30	2025/04/29
Double cone logarithmic antenna	Schwarzbeck	VULB	9168	824	2023/02/13	2026/02/12
EMI Test Receiver	R&S	ESC	CI	1166.5950.03	2024/04/30	2025/04/29
Spectrum Analyzer	Agilent	N902	20A	US46220290	2024/05/02	2025/05/01
Spectrum Analyzer	Keysight	N902	20A	MY53420874	2024/05/02	2025/05/01
Horn Antenna	Sunol Sciences Corp.	DRH-	118	A062013	2024/12/21	2025/12/20
Active Loop Antenna	Da Ze	ZN309	900A	/	2024/04/30	2025/04/29
Amplifier	Agilent	8449	9B	3008A02306	2024/04/30	2025/04/29
Amplifier	Brief&Smart	LNA-4	1018	2104197	2024/05/03	2025/05/02
Temperature/Humi dity Meter	Ji Yu	MC5	501	/	2024/05/04	2025/05/03
Power measurement module	TSTPASS	TSPS2	023R	TSCB220016	2024/05/03	2025/05/02
Power Sensor	Agilent	U202	1XA	MY53340004	2024/05/04	2025/05/03
Power Sensor	Agilent	U202	1XA	MY54080012	2024/05/03	2025/05/02
Spectrum Analyzer	RS	FS	Р	1164.4391.38	2024/05/03	2025/05/02
Test Software						
Name	e of Software	-		V	ersion	- 4
Т	ST-PASS	N.		,	V2.0	
EZ_EM	C(Below 1GHz)	1		V	1.1.4.2	o B
EZ_EMO	C((Above 1GHz)	0		V	1.1.4.2	May 14

The calibration interval was one year

2.5. Related Submittal(s) / Grant (s)

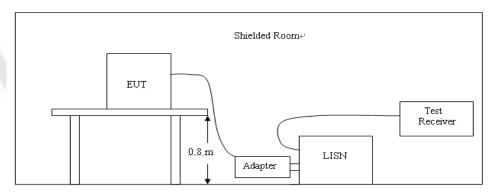
This submittal(s) (test report) is intended to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.6. Modifications

No modifications were implemented to meet testing criteria.

3. TEST CONDITIONS AND RESULTS

3.1. Conducted Emissions Test


LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207

Fraguerov ronge (MIII)	Limit (d	lBuV)		
Frequency range (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a Speaker; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
- 4. The adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

V1.0 Page 12 of 30 Report No.: CTL2411191033-WF03

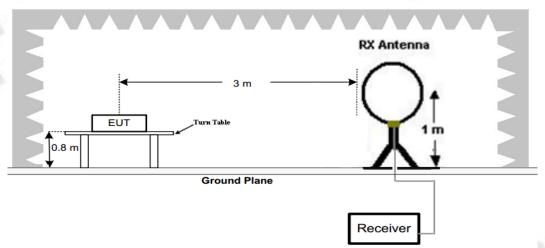
TEST RESULTS

ILSI KLSOLIS									
	Line:								L
Те	st Modes								TM2
Te	SCAN TABLE: Short Describer Sh	RESULT 39.90 40.40 40.40 40.40 40.40 40.40 45.30 41.70 49.10 RESULT :45AM Level dBpV	: "CTL2 Transd dB 10.0 10.0 10.1 11.2 : "CTL2	150K- 11M 2411263 Limit dBpV 56 56 60 2411263 Limit dBpV	2M Frequency P 500_fin dB 16.1 15.2 15.6 10.7 14.3 10.9	Jam 4M 5M (z) Detector OP	Line Line Li Li Li Li Li Li Li	PE GND GND GND GND GND GND	TM2
	11/26/2024 9 Frequency	:45AM Level dBμV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE GND	
	0.604500 1.108500 1.441500 18.433500 24.576000	34.60 36.60 32.10 48.00	10.0 10.1 10.1 11.2	46 46 46 50	11.4 9.4 13.9 2.0	AV AV AV	L1 L1 L1 L1 L1	GND GND GND GND GND	
	Line:								N
Те	st Modes								TM2
	SCAN TABLE: Short Descri	"Voltac ption:	7e (9K-	30M) FI 150K-	N" 30M Volt	age			
	Level [48]µV] 70 60 40 40 10 10 150 30 X X MES CTL2411		600k 800k	IM	2M Frequency (H		-	d 10M	20M 30M
	MEASUREMENT		"CTL2	411250	15_fin				
	11/26/2024 9: Frequency MHz			Limit dBµV	Margin dB	Detector	Line	PE	
	0.150000 0.154500 15.072000 18.267000 18.433500 18.595500	46.40 39.30 42.70 49.00	10.0 11.2 11.2 11.2	66 60 60	11.0	QP QP QP	N N N N N	GND GND GND GND GND GND	
	MEASUREMENT	RESULT	"CTL2	411250	15_fin	2"			
	11/26/2024 9: Frequency	Level		Limit dBµV	Margin dB	Detector	Line	PE	
	MHz 12.291000	dBμV 34.50	10.9	50	15.5		N	GND	

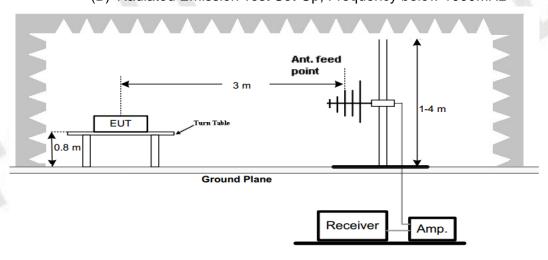
3.2. Radiated Emissions and Band Edge

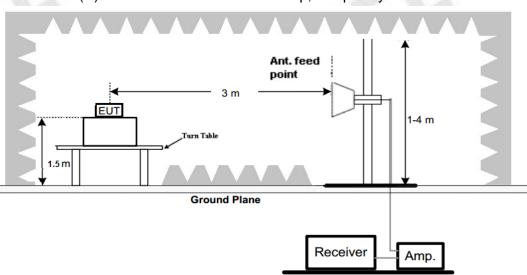
<u>Limit</u>

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.


In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

emission	


Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

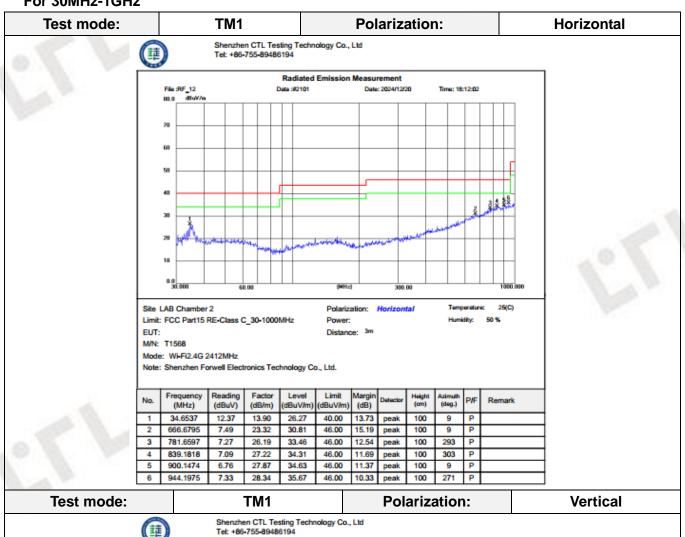

TEST CONFIGURATION

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

Test Procedure


- Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane, and above 1GHz measurement EUT was placed on a low permittivity and low loss tangent turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement –X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

TEST RESULTS

Remark:

- 1. All three channels (lowest/middle/highest) of each mode were measured below 1GHz and recorded worst case at 802.11b low channel (Antenna 1).
- 2. All three channels (lowest/middle/highest) of each mode were measured above1GHz and recorded worst case at 802.11b mode (Antenna 1).
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, Found the
 emission level are attenuated 20dB below the limits from 9 kHz to 30MHz, so it does not recorded
 in report.

For 30MHz-1GHz

893.4650

940.4801

27.61

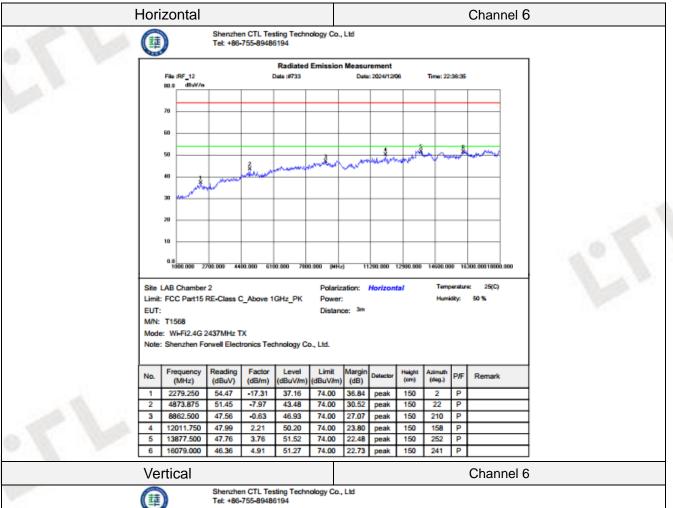
34.21

46.00

11.79 peak

46.00 10.95 peak 100

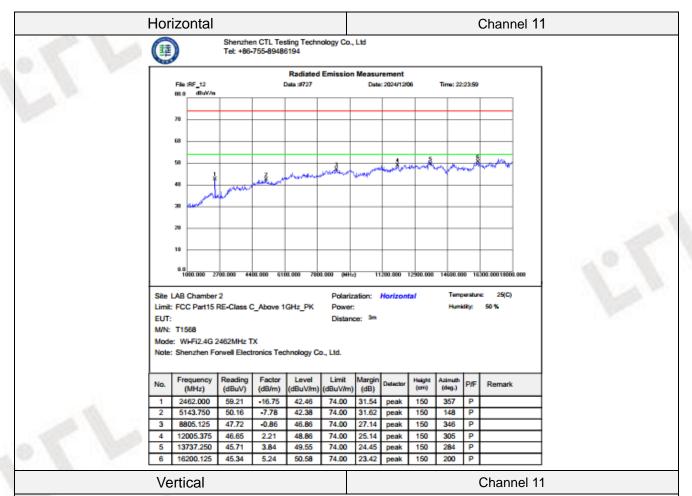

100


			Radiated	Emission	Measu	rement					
File :RF_12 00.0 dllvV	/m		Oata :#2102		Date	: 2024/12/2	20	Time: 18	13:05		
70											_
60					_		_	_			4
50					_		_	_			₫
40					#5					2 2 2	5
30	*				+		_	-	and the same	3,K28	7
20 /	لخفواله يبدري	MAR MAY L	Adamera	adec Nadercope	المسايد الما	سفعيديل		g-sandry ^{FT}		-	+
10			47				_				+
0.0 30.000	6	0.00		(MHz)	300.	00			10	00.0
ite LAB Chamb mit: FCC Part1 UT:		C_30-1000	MHz	Polariza Power:		Vertical		Temp	eratur dity:	sc 25	C)
/N: T1568				Distant							
ode: Wi-Fi2.40 ote: Shenzhen		tronics Tec	hnology Co	o., Ltd.							
o. Frequenc (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Rema	ırk
1 58.7670	13.13	14.30	27.43	40.00	12.57	peak	100	237	Р		
2 765.7214	7.53	25.79	33.32	46.00	12.68	peak	100	100	Р		
813.4681	7.36	26.96	34.32	46.00	11.68	peak	100	194	Р		
880 7894	7.64	27.49	35.13	46.00	10.87	neak	100	47	D		

For 1GHz to 25GHz

802.11b Mode (above 1GHz)

Note: 802.11b/802.11g/802.11n (HT20)/802.11n (HT40) all have been tested, only worse case 802.11b is reported (Antenna 1).



(III)

	Radiated Emissi	on Measurement	
File :RF_12 00.0 dllsW/n	Data :#734	Date: 2024/12/06	Time: 22:37:38
_			
70			
60			
50		J. P. Maria January	Lun Lune
40 1	Burney March & Johnson	A CONTRACTOR OF THE PARTY OF TH	
30 March March			
20			
10			
0.0			
1000.000 2700.000 44	10.000 6100.000 7800.000 (M	(Hz) 11200.000 12900.0	000 14600.000 16300.00018000.0
LAB Chamber 2		rization: Vertical	Temperature: 25(C)
: FCC Part15 RE-Class C		er: ance: 3m	Humidity: 50 %

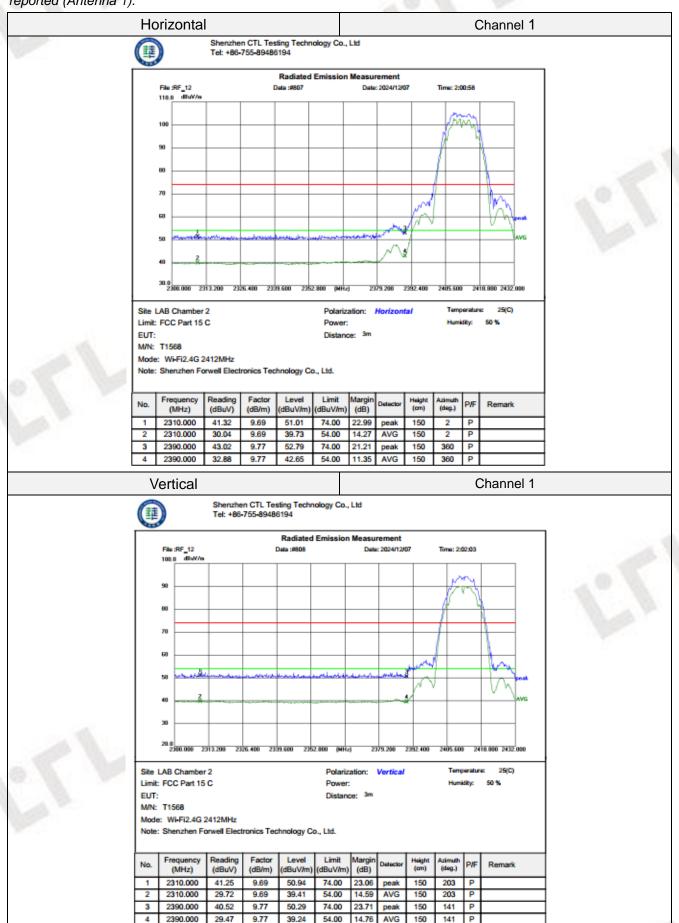
M/N: T1568 Mode: Wi-Fi2.4G 2437MHz TX Note: Shenzhen Forwell Electronics Technology Co., Ltd.

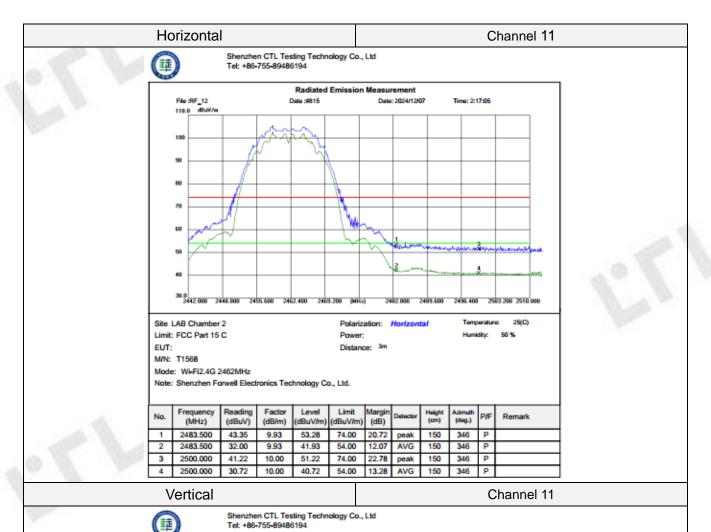
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	3443.750	52.80	-12.28	40.52	74.00	33.48	peak	150	67	Р	
2	4873.875	50.37	-7.97	42.40	74.00	31.60	peak	150	296	Р	
3	7691.625	48.95	-2.91	46.04	74.00	27.96	peak	150	296	Р	
4	10371.250	49.14	0.02	49.16	74.00	24.84	peak	150	358	Р	
5	13692.625	48.12	3.90	52.02	74.00	21.98	peak	150	140	Р	
6	16176,750	47.34	5.17	52.51	74.00	21.49	peak	150	67	Р	

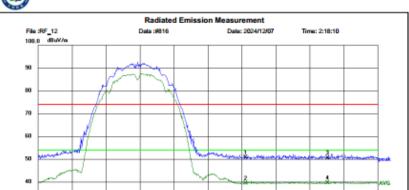
(

Shenzhen CTL Testing Technology Co., Ltd Tel: +86-755-89486194

				Radiated	Emission	Measu	rement					
	File:RF_12			Data :#728		Date	: 2024/12/0	6	Time: 22:	25:03		
	00.0 dlluW/m								_			
	70											
	60							+				
								١.				
	50	_			- 1		يالم مهوري	No.	to Marie	and the	ارباهميا	
				munu	Company of the Party of the Par	سميليس	Mary Control	717	4	- 10	"	
	40	No.	شروب مالخالف				-	+	_			
	ليهال ا	1										
	30 4/4							+	_			
	20											
	10											
	10											
	0.0											
	0.0 1000.000 2	700.000 44	00.000 610	0.000 780	0.000 (MHz) 11	200.000 1	2900.000	14600.00	10 16	300.00018000.0	100
Pao	1000.000 27		00.000 610	0.000 780				2900.000				100
	LAB Chamber	2			Polariza	ation:	200.000 1	2900.000	Temp	eratur	e: 25(C)	100
Limit	LAB Chamber : FCC Part15	2			Polariz	ation:		2900.000		eratur		100
Limit EUT:	LAB Chamber FCC Part15	2			Polariza	ation:		2900.000	Temp	eratur	e: 25(C)	100
Limit EUT: M/N:	LAB Chamber FCC Part15 I	2 RE-Class 0	C_Above 1		Polariz	ation:		2900.000	Temp	eratur	e: 25(C)	100
Limit EUT: M/N: Mode	LAB Chamber : FCC Part15 : : T1568 e: Wi-Fi2.4G 2	2 RE-Class C	C_Above 1	GHz_PK	Polariza Power: Distance	ation:		2900.000	Temp	eratur	e: 25(C)	100
Limit EUT: M/N: Mode	LAB Chamber FCC Part15 I	2 RE-Class C	C_Above 1	GHz_PK	Polariza Power: Distance	ation:		2900.000	Temp	eratur	e: 25(C)	100
Limit EUT: M/N: Mode	LAB Chamber : FCC Part15 : : T1568 e: Wi-Fi2.4G 2	2 RE-Class C	C_Above 1	GHz_PK	Polariza Power: Distance	ation:		2900.000	Temp	eratur	e: 25(C)	000
Limit EUT: M/N: Mode Note:	LAB Chamber : FCC Part15 : : T1568 e: Wi-Fi2.4G 2 : Shenzhen Fo	2 RE-Class C 2462MHz T orwell Elect	C_Above 1	GHz_PK thnology Co	Polariz: Power: Distance	ation: ce: 3m		Height	Temp	erature dity:	e: 25(C) 50 %	100
Limit EUT: M/N: Mode Note:	LAB Chamber : FCC Part15 I : T1568 e: Wi-Fi2.4G 2	2 RE-Class 0 2462MHz T orwell Elect	C_Above 1	GHz_PK thnology Co	Polariz Power: Distance	ation: ce: 3m	Vertical		Temp	eratur	e: 25(C)	100
Limit EUT: M/N: Mode Note:	LAB Chamber : FCC Part15 : : T1568 e: Wi-Fi2.4G 2 : Shenzhen Fo	2 RE-Class C 2462MHz T orwell Elect	C_Above 1	GHz_PK thnology Co	Polariz: Power: Distance	ation: ce: 3m	Vertical	Height	Temp	erature dity:	e: 25(C) 50 %	900
Limit EUT: M/N: Mode Note:	LAB Chamber: : FCC Part15 : T1568 e: Wi-Fi2.4G 2 : Shenzhen Fc	2 RE-Class C 2462MHz T orwell Elect Reading (dBuV)	C_Above 10 X tronics Tec Factor (dB/m)	GHz_PK thnology Co	Polariza Power: Distance o., Ltd.	ation: ce: 3m Margin (dB)	Vertical	Height (cm)	Temp Humi Azimuth (deg.)	eratur dity:	e: 25(C) 50 %	000
Limit EUT: M/N: Mode Note: No.	LAB Chamber: FCC Part15 T1568 Wi-Fi2.4G 2 Shenzhen Fc Frequency (MHz) 2593.750	2 RE-Class C 2462MHz T orwell Elect Reading (dBuV) 54.06	C_Above 10 X Ironics Tec Factor (dB/m) -16.20	GHz_PK thnology Co Level (dBuV/m) 37.86	Polariz: Power: Distance D., Ltd. Limit (dBuV/m) 74.00	Margin (dB)	Vertical Detector peak	Height (cm)	Temp Humi Azimuth (deg.)	eratur dity:	e: 25(C) 50 %	100
Limit EUT: M/N: Mode Note:	LAB Chamber: FCC Part15 : T1568 e: Wi-Fi2.4G 2: Shenzhen Fc (MHz) 2593.750 6119.125	2 RE-Class C 2462MHz T orwell Elect Reading (dBuV) 54.06 49.12	XX Factor (dB/m) -18.20	GHz_PK thnology Co Level (dBuV/m) 37.86 43.86	Polarizz Power: Distance o., Ltd. Limit (dBuV/m) 74.00	Margin (dB) 36.14 30.14	Detector peak peak	Height (cm) 150 150	Azimuth (deg.)	P/F	e: 25(C) 50 %	000
Limit EUT: M/N: Mode Note: No.	LAB Chamber: FCC Part15 : T1568 e: Wi-Fi2.4G 2: Shenzhen Fc Frequency (MHz) 2593.750 6119.125 9523.375	2 RE-Class C 2462MHz T prwell Elect Reading (dBuV) 54.06 49.12 47.29	XX Factor (dB/m) -18.20 -5.26 0.32	GHz_PK thnology Ci Level (dBuV/m) 37.86 43.86 47.61	Polariz: Power: Distance o., Ltd. Limit (dBuV/m) 74.00 74.00	Margin (dB) 36.14 30.14 26.39	Detector peak peak peak	Height (cm) 150 150 150	Azimuth (deg.) 296 358 223	P/F P	e: 25(C) 50 %	100


REMARKS:


- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.
- 6. Other emissions are attenuated 20dB below the limits from 9 kHz to 30MHz, so it does not recorded in report.
- 7. 18GHz-26GHz not recorded for no spurious point have a margin of less than 6 dB with respect to the limits.


Results of Band Edges Test (Radiated)

ge 20 of 30 Report No.: CTL2411191033-WF03

Note: 802.11b/802.11g/802.11n (HT20)/802.11n (HT40) all have been tested, only worse case 802.11b is reported (Antenna 1).

Site LAB Chamber 2 Limit: FCC Part 15 C EUT: Polarization: Vertical
Power:

Temperature: 25(C) Humidity: 50 %

2482.800 2489.600 2496.400 2503.200 2510.000

EUT: M/N: T1568

Mode: Wi-Fi2.4G 2462MHz

Note: Shenzhen Forwell Electronics Technology Co., Ltd.

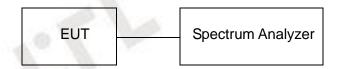
20.0 2442.000 2448.800 2455.600 2462.400 2469.200 (MHz)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	2483.500	40.80	9.93	50.73	74.00	23.27	peak	150	15	Р	
2	2483.500	29.45	9.93	39.38	54.00	14.62	AVG	150	15	Р	
3	2500.000	40.44	10.00	50.44	74.00	23.56	peak	150	203	Р	
4	2500.000	29.41	10.00	39.41	54.00	14.59	AVG	150	203	Р	

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.
- 6. For fundamental frequency, RBW 3MHz VBW 3MHz Peak detector is for PK Value; RMS detector is for AV value.
- 7. Other emissions are attenuated 20dB below the limits from 9kHz to 30MHz, so it does not recorded in report.

3.3. Maximum Conducted Output Power


Limit

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum.

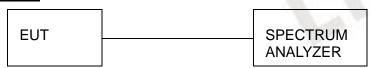
Test Configuration

Test Results

Raw data reference to Section 2 from CTL2411191033-WF03_2.4G_WIFI_Appendix. .

V1.0 Page 24 of 30 Report No.: CTL2411191033-WF03

3.4. Power Spectral Density


Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW ≥ 3 kHz.
- 3. Set the VBW \geq 3× RBW.
- 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = Average.
- 6. Sweep points = 40001
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting PSD level must be 8dBm.

Test Configuration

Test Results

Raw data reference to Section 3 from CTL2411191033-WF03_2.4G_WIFI_Appendix. .

V1.0 Page 25 of 30 Report No.: CTL2411191033-WF03

3.5. 6dB Bandwidth

Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

Raw data reference to Section 1 from CTL2411191033-WF03_2.4G_WIFI_Appendix. .

3.6. Out-of-band Emissions

Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration

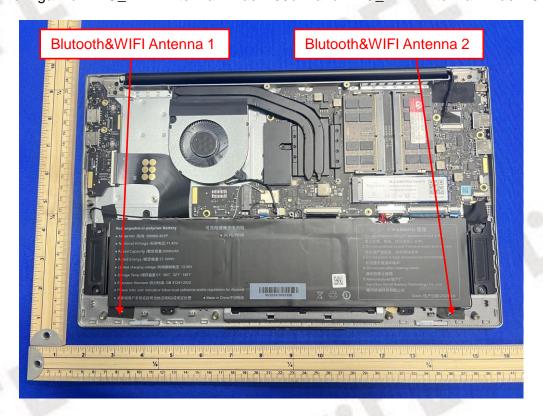
Test Results

Raw data reference to Section 4 from CTL2411191033-WF03_2.4G_WIFI_Appendix. .

3.7. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

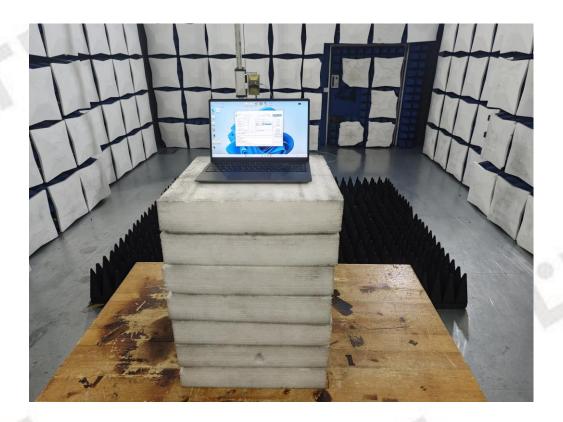

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(b) (4):

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Test Result:

The maximum gain of 2.4G_WIFI Antenna 1 was 1.35dBi and 2.4G_WIFI Antenna 2 was 1.37dBi.


V1.0 Page 28 of 30 Report No.: CTL2411191033-WF03

4. Test Setup Photos of the EUT

V1.0 Page 29 of 30 Report No.: CTL2411191033-WF03

5. External and Internal Photos of the EUT

Report No.: CTL2411191033-WF03