Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

 Telephone:
 +86-755-26648640

 Fax:
 +86-755-26648637

 Website:
 www.cqa-cert.com

Report Template Version: V05 Report Template Revision Date: 2021-11-03

Test Report

Report No. : Applicant: Address of Applicant:	CQASZ20241202663E-02 Shenzhen lianhongxin Industrial Co., Ltd. Floor 5, building C, B8 Industrial Park, Baihua community, Guangming Street, Shenzhen, China
Equipment Under Test (E	
Product:	5.4 Bluetooth Adapter
Model No.:	RTL5.4
Test Model No.:	RTL5.4
Brand Name:	N/A
FCC ID:	2A3F2-RTL54
Standards:	47 CFR Part 15, Subpart C
	KDB558074 D01 15.247 Meas Guidance v05r02
	ANSI C63.10:2013
Date of Receipt:	2024-12-18
Date of Test:	2024-12-18 to 2024-12-27
Date of Issue:	2025-1-14
Test Result :	PASS*

*In the configuration tested, the EUT complied with the standards specified above.

Tested By:	lewis zhou	
·	(Lewis Zhou)	TESTING TLOR
Reviewed By:	Timo Loj	
, , , , , , , , , , , , , , , , , , ,	(Timo Lei)	华夏准测
Approved By:	Janos	* APPROVED *
	(Jack Ai)	

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20241202663E-02	Rev.01	Initial report	2025-1-14

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15.203	/	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15.247	ANSI C63.10-2013	PASS
20dB Occupied Bandwidth	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Carrier Frequencies Separation	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Hopping Channel Number	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Dwell Time	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15.247	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Radiated Spurious emissions	47 CFR Part 15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

The tested sample(s) and the sample information are provided by the client.

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radiated Frequency.

CH: In this whole report CH means channel.

Volt: In this whole report Volt means Voltage.

Temp: In this whole report Temp means Temperature.

Humid: In this whole report Humid means humidity.

Press: In this whole report Press means Pressure.

N/A: In this whole report not application

3 Contents

1 VERSION	2
2 TEST SUMMARY	3
3 CONTENTS	4
4 GENERAL INFORMATION	5
 4.1 CLIENT INFORMATION 4.2 GENERAL DESCRIPTION OF EUT	
5 TEST RESULTS AND MEASUREMENT DATA	
 5.1 ANTENNA REQUIREMENT	13 17 24 30 34 37 48 56 71 73 76 78
6 PHOTOGRAPHS - EUT TEST SETUP	
6.1 RADIATED EMISSION	
7 PHOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	

4 General Information

4.1 Client Information

Applicant:	Shenzhen lianhongxin Industrial Co., Ltd.
Address of Applicant:	Floor 5, building C, B8 Industrial Park, Baihua community, Guangming Street, Shenzhen, China
Manufacturer:	Shenzhen lianhongxin Industrial Co., Ltd.
Address of Manufacturer:	Floor 5, building C, B8 Industrial Park, Baihua community, Guangming Street, Shenzhen, China
Factory:	Shenzhen lianhongxin Industrial Co., Ltd.
Address of Factory:	Floor 5, building C, B8 Industrial Park, Baihua community, Guangming Street, Shenzhen, China

4.2 General Description of EUT

•			
Product Name:	5.4 Bluetooth Adapter		
Model No.:	RTL5.4		
Test Model No.:	RTL5.4		
Trade Mark:	N/A		
Software Version:	13.51041		
Hardware Version:	BT04-V1.0		
Operation Frequency:	2402MHz~2480MHz		
Bluetooth Version:	V5.4		
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)		
Modulation Type:	GFSK, π/4DQPSK, 8DPSK		
Transfer Rate:	1Mbps/2Mbps/3Mbps		
Number of Channel:	79		
Hopping Channel Type:	Adaptive Frequency Hopping systems		
Product Type:			
Test Software of EUT:	RTLBTAPP		
Antenna Type:	PCB antenna		
Antenna Gain:	3.29 dBi		
Power Supply:	Power supply DC5V form computer		
	☐ Simultaneous TX is supported and evaluated in this report.		
Simultaneous Transmission	☐ Simultaneous TX is supported and evaluated in this report.		

Operation F	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

4.3 Additional Instructions

EUT Test Software Se	ettings:		
Mode:	 Special software is used. Through engineering command into the engineering mode. engineering command: *#*#3646633#*#* 		
EUT Power level:	(Power level is built-in set parameters and cannot be changed and selected)		
Use test software to set the I transmitting of the EUT.	owest frequency, the middle frequency and	d the highest frequency keep	
Mode	Channel	Frequency(MHz)	
	СН0	2402	
DH1/DH3/DH5	СН39	2441	
	CH78	2480	
	СН0	2402	
2DH1/2DH3/2DH5	CH39	2441	
	CH78	2480	
	СН0	2402	
3DH1/3DH3/3DH5	CH39	2441	
	CH78	2480	

Run Software:

Image:	Function About	RTLBTAPP Version (5.2.4.12)		- 1
No Endy Word Delay (100m *) tede Hooring 1C. Teel, Tis Setting Eluxe Mag/RTL8/SBIB GPO see DD15 ************************************	Interface			
Idea Hocho Lu Text Tx Setting I (fune Magfit TX/SFB) [GHO] rece Hocho Lu Text Tx Setting I TX France I CAAddess Photosing France I CAAddess Solor Setting TX France I CAAddess France I TX Setting I CAAddess Solor Setting I TX France I CAAddess O IF Set O IF SE			Hot Key	
spee DH5 Impone Impone <td< td=""><td>Node Hopping LE Test Tx Settings Efuse Map(RTL876</td><td>18) GPIO </td><td></td><td></td></td<>	Node Hopping LE Test Tx Settings Efuse Map(RTL876	18) GPIO		
Watering Watering Watering Pine	vpe 20H5			
Anderson real D real 78	Hopping	Stop		
rrel 78 Prover Tracking Prove Tr	vritering			
Image: Constraint of the system Spring model S				
parp model BoginsuccessI Start LE PKT TX begin success Store EART TX begi				
Same a coll spen and B Gan, success! Spen and B Gan, success! Same LE PKT Nb begin success Same LE PKT Nb begin success S				
samp model spamp model Bigs, success! spamp model Bigs, success! Spamp model Bigs, success! Shart LEPKT Nobejn success. Shart LEPKT Nobejn success. Shart LEPKT Nobejn success. Shart LEPKT Nobejn success. Spamp model Bigs, success!				
warder notell oppring note Biggin, auccessifi space Train State LEPAT No begin success Lister EFAT No begin success Lister EFAT No begin success Lister EFAT No begin success Lister EFAT No begin success Support notell oppring notell Biggin, successifi oppring notell Biggin, successifi				
opprig model Bogin_muccess 15 att LEPKT TX begin success 15				
Nachig model Biogin, nuccessil Napprig model Biogin, nuccessil Listor EPKT Nobigin success. Listor EPKT Nobigin success. Listor EPKT Nobigin success. Listor EPKT Nobigin success. Listor EpkT Nobigin success. State Listor EpkT Nobigin success. Listor EpkT Nobigin success. State Listor EpkT Nobigin success. Listor EpkT Nobigin success.	e]			
Isopring model at Stop EFA The Negin success at Stop EFA at Stop EFA at Stop EFA at Stop EFA at Stop EFA Stop I Stop I The Negin success at Stop EFA Stop I Stop I The Negin success at Stop EFA Stop I Stop I S	hopping mode!!			
L_Stop Find L_Stop Find L_Stop Find U_Stop Find U	hopping mode!!			
Libop Frd Upper Libop Frd opping model Bogin _ nuccessil opping model Bogin _ nuccessil upper model Bogin _ nuccessil	at_Stop End			
al Stat: LE PKT TX begin success opprog mode Beginsccessfl opprog mode Beginsccessfl v V Promite Log PHY_FT v	st_Start : LE PKT TX begin success st_Stop End		2 Load Script	
hopping model BeginsuccessII v BeginsuccessII v FHV_FT v				
	hopping model! hopping mode Beginsuccess!!			
2019	C = V <u>- 4</u> 🖉			
四 W 画 会 Z (4) ENG 2019 2024/12/25 の 見が多云 ヘ 및 4) ENG 2024/12/25 17*C 局部多云 ヘ 및 4) ENG 2024/12/25 17*C 局部 40 ENG 2024/12/25 17*C				

4.4 Test Environment

Operating Environment	
Temperature:	25 °C
Humidity:	54% RH
Atmospheric Pressure:	1009mbar
Test Mode:	Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Remark	Supplied
Computer	Lenovo	1	/	CQA

4.6 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

No.	Item	Uncertainty
1	Radiated Emission (Below 1GHz)	5.12dB
2	Radiated Emission (Above 1GHz)	4.60dB
3	Conducted Disturbance (0.15~30MHz)	3.34dB
4	Radio Frequency	3×10 ⁻⁸
5	Duty cycle	0.6 %
6	Occupied Bandwidth	1.1%
7	RF conducted power	0.86dB
8	RF power density	0.74
9	Conducted Spurious emissions	0.86dB
10	Temperature test	0.8°C
11	Humidity test	2.0%
12	Supply voltages	0.5 %
13	Frequency Error	5.5 Hz

Hereafter the best measurement capability for CQA laboratory is reported:

4.7 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

4.8 Test Facility

The test facility is recognized, certified, or accredited by the following organizations: **IC Registration No.: 22984-1**

The 3m Semi-anechoic chamber of Shenzhen Huaxia Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L5785)

CNAS has accredited Shenzhen Huaxia Testing Technology Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

4.9 Abnormalities from Standard Conditions

None.

4.10 Other Information Requested by the Customer

None.

4.11 Equipment List

			Instrument	Calibration	Calibration
Test Equipment	Manufacturer	Model No.	No.	Date	Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2024/9/2	2025/9/1
Spectrum analyzer	R&S	FSU26	CQA-038	2024/9/2	2025/9/1
Spectrum analyzer	R&S	FSU40	CQA-075	2024/9/2	2025/9/1
Preamplifier	MITEQ	AFS4-00010300-18- 10P-4	CQA-035	2024/9/2	2025/9/1
Preamplifier	MITEQ	AMF-6D-02001800- 29-20P	CQA-036	2024/9/2	2025/9/1
Preamplifier	EMCI	EMC184055SE	CQA-089	2024/9/2	2025/9/1
Loop antenna	Schwarzbeck	FMZB1516	CQA-060	2023/9/8	2026/9/7
Bilog Antenna	R&S	HL562	CQA-011	2023/11/01	2026/10/31
Horn Antenna	R&S	HF906	CQA-012	2023/11/01	2026/10/31
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2023/9/7	2026/9/6
Coaxial Cable (Above 1GHz)	CQA	N/A	C007	2024/9/2	2025/9/1
Coaxial Cable (Below 1GHz)	CQA	N/A	C013	2024/9/2	2025/9/1
Antenna Connector	CQA	RFC-01	CQA-080	2024/9/2	2025/9/1
RF cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2024/9/2	2025/9/1
Power meter	R&S	NRVD	CQA-029	2024/9/2	2025/9/1
Power divider	MIDWEST	PWD-2533-02-SMA- 79	CQA-067	2024/9/2	2025/9/1
EMI Test Receiver	R&S	ESR7	CQA-005	2024/9/2	2025/9/1
LISN	R&S	ENV216	CQA-003	2024/9/2	2025/9/1
Coaxial cable	CQA	N/A	CQA-C009	2024/9/2	2025/9/1
DC power	KEYSIGHT	E3631A	CQA-028	2024/9/2	2025/9/1

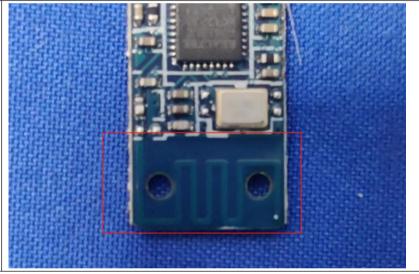
Note:

The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)
Standard requirement:	47 CFR Part 15C Section 15.203 /247 (c)


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

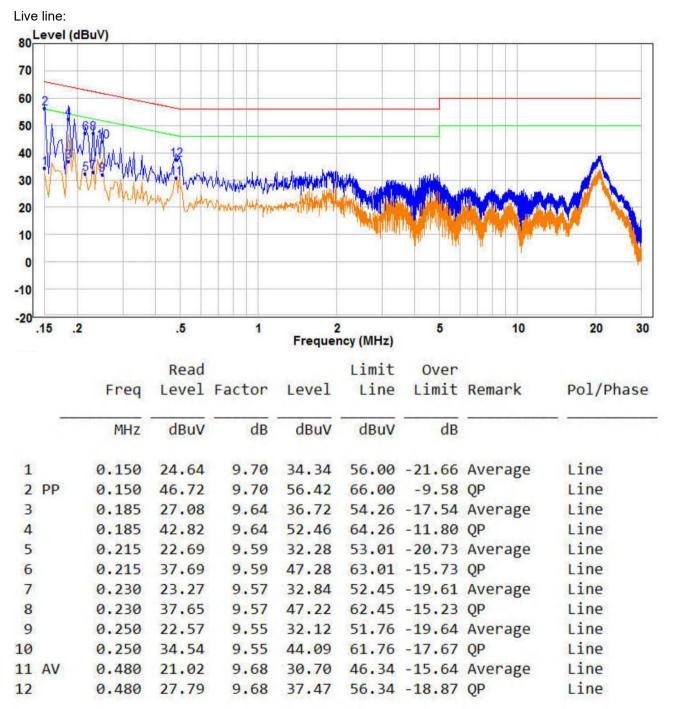
EUT Antenna:

The antenna is PCB antenna.

The connection/connection type between the antenna to the EUT's antenna port is: permanently attachment.

This is either permanently attachment or a unique coupling that satisfies the requirement.

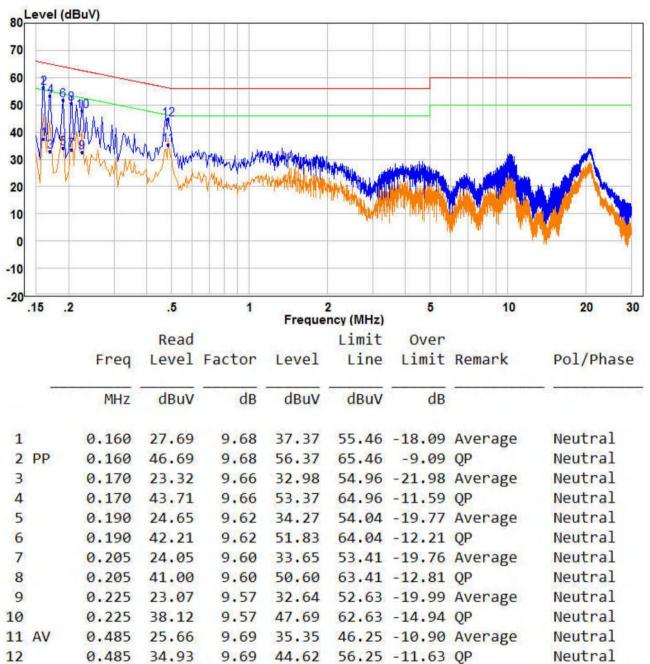
5.2 Conducted Emissions


 Conducted Emissio				
Test Requirement:	47 CFR Part 15C Section 15.207			
Test Method:	ANSI C63.10: 2013			
Test Frequency Range:	150kHz to 30MHz			
Limit:		Limit (c	Limit (dBuV)	
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarithn	n of the frequency.	·	
Test Procedure:	 * Decreases with the logarithm of the frequency. 1) The mains terminal disturbance voltage test was conducted in a shie room. 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50µH + 5Ω lin impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above th ground reference plane. And for floor-standing arrangement, the EUT placed on the horizontal ground reference plane. The re of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane. The LISN 1 was placed 0.8 m from the boundary of t unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units the EUT and associated equipment was at least 0.8 m from the LISN 5) In order to find the maximum emission, the relative positions of 		bugh a LISN 1 (Line a 50Ω/50µH + 5Ω lin f the EUT were d to the ground or the unit being d to connect multiple g of the LISN was not c table 0.8m above the rangement, the EUT we ference plane. The read d reference plane. The read d reference plane. The read d reference plane. The read d reference plane for LISNs his distance was EUT. All other units co 0.8 m from the LISN 2	near ne was ar e ne
Test Setup:	Shielding Room	AE UISN2 + AC Ma Ground Reference Plane	Test Receiver	

Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of
	data type at the lowest, middle, high channel.
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation at the lowest channel is the worst case. Only the worst case is recorded in the report.
Test Voltage:	AC 120V/60Hz
Test Results:	Pass

Measurement Data

Remark:


1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

3. If the Peak value under Average limit, the Average value is not recorded in the report.

Neutral line:

Remark:

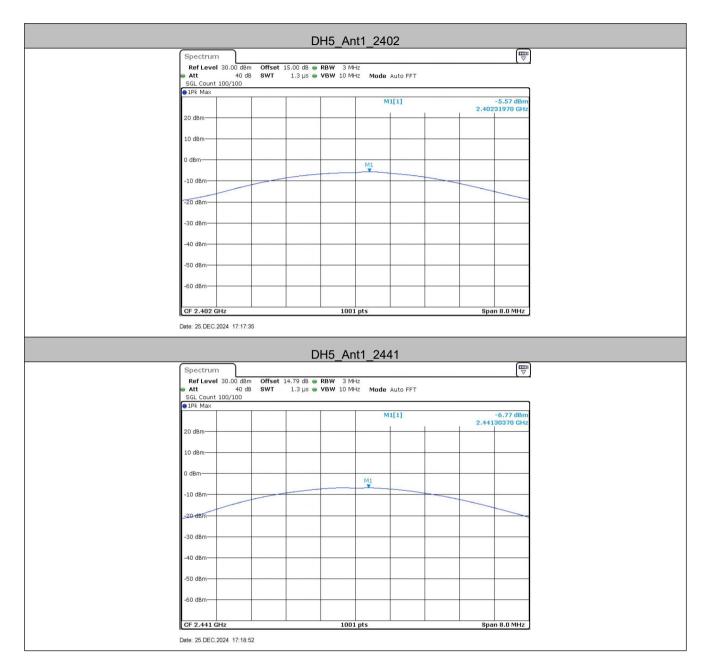
1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

3. If the Peak value under Average limit, the Average value is not recorded in the report.

5.3 Conducted Peak Output Power

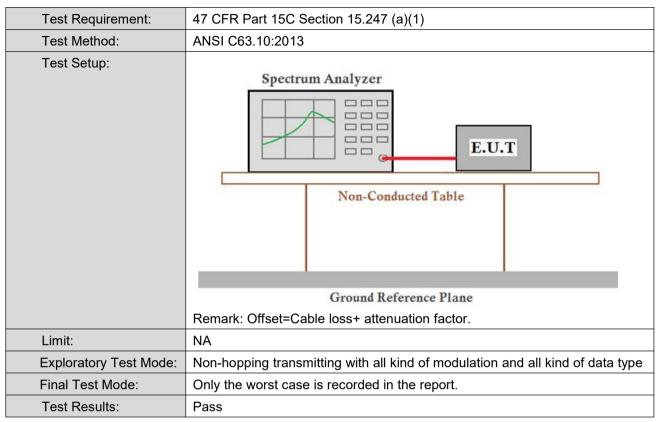
Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)	
Test Method:	ANSI C63.10:2013	
Test Setup:	Setup for Power meter measurement method	
	EUT Power Meter	
	Setup for Spectrum analyser measurement method	
	Spectrum Analyzer E.U.T Non-Conducted Table	
	Ground Reference Plane	
	Remark: Offset=Cable loss+ attenuation factor.	
Limit:	21dBm	
Exploratory Test Mode	Non-hopping transmitting with all kind of modulation and all kind of data ty	
Final Test Mode:	Only the worst case is recorded in the report.	
Test Results:	Pass	



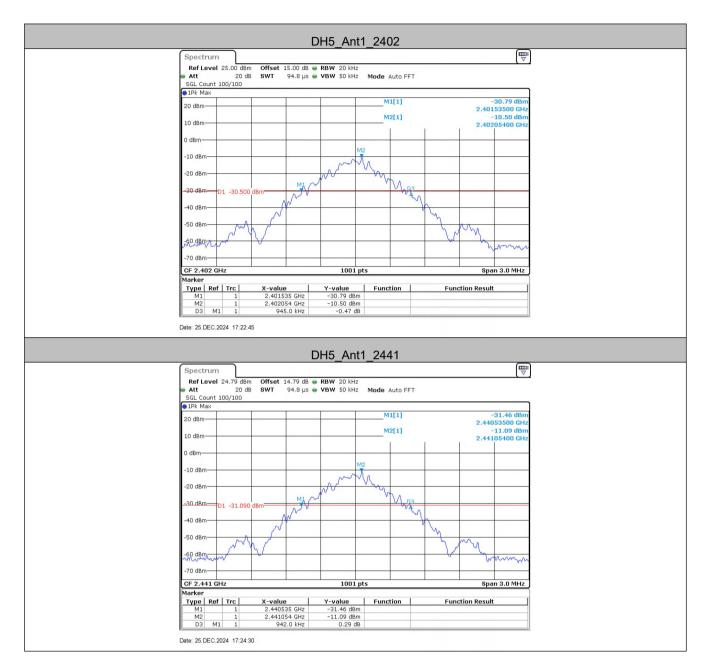
Measurement Data

GFSK mode				
Test channel	Peak Output Power (dBm) Limit (dBm) Resu		Result	
Lowest	-5.57	21.00	Pass	
Middle	-6.77	21.00	Pass	
Highest	-5.90	21.00	Pass	
	π/4DQPSK mo	ode		
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	-5.89	21.00	Pass	
Middle	-6.44	21.00	Pass	
Highest	-6.27	21.00	Pass	
	8DPSK mod	e		
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	-5.84	21.00	Pass	
Middle	-6.66	21.00	Pass	
Highest	-6.49	21.00	Pass	

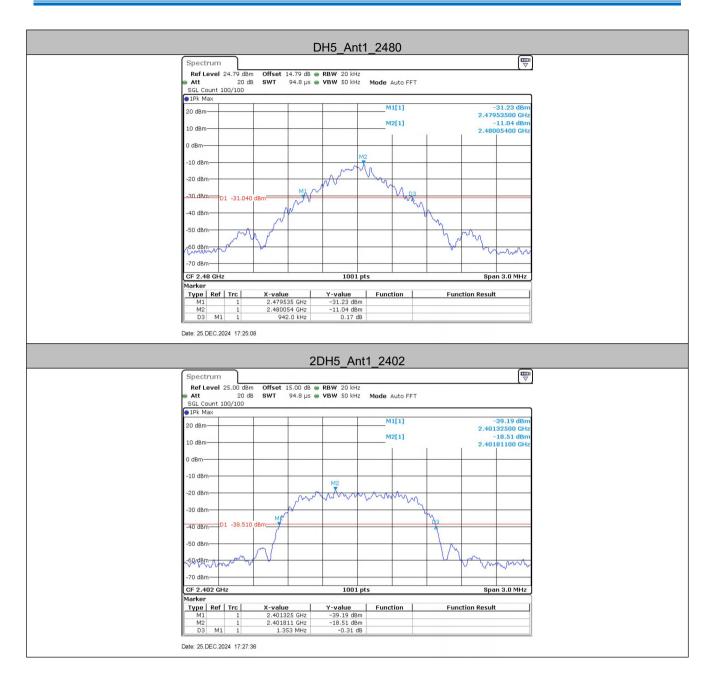
Test plot as follows:



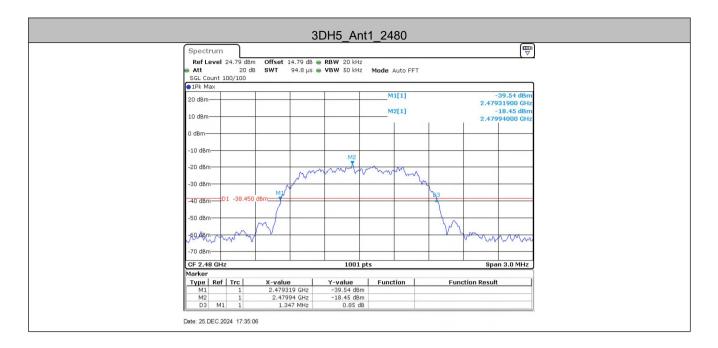
5.4 20dB Occupied Bandwidth

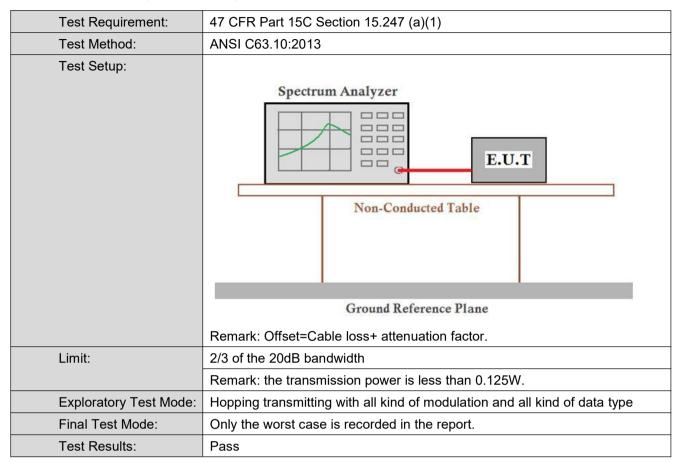


Measurement Data

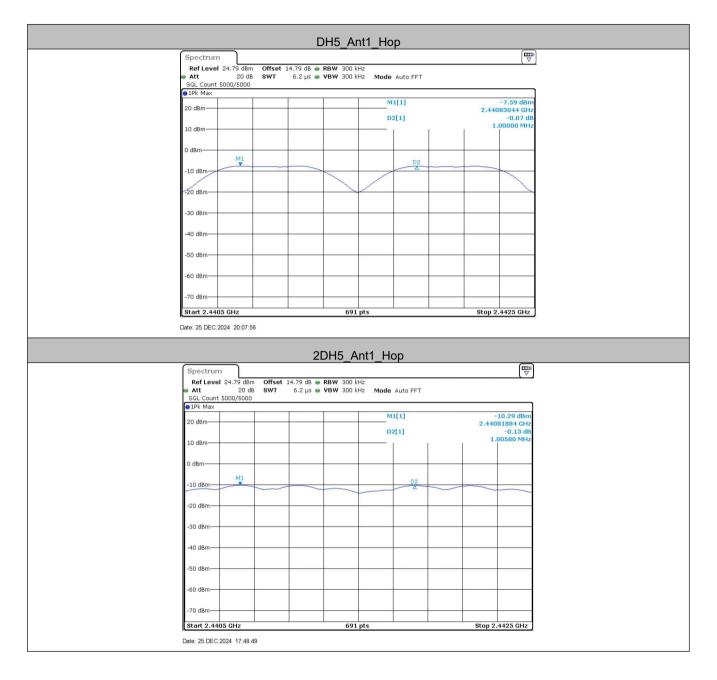

Test channel	20	0dB Occupy Bandwidth (MHz)		
	GFSK	π/4DQPSK	8DPSK	
Lowest	0.95	1.35	1.35	
Middle	0.94	1.35	1.35	
Highest	0.94	1.35	1.35	

Test plot as follows:





5.5 Carrier Frequencies Separation


Measurement Data

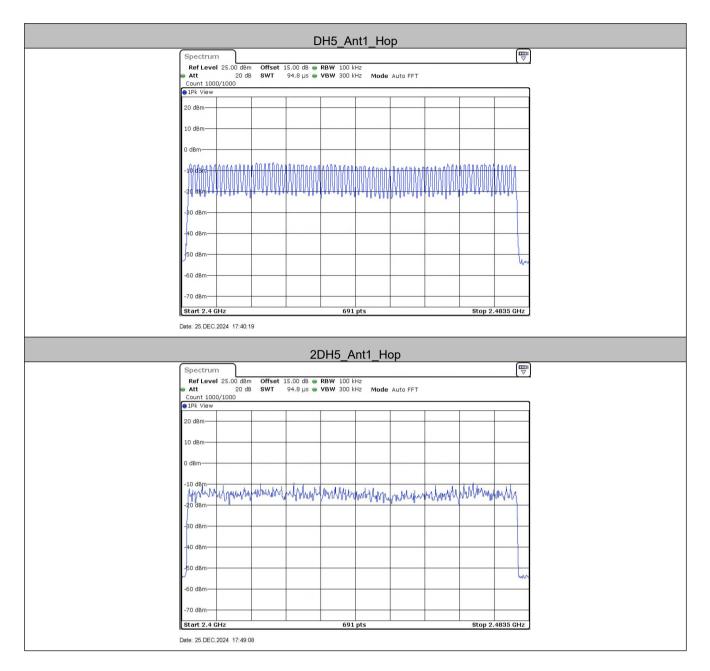
TestMode	Freq(MHz)	Result[MHz]	Limit[MHz]	Verdict
DH5	Нор	1	≥0.633	PASS
2DH5	Нор	1.006	≥0.900	PASS
3DH5	Нор	1	≥0.900	PASS

Mode	20dB bandwidth (MHz) (worse case)	Limit (MHz) (Carrier Frequencies Separation)
		(Gamor roquencies coparation)
GFSK	0.95	≥0.633
π/4DQPSK	1.35	≥0.900
8DPSK	1.35	≥0.900

Test plot as follows:

 3DH	5_Ant1_Hop	
Spectrum		
Ref Level 24.79 dBm Offset 14.79 dB ● RBW ● Att 20 dB SWT 6.2 μs ● VBW SGL Count 5000/5000	300 kHz 300 kHz Mode Auto FFT	
1Pk Max		
20 dBm-	M1[1]	-10.27 dBm 2.44082174 GHz
10 dBm	D2[1]	-0.08 dB 1.00000 MHz
0 dBm		
-10 dBm	D2	
-20 dBm		
-30 dBm		
-40 dBm		
-50 dBm		
-60 dBm		
-70 dBm		
Start 2.4405 GHz	691 pts	Stop 2.4425 GHz

5.6 Hopping Channel Number


Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
·			
Test Method:	ANSI C63.10:2013		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset=Cable loss+ attenuation factor.		
Limit:	At least 15 channels		
Exploratory Test Mode:	hopping transmitting with all kind of modulation and all kind of data type		
Final Test Mode:	Only the worst case is recorded in the report.		
Test Results:	Pass		

Measurement Data

Mode	Hopping channel numbers	Limit
GFSK	79	≥15
π/4DQPSK	79	≥15
8DPSK	79	≥15

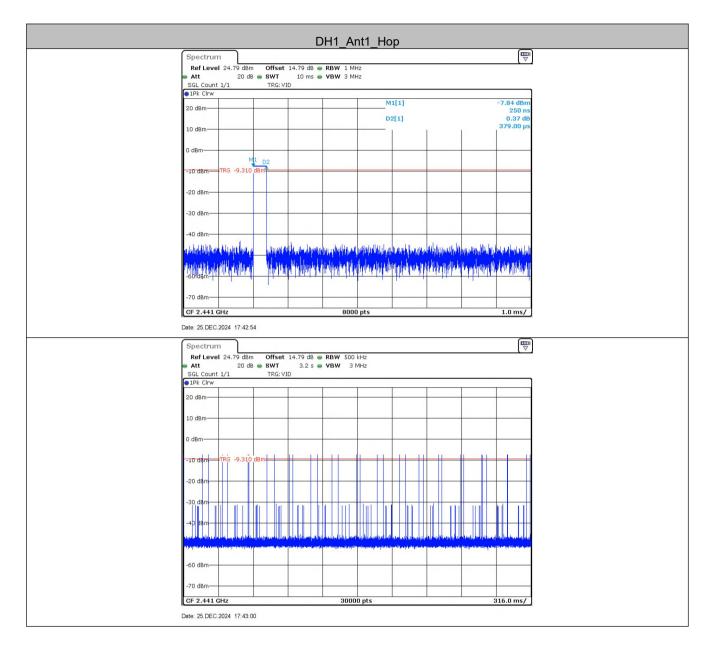
Test plot as follows:

Spectrun			5_Ant1_H			
		15.00 dB 👄 RBW	100 kHz			
Att Count 100	20 dB SWT	94.8 µs 👄 VBW	300 kHz Mode	Auto FFT		
IPk View	3/1000					
20 dBm						
10 dBm						
0 dBm						
-10 dBm	anna man	ALAMATIAN	MAR MARKALAW		LINAA WAANAAAAA	Wind
-20 dBm	and the second second		1000 (Jon Brow An	Man alline a meria	Malea	
-30 dBm						
-40 dBm						
,50 dBm						
-60 dBm						
-70 dBm						
Start 2.4 0	Hz		691 pts	1	Stop 2.4	835 GHz

5.7 Dwell Time

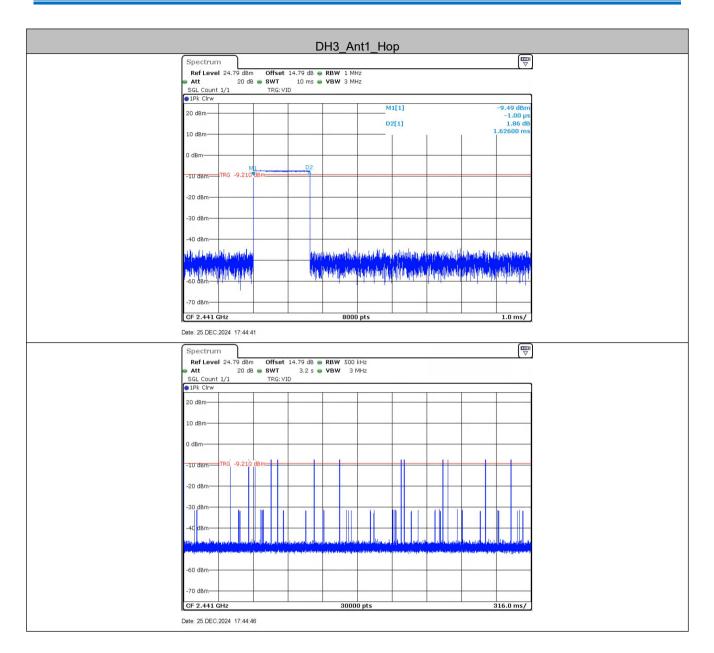
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)				
Test Method:	ANSI C63.10:2013				
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table				
	Ground Reference Plane				
	Remark: Offset=Cable loss+ attenuation factor.				
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.				
Limit:	0.4 Second				
Test Results:	Pass				

Measurement Data


TestMode	Freq(MHz)	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Нор	0.379	330	0.125	≤0.4	PASS
DH3	Нор	1.626	140	0.228	≤0.4	PASS
DH5	Нор	2.868	90	0.258	≤0.4	PASS
2DH1	Нор	0.388	330	0.128	≤0.4	PASS
2DH3	Нор	1.631	180	0.294	≤0.4	PASS
2DH5	Нор	2.873	100	0.287	≤0.4	PASS
3DH1	Нор	0.388	320	0.124	≤0.4	PASS
3DH3	Нор	1.630	160	0.261	≤0.4	PASS
3DH5	Нор	2.875	120	0.345	≤0.4	PASS

Remark:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s



Test plot as follows:

