

RADIO TEST REPORT FCC ID: AUSCR3037BV2

Product: Multifunctional FM Radio Speaker

Trade Mark: CROSLEY

Model No.: CR3037B

Family Model: CS-2026, CR3037B-XX (X=A-Z stands for different color)

Report No.: S22042902504001

Issue Date: May 07, 2022

Prepared for

Modern Marketing Concepts, Inc.

1220 E Oak, St. Louisville, Kentucky, United States, 40204

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China

Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

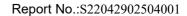

Version.1.3 Page 1 of 75

TABLE OF CONTENTS

1.TEST RESULT CERTIFICATION	3
2.SUMMARY OF TEST RESULTS	4
3.FACILITIES AND ACCREDITATIONS	5
3.1 FACILITIES	5 5
4.GENERAL DESCRIPTION OF EUT	6
5.DESCRIPTION OF TEST MODES	8
6. SETUP OF EQUIPMENT UNDER TEST	9
6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	10
7.TEST REQUIREMENTS	13
7.1 CONDUCTED EMISSIONS TEST 7.2 RADIATED SPURIOUS EMISSION 7.3 NUMBER OF HOPPING CHANNEL 7.4 HOPPING CHANNEL SEPARATION MEASUREMENT 7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME) 7.6 20DB BANDWIDTH TEST 7.7 PEAK OUTPUT POWER 7.8CONDUCTED BAND EDGE MEASUREMENT 7.9 SPURIOUS RF CONDUCTED EMISSION 7.10 ANTENNA APPLICATION 7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS	18 29 31 33 34 35 36 38
8.TEST RESULTS	39
8.1 MAXIMUM CONDUCTED OUTPUT POWER 8.2 -20DB BANDWIDTH 8.3 CARRIER FREQUENCIES SEPARATION 8.4 NUMBER OF HOPPING CHANNEL 8.5 BAND EDGE 8.6 BAND EDGE(HOPPING) 8.7 CONDUCTED RF SPURIOUS EMISSION 8.8 DWELL TIME	43 51 52 57

1.TEST	RESULT	CERTIFICATION
--------	--------	----------------------

Applicant's name:	Modern Marketing Concepts, Inc.
Address:	1220 E Oak, St. Louisville, Kentucky, United States, 40204
Manufacturer's Name:	SHENZHEN GXTSONIC TECHNOLOGY CO., LTD
Address	1F, Building 3, Tianxin Shuichan Industrial Park, Gushu Village, Xixiang Town, Bao`an District, Shenzhen, CHINA
Factory's Name:	SHENZHEN GXTSONIC TECHNOLOGY CO., LTD
Address:	1F, Building 3, Tianxin Shuichan Industrial Park, Gushu Village, Xixiang Town, Bao`an District, Shenzhen, CHINA
Product description	
Product name:	Multifunctional FM Radio Speaker
Model and/or type reference:	CR3037B
Family Model:	CS-2026, CR3037B-XX(X=A-Z stands for different color)

Measurement Procedure Used:

APPLICABLE STANDARDS		
STANDARD/ TEST PROCEDURE	TEST RESULT	
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013	Complied	

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	Apr 22. 2022 ~May 07, 2022	
Testing Engineer	:	Muhri Lee	
		(Mukzi Lee)	
Authorized Signatory	:	Alex	
,		(Alex Li)	

Version.1.3 Page 3 of 75

2.SUMMARY OF TEST RESULTS

FCC Part15 (15.247), Subpart C				
Standard Section	Test Item	Verdict	Remark	
15.207	Conducted Emission	PASS		
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS		
15.247(a)(1)	Hopping Channel Separation	PASS		
15.247(b)(1)	Peak Output Power	PASS		
15.247(a)(iii)	Number of Hopping Frequency	PASS		
15.247(a)(iii)	Dwell Time	PASS		
15.247(a)(1)	Bandwidth	PASS		
15.247 (d)	Band Edge Emission	PASS		
15.247 (d)	Spurious RF Conducted Emission	PASS		
15.203	Antenna Requirement	PASS		

Remark:

- "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

Version.1.3 Page 4 of 75

3.FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description

CNAS-Lab. : The Certificate Registration Number is L5516. IC-Registration
The Certificate Registration Number is 9270A.

CAB identifier: CN0074

FCC- Accredited Test Firm Registration Number: 463705.

Designation Number: CN1184

A2LA-Lab. The Certificate Registration Number is 4298.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for

the competence of testing and calibration laboratories.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Name of Firm : Shenzhen NTEK Testing Technology Co., Ltd.

Site Location : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang

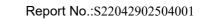
Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

Version.1.3 Page 5 of 75


4.GENERAL DESCRIPTION OF EUT

Product Feature and Specification		
Equipment	Multifunctional FM Radio Speaker	
Trade Mark	CROSLEY	
FCC ID	AUSCR3037BV2	
Model No.	CR3037B	
Family Model	CS-2026, CR3037B-XX(X=A-Z stands for different color)	
Model Difference	All models are identical except models' color of appearance.	
Operating Frequency	2402MHz~2480MHz	
Modulation	GFSK, π/4-DQPSK	
Number of Channels	79 Channels	
Antenna Type	PCB Antenna	
Antenna Gain	-0.58 dBi	
Power supply	Input: DC 10V from adapter	
Adapter	Adapter 1 Model:BSY012U100100U U1 Adapter 1 Input: AC 100-240V~50/60Hz 0.3A Adapter 1 Output:10V/1.0A Adapter 2 Model:GKYZA0100100US Adapter 2 Input: AC 100-240V~50/60Hz 0.5A Max Adapter 2 Output:10V/1000 mA	
HW Version	N/A	
SW Version	N/A	

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Version.1.3 Page 6 of 75

Revision History

Version	Description	Issued Date
Rev.01	Initial issue of report	May 07, 2022
		·

Version.1.3 Page 7 of 75

5.DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for $\pi/4$ -DQPSK modulation;) were used for all test. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement –X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Frequency(MHz)
2402
2403
•••
2441
2442
•••
2479
2480

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission	
Final Test Mode	Description
Mode 1	normal link mode

Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases		
	Final Test Mode	Description
	Mode 1	normal link mode
	Mode 2	CH00(2402MHz)
	Mode 3	CH39(2441MHz)
	Mode 4	CH78(2480MHz)

Note: For radiated test cases, the worst mode data rate 2Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

	For Conducted Test Cases							
Final Test Mode	Description							
Mode 2	Mode 2 CH00(2402MHz)							
Mode 3	CH39(2441MHz)							
Mode 4	CH78(2480MHz)							
Mode 5	Hopping mode							

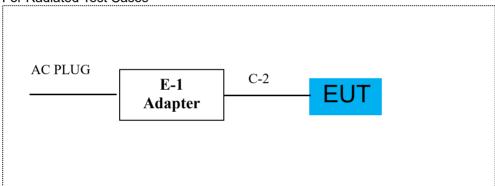
Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Version.1.3 Page 8 of 75

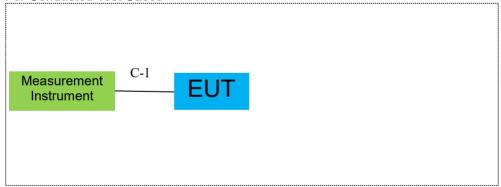
6. SETUP OF EQUIPMENT UNDER TEST

6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

EUT


C-2

E-1


Adapter

AC PLUG

For Radiated Test Cases

For Conducted Test Cases

Note: 1. The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

2. EUT built-in battery-powered, the battery is fully-charged.

Version.1.3 Page 9 of 75

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
E-1	Adapter	BSY012U100100U U1/ GKYZA0100100US	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	RF Cable	YES	NO	0.1m
C-2	USB Cable	YES	NO	1.0m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>[Length]</code> column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

Version.1.3 Page 10 of 75

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

<u> Radiatio</u>	on& Conducted	est equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2022.04.27	2023.04.26	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2021.07.01	2022.06.30	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2021.07.01	2022.06.30	1 year
4	Test Receiver	R&S	ESPI7	101318	2022.04.27	2023.04.26	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2021203.29	2023.03.28	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.29	2023.03.28	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803 2021.11.19		2022.11.18	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2021.07.01	2022.06.30	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055 2021.11.19		2022.11.18	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN O84	2021.07.01	2022.06.30	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2019.08.06	2022.08.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2019.08.06	2022.08.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2019.06.28	2022.06.27	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2019.08.06	2022.08.05	3 year
16	Filter	TRILTHIC	2400MHz	29	2021.07.01	2022.06.30	1 year
17	temporary antenna connector (Note)		R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

Version.1.3 Page 11 of 75

AC Cc	AC Conduction Test equipment											
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period					
1	Test Receiver	R&S	ESCI	101160	2022.04.27	2023.04.26	1 year					
2	LISN	R&S	ENV216	101313	2022.04.27	2023.04.26	1 year					
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2022.04.27	2023.04.26	1 year					
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year					
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year					
6	Test Ćable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year					
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year					

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

Version.1.3 Page 12 of 75

7.TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)


7.1.2 Conformance Limit

Fraguency/MHz)	Conducted	I Emission Limit	
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
- 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

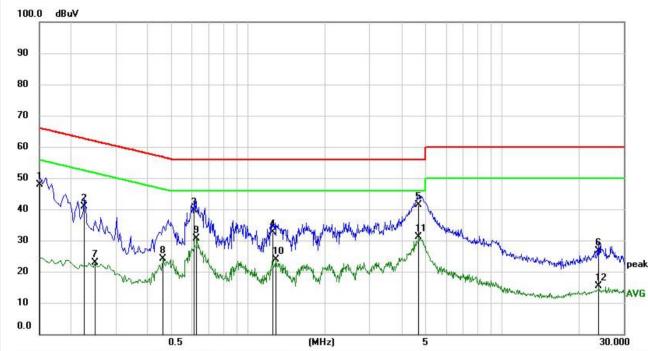
7.1.4 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

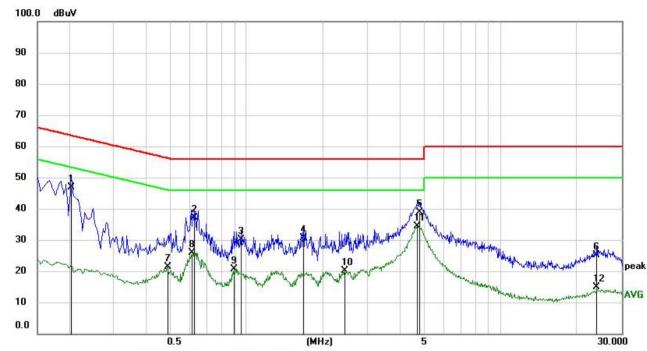
7.1.5 Test Results

Pass


Version.1.3 Page 13 of 75

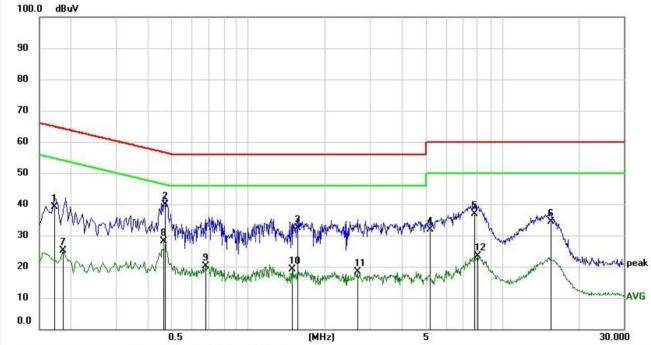
7.1.6 Test Results

EUT:	Multifunctional FM Radio Speaker	Model Name :	CR3037B
Temperature:	26℃	Relative Humidity:	55%
Pressure:	1010hPa	Phase :	L
Test Voltage:	DC 10V from adapter1	Test Mode:	Mode 1


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	3925	394000300	52.903
2000000		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1		0.1500	38.06	9.94	48.00	66.00	-18.00	QP		
2		0.2265	31.09	9.90	40.99	62.58	-21.59	QP		
3		0.6134	29.72	9.94	39.66	56.00	-16.34	QP		
4		1.2479	22.72	9.98	32.70	56.00	-23.30	QP		
5	*	4.6635	31.21	10.25	41.46	56.00	-14.54	QP		
6		24.0045	13.68	12.88	26.56	60.00	-33.44	QP		
7		0.2490	13.00	9.90	22.90	51.79	-28.89	AVG		
8		0.4605	14.11	9.93	24.04	46.68	-22.64	AVG		
9		0.6269	20.79	9.94	30.73	46.00	-15.27	AVG		
10		1.2839	13.95	9.99	23.94	46.00	-22.06	AVG		
11		4.6770	20.76	10.25	31.01	46.00	-14.99	AVG		
12		24.0045	2.46	12.88	15.34	50.00	-34.66	AVG		

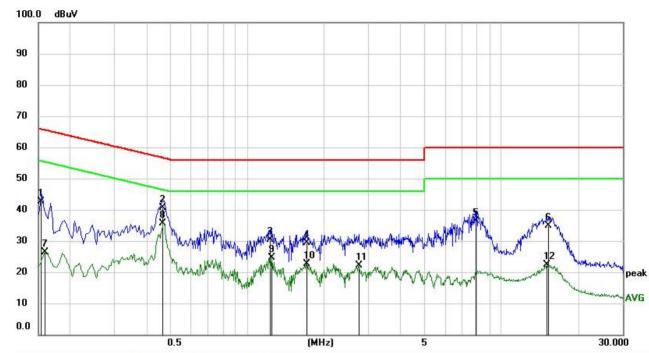
Version.1.3 Page 14 of 75

EUT:	Multifunctional FM Radio Speaker	Model Name:	CR3037B
Temperature:	26℃	Relative Humidity:	55%
Pressure:	1010hPa	Phase :	N
Test Voltage:	DC 10V from adapter1	Test Mode:	Mode 1


No. MI	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	0.2040	37.05	9.90	46.95	63.45	-16.50	QP		
2	0.6269	27.20	9.95	37.15	56.00	-18.85	QP		
3	0.9554	20.23	9.97	30.20	56.00	-25.80	QP		
4	1.6754	20.54	10.01	30.55	56.00	-25.45	QP		
5	4.8120	28.73	10.26	38.99	56.00	-17.01	QP		
6	24.0045	12.56	12.62	25.18	60.00	-34.82	QP		
7	0.4875	11.47	9.94	21.41	46.21	-24.80	AVG		
8	0.6089	15.94	9.95	25.89	46.00	-20.11	AVG		
9	0.8924	10.68	9.97	20.65	46.00	-25.35	AVG		
10	2.4359	10.07	10.06	20.13	46.00	-25.87	AVG		
11 *	4.7175	24.06	10.25	34.31	46.00	-11.69	AVG		
12	24.0045	2.21	12.62	14.83	50.00	-35.17	AVG		

Version.1.3 Page 15 of 75

EUT:	Multifunctional FM Radio Speaker	Model Name:	CR3037B
Temperature:	26℃	Relative Humidity:	55%
Pressure:	1010hPa	Phase :	L
Test Voltage:	DC 10V from adapter2	Test Mode:	Mode 1


Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
	0.1725	29.30	9.93	39.23	64.84	-25.61	QP		
*	0.4695	30.07	9.93	40.00	56.52	-16.52	QP		
	1.5673	22.50	10.00	32.50	56.00	-23.50	QP		
	5.2080	21.70	10.29	31.99	60.00	-28.01	QP		
	7.7280	26.25	10.63	36.88	60.00	-23.12	QP		
	15.5400	22.39	12.05	34.44	60.00	-25.56	QP		
	0.1860	15.32	9.91	25.23	54.21	-28.98	AVG		
	0.4650	18.17	9.93	28.10	46.60	-18.50	AVG		
	0.6764	10.18	9.95	20.13	46.00	-25.87	AVG		
	1.4864	9.17	10.00	19.17	46.00	-26.83	AVG		
	2.6880	8.29	10.09	18.38	46.00	-27.62	AVG		
	8.0024	12.81	10.68	23.49	50.00	-26.51	AVG		
		MHz 0.1725 * 0.4695 1.5673 5.2080 7.7280 15.5400 0.1860 0.4650 0.6764 1.4864 2.6880	Mk. Freq. Level MHz dBuV 0.1725 29.30 * 0.4695 30.07 1.5673 22.50 5.2080 21.70 7.7280 26.25 15.5400 22.39 0.1860 15.32 0.4650 18.17 0.6764 10.18 1.4864 9.17 2.6880 8.29	Mk. Freq. Level Factor MHz dBuV dB 0.1725 29.30 9.93 * 0.4695 30.07 9.93 1.5673 22.50 10.00 5.2080 21.70 10.29 7.7280 26.25 10.63 15.5400 22.39 12.05 0.1860 15.32 9.91 0.4650 18.17 9.93 0.6764 10.18 9.95 1.4864 9.17 10.00 2.6880 8.29 10.09	Mk. Freq. Level Factor ment MHz dBuV dB dBuV 0.1725 29.30 9.93 39.23 * 0.4695 30.07 9.93 40.00 1.5673 22.50 10.00 32.50 5.2080 21.70 10.29 31.99 7.7280 26.25 10.63 36.88 15.5400 22.39 12.05 34.44 0.1860 15.32 9.91 25.23 0.4650 18.17 9.93 28.10 0.6764 10.18 9.95 20.13 1.4864 9.17 10.00 19.17 2.6880 8.29 10.09 18.38	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV dBuV 0.1725 29.30 9.93 39.23 64.84 * 0.4695 30.07 9.93 40.00 56.52 1.5673 22.50 10.00 32.50 56.00 5.2080 21.70 10.29 31.99 60.00 7.7280 26.25 10.63 36.88 60.00 15.5400 22.39 12.05 34.44 60.00 0.1860 15.32 9.91 25.23 54.21 0.4650 18.17 9.93 28.10 46.60 0.6764 10.18 9.95 20.13 46.00 1.4864 9.17 10.00 19.17 46.00 2.6880 8.29 10.09 18.38 46.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB 0.1725 29.30 9.93 39.23 64.84 -25.61 * 0.4695 30.07 9.93 40.00 56.52 -16.52 1.5673 22.50 10.00 32.50 56.00 -23.50 5.2080 21.70 10.29 31.99 60.00 -28.01 7.7280 26.25 10.63 36.88 60.00 -23.12 15.5400 22.39 12.05 34.44 60.00 -25.56 0.1860 15.32 9.91 25.23 54.21 -28.98 0.4650 18.17 9.93 28.10 46.60 -18.50 0.6764 10.18 9.95 20.13 46.00 -25.87 1.4864 9.17 10.00 19.17 46.00 -26.83 2.6880 8.29 10.09 18.38 46.0	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB Detector 0.1725 29.30 9.93 39.23 64.84 -25.61 QP * 0.4695 30.07 9.93 40.00 56.52 -16.52 QP 1.5673 22.50 10.00 32.50 56.00 -23.50 QP 5.2080 21.70 10.29 31.99 60.00 -28.01 QP 7.7280 26.25 10.63 36.88 60.00 -23.12 QP 15.5400 22.39 12.05 34.44 60.00 -25.56 QP 0.1860 15.32 9.91 25.23 54.21 -28.98 AVG 0.4650 18.17 9.93 28.10 46.60 -18.50 AVG 1.4864 9.17 10.00 19.17 46.00 -25.87 AVG 2.6880 8.29 <td< td=""><td>Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB Detector Comment 0.1725 29.30 9.93 39.23 64.84 -25.61 QP * 0.4695 30.07 9.93 40.00 56.52 -16.52 QP 1.5673 22.50 10.00 32.50 56.00 -23.50 QP 5.2080 21.70 10.29 31.99 60.00 -28.01 QP 7.7280 26.25 10.63 36.88 60.00 -23.12 QP 15.5400 22.39 12.05 34.44 60.00 -25.56 QP 0.1860 15.32 9.91 25.23 54.21 -28.98 AVG 0.4650 18.17 9.93 28.10 46.60 -18.50 AVG 1.4864 9.17 10.00 19.17 46.00 -26.83 AVG 2.6880</td></td<>	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB Detector Comment 0.1725 29.30 9.93 39.23 64.84 -25.61 QP * 0.4695 30.07 9.93 40.00 56.52 -16.52 QP 1.5673 22.50 10.00 32.50 56.00 -23.50 QP 5.2080 21.70 10.29 31.99 60.00 -28.01 QP 7.7280 26.25 10.63 36.88 60.00 -23.12 QP 15.5400 22.39 12.05 34.44 60.00 -25.56 QP 0.1860 15.32 9.91 25.23 54.21 -28.98 AVG 0.4650 18.17 9.93 28.10 46.60 -18.50 AVG 1.4864 9.17 10.00 19.17 46.00 -26.83 AVG 2.6880

Version.1.3 Page 16 of 75

			1
EUT:	Multifunctional FM Radio Speaker	Model Name:	CR3037B
Temperature:	26℃	Relative Humidity:	55%
Pressure:	1010hPa	Phase :	N
Test Voltage:	DC 10V from adapter2	Test Mode:	Mode 1

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1544	32.74	9.93	42.67	65.76	-23.09	QP	
2		0.4650	30.58	9.94	40.52	56.60	-16.08	QP	
3		1.2254	20.52	9.98	30.50	56.00	-25.50	QP	
4		1.7114	19.30	10.01	29.31	56.00	-26.69	QP	
5		7.8945	25.81	10.65	36.46	60.00	-23.54	QP	
6		15.3195	23.01	11.89	34.90	60.00	-25.10	QP	
7		0.1590	16.39	9.93	26.32	55.52	-29.20	AVG	
8	*	0.4650	25.70	9.94	35.64	46.60	-10.96	AVG	
9		1.2434	14.57	9.98	24.55	46.00	-21.45	AVG	
10		1.7114	12.64	10.01	22.65	46.00	-23.35	AVG	
11		2.7465	12.00	10.09	22.09	46.00	-23.91	AVG	
12		15.0675	10.56	11.82	22.38	50.00	-27.62	AVG	

Version.1.3 Page 17 of 75

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

According to FCC Part15.205, Restricted bands

-,		
MHz	MHz	GHz
16.42-16.423	399.9-410	4.5-5.15
16.69475-16.69525	608-614	5.35-5.46
16.80425-16.80475	960-1240	7.25-7.75
25.5-25.67	1300-1427	8.025-8.5
37.5-38.25	1435-1626.5	9.0-9.2
73-74.6	1645.5-1646.5	9.3-9.5
74.8-75.2	1660-1710	10.6-12.7
123-138	2200-2300	14.47-14.5
149.9-150.05	2310-2390	15.35-16.2
156.52475-156.52525	2483.5-2500	17.7-21.4
156.7-156.9	2690-2900	22.01-23.12
162.0125-167.17	3260-3267	23.6-24.0
167.72-173.2	3332-3339	31.2-31.8
240-285	3345.8-3358	36.43-36.5
322-335.4	3600-4400	(2)
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHz MHz 16.42-16.423 399.9-410 16.69475-16.69525 608-614 16.80425-16.80475 960-1240 25.5-25.67 1300-1427 37.5-38.25 1435-1626.5 73-74.6 1645.5-1646.5 74.8-75.2 1660-1710 123-138 2200-2300 149.9-150.05 2310-2390 156.52475-156.52525 2483.5-2500 156.7-156.9 2690-2900 162.0125-167.17 3260-3267 167.72-173.2 3332-3339 240-285 3345.8-3358

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

rectifica paria opecifica eri	sarated sarra operation of respectively, after the respect of military and the second rate to be remembed.						
Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance				
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300				
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30				
1.705~30.0	30	29.5	30				
30-88	100	40	3				
88-216	150	43.5	3				
216-960	200	46	3				
Above 960	500	54	3				

Limits of Radiated Emission Measurement(Above 1000MHz)

Eroquoney/MHz)	Class B (dBuV/m) (at 3M)			
Frequency(MHz)	PEAK	AVERAGE		
Above 1000	74	54		

Remark :1. Emission level in dBuV/m=20 log (uV/m)

- 2. Measurement was performed at an antenna to the closed point of EUT distance of meters.
- 3. For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

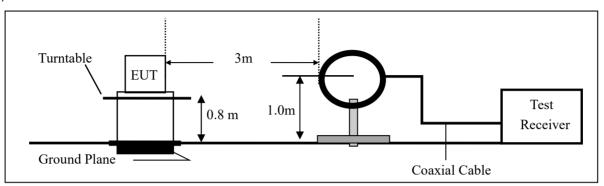
Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

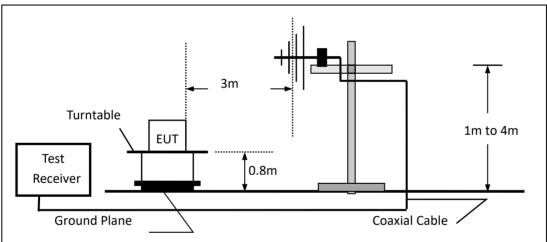
Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

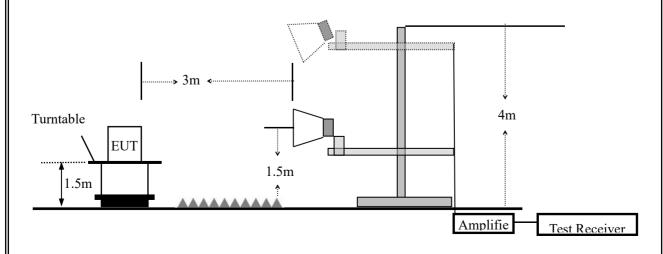
Version.1.3 Page 18 of 75



7.2.3 Measuring Instruments


The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration


(a) For radiated emissions below 30MHz

(b) For radiated emissions from 30MHz to 1000MHz

(c) For radiated emissions above 1000MHz

Version.1.3 Page 19 of 75

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT.

Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes

the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a

- range of heights of from 1 m to 4 m above the ground or reference ground plane.
 e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

Version.1.3 Page 20 of 75

Report No.:S22042902504001

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	30 to 1000 QP		300 kHz
Ahaya 1000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	1 MHz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

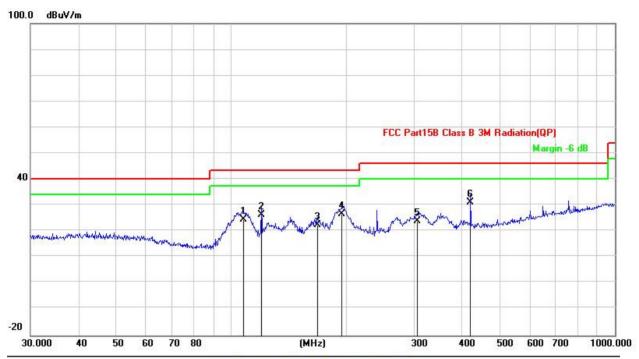
■ Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	Multifunctional FM Radio Speaker	Model No.:	CR3037B
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

Freq.	Ant.Pol.	Emission Level(dBuV/m)		vel(dBuV/m) Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK AV		PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

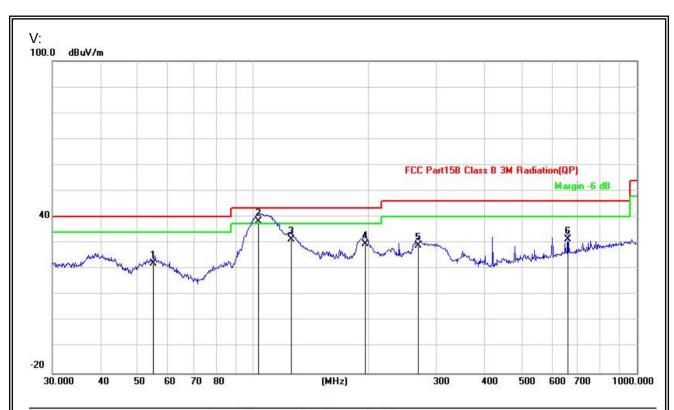
Version.1.3 Page 21 of 75



■ Spurious Emission below 1GHz (30MHz to 1GHz)
All the modulation modes have been tested, and the worst result was report as below:

EUT:	Multifunctional FM Radio Speaker	Model Name :	CR3037B
Temperature:	25℃	Relative Humidity:	55%
Pressure:	1010hPa	Test Mode:	Mode 1
Test Voltage:	DC 10V from adapter 1		

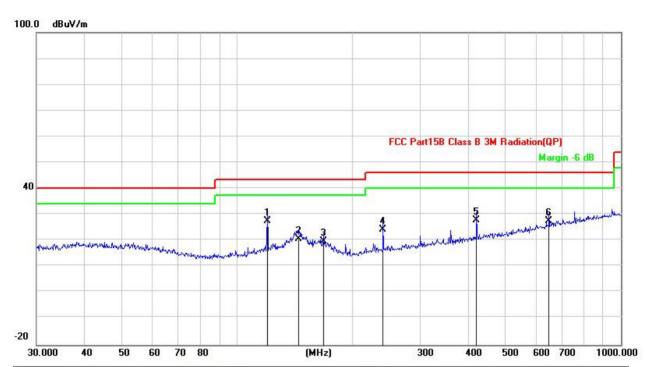
H:



No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	107.5100	35.19	-10.54	24.65	43.50	-18.85	QP
2	119.8555	35.39	-9.16	26.23	43.50	-17.27	QP
3	167.8242	30.26	-7.80	22.46	43.50	-21.04	QP
4	194.4533	37.51	-10.86	26.65	43.50	-16.85	QP
5	305.6800	31.81	-7.82	23.99	46.00	-22.01	QP
6 *	420.5803	36.27	-5.13	31.14	46.00	-14.86	QP

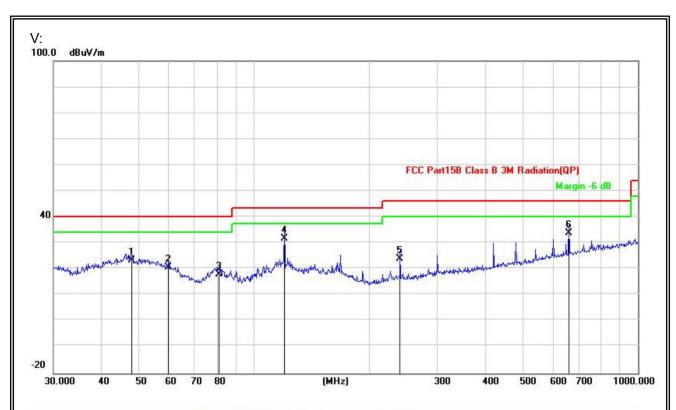
Version.1.3 Page 22 of 75

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		55.0274	30.67	-8.48	22.19	40.00	-17.81	QP
2	*	103.0800	49.46	-11.00	38.46	43.50	-5.04	QP
3		125.4457	40.19	-8.81	31.38	43.50	-12.12	QP
4		195.8220	40.62	-10.94	29.68	43.50	-13.82	QP
5		269.4284	37.80	-8.80	29.00	46.00	-17.00	QP
6		661.1505	31.83	-0.28	31.55	46.00	-14.45	QP


Version.1.3 Page 23 of 75

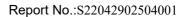
EUT:	Multifunctional FM Radio Speaker	Model Name:	CR3037B
Temperature:	25℃	Relative Humidity:	55%
Pressure:	1010hPa	Test Mode:	Mode 1
Test Voltage:	DC 10V from adapter 2		

H:



Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
*	119.8555	36.81	-9.16	27.65	43.50	-15.85	QP
	144.8418	28.12	-7.46	20.66	43.50	-22.84	QP
	167.8242	27.44	-7.80	19.64	43.50	-23.86	QP
	239.9874	33.66	-9.49	24.17	46.00	-21.83	QP
	420.5803	33.09	-5.13	27.96	46.00	-18.04	QP
	649.6597	27.91	-0.46	27.45	46.00	-18.55	QP
		MHz * 119.8555 144.8418 167.8242 239.9874 420.5803	Mk. Freq. Level MHz dBuV * 119.8555 36.81 144.8418 28.12 167.8242 27.44 239.9874 33.66 420.5803 33.09	Mk. Freq. Level Factor MHz dBuV dB * 119.8555 36.81 -9.16 144.8418 28.12 -7.46 167.8242 27.44 -7.80 239.9874 33.66 -9.49 420.5803 33.09 -5.13	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m * 119.8555 36.81 -9.16 27.65 144.8418 28.12 -7.46 20.66 167.8242 27.44 -7.80 19.64 239.9874 33.66 -9.49 24.17 420.5803 33.09 -5.13 27.96	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dB/m * 119.8555 36.81 -9.16 27.65 43.50 144.8418 28.12 -7.46 20.66 43.50 167.8242 27.44 -7.80 19.64 43.50 239.9874 33.66 -9.49 24.17 46.00 420.5803 33.09 -5.13 27.96 46.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dB/m dB * 119.8555 36.81 -9.16 27.65 43.50 -15.85 144.8418 28.12 -7.46 20.66 43.50 -22.84 167.8242 27.44 -7.80 19.64 43.50 -23.86 239.9874 33.66 -9.49 24.17 46.00 -21.83 420.5803 33.09 -5.13 27.96 46.00 -18.04

Version.1.3 Page 24 of 75

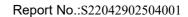


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		47.9939	31.41	-8.07	23.34	40.00	-16.66	QP
2		59.8588	29.43	-8.85	20.58	40.00	-19.42	QP
3		80.9274	30.19	-12.24	17.95	40.00	-22.05	QP
4	*	119.8555	40.78	-9.16	31.62	43.50	-11.88	QP
5		239.9874	33.39	-9.49	23.90	46.00	-22.10	QP
6	1	661.1504	33.98	-0.28	33.70	46.00	-12.30	QP

Version.1.3 Page 25 of 75

Spurious Emission Above 1GHz (1GHz to 25GHz)

EUT:	Multifunctional FM Radio Speaker	Model No.:	CR3037B
Temperature:	25 ℃	Relative Humidity:	52%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee


All the modulation modes have been tested, and the worst result was report as below:

Frequency	Read	Cable	Antenna	Preamp	Emission	Limits	Margin		
. ,	Level	loss	Factor	Factor	Level			Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
	Low Channel (2402 MHz)(π/4-DQPSK)Above 1G								
4820	64.39	5.22	35.8	44.31	61.1	74	-12.9	Pk	Vertical
4822	39.01	5.22	35.8	44.31	35.72	54	-18.28	AV	Vertical
7200	68.59	6.52	36.54	44.87	66.78	74	-7.22	Pk	Vertical
7200	39.49	6.52	36.54	44.87	37.68	54	-16.32	AV	Vertical
4822	64.85	5.22	35.8	44.31	61.56	74	-12.44	Pk	Horizontal
4822	43.13	5.22	35.8	44.31	39.84	54	-14.16	AV	Horizontal
7200	60.69	6.52	36.54	44.87	58.88	74	-15.12	Pk	Horizontal
7200	47.24	6.52	36.54	44.87	45.43	54	-8.57	AV	Horizontal
	Mid Channel (2441 MHz)(π/4-DQPSK)Above 1G								
4920	61.48	5.24	36.01	44.52	58.21	74	-15.79	Pk	Vertical
4920	49.07	5.24	36.01	44.52	45.8	54	-8.2	AV	Vertical
7330	68.24	7.11	37.11	45.31	67.15	74	-6.85	Pk	Vertical
7330	36.25	7.11	37.11	45.31	35.16	54	-18.84	AV	Vertical
4920	62.12	5.24	36.01	44.52	58.85	74	-15.15	Pk	Horizontal
4920	43.75	5.24	36.01	44.52	40.48	54	-13.52	AV	Horizontal
7330	70.74	7.11	37.11	45.31	69.65	74	-4.35	Pk	Horizontal
7330	36.2	7.11	37.11	45.31	35.11	54	-18.89	AV	Horizontal
		Hi	gh Channel	(2480 MHz	z)(π/4-DQPS	SK) Above 1	IG	,	
5022	71.37	5.36	36.03	44.83	67.93	74	-6.07	Pk	Vertical
5022	51.55	5.36	36.03	44.83	48.11	54	-5.89	AV	Vertical
7564	59.24	7.18	37.52	45.75	58.19	74	-15.81	Pk	Vertical
7564	37.22	7.18	37.53	45.75	36.18	54	-17.82	AV	Vertical
5022	73.09	5.36	36.03	44.83	69.65	74	-4.35	Pk	Horizontal
5022	52.01	5.36	36.03	44.83	48.57	54	-5.43	AV	Horizontal
7564	63.69	7.18	37.52	45.75	62.64	74	-11.36	Pk	Horizontal
7564	47.49	7.18	37.53	45.75	46.45	54	-7.55	AV	Horizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

Version.1.3 Page 26 of 75

Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz

EUT: Multifunctional FM Radio Speaker Model No.: CR3037B

Temperature: 25 °C Relative Humidity: 52%


Test Mode: Mode2/ Mode4 Test By: Mukzi Lee

All the modulation modes have been tested, and the worst result was report as below:

I <u>ll the modula</u>	ition mode	s have	been teste	ed, and the	e worst resi	ult was repo	ort as bel	ow:	
Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
			2Mb	ps(π/4-DQ	PSK)-Non-h	opping			
2310	71.83	2.97	27.8	43.8	58.8	74	-15.2	Pk	Horizontal
2310	51.4	2.97	27.8	43.8	38.37	54	-15.63	AV	Horizontal
2310	73.13	2.97	27.8	43.8	60.1	74	-13.9	Pk	Vertical
2310	50.4	2.97	27.8	43.8	37.37	54	-16.63	AV	Vertical
2390	65.18	3.14	27.21	43.8	51.73	74	-22.27	Pk	Vertical
2390	47.09	3.14	27.21	43.8	33.64	54	-20.36	AV	Vertical
2390	61.18	3.14	27.21	43.8	47.73	74	-26.27	Pk	Horizontal
2390	52.48	3.14	27.21	43.8	39.03	54	-14.97	AV	Horizontal
2483.5	74.19	3.58	27.7	44	61.47	74	-12.53	Pk	Vertical
2483.5	43.98	3.58	27.7	44	31.26	54	-22.74	AV	Vertical
2483.5	69.5	3.58	27.7	44	56.78	74	-17.22	Pk	Horizontal
2483.5	38.26	3.58	27.7	44	25.54	54	-28.46	AV	Horizontal
			21	/lbps(π/4-E	QPSK)-hop	ping			
2310	72.62	2.97	27.8	43.8	59.59	74	-14.41	Pk	Vertical
2310	40.14	2.97	27.8	43.8	27.11	54	-26.89	AV	Vertical
2310	62.41	2.97	27.8	43.8	49.38	74	-24.62	Pk	Horizontal
2310	45.39	2.97	27.8	43.8	32.36	54	-21.64	AV	Horizontal
2390	69.65	3.14	27.21	43.8	56.2	74	-17.8	Pk	Vertical
2390	54.35	3.14	27.21	43.8	40.9	54	-13.1	AV	Vertical
2390	74.86	3.14	27.21	43.8	61.41	74	-12.59	Pk	Horizontal
2390	47.31	3.14	27.21	43.8	33.86	54	-20.14	AV	Horizontal
2483.5	66.67	3.58	27.7	44	53.95	74	-20.05	Pk	Vertical
2483.5	56.67	3.58	27.7	44	43.95	54	-10.05	AV	Vertical
2483.5	58.78	3.58	27.7	44	46.06	74	-27.94	Pk	Horizontal
2483.5	52.1	3.58	27.7	44	39.38	54	-14.62	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

Version.1.3 Page 27 of 75

Mukzi Lee

Mode2/ Mode4

Test Mode:

■ Spurious Emission in Restricted Band 3260MHz-18000MHz

EUT: Multifunctional FM Radio Speaker Model No.: CR3037B

Temperature: 25 °C Relative Humidity: 52%

Test By:

All the modulation modes have been tested, and the worst result was report as below:

\ <u>!</u>	Title modulation modes have been tested, and the worst result was report as below.									
	Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	
	3260	72.28	4.04	29.57	44.7	61.19	74	-12.81	Pk	Vertical
	3260	36.05	4.04	29.57	44.7	24.96	54	-29.04	AV	Vertical
	3260	71.21	4.04	29.57	44.7	60.12	74	-13.88	Pk	Horizontal
	3260	39.27	4.04	29.57	44.7	28.18	54	-25.82	AV	Horizontal
	3332	63.04	4.26	29.87	44.4	52.77	74	-21.23	Pk	Vertical
	3332	46.42	4.26	29.87	44.4	36.15	54	-17.85	AV	Vertical
	3332	60.5	4.26	29.87	44.4	50.23	74	-23.77	Pk	Horizontal
	3332	48.36	4.26	29.87	44.4	38.09	54	-15.91	AV	Horizontal
	17797	46.26	10.99	43.95	43.5	57.7	74	-16.3	Pk	Vertical
	17797	17.47	10.99	43.95	43.5	28.91	54	-25.09	AV	Vertical
	17788	33.43	11.81	43.69	44.6	44.33	74	-29.67	Pk	Horizontal
	17788	25.52	11.81	43.69	44.6	36.42	54	-17.58	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

Version.1.3 Page 28 of 75

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

7.3.6 Test Results

EUT:	Multifunctional FM Radio Speaker	Model No.:	CR3037B
Temperature:	23 ℃	Relative Humidity:	50%
Test Mode:	Mode 5(1Mbps)	Test By:	Mukzi Lee

Test data reference attachment.

Version.1.3 Page 29 of 75

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary

to best identify the center of each individual channel.

VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold

7.4.6 Test Results

EUT:	Multifunctional FM Radio Speaker	Model No.:	CR3037B
Temperature:	23 ℃	Relative Humidity:	50%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

Test data reference attachment.

Version.1.3 Page 30 of 75

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = zero span, centered on a hopping channel

RBW ≥ 1MHz

 $VBW \ge RBW$

Sweep = as necessary to capture the entire dwell time per hopping channel

Detector function = peak

Trace = max hold

Measure the maximum time duration of one single pulse.

Set the EUT for DH5, DH3 and DH1 packet transmitting.

Measure the maximum time duration of one single pulse.

Version.1.3 Page 31 of 75

7.5.6 Test Results

EUT:	Multifunctional FM Radio Speaker	Model No.:	CR3037B
Temperature:	23 ℃	Relative Humidity:	50%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4

DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67 \text{ hops}$.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.

3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

Version.1.3 Page 32 of 75

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel

RBW ≥ 1% of the 20 dB bandwidth

 $VBW \geq RBW$

Sweep = auto

Detector function = peak

Trace = max hold

7.6.6 Test Results

EUT:	Multifunctional FM Radio Speaker	Model No.:	CR3037B
Temperature:	23 ℃	Relative Humidity:	50%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

Test data reference attachment.

Version.1.3 Page 33 of 75

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW ≥ the 20 dB bandwidth of the emission being measured

 $VBW \geq RBW$

Sweep = auto

Detector function = peak

Trace = max hold

7.7.6 Test Results

EUT:	Multifunctional FM Radio Speaker	Model No.:	CR3037B
Temperature:	23 ℃	Relative Humidity:	50%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

Test data reference attachment.

Version.1.3 Page 34 of 75

7.8CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	Multifunctional FM Radio Speaker	Model No.:	CR3037B
Temperature:	23 ℃	Relative Humidity:	50%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Mukzi Lee

Test data reference attachment.

Version.1.3 Page 35 of 75

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

Test data reference attachment.

Version.1.3 Page 36 of 75

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached PCB antenna (Gain: -0.58dBi). It comply with the standard requirement.

Version.1.3 Page 37 of 75

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmister be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

7.11.2 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

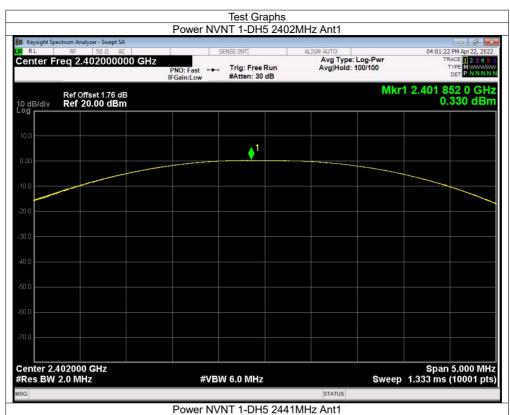
7.11.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

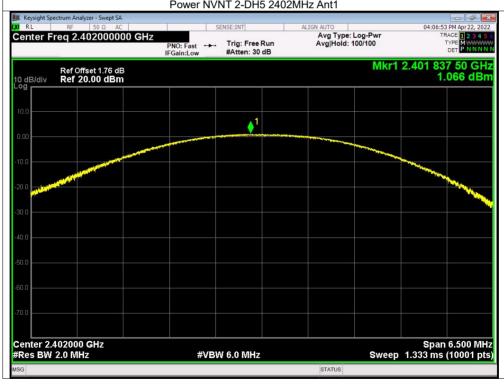
Version.1.3 Page 38 of 75

8.TEST RESULTS

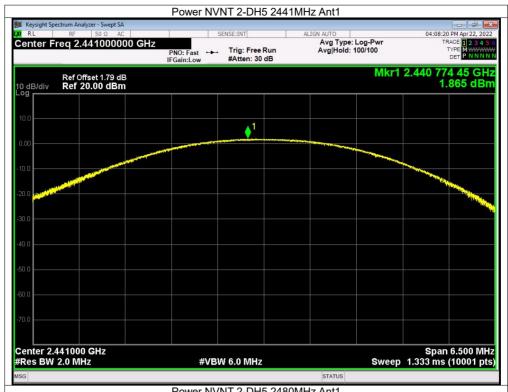

8.1 MAXIMUM CONDUCTED OUTPUT POWER

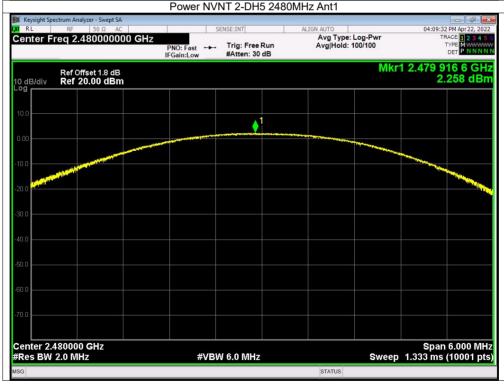
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant1	0.33	0.33	21	Pass
NVNT	1-DH5	2441	Ant1	1.19	1.19	21	Pass
NVNT	1-DH5	2480	Ant1	1.52	1.52	21	Pass
NVNT	2-DH5	2402	Ant1	1.07	1.07	21	Pass
NVNT	2-DH5	2441	Ant1	1.87	1.87	21	Pass
NVNT	2-DH5	2480	Ant1	2.26	2.26	21	Pass

Version.1.3 Page 39 of 75



Version.1.3 Page 40 of 75





Version.1.3 Page 41 of 75

Version.1.3 Page 42 of 75

8.2 -20DB BANDWIDTH

Condition	Mode	Frequency (MHz)	Antenna	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH5	2402	Ant1	0.939	Pass
NVNT	1-DH5	2441	Ant1	0.951	Pass
NVNT	1-DH5	2480	Ant1	0.933	Pass
NVNT	2-DH5	2402	Ant1	1.304	Pass
NVNT	2-DH5	2441	Ant1	1.301	Pass
NVNT	2-DH5	2480	Ant1	1.3	Pass

Version.1.3 Page 43 of 75

Version.1.3 Page 44 of 75

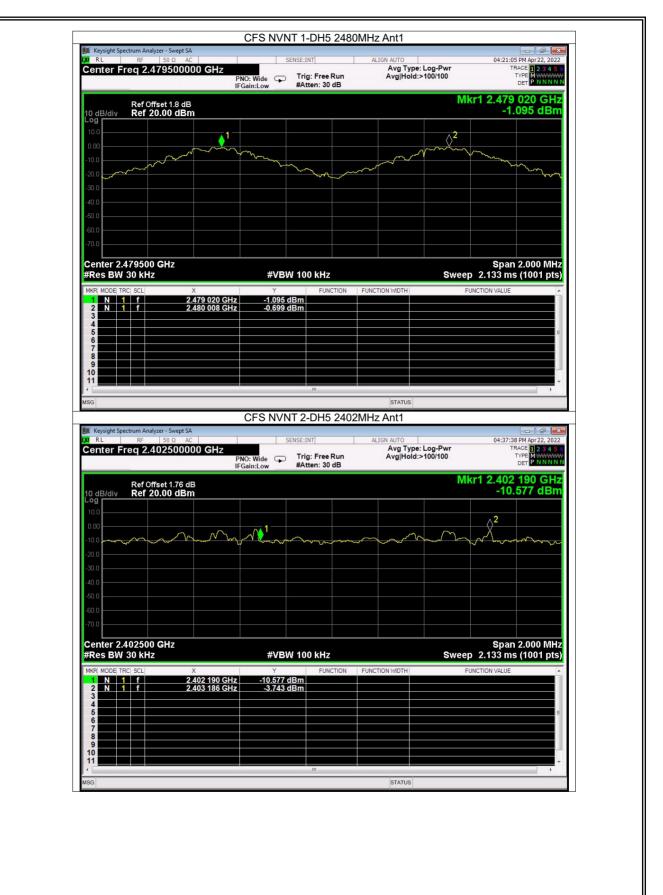
Version.1.3 Page 45 of 75

Version.1.3 Page 46 of 75

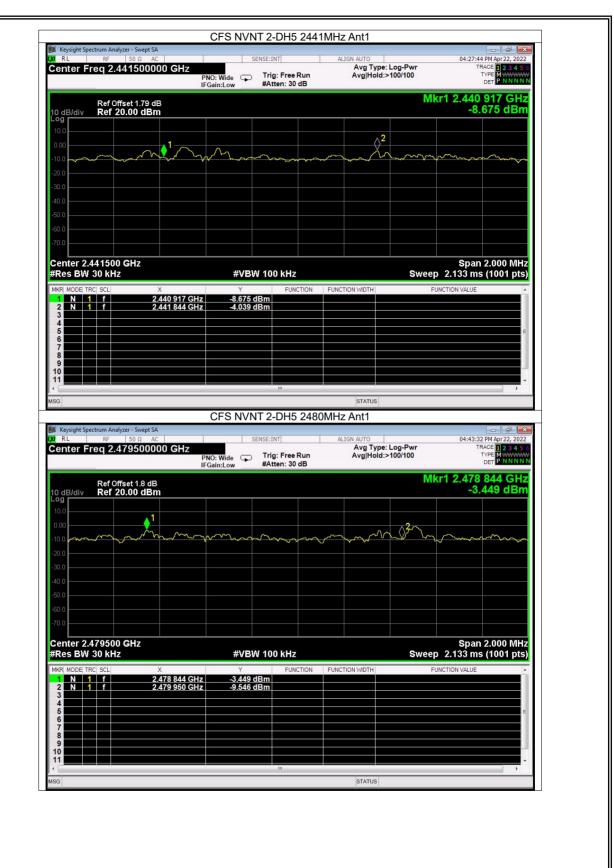
8.3 CARRIER FREQUENCIES SEPARATION

Condition	Mode	Antenna	Hopping Freq1	Hopping Freq2	HFS (MHz)	Limit (MHz)	Verdict
			(MHz)	(MHz)			
NVNT	1-DH5	Ant1	2402.049	2403.03	0.981	0.626	Pass
NVNT	1-DH5	Ant1	2441.015	2442.009	0.994	0.634	Pass
NVNT	1-DH5	Ant1	2479.02	2480.008	0.988	0.622	Pass
NVNT	2-DH5	Ant1	2402.19	2403.186	0.996	0.869	Pass
NVNT	2-DH5	Ant1	2440.917	2441.844	0.927	0.867	Pass
NVNT	2-DH5	Ant1	2478.844	2479.95	1.106	0.867	Pass

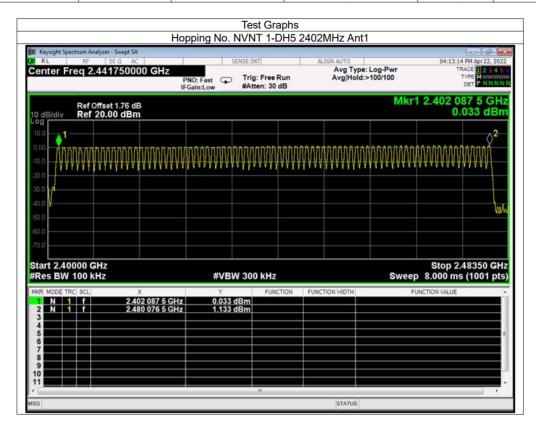
Version.1.3 Page 47 of 75



Version.1.3 Page 48 of 75



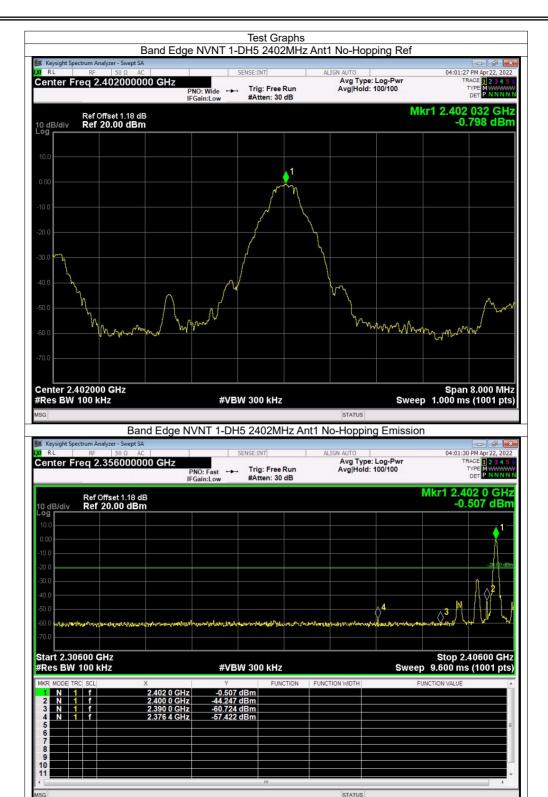
Version.1.3 Page 49 of 75


Version.1.3 Page 50 of 75

8.4 NUMBER OF HOPPING CHANNEL

Condition	Mode	Antenna	Hopping Number	Limit	Verdict
NVNT	1-DH5	Ant1	79	15	Pass

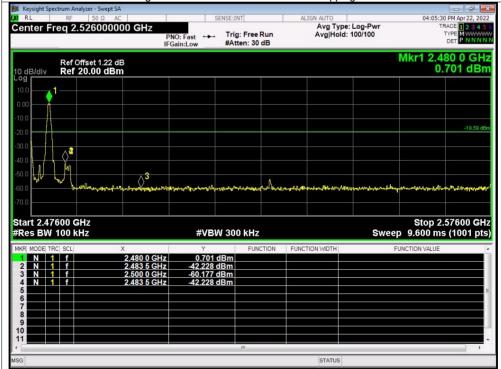
Version.1.3 Page 51 of 75


8.5 BAND EDGE

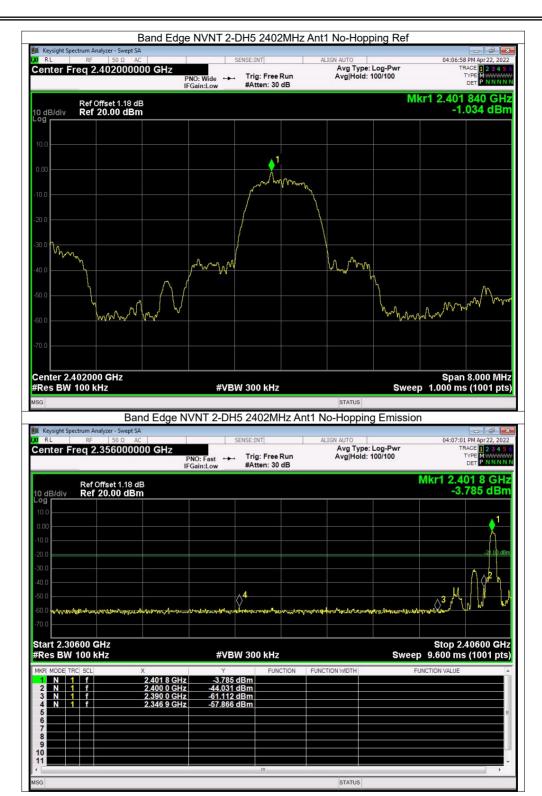
Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant1	No-Hopping	-56.62	-20	Pass
NVNT	1-DH5	2480	Ant1	No-Hopping	-42.63	-20	Pass
NVNT	2-DH5	2402	Ant1	No-Hopping	-56.83	-20	Pass
NVNT	2-DH5	2480	Ant1	No-Hopping	-43.06	-20	Pass

Version.1.3 Page 52 of 75

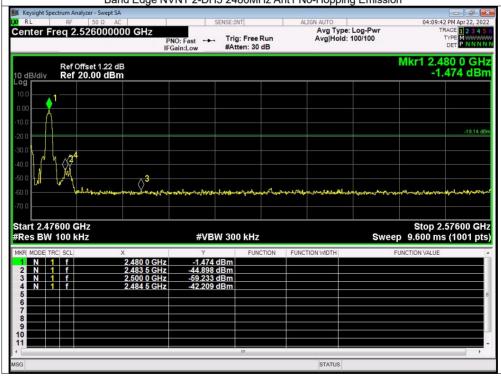




Version.1.3 Page 53 of 75



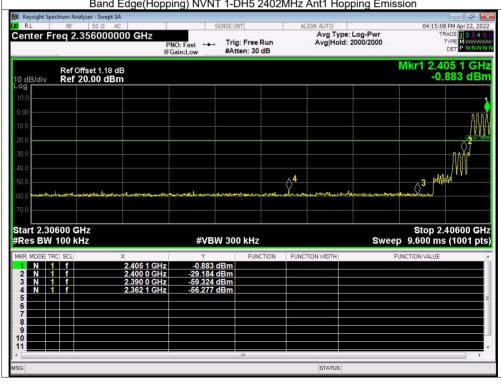
Version.1.3 Page 54 of 75



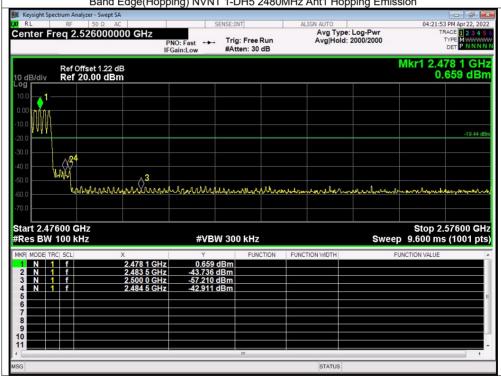
Version.1.3 Page 55 of 75

Version.1.3 Page 56 of 75

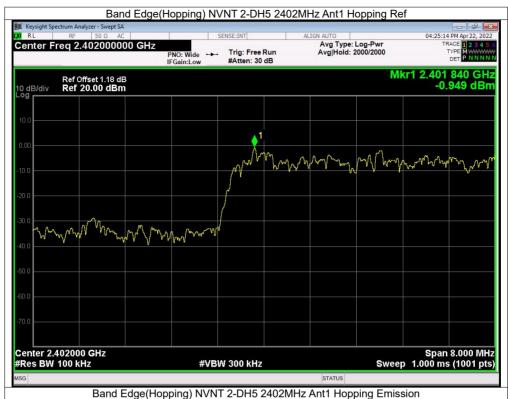
8.6 BAND EDGE(HOPPING)

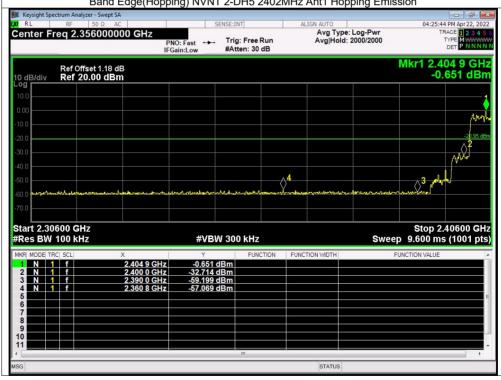

Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant1	Hopping	-55.6	-20	Pass
NVNT	1-DH5	2480	Ant1	Hopping	-43.47	-20	Pass
NVNT	2-DH5	2402	Ant1	Hopping	-56.11	-20	Pass
NVNT	2-DH5	2480	Ant1	Hopping	-47.68	-20	Pass

Version.1.3 Page 57 of 75



Version.1.3 Page 58 of 75





Version.1.3 Page 59 of 75

Version.1.3 Page 60 of 75