PTI Project 21110-15

RACOM s.r.o. RipEX2-4

Data Transceiver 400.000 to 470.000 MHz

Wireless Certification Report

FCC Part 90 and IC RSS-119

Prepared for:

RACOM s.r.o. Mirova cp. 1283 592 31 Nove Mesto na Morave Czech Republic

By

Professional Testing (EMI), Inc. 1601 North A.W. Grimes Blvd., Suite B Round Rock, Texas 78665

30 Oct 2019

Reviewed by

Shakil Murad Lead EMC Engineer

Written by

Eric Lifsey EMC Engineer

Revision History

Revision Number	Description	Date
03 DRAFT	Draft for review.	15 Nov 2019
03	Technical Review	11/15/19
02 Final	Additional statements added regarding applicable bands.	10 Dec 2019

Corrections:

None.

Revision History	2
Certificate of Compliance	5
1.0 Introduction	6
1.1 Scope	6
1.2 EUT Description	6
1.3 EUT Operation	6
1.4 Modifications to Equipment	7
1.5 Test Site	7
1.6 Applicable Documents	7
1.7 Test Setup Diagram	7
2.0 Conducted Output Power	9
2.1 Procedure	9
2.2 Criteria	9
2.3 Results	9
2.4 Calculated Attenuation and Spurious Limits Beyond Authorized Bandwidth	9
3.0 Emission Mask	10
3.1 Procedure	10
3.2 Criteria	10
3.3 Results	10
3.3.1 Mask C	11
3.3.2 Mask D	17
3.3.5 Mask E	23
4.0 Spurious Emissions at Antenna Terminals	29
4.1 Procedure	29
4.2 Criteria	29
4.3 Kesuits	29
4.5.1 Transmit Mode, Bottom Channel	30
4.3.2 Transmit Mode, Middle Channel.	30
4.3.3 Transmit Mode, Top Channel	30
5.0 Field Strength of Radiated Spurious Emissions	31
5.1 Procedure	31
5.2 Uniteria	31
5.2 1 Transmit Mada Dalam 1 CHa Dattan Channel	31
5.3.1 Transmit Mode, Below I GHZ, Bottom Channel	52
5.5.2 Transmit Mode, Above I GHZ, Bouom Channel	34
5.5.5 Iransmit Mode, Below I GHZ, Middle Channel	30
5.5.4 Iransmit Mode, Above I GHZ, Middle Channel.	38
5.3.5 Iransmit Mode, Below I GHZ, Top Channel	40
6.0 Ergewange Stability	42
6.1 Precedure	44
6.2 Critaria	44
6.2 Degults	44
6.2.1 Bottom Channel Temperature	44
6.3.2 Bottom Channel, Operating Voltage	45
6.3.2 Middle Channel Temperature	ر ب ۸۸
6.3.4 Middle Channel Operating Voltage	0 1
6.3.5 Ton Channel Temperature	+0 //7
6.3.6 Top Channel Operating Voltage	+/ 47
7.0 Transient Frequency Behavior	، ۱ ۵۷
7.1 Criteria	0 1 48
7.2 Results	<u>40</u>
7.2.1 Bottom Channel	
7.2.2 Middle Channel	50
7.2.3 Ton Channel	51 52
8.0 Emission Bandwidth	52
8.1 Procedure	55
8.2 Criteria	55
8.3 Results	55
0.5 100000	55

Table of Contents

8.3	1 Channel Width 6.25 kHz	;4
8.3	2 Channel Width 12.5 kHz	58
8.3	3 Channel Width 25.0 kHz	52
9.0 Equ	ipment Lists6	6
9.1	Conducted Power, Conducted Spurious, Mask, and Bandwidth6	6
9.2	Frequency Stability	6
9.3	Frequency Behavior	6
9.4	Radiated Emissions	57
Appendix	: Policy, Rationale, and Evaluation of EMC Measurement Uncertainty	58
End of Re	eport	58
	port	10

NOTICE:

(1) This Report must not be used to claim product endorsement, by NVLAP, NIST, the FCC or any other Agency. This report also does not warrant certification by NVLAP or NIST.

(2) This report shall not be reproduced except in full, without the written approval of Professional Testing (EMI), Inc.(3) The significance of this report is dependent on the representative character of the test sample submitted for evaluation and the results apply only in reference to the sample tested. The manufacturer must continuously implement the changes shown herein to attain and maintain the required degree of compliance.

Certificate of Compliance

FCC MRA Designation Number: US5270 NVLAP Accreditation Number: 200062-0

Applicant	Device & Test Identification	
RACOM s.r.o.	FCC ID:	SQT-RIPEX2-4A
Mirova cp. 1283	IC ID:	24993-RIPEX24A
592 31 Nove Mesto na Morave	Model(s):	RipEX2-4
Czech Republic	Laboratory Project ID:	21110-15
Certificate Date: 29 Oct 2019		

The device model(s) listed above were tested utilizing the following documents and found to be in compliance with the required criteria.

47 CFR (USA) FCC, RSS IC(Industry Canada)			
Parameter	FCC: Licensed to 406.1-470 MHz	IC: Licensed to 406.1-430 MHz and 450-470 MHz	
Conducted Output Power	90.210, 2.1046	RSS-119 Issue 12, 5.4	
Emission Mask (C, D, E)	90.210, 2.1047	RSS-119 Issue 12, 5.8	
Conducted Spurious/Harmonic Emissions at Antenna Terminals	90.210, 2.1051	RSS-119 Issue 12, 5.8; RSS-Gen Issue 4	
Field Strength of Radiated Spurious/Harmonic Emissions Fundamental to 5 GHz	90.210, 15.209, 2.1053	RSS-119 Issue 12, 5.8	
Transient Frequency Behavior	90.214, TIA/EIA-603-E	RSS-119 Issue 12, 5.9	
Frequency Stability	90.213, 2.1055	RSS-119 Issue 12, 5.3	
Modulation; Frequency Response & Limiting	2.1047(a), (b)		
Occupied Bandwidth, 20 dB, < 11.5 kHz	90.209, 2.1049	RSS-119 Issue 12, 5.5	
Radiated Emissions 30 MHz – 5 GHz	15.109	RSS-Gen Issue 4, ICES-003	

I, Eric Lifsey, for Professional Testing (EMI), Inc., being familiar with the above rules and test procedures have reviewed the test setup, measured data, and this report. I believe them to be true and accurate.

Eric Lifsey EMC Engineer

This report has been reviewed and accepted by the Applicant. The undersigned is responsible for ensuring that this device will continue to comply with the requirements listed above.

Representative of Applicant

1.0 Introduction

1.1 Scope

This report describes the extent to which the equipment under test (EUT) conformed to the intentional radiator requirements of North America.

Professional Testing (EMI), Inc., (PTI) follows the guidelines of National Institute of Standards and Technology (NIST) for all uncertainty calculations, estimates, and expressions thereof for electromagnetic compatibility testing. The methods of TIA/EIA-603 were applied unless specified otherwise in the associated agency rules and procedures.

1.2 EUT Description

Table 1.2.1 Equipment Under Test			
Manufacturer & Model	Basic Properties		
RACOM s.r.o.	Dimensions 218 x 126 x 68 cm.		
Model RipEX2-4	Typically rack mounted. Requires professional installation.		
Serial Numbers: 1901665415, 1901665515	Powered externally 10 to 30 VDC.		

Table 1.2.2: EUT RF Specifications		
Power Output to Antenna	+40 dBm Maximum	
Frequency Range	400 to 470 MHz (Licensed channels only.)	
Channel Bandwidths Supported (kHz)	25, 12.5, 6.25	
Modulation Methods Supported	4CPFSK pi/4DQPSK D8PSK 16DEQAM 64QAM 256QAM	
Declaration of Minimum Baud Rate for Spectrum Efficiency	This equipment is capable of supporting a minimum data rate of 4800 bits per second per 6.25 kHz of channel bandwidth.	

Table 1.2.3 Antenna Description Antenna system provided at installation time.

1.3 EUT Operation

The EUT was exercised in a manner consistent with normal operations.

Table 1.3.1 Operating Frequency/Range* (Only for licensed frequencies per localized regulations.)			
Lowest Frequency	Center Frequency	Highest Frequency	Total Frequency Range
400.000 MHz	435.000 MHz	470.000 MHz	70 MHz
The three channels were tested per customary practice for a frequency range exceeding 10 MHz.			

*All references to bottom/low, middle/center/nominal, and top/high channels are from this table unless otherwise specified.

1.4 Modifications to Equipment

No modifications were made to the EUT during the performance of the test program.

1.5 Test Site

Measurements were made at the PTI semi-anechoic facility designated Site 45 (FCC 459644, IC 3036B-1) in Austin, Texas. The site is registered with the FCC under Section 2.948 and Industry Canada per RSS-Gen, and is subsequently confirmed by laboratory accreditation (NVLAP). The test site is located at 11400 Burnet Road, Austin, Texas 78758, while the main office is located at 1601 North A.W. Grimes Boulevard, Suite B, Round Rock, Texas, 78665.

1.6 Applicable Documents

Table 1.6.1: Applicable Documents			
Document #	Title/Description	Date	
47 CFR	FCC Part 90		
IC RSS-119	Land Mobile and Fixed Equipment Operating in the Frequency Range	2015	
Issue 12	27.41-960 MHz	2015	
IC RSS-Gen	Conoral Requirements for Compliance of Radio Apparatus	2014	
Issue 4	General Requirements for Compliance of Radio Apparatus	2014	
TIA /FIA_603_F	Land Mobile FM or PM – Communications Equipment – Measurement	2016	
11A/ LIA-003-L	and Performance Standards	2010	
ANSI (63.26	American National Standard for Compliance Testing of Transmitters	2015	
	Used in Licensed Radio Services;	2013	

1.7 Test Setup Diagram

Setup for Conducted Port Measurements Power, Mask, Spurious, Bandwidth

External fixed attenuation is employed to protect the spectrum analyzer from overload damage. The attenuation factor is applied automatically in software and is graphically represented by that software below.

2.0 Conducted Output Power

2.1 Procedure

The EUT is placed into continuous transmit mode without modulation for peak power measurement.

2.2 Criteria

Parameter	Section Reference	Date
Conducted Output Power	90.210, 2.1046 RSS-119 Issue 12, 5.4	14 Oct 2019

2.3 Results

Setup per section 1.7.

The EUT satisfied the requirement. Tabular results are presented below.

Table 2.3.1 Power, Peak, Conducted, Unmodulated			
Frequency (MHz)	Power (dBm)	Power (W)	
400	39.9	9.8	
435	40.0	10.0	
470	40.7	11.8	

Corrected Measured Power

2.4 Calculated Attenuation and Spurious Limits Beyond Authorized Bandwidth

Table 2.4.1 Attenuation and Limits Beyond Authorized Bandwidth Limit(dBm) = Fundamental_Power(dBm) – Attenuation(dB) Fundamental Power = 10 W			
Paragraph/Mask & BW Calculated Attenuation Calculated Spurious Limit			
Reference dB dBm			
90.210(c) 25 kHz 43 + 10 Log ₁₀ (10 W) = 53 dB 40 - 53 dB = -13			
90.210(d) 12.5 kHz	50 + 10 Log ₁₀ (10 W) = 60 dB	40 – 60 dB = -20	
90.210(e) 6.25 kHz 55 + 10 Log ₁₀ (10 W) = 65 dB 40 - 65 dB = -25			

3.0 Emission Mask

3.1 Procedure

Emissions are measured using peak detection with the mask superimposed on the graph.

3.2 Criteria

Parameter	Section Number	Date
Emissions at Antenna Terminals	90.210, 2.1047 RSS-119 Issue 12, 5.8	9 Oct 2019

3.3 Results

Setup per section 1.7.

The EUT satisfied the requirement.

Table 3.3.1 Modulation Settings
As noted on each graph.
4CPFSK
pi/4DQPSK
D8PSK
16DEQAM
64QAM
256QAM

3.3.1 Mask C

3.3.2 Mask D

3.3.3 Mask E

4.0 Spurious Emissions at Antenna Terminals

4.1 Procedure

The EUT antenna port is coupled through a power attenuator to a spectrum analyzer and then is placed into continuous transmit mode. The connection is otherwise direct and no cables are used. Spurious signals are then measured directly with attenuator loss applied. Emissions are measured with a peak detector from 9 kHz to 5 GHz to include the tenth harmonic.

4.2 Criteria

Parameter	Section Number	Date
Emissions at Antenna Terminals	90.210, 2.1047 RSS-119 Issue 12, 5.8	18 Aug 2017

Limit is determined in section 2.4 for emissions beyond the authorized bandwidth.

4.3 Results

Setup per section 1.7.

Highest recorded spurious emission: -27.9 dBm at 869.995 MHz.

The EUT satisfied the requirement.

4.3.1 Transmit Mode, Bottom Channel

4.3.2 Transmit Mode, Middle Channel

5.0 Field Strength of Radiated Spurious Emissions

5.1 Procedure

The EUT was placed on a non-conductive table 0.8 meters above the ground plane. The table was centered on a rotating turntable at a distance of 10 meters from the measurement antenna. The EUT was placed into transmit mode with the antenna removed and a resistive terminator substituted.

Field Strength of Radiated Emissions Test Setup

5.2 Criteria

Parameter	Section Number	Date
Field Strength of Radiated Emissions	90.210, 15.209, 2.1053 RSS-119 Issue 12,	28 Oct 2010
30 MHz to 5 GHz	5.8; RSS-Gen Issue 4	28 000 2019

5.3 Results

Conducted limit for Part 90.210(e) is -25 dBm. This appears on the graphs below as a magenta color line.

The lower Part 15 general emissions limit (in red) is also displayed and the EUT satisfied those limits.

Highest recorded spurious emission: 48.4 dBµV/m @ 3 m on 2666.93 MHz.

The middle channel emissions were measured with all peripheral cables attached to include recording of unintentional emissions.

The EUT satisfied the requirement.

5.3.1 Transmit Mode, Below 1 GHz, Bottom Channel

			Pro	ofessior	al Testin	g, EMI, I	nc.				
Test Metho	d:	ANSI C Emissi GHz	263.4: 2 ions fro	2014, Ameria m Low-Volta	an National Star ge Electrical and	ndard for Met I Electronic Eq	hods of uipmer	Measunt in th	urement of Ra e Range of 9	adio-Noise kHz to 40	
In accordan	ce with:	FCC Pa Radiat	art 15.1 ed Emi	109 - Code of issions Limits	Federal Regulat	ions Part 47,	Subpart	: B - Un	intentional R	adiators,	
Section:		15.10	9								
Test Date(s):	10/28	8/2019	9		EUT Serial	#:	1901	665515		
Customer:		RACC	OM s. r	r. o.		EUT Part #	:	None	-		
Project Nur	nber:	21110	0-10			Test Techn	ician:	Eric L	ifsey		
Purchase O	rder #:	2019-	RAC-C	0546		Supervisor		Shaki	I Murad		
Equip. Und	er Test:	Туре	RIPE	X2-4		Witness' N	ame:	N/A			
			Rad	iated Emis	sions Test Res	ults Data S	heet				
EUT Li	ne Voltage	:	2	4 VDC		EUTPOV	ver ov:	() N/A		
Antenna Orientation:				Verti	cal	Frequer	icy		30MHz to	1GHz	
	EUT	Mode o	of Ope	eration:		Rando	Tra	nsmit 400 MHz			
Frequency Measured (MHz)	Test Distance (Meters)	El Direc (Deg	JT ction rees)	Antenna Height (Meters)	Detector Function	Corrected Level (dBµV/m)	Limit (dBµʻ	Level V/m)	Margin (dB)	Test Results	
43.805	10	2:	12	1.29	Quasi-peak	24.861	29).5	-4.6	Pass	
45.677	10	35	55	3.74	Quasi-peak	16.443	29).5	-13.1	Pass	
47.053	10	11	12	1.28	Quasi-peak	23.217	29).5	-6.3	Pass	
69.148	10	34	42	1.55	Quasi-peak	26.023	29).5	-3.5	Pass	
73.978	10	35	5 2.25		Quasi-peak	22.148	29).5	-7.4	Pass	
874.971	10	15	58	3.58	Quasi-peak	27.909	35	6.6	-7.7	Pass	
Professi Radiated 30MHz-1GH 60	onal Testing Emissions z Vertical Polarity Ma	, EMI, Ir	1 C ssions					 	FCC Peak Limit FCC Quasi-peak Lim Pre-scan Emissions Peak Reading Quasi-peak Reading LPRF Verification Lir Verified LPRF QP R Part90E Limit	it nit eading	
Field Strength (d BµV/n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		belliylalarnyan		100M						1G	
Operator: Er Current Time	ic Lifsey 9-05:36:55 A.M, Monda	y, October 28 ≤ 10	3, 2019 GHz V	Mode: Chanr Notes	Frequency Transmit el: 400.0 MHz <u>Unmod</u> enna Polarity	Measured	EUT: Proje Client	RipEx ctNumber: RACOM	: 21110		

				Pro	ofe	ssion	al Testin	g, EMI,	Inc.					
Test M	lethoo	1:	ANSI C Emissio	63.4: 2 ons fro	2014, m Lo	, America w-Volta _{	an National Star ge Electrical and	ndard for Me d Electronic E	thods of quipme	f Measunt in th	e Range (of Ra of 9 k	dio-Noise Hz to 40	
			FCC Pa	rt 15.1	.09 -	Code of	Federal Regulat	tions Part 47,	Subpar	t B - Ur	nintentior	nal Ra	diators,	
n acco	ordand	ce with:	Radiat	ed Emi	ssior	ns Limits								
Sectior	า:		15.109)				T						
est Da	ate(s)	:	10/28	/2019	9			EUT Serial	#:	1901	665515			
Suston	ner:	-	RACO	M s. ı	. 0.			EUT Part #	:	None	2			
Project	t Num	ber:	21110)-10				Test Tech	nician:	Eric L	ifsey			
Purcha	ise Or	der #:	2019-	RAC-C)546	1		Superviso						
quip.	Unde	r Test:	Type:	кірел	XZ-4			witness	ame:	N/A				
				Rad	iate	d Emiss	ions Test Re	sults Data S	heet					
E	UT Lin	e Voltage	:	2	4	VDC		EUTPO			0 N	I/A		
Ant	enna	Orientatio	on:			Horizor	ntal	Freque	ncy		30MHz	to 1	.GHz	
		EUT	/lode c	of Ope	erati	on:		Rand	<u>.</u> Tra	nsmit	mit 400 MHz			
Freque Measu (MH	ency ired	Test Distance (Meters)	EL Direc	UT Stion	An H	itenna leight leters)	Detector Function	Corrected Level (dBuV/m)	Limit (dBµ	Level V/m)	Marg (dB)	in)	Test Result	
250.0	-,	10	27	····	(3 75	Quasi-peak	2/ 337	21	5.6	_11 :	2	Dace	
335.9	86	10	19	<u> </u>		1.6	Quasi-peak Quasi-peak	19.383	31	5.6	-16.2	2 2	Pass	
500.1	08	10	35	5 7		1.01	Quasi-peak	15.431	3	5.6	-20.2	2	Pass	
625.0	22	10	23	4		1.26	Quasi-peak	28.43	3	5.6	-7.2	2	Pass	
812.3	81	10	35	57	3.23		Quasi-peak	21.206		5.6	-14.4	4	Pass	
875.0	01	10	21	.7		1.26	Quasi-peak	32.375	35	5.6	-3.2	2	Pass	
Pro Ra 30M 70	ofessio diated E IHz - 1GHz	n al Testing, missions Horizontal Polarity I	EMI, In Veasured Em	I C I issions				[[∀	FCC Peak Lim FCC Quasi-pea Pre-scan Emi Peak Reading Quasi-peak Rea LP RF Verifica Verified LP RF	nit ak Limit issions sading ation Limi F QP Rea	t ding	
60 (ш/ ʌrl ബ р)											Part90E Limit	t 		
ield Strength 05								ل مان	. Xundud Prov				¥ terioritation v	
10		while we have a start of the st	hayydd ^a nnyd	Allow Hat Politica	in the second			nn an sind a ^{the an} 10 ¹⁵ the <mark>Long too</mark> point of the second						
0 30	t. DM			i i	1(ом						-	1G	
Ope Cur	erator:Eric rentTime-	Lifsey 05:56:43 AM, Monday	y, October 28,	2019		Mode: Ti Channel Notes: U	Frequency ransmit : 400.0 MHz Jnmod		EUT Proj Clier	RipEx ect Num ber nt: RACOM	: 21110			

5.3.2 Transmit Mode, Above 1 GHz, Bottom Channel

Professional Testing, EMI, Inc.

dia Naina								
alo-inoise								
Hz to 40								
FCC Part 15.109 - Code of Federal Regulations Part 47, Subpart B - Unintentional Radiators,								
Radiated Emissions Limits								

		Rad	liated Emissi	ions Test Res	ults Data Si	neet		
EUT Li	ne Voltage:	2	4 VDC		EUT POW	ver cv:	0 N/A	
Antenna	o Orientatio	n:	Vertic	al	Frequen	icy	Above 1	GHz
	EUT N	lode of Op	eration:			Transmit	400 MHz	
Frequency Measured (MHz)	Test Distance (Meters)	EUT Direction (Degrees)	Antenna Height (Meters)	Detector Function	Corrected Level (dBµV/m)	Limit Level (dBµV/m)	Margin (dB)	Test Results
1331.81	3	332	1.79	Peak	40.096	74.0	-33.9	Pass
2666.93	3	73	1.37	Peak	48.383	74.0	-25.6	Pass
2875.22	3	89	2.95	Peak	43.338	74.0	-30.6	Pass
4577.49	3	312	1.02	Peak	45.688	74.0	-28.3	Pass
Professi Radiated 1-18GHz Ver 90 80 (U) 1-18GHz Ver 90 80 (U) 1-18GHz Ver 90 80 90 80 90 1-18GHz Ver 90 80 90 1-18GHz Ver 90 80 90 80 90 90 90 90 90 80 90 90 90 90 90 90 90 90 90 90 90 90 90	onal Testing, Emissions tical Polarity Measured	EMI, Inc Emissions	Mode: Tr Channel: Notes: U	Frequency ansmit 400.0 MHz		EUT: RipEx Project Number Client: RACOM	FCC Peak Limit FCC Average Limit Ambient Scan Pre-scan Emissions Peak Reading Average Reading PartSOE Limit	56
		> 1GHz V	ertical Ante	nna Polarity	Measured B	Emissions		

Γ

5.3.3 Transmit Mode, Below 1 GHz, Middle Channel

			Pro	ofess	ion	al Testin	g, EMI,	, Inc.			
Test Metho	od:	ANSI C Emissio GHz	63.4: 2 ons fro	2014, Ar m Low-'	nerica Voltag	n National Star e Electrical and	ndard for M I Electronic	ethods of Equipme	Measunt in th	rement of Ra e Range of 9	adio-Noise kHz to 40
In accordar	nce with:	FCC Pa Radiat	rt 15.1 ed Emi	.09 - Coo ssions L	de of F imits	ederal Regulat	ions Part 4	7, Subpar	t B - Un	intentional R	adiators,
Section:		15.109)								
Test Date(s	;):	10/28	/2019	Ð			EUT Seria	al #:	1901	665415	
Customer:		RACO	Ms.r	. 0.			EUT Part	#:	None		
Project Nu	nber:	21110)-10				Test Tech	nnician:	Sergi	o Gutierrez	
Fauin Lind	or Tost:	2019-	RAC-L	1546			Supervise	or: Namo:		I wurad	
	er rest.	Type.	кіре/	\2-4			withess	Name.	N/A		
			Rad	iated E	miss	ions Test Res	ults Data	Sheet	_		
EUT Line Voltage: 24			4 1	VDC		EUTP	ower	() N/A		
Antenna Orientation:			v	/ertic	al	Frequ	ency	30MHz to 1GHz			
	EUT N	/lode o	of Ope	eration	:			Tra	nsmit	435 MHz	
Frequency Measured (MHz)	Test Distance (Meters)	EU Direc (Degr	IT tion rees)	Antei Heig (Mete	nna sht ers)	Detector Function	Correcte Level (dBµV/m	d Limit (dBµ	Level V/m)	Margin (dB)	Test Results
76.812	10	2	2	1.98		Quasi-peak	14.307		9.5	-15.2	Pass
119.675	10	15	8	1.67		Quasi-peak	14.325	33	3.1	-18.8	Pass
126.829	10	24	7	1.63		Quasi-peak	11.293	33	3.1	-21.8	Pass
142.105	10	27	4	1.28		Quasi-peak	18.87	33	3.1	-14.2	Pass
750.032	10	26	3	2.4	-1 2	Quasi-peak Quasi-peak	27.797	31	5.6	-15.4	Pass
/ 50.002				2.0	-	Quusi peux	2,				1 435
Professi Radiated 30MHz - 1GHz 60 50	onal Testing, Emissions Vertical Polarity Measure	EMI, In d Emissions	c							eak Limit uasi-peak Limit verage Limit mbient Scan ne-scan Emissions aak Reading uasi-peak Reading uasi-peak Reading PRF Venticition Limit entited LPRF OP Reading	
B) Compared to the second seco	io Qutierrez 10:20:03 AM, Monday, Oc	tober 07, 2011		100M	EUT Mode EUT Power Notes:	Frequency : Unintentional emission n r. 24 VDC		EUT: R Projec Client:	ipEX2-4 t Number: 211	(<u>()</u>), <u>()</u> , <u>()</u>	1G

					Pro	ofessior	nal Testin	g, EMI,	Inc.			
est M	ethod:		AN Em GH	SI C6 issioi z	3.4: 2 ns fro	2014, Ameria m Low-Volta	can National Sta age Electrical an	ndard for Met d Electronic Ec	hods of M quipment i	easuren n the Ra	nent of R Inge of 9	adio-Noise kHz to 40
n acco	rdance	with:	FCC Rad	C Part diate	t 15.1 d Emi	.09 - Code of ssions Limits	Federal Regula	tions Part 47,	Subpart B	- Uninte	ntional F	Radiators,
ection	n:		15.	.109								
est Da	ate(s):		10	/28/	2019	Ð		EUT Serial	#: 19	901665	415	
Custon	ner:		RA	CON	Л s. r	. o.		EUT Part #	: N	one		
Project	: Numbe	er:	21	110-	10			Test Techn	ician: <u>Se</u>	ergio G	utierrez	
Purcha	se Orde	er #:	20	19-R	AC-0	546		Supervisor	: <u>Sł</u>	nakil M	urad	
quip.	Under 1	Test:	Ту	pe: F	RipEX	(2-4		Witness' N	lame: N	/A		
					Radi	iated Emis	sions Test Re	sults Data S	heet			
E	UT Line	Voltag	ge:		24	4 VDC		EUT PO	ver	0	N/A	
Ant	enna O	rienta	tion:			Horizo	ntal	Frequei	ńcy	30	MHz to	1GHz
		FUT			0			Range				10112
		EUI	IVIOO	le of	Ope	eration:		_	Irans	mit 435		
Freque	ncy	Test		EUT	-	Antenna	Detector	Corrected	Limit Le	vel N	Aargin	
Measu	red D	istance	e D	irecti	ion	Height	Function	Level	(dBµV/	m)	(dB)	Test Results
(MH	z) (ľ	Meters) (C	Degre	es)	(Meters)		(dBµV/m)		,	(-)	
142.9	19	10		249	49 3.3		Quasi-peak	15.924	33.1		-17.2	Pass
149.5	96	10		286	5	3.53	Quasi-peak	13.097	33.1		-20.0	Pass
166.4	51	10		227	'	3.64	Quasi-peak	10.818	33.1		-22.3	Pass
336.0	09	10		285	;	2.6	Quasi-peak	19.661	35.6		-15.9	Pass
625.0	09	10		254	L I	1.49	Quasi-peak	26.754	35.6		-8.8	Pass
875.0	06	10		22		1.07	Quasi-peak	29.787	35.6		-5.8	Pass
			_[·						
Pro Ra ^{30M}	D fessiona diated Emis Hz - 1 GHz Horizon	I Testin sions ntal Polarity N	g, EMI leasured En	I, Inc						 Peak Lin Quasi-pe Average Ambient Pre-scan Peak Rei Quasi-pe Average Average Verified I 	ak Limit Limit Scan Emissions ading ak Reading Reading fifcation Limit LPRF QP Reading	1
60 50 ਵ												
∧л ¹ ар)												
າສິ ສິ								_] 			×	
eld Str							XV X		×	all and the second second		
≝ 20	with the part of the second with					1 141		A State of the second state				
10		- Manufallan	alighter be	dial and	-Hellin Louis	Whenterfelienter						
0												
30	M					100M	Frequency					1G
									EUT: RipEX2	-4		
~	nton Porti- O "	-				EUT Mo	de: Unintentional emissiosn	mode	Designed by	hom 24440 40		
Open	ator: Sergio Qutie ent Time -10:27:5	mez 3 AM, Monda	v. October 0	7, 2019		EUT Mo EUT Po	ode: Unintentional emissiosn wer: 24 VDC	mode	Project Num Client: R∆CC	ber:21110-10 Mis.r.o		

5.3.4 Transmit Mode, Above 1 GHz, Middle Channel

		Pro	fession	al Testin	g, EMI, I	nc.		
Test Metho	d:	ANSI C63.4: 2 Emissions fro GHz	2014, Americ m Low-Volta	an National Star ge Electrical anc	ndard for Met I Electronic Eq	hods of Measu uipment in th	urement of Ra e Range of 9	adio-Noise kHz to 40
In accordance with: FCC Part 15.109 - Code of Federal Regulations Part 47, Subpart B - Unintentional Radiators, Radiated Emissions Limits								
Section:		15.109						
Test Date(s):	10/28/2019	Ð		EUT Serial	#: 1901	665415	
Customer:		RACOM s. ı	. o.		EUT Part #	None		
Project Nur	nber:	21110-10			Test Techn	ician: Sergio	o Gutierrez	
Purchase O	rder #:	2019-RAC-0)546		Supervisor	: Shaki	l Murad	
Equip. Und	er Test:	Type: RipE	(2-4		Witness' N	ame: ["] N/A		
		Rad	iated Emis	sions Test Res	sults Data Sl	heet		
EUT Li	ne Voltage:	2	4 VDC		EUT Pov	ver (N/A	
Antenna	Orientatio	n:	Verti	cal	Panga		Above 1	GHz
	EUT N	lode of Ope	eration:			Transmit	435 MHz	
Frequency Measured (MHz)	Test Distance (Meters)	EUT Direction (Degrees)	Antenna Height (Meters)	Detector Function	Corrected Level (dBµV/m)	Limit Level (dBµV/m)	Margin (dB)	Test Results
1115.96	3	156	2.98	Average	25.424	54.0	-28.5	Pass
1152.56	3	61	2.57	Average	29.4	54.0	-24.6	Pass
1271.75	3	9 1.18		Average	31.719	54.0	-22.2	Pass
1750.18	3	42	3.02	Average	29.771	54.0	-24.2	Pass
2666.66	3	85	1.08	Average	40.05	54.0	-13.9	Pass
4000.25	3	69	2.66	Average	34.292	54.0	-19.7	Pass
Professi Radiated 1-18G# Vertici 100 90 80 (U, 70 90 60 90 40 90 40 40 40 40 40 40 40 40 40 40 40 40 40	onal Testing, Emissions al Polarity Measured Emis	EMI, Inc ssions					Lasi Limit erage Limit molent Scan e-scan Emissions ak Reading iasi-peak Reading rerage Reading	
Operator: Sergi Current Time -1	o Gutienrez 0:52:25 AM, Monday, Oct	tober 07, 2019	EUT Moc EUT Pow Notes:	le: Unintentional emissiosn m er: 24 VDC	ode	EUT: RipEX2-4 Project Number: 211 Client: RACOM s.r.o	10-10	

> 1GHz Vertical Antenna Polarity Measured Emissions

T

		Pr	ofession	al Testin	g, EMI, I	nc.		
Test Metho	od:	ANSI C63.4: Emissions fr GHz	2014, America om Low-Voltag	an National Sta ge Electrical an	ndard for Met d Electronic Eq	hods of Measu uipment in th	rement of R e Range of 9	adio-Noise kHz to 40
In accorda	nce with:	FCC Part 15 Radiated En	109 - Code of nissions Limits	Federal Regula	tions Part 47,	Subpart B - Un	intentional R	adiators,
Section:		15.109						
Test Date(s	s):	10/28/201	19		EUT Serial	#: <u>1901</u>	665415	
Customer:		RACOM s.	r. o.		EUT Part #:	None		
Project Nu	mber:	21110-10			Test Techn	ician: Sergio	o Gutierrez	
Purchase C	Order #:	2019-RAC	0546		Supervisor	: <u>Shaki</u>	l Murad	
Equip. Unc	ler Test:	Type: Ripl	X2-4		Witness' N	ame: N/A		
		Ra	diated Emiss	ions Test Re	sults Data Sl	heet		
EUT L	ine Voltage	:	24 VDC		EUT POV	ver () N/A	
Antenn	a Orientatio	on:	Horizor	ntal	Frequer	îčý	Above 1	GHz
		Ando of Or	oration		Rango	Transmit	125 MU-	
Frequency Measured	y Test EUT d Distance Direction		Antenna Height	Detector Function	Corrected Level	Limit Level	Margin (dB)	Test Results
(IVIHZ)	(ivieters)	(Degrees)	(ivieters)		(abµv/m)			
1007.47	3	70	2.57	Average	22.28	54.0	-31.7	Pass
1295.98	3	32	3.97	Average	26.498	54.0	-27.5	Pass
1463.8	3	241	2.59	Average	24.885	54.0	-29.1	Pass
1/51.63	3	66	3.97	Average	26.173	54.0	-27.8	Pass
2667.01	2	66	2.59	Average	25.75	54.0	-25.7	Pass
2007.91	5	00	5.65	Average	33.73	54.0	-10.2	Fass
Profess Radiated 1-18G4z Horiz 100 90	ional Testing, I Emissions contal Polarity Measured E	EMI, Inc				P Q A A A A - - A - - A - - A - - Q - - - A - - - - A - - - - - - - - - - -	ak Limit asi-peak Limit erage Limit bibient Scan bient Scan Emissions asi-peak Reading asi-peak Reading erage Reading	
۵۵ س 70 ۳ ۲0 ۹ 60								
20 1G		Y						6G
50 50 10 40 30 20 1/ 1G				Frequency		EUT: RipEX2-4		6G
50 50 40 50 10 20 10 10 10 10 10 10 10 10 10 1	jo Gutienez	toher 07 2019	EUT Mode EUT Powe	Frequency c: Unintentional emission of r: 24 VDC	node	EUT: RpEX2-4 Project Number: 211	10-10	

5.3.5 Transmit Mode, Below 1 GHz, Top Channel

	Professional Testing, EMI, Inc.									
Test Metho	ANSI C63.4: 2014, American National Standard for Methods of Measurement of Radio-Noise Test Method: Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz									
In accordance with: Radiated Emissions Limits							adiators,			
Section:		15.109)							
Test Date(s)	:	10/28	3/2019	A		EUT Serial	#:	19016	665515	
Customer:		RACO	M s. r	. o.		EUT Part #:		None		
Project Num	nber:	21110)-10			Test Techni	ician:	Eric Li	ifsey	
Purchase Or	rder #:	2019-	RAC-0	546		Supervisor:		Shaki	l Murad	
Equip. Unde	er Test:	Туре:	RipE	(2-4		Witness' Na	ame:	N/A		
			Rad	iated Emissi	ons Test Res	ults Data Sł	neet			
EUT Lir	ne Voltage:		2	4 VDC		EUT POW	/er	C) N/A	
Antenna	Orientatio	n:		Horizon	tal	Frequen Range	су		Above 10	GHz
	EUT N	lode c	of Ope	eration:			Tra	nsmit	400 MHz	
Frequency Measured (MHz)	Test Distance (Meters)	EL Direc (Degi	IT tion rees)	Antenna Height (Meters)	Detector Function	Corrected Level (dBµV/m)	Limit (dBµ\	Level V/m)	Margin (dB)	Test Results
1164.12	3	35	57	2.49	Peak	39.182	74	.0	-34.8	Pass
1329.93	3	35	57	1.73	Peak	41.892	74	.0	-32.1	Pass
1996.89	3	2	7	2.9	Peak	40.309	74	.0	-33.6	Pass
3959.42	3	32	8	2.73	Peak	44.209	74	.0	-29.7	Pass
Professional Testing, EMI, Inc Radiated Emissions 1-18GHz Horizontal Pdarity Measured Emissions Pre-scan Emissions A reading Part90E Limit										
명 40 명 40 30										
20 <u>†</u> 1G	I	<u> </u>			Franzis					5G
Operator: Eric Current Time	: Lifsey -06:32:39 AM, Monday,	October 28,	2019 Hz Ho	Mode: Tra Channel: Notes: Un	ansmit 400.0 MHz 1mod enna Polarit	v Measured	EUT: Proje Client	RipEx ctNumber: RACOM	21110	

				Pro	ofession	al Testin	g, EMI, I	nc.			
Test N	lethoo	1:	ANSI O Emissi GHz	263.4: 2 ons fro	2014, America om Low-Voltag	an National Star ge Electrical and	ndard for Met I Electronic Eq	hods of uipme	[:] Meas nt in th	urement of Ra e Range of 9	adio-Noise kHz to 40
In accordance with: Radiated Emissions Limits											
Sectio	n:		15.10	Ð							
Test D	est Date(s): 10/28/2019 EUT Serial #: 19016					665515					
Custor	mer:	•	RACC	<u>)M s. i</u>	r . 0.		EUT Part #	:	None	<u>)</u>	
Projec	t Num	ber:	21110	$\frac{-10}{-10}$			Test Techn	ician:	Eric L	litsey	
Purcha Fauin	ase Or Undo	aer #: r Tost:	2019-	RinE	1546 X2-4		Supervisor: Witness' N	: ame:		li iviurad	
Lquip.	Unde	1 1030.	турс								
				Rad	iated Emiss	ions Test Res	Sults Data S	heet ver			
E	UT Lin	e Voltage	:	2	4 VDC		Frequen			0 N/A	
Ant	tenna	Orientatio	on:		Horizor	ntal	Frequer	1CY		30MHz to	1GHz
		EUT	Mode o	of Ope	eration:			Tra	nsmit	470 MHz	
Freque Measu (MH	ency ured Iz)	Test Distance (Meters)	El Direc (Deg	JT ction rees)	Antenna Height (Meters)	Detector Function	Corrected Level (dBµV/m)	Limit (dBµ	Level V/m)	Margin (dB)	Test Results
199.9	952	10	14	11	3.77	Quasi-peak	15.103	33	8.1	-18.0	Pass
624.9	991	10	23	30	1.27	Quasi-peak	28.477	35	5.6	-7.1	Pass
812.4	193	10	24	16	1.24	Quasi-peak	26.868	35	5.6	-8.7	Pass
866.6	59	10	22	21	1.03	Quasi-peak	29.121	35	5.6 · c	-6.5	Pass
875.0	105	10	2:	51	1.03	Quasi-peak	35.17	33	0.0	-0.4	Pass
Professional Testing, EMI, Inc						it nit eading					
Field Sfrength (d.BµV/m 00 05 05 05 05 05 05		and the state of t	ر می اندر از مراجع می	pieros aplandesis das						× · · · · · · · · · · · · · · · · · · ·	
3 Op Cu	ooM erator:Eric rrentTime -	Lifsey 07:38:27 A.M, Monda	y, October 28	, 2019	100M Mode: Ti Channel Notes: L	Frequency ransmit : 400.0 MHz Jimod		EUT: Proje Clien	RipEx ect Number t: RACOM	: 21110	16

5.3.6 Transmit Mode, Above 1 GHz, Top Channel

Professiona	l Testing,	EMI, I	lnc.
-------------	------------	--------	------

		•				
	ANSI C63.4: 2014, American National Standard for Methods of Measurement of Radio-Noise					
Test Method:	Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40					
	GHz					
	FCC Part 15.109 - Code of Federal Regulations Part 47, Subpart B - Unintentional Radiators,					
in accordance with:	Radiated Emissions Limits					
Section:	15.109					
Test Date(s):	10/28/2019	EUT Serial #:	1901665515			
Customer:	RACOM s. r. o.	EUT Part #:	None			
Project Number:	21110-10	Test Technician:	Eric Lifsey			
Purchase Order #:	2019-RAC-0546	Supervisor:	Shakil Murad			
Equip. Under Test:	Type: RipEX2-4	Witness' Name:	N/A			

6.0 Frequency Stability

6.1 Procedure

The EUT is placed into a temperature chamber with a cable coupling the transmitted signal to a spectrum analyzer. On reaching each set point temperature, the EUT is allowed to soak at least 10 minutes without power applied. After soak time was satisfied, the EUT is powered on in transmit mode and the frequency is observed until it becomes stable; then the measurement of frequency is taken.

6.2 Criteria

Parameter	Section Number	Date
Frequency Stability	90.213 RSS-119 Issue 12, 5.3	15 Oct 2019

Table 6.2.1 Frequency Tolerance	
0.5 ppm (Base station criteria.):	
400 MHz * 0.5 = +/- 200.0 Hz	
435 MHz * 0.5 = +/- 217.5 Hz	
470 MHz * 0.5 = +/- 235.0 Hz	

Table 6.2.2 Operating Voltages					
Low	Nominal	High			
10	24	30			

The operating frequency shall remain within the required tolerance.

6.3 Results

Setup per section 1.7 with a cable added to reach the EUT in the chamber. As this is a frequency measurement the cable losses were ignored. Frequency was read directly from spectrum analyzer using RBW 30 Hz in span of 2 kHz. EUT was in unmodulated mode.

The widest deviation from frequency observed was -102 Hz on highest channel.

The EUT satisfied the requirement.

6.3.1 Bottom Channel, Temperature

Condition	Freq	Deviation			
Temperature (C)	Reference Center Frequency (MHz)	Measured Frequency (MHz)	Calculated Deviation (Hz)		
-30	400.000000	400.000004	4		
-20	400.000000	400.000083	83		
-10	400.000000	400.000022	22		
0	400.000000	400.000022	22		
10	400.000000	400.000040	40		
20	400.000000	400.000000	0		
30	400.000000	399.999978	-22		
40	400.000000	399.999946	-54		
50	400.000000	399.999918	-82		
Upper Deviation (Hz) 83					
Lower Deviatio	on (Hz)		-82		

6.3.2 Bottom Channel, Operating Voltage

Condition	Voltage	Frequency			
Voltage Extreme	Voltage (V DC)	Reference Frequency (MHz)	Measured Frequency (MHz)	Calculated Deviation (Hz)	
Low	10.0	400.000000	399.999983	-17	
Nominal	24.0	400.000000	399.999962	-38	
High	30.0	400.000000	399.999968	-32	

6.3.3 Middle Channel, Temperature

Condition	Freq	Deviation				
Temperature (C)	Reference Center Frequency (MHz)	Measured Frequency (MHz)	Calculated Deviation (Hz)			
-30	435.000000	435.000008	8			
-20	435.000000	435.000093	93			
-10	435.000000	435.000020	20			
0	435.000000	435.000025	25			
10	435.000000	435.000000	0			
20	435.000000	434.999999	-1			
30	435.000000	434.999978	-22			
40	435.000000	434.999939	-61			
50	435.000000	434.999908	-92			
Upper Deviation	Upper Deviation (Hz) 93					
Lower Deviatio	on (Hz)		-92			

6.3.4 Middle Channel, Operating Voltage

Condition	Voltage	Frequency		
Voltage Extreme	Voltage (V DC)	Reference Frequency (MHz)	Measured Frequency (MHz)	Calculated Deviation (Hz)
Low	10.0	435.000000	434.999978	-22
Nominal	24.0	435.000000	434.999960	-40
High	30.0	435.000000	434.999970	-30

6.3.5 Top Channel, Temperature

Condition	Freq	uency	Deviation		
Temperature (C)	Reference Center Frequency (MHz)	Measured Frequency (MHz)	Calculated Deviation (Hz)		
-30	470.000000	470.000011	11		
-20	470.000000	470.000098	98		
-10	470.000000	470.000019	19		
0	470.000000	470.000027	27		
10	470.000000	470.000047	47		
20	470.000000	470.000000	0		
30	470.000000	469.999966	-34		
40	470.000000	469.999927	-73		
50	470.000000	469.999898	-102		
Upper Deviation (Hz) 98					
Lower Deviatio	on (Hz)		-102		

6.3.6 Top Channel, Operating Voltage

Condition	Voltage	Frequency			
Voltage Extreme	Voltage (V DC)	Reference Frequency (MHz)	Measured Frequency (MHz)	Calculated Deviation (Hz)	
Low	10.0	470.000000	469.999970	-30	
Nominal	24.0	470.000000	469.999957	-43	
High	30.0	470.000000	469.999969	-31	

7.0 **Transient Frequency Behavior**

The EUT was tested for transient frequency behavior using the test method outlined in TIA/EIA-603-E paragraph 2.2.19.3 Alternate Method of Measurement (Using a Test Receiver).

The EUT is terminated with a suitable resistive attenuator with the output connected to a forward power coupler. The coupler forward output (-10 dB) is run through a detector diode then to the trigger input port of a digital oscilloscope. The RF pass-through output of the coupler is then run to a 3 port resistive power combining network; the #2 port of the combiner is connected to the output of a RF signal generator, the #3 port is used as output and connected to a test receiver (modulation analyzer). The detected output of the modulation analyzer is connected to the vertical input of the digital oscilloscope.

The RF generator is set to the fundamental operating frequency, set to modulate with a 1 kHz tone at +/-25 kHz FM deviation, and at a relatively low but usable level where the modulation analyzer is able to demodulate the signal. The modulation analyzer is configured to use the high and low pass filter settings as called out in the TIA-603-C procedure. The modulation analyzer is then dialed via front panel keypad to the fundamental operating frequency for best sensitivity.

The transmitter is keyed as needed and adjustments are made to the instruments to trigger appropriately and render the measurement as required by the TIA-603-C standard. The essential technique is the signal generator provides a reference frequency captured by the modulation analyzer. When the EUT is keyed, at many dB above the signal generator level, the modulation analyzer locks to the EUT signal and deviation from center frequency can be observed and recorded on the digital oscilloscope.

Parameter	Section Reference	Date
Transient Frequency Behavior	90.214 RSS-119 Issue 12, 5.9 Procedure: TIA-603-E	24 Oct 2019

Time intervals ^{1,2}		Maximum		Frequency Range	
		frequency difference ³	150 to 174 M	Hz 421 to 512 MHz	
-	Transient Freque	ncy Behavior for I	Equipment Designed to Ope	rate on 25 kHz Channels	
4	±	25.0 kHz	5.0 ms	10.0 ms	
	±	12.5 kHz	20.0 ms	25.0 ms	
1	±	25.0 kHz	5.0 ms	10.0 ms	
Т	ransient Frequer	ncy Behavior for E	quipment Designed to Oper	ate on 12.5 kHz Channels	
4	±	12.5 kHz	5.0 ms	10.0 ms	
	±	6.25 kHz	20.0 ms	25.0 ms	
L	±	12.5 kHz	5.0 ms	10.0 ms	
Т	ransient Frequer	ncy Behavior for E	quipment Designed to Oper	ate on 6.25 kHz Channels	
4	±	6.25 kHz	5.0 ms	10.0 ms	
	±	3.125 kHz	20.0 ms	25.0 ms	
4	±	6.25 kHz	5.0 ms	10.0 ms	

Criteria

7.1

 t_3 is the time period from the instant when the transmitter is turned off until $t_{\text{off.}}$

 t_{off} is the instant when the 1 kHz test signal starts to rise.

 2 During the time from the end of t₂to the beginning of t₃, the frequency difference must not exceed the limits specified in §90.213.

³Difference between the actual transmitter frequency and the assigned transmitter frequency.

⁴If the transmitter carrier output power rating is 6 watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period.

The measurement is performed for the lowest, middle, and highest operating frequency.

7.2 Results

The frequency synthesis circuitry is identical for all channel spacing modes so the worst-case mode was measured to show compliance for all modes.

The EUT satisfied the requirement. The limits were not superimposed on the plots as the transmitter performance was clearly in compliance for all of the supported channel schemes.

7.2.1 Bottom Channel

Stop

7.2.2 Middle Channel

Stop

7.2.3 Top Channel

Stop

8.0 Emission Bandwidth

8.1 Procedure

The EUT antenna port is coupled to a spectrum analyzer for measurement.

8.2 Criteria

Parameter	Section Number	Date
99% Bandwidth for Reporting	90.210, 90.203(j)(3), 2.1049 RSS-119 Issue 12, 5.5	24 Oct 2019

8.3 Results

Setup is per section 1.7.

Video bandwidth is 1 kHz in all cases. Resolution bandwidth as noted in tabular data and plots. Measurement rounded to 3 significant digits in tables.

8.3.1 Channel Width 6.25 kHz

Table 8.3.1.1 Bandwidth Meas	Table 8.3.1.1 Bandwidth Measurement, 6.25 kHz using 100 Hz RBW					
Channel Frequency MHz	Modulation Method	Measured OBW 99% kHz				
400	4CPFSK	3.33				
435	4CPFSK	3.21				
470	4CPFSK	3.21				
400	pi/4DQPSK	4.73				
435	pi/4DQPSK	4.73				
470	pi/4DQPSK	4.73				
400	D8PSK	4.75				
435	D8PSK	4.75				
470	D8PSK	4.76				
400	16DEQAM	4.73				
435	16DEQAM	4.76				
470	16DEQAM	4.77				
400	64QAM	4.80				
435	64QAM	4.75				
470	64QAM	4.80				
400	256QAM	4.75				
435	256QAM	4.78				
470	256QAM	4.79				

8.3.2 Channel Width 12.5 kHz

Table 8.3.2.1 Bandwidth Meas	Table 8.3.2.1 Bandwidth Measurement, 12.5 kHz using 300 Hz RBW					
Channel Frequency MHz	Modulation Method	Measured OBW 99% kHz				
400	4CPFSK	7.27				
435	4CPFSK	7.26				
470	4CPFSK	7.25				
400	pi/4DQPSK	9.62				
435	pi/4DQPSK	9.55				
470	pi/4DQPSK	9.54				
400	D8PSK	9.57				
435	D8PSK	9.50				
470	D8PSK	9.59				
400	16DEQAM	9.71				
435	16DEQAM	9.54				
470	16DEQAM	9.55				
400	64QAM	9.69				
435	64QAM	9.55				
470	64QAM	9.62				
400	256QAM	9.55				
435	256QAM	9.60				
470	256QAM	9.51				

8.3.3 Channel Width 25.0 kHz

Table 8.3.3.1 Bandwidth Meas	Table 8.3.3.1 Bandwidth Measurement, 25.0 kHz using 300 Hz RBW					
Channel Frequency MHz	Modulation Method	Measured OBW 99% kHz				
400	4CPFSK	15.1				
435	4CPFSK	14.6				
470	4CPFSK	15.0				
400	pi/4DQPSK	18.9				
435	pi/4DQPSK	19.0				
470	pi/4DQPSK	19.0				
400	D8PSK	19.0				
435	D8PSK	19.1				
470	D8PSK	19.1				
400	16DEQAM	19.1				
435	16DEQAM	19.1				
470	16DEQAM	19.1				
400	64QAM	19.1				
435	64QAM	19.0				
470	64QAM	19.0				
400	256QAM	19.0				
435	256QAM	18.9				
470	256QAM	19.1				

9.0 Equipment Lists

Asset #	Manufacturer	Model #	Description	Calibration Due
2295	Agilent	E4440A	Spectrum Analyzer	6 Nov 2019
A105	Narda	768A-20	20 dB Attenuator, 20 Watt	23 Mar 2020
C355	Pasternack	RG type	Coaxial Cable, Low Loss, ~5m	30 May 2020
0467	Fluke	077A	DMM	10 Nov 2020
2205	Astron	VS-35M	Power Supply, Linear Regulated	CIU

9.1 Conducted Power, Conducted Spurious, Mask, and Bandwidth

9.2 Frequency Stability

Asset #	Manufacturer	Model #	Description	Calibration Due
2295	Agilent	E4440A	Spectrum Analyzer	6 Nov 2019
A105	Narda	768A-20	20 dB Attenuator, 20 Watt	23 Mar 2020
2134	Tenny	TPS T2C	Temperature Chamber	8 Oct 2020
C355	Pasternack	RG type	Coaxial Cable, double shielded	CNR
0467	Fluke	077A	DMM	10 Nov 2020
1831	HP	6622A	DC Power Supply	CIU
2205	Astron	VS-35M	Power Supply, Linear Regulated	CIU

9.3 Frequency Behavior

Asset #	Manufacturer	Model #	Description	Calibration Due
0836	Narda	3293-1	Broadband Directional Coupler	CNR
2228	Tektronix	TDS3034	Oscilloscope, Digital	10 Jul 2020
1816	Agilent	N5181A	Signal Generator	8 Nov 2019
0742	HP	355C	Step Attenuator	CNR
0637	HP	8901A	Modulation Analyzer	7 Nov 2019
None	Mini-Circuits	ZFRSC-43	3 Port Resistive Divider/Combiner SMA	CNR
A100	Narda	94455-1	Diode Detector	CNR
2201	Agilent	E3632A	Adjustable DC Power Supply	CIU
None	Various	None	RG Type coaxial cables	CNR
None	Various	Unknown	SMA-SMA attenuators, 1 each of: 20 dB, 10 dB, 3 dB, 1.2 dB	CNR

Radiated Emissions Test Equipment List							
Ti	Tile! Software Version: Version: 7.1.2.17 (Jan 08, 2016 - 02:12:48 PM) or 4.1.A.0, April 14, 2009, 11:01:00PM						
Test Profile: 2019_May_Unintentional RE_TILE7_v2.5.til							
Asset #	Manufacturer	Model	Equipment Nomenclature	Serial Number	Calibration Due Date		
1509A	Braden	TDK 10M	TDK 10M Chamber, NSA < 1 GHz	DAC-012915-005	9/17/2021		
1890	HP	8447F-H64	Preamp/Amp, 9kHz-1300MHz, 28/25dB	3313A05298	1/10/2020		
1937	Agilent	E4440A - AYZ	PSA , 3 Hz - 26.5 GHz, Opt. AYZ	MY44808298	11/8/2019		
1926	ETS-Lindgren	3142D	Antenna, Biconilog, 26 MHz - 6 GHz	135454	3/11/2021		
C027	none	RG214	Cable Coax, N-N, 25m, 25MHz - 1GHz	None	9/9/2020		
1327	EMCO	1050	Controller, Antenna Mast	none	N/A		
0942	EMCO	11968D	Turntable, 4ft.	9510-1835	N/A		
1969	HP	11713A	Attenuator/Switch Driver	3748A04113	N/A		
1509B	Braden	TDK 10M	TDK 10M Chamber,sVSWR > 1 GHz	DAC-012915-005	9/21/2021		
2004	Miteq	AFS44-00101800- 2S-10P-44	Amplifier, 40dB, .1-18GHz	0	1/10/2020		
C030	none	none	Cable Coax, N-N, 30m, 1 - 18GHz	None	9/9/2020		
1325	EMCO	1050	Controller, Antenna Mast	9003-1461	N/A		
1780	ETS-Lindgren	3117	Antenna, Double Ridged Guide Horn, 1 - 18 GHz	110313	3/11/2021		

9.4 Radiated Emissions

Appendix: Policy, Rationale, and Evaluation of EMC Measurement Uncertainty

All uncertainty calculations, estimates and expressions thereof shall be in accordance with NIST policy. Since PTI operates in accordance with NIST (NVLAP) Handbook 150-11: 2007, all instrumentation having an effect on the accuracy or validity of tests shall be periodically calibrated or verified traceable to national standards by a competent calibration laboratory. The certificates of calibration or verification on this instrumentation shall include estimates of uncertainty as required by NIST Handbook 150-11.

1. Rationale and Summary of Expanded Uncertainty.

Each piece of instrumentation at PTI that is used in making measurements for determining conformance to a standard (or limit), shall be assessed to evaluate its contribution to the overall uncertainty of the measurement in which it is used. The assessment of each item will be based on either a type A evaluation or a type B evaluation. Most of the evaluations will be type B, since they will be based on the manufacturer's statements or specifications of the calibration tolerances, or uncertainty will be stated along with a brief rationale for the type of evaluation and the resulting stated uncertainties.

The individual uncertainties included in the combined standard uncertainty for a specific test result will depend on the configuration in which the item of instrumentation is used. The combination will always be based on the law of propagation of uncertainty. Any systematic effects will be accommodated by including their uncertainties, in the calculation of the combined standard uncertainty; except that if the direction and amount of the systematic effect cannot be determined and separated from its uncertainty, the whole effect will be treated as uncertainty and combined along with the other elements of the test setup.

Type A evaluations of standard uncertainty will usually be based on calculating the standard deviation of the mean of a series of independent observations, but may be based on a least-squares curve fit or the analysis of variance for unusual situations. Type B evaluations of standard uncertainty will usually be based on manufacturer's specifications, data provided in calibration reports, and experience. The type of probability distribution used (normal, rectangular, a priori, or u-shaped) will be stated for each Type B evaluation.

In the evaluation of the uncertainty of each type of measurement, the uncertainty caused by the operator will be estimated. One notable operator contribution to measurement uncertainty is the manipulation of cables to maximize the measured values of radiated emissions. The operator contribution to measurement uncertainty is evaluated by having several operators independently repeat the same test. This results in a Type A evaluation of operator-contributed measurement uncertainty.

A summary of the expanded uncertainties of PTI measurements is shown as Table 1. These are the worst-case uncertainties considering all operative influence factors.

Type of Measurement	Frequency Range	Meas. Dist.	Expanded Uncertainty U, dB (k=2)	
Mains Conducted Emissions	150 kHz to 30 MHz	N/A	2.9	
Telecom Conducted Emissions	150 kHz to 30 MHz	N/A	2.8	
Radiated Emissions	30 to 1,000 MHz	10 m	4.8	
Radiated Emissions	1 to 18 GHz	3 m	5.7	

End of Report