| <b>TCT</b> 通测检                   | 之河川                                                                                                                     |                                                                                                                    |  |  |  |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|--|--|
| TESTING CENTRE TEC               | CHNOLOGY                                                                                                                | <b>T</b>                                                                                                           |  |  |  |
| FCC ID                           |                                                                                                                         |                                                                                                                    |  |  |  |
|                                  | 2AQ5C-HGSW2                                                                                                             |                                                                                                                    |  |  |  |
| Test Report No:                  | TCT250407E012                                                                                                           |                                                                                                                    |  |  |  |
| Date of issue:                   | Apr. 14, 2025                                                                                                           |                                                                                                                    |  |  |  |
| Testing laboratory::             | SHENZHEN TONGCE TESTING                                                                                                 |                                                                                                                    |  |  |  |
| Testing location/ address:       | 2101 & 2201, Zhenchang Factor<br>Fuhai Subdistrict, Bao'an Distric<br>518103, People's Republic of Ch                   | t, Shenzhen, Guangdong,                                                                                            |  |  |  |
| Applicant's name :               | Hypercel Corporation                                                                                                    |                                                                                                                    |  |  |  |
| Address:                         | 28385 Constellation Rd., Valence<br>States                                                                              | ia, California 91355, United                                                                                       |  |  |  |
| Manufacturer's name :            | Shenzhen Hypercel Technology                                                                                            | Co., Ltd                                                                                                           |  |  |  |
| Address:                         | Avenue, Bao'an District, Shenzh                                                                                         | Room 605, No.4 Building, Tongtai Times Center, No.6259 Bao'an Avenue, Bao'an District, Shenzhen City 518103, China |  |  |  |
| Standard(s):                     | FCC CFR Title 47 Part 15 Subpart C Section 15.247<br>FCC KDB 558074 D01 15.247 Meas Guidance v05r02<br>ANSI C63.10:2020 |                                                                                                                    |  |  |  |
| Product Name::                   | FIT X2 Smartwatch + Fitness Tr                                                                                          | acker                                                                                                              |  |  |  |
| Brand Name :                     | HyperGear                                                                                                               |                                                                                                                    |  |  |  |
| Model/Type reference :           | FIT X2, 16311                                                                                                           |                                                                                                                    |  |  |  |
| Rating(s):                       | Rechargeable Li-ion Battery DC                                                                                          | 3.8V                                                                                                               |  |  |  |
| Date of receipt of test item     | Apr. 07, 2025                                                                                                           |                                                                                                                    |  |  |  |
| Date (s) of performance of test: | Apr. 07, 2025 ~ Apr. 14, 2025                                                                                           |                                                                                                                    |  |  |  |
| Tested by (+signature) :         | Onnado YE                                                                                                               |                                                                                                                    |  |  |  |
| Check by (+signature) :          | Beryl ZHAO                                                                                                              |                                                                                                                    |  |  |  |
| Approved by (+signature):        | Tomsin                                                                                                                  |                                                                                                                    |  |  |  |
| TONGCE TESTING LAB. TH           | his document may be altered or r<br>ly, and shall be noted in the revis                                                 | e written approval of SHENZHEN<br>revised by SHENZHEN TONGCE<br>sion section of the document. The                  |  |  |  |
|                                  |                                                                                                                         |                                                                                                                    |  |  |  |

# **Table of Contents**

TCT 通测检测 TESTING CENTRE TECHNOLOGY

| 1. General Product Information               |    |
|----------------------------------------------|----|
| 1.1. EUT description                         | 3  |
| 1.2. Model(s) list                           | 3  |
| 1.3. Operation Frequency                     |    |
| 2. Test Result Summary                       |    |
| 3. General Information                       |    |
| 3.1. Test environment and mode               |    |
| 3.2. Description of Support Units            |    |
| 4. Facilities and Accreditations             | 7  |
| 4.1. Facilities                              | 7  |
| 4.2. Location                                | 7  |
| 4.3. Measurement Uncertainty                 |    |
| 5. Test Results and Measurement Data         |    |
| 5.1. Antenna requirement                     | 8  |
| 5.2. Conducted Emission                      |    |
| 5.3. Conducted Output Power                  |    |
| 5.4. 20dB Occupy Bandwidth                   | 14 |
| 5.5. Carrier Frequencies Separation          |    |
| 5.6. Hopping Channel Number                  |    |
| 5.7. Dwell Time                              |    |
| 5.8. Pseudorandom Frequency Hopping Sequence |    |
| 5.9. Conducted Band Edge Measurement         | 19 |
| 5.10.Conducted Spurious Emission Measurement |    |
| 5.11.Radiated Spurious Emission Measurement  |    |
| Appendix A: Test Result of Conducted Test    |    |
| Appendix B: Photographs of Test Setup        |    |
| Appendix C: Photographs of EUT               |    |
|                                              |    |



# **1. General Product Information**

## 1.1. EUT description

| Product Name:          | FIT X2 Smartwatch + Fitness Tracker |    |
|------------------------|-------------------------------------|----|
| Model/Type reference:  | FIT X2                              |    |
| Sample Number          | TCT250407E012-0101                  |    |
| Bluetooth Version:     | V5.3 (This report is for BDR+EDR)   |    |
| Operation Frequency:   | 2402MHz~2480MHz                     |    |
| Transfer Rate:         | 1/2/3 Mbits/s                       |    |
| Number of Channel:     | 79                                  |    |
| Modulation Type:       | GFSK, π/4-DQPSK, 8DPSK              |    |
| Modulation Technology: | FHSS                                |    |
| Antenna Type:          | Internal Antenna                    |    |
| Antenna Gain:          | 0dBi                                | S) |
| Rating(s):             | Rechargeable Li-ion Battery DC 3.8V |    |

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

# 1.2. Model(s) list

| Model No. | Tested with |
|-----------|-------------|
| FIT X2    | $\boxtimes$ |
| 16311     |             |
|           | FIT X2      |

Note: FIT X2 is tested model, other models are derivative models. The models are identical in circuit and PCB layout, only different on the model names. So the test data of FIT X2 can represent the remaining models.

Report No.: TCT250407E012

Page 3 of 87

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



# 1.3. Operation Frequency

| Channel | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|---------|-----------|---------|-----------|
| 0       | 2402MHz   | 20      | 2422MHz   | 40      | 2442MHz   | 60      | 2462MHz   |
|         | 2403MHz   | 21      | 2423MHz   | 41      | 2443MHz   | 61      | 2463MHz   |
|         |           |         |           |         |           |         |           |
| 10      | 2412MHz   | 30      | 2432MHz   | 50      | 2452MHz   | 70      | 2472MHz   |
| 11      | 2413MHz   | 31      | 2433MHz   | 51      | 2453MHz   | 71      | 2473MHz   |
|         |           | X       | J         |         |           |         |           |
| 18      | 2420MHz   | 38      | 2440MHz   | 58      | 2460MHz   | 78      | 2480MHz   |
| 19      | 2421MHz   | 39      | 2441MHz   | 59      | 2461MHz   |         |           |

Remark: Channel 0, 39 & 78 have been tested for GFSK, π/4-DQPSK, 8DPSK modulation mode.



















Page 4 of 87

Fax: 86-755-27673332 Hotline: 400-6611-140 Tel: 86-755-27673339 http://www.tct-lab.com



# 2. Test Result Summary

| Requirement                         | CFR 47 Section      | Result |
|-------------------------------------|---------------------|--------|
| Antenna Requirement                 | §15.203/§15.247 (c) | PASS   |
| AC Power Line Conducted<br>Emission | §15.207             | PASS   |
| Conducted Peak Output<br>Power      | §15.247 (b)(1)      | PASS   |
| 20dB Occupied Bandwidth             | §15.247 (a)(1)      | PASS   |
| Carrier Frequencies<br>Separation   | §15.247 (a)(1)      | PASS   |
| Hopping Channel Number              | §15.247 (a)(1)      | PASS   |
| Dwell Time                          | §15.247 (a)(1)      | PASS   |
| Radiated Emission                   | §15.205/§15.209     | PASS   |
| Band Edge                           | §15.247(d)          | PASS   |

#### Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

Page 5 of 87

# 3. General Information

# 3.1. Test environment and mode

| Operating Environment: |                                           |                   |  |  |  |
|------------------------|-------------------------------------------|-------------------|--|--|--|
| Condition              | Conducted Emission                        | Radiated Emission |  |  |  |
| Temperature:           | 21.5 °C                                   | 24.1 °C           |  |  |  |
| Humidity:              | 48 % RH                                   | 51 % RH           |  |  |  |
| Atmospheric Pressure:  | 1010 mbar                                 | 1010 mbar         |  |  |  |
| Test Software:         |                                           |                   |  |  |  |
| Software Information:  | Software Information: FCC_assist_1.0.4(1) |                   |  |  |  |
| Power Level:           | 4                                         |                   |  |  |  |

Test Mode:

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case (Z axis) are shown in Test Results of the following pages.

DH1 DH3 DH5 all have been tested, only worse case DH1 is reported.

# 3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Equipment | Model No. | Serial No.     | FCC ID | Trade Name |
|-----------|-----------|----------------|--------|------------|
| Adapter   | EP-TA200  | R37R55T6KL2SE3 | /      | SAMSUNG    |

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

# TCT通测检测 TESTING CENTRE TECHNOLOGY

# 4. Facilities and Accreditations

# 4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A
  - SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Innovation, Science and Economic Development Canada for radio equipment testing.

# 4.2. Location

## SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

# 4.3. Measurement Uncertainty

The reported uncertainty of measurement  $y \pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

| No. | Item                                    | MU          |
|-----|-----------------------------------------|-------------|
| 1   | Conducted Emission                      | ± 3.10 dB   |
| 2   | RF power, conducted                     | ± 0.12 dB   |
| 3   | Spurious emissions, conducted           | ± 0.11 dB   |
| 4   | All emissions, radiated(<1 GHz)         | ± 4.56 dB   |
| 5   | All emissions, radiated(1 GHz - 18 GHz) | ) ± 4.22 dB |
| 6   | All emissions, radiated(18 GHz- 40 GHz) | ± 4.36 dB   |



#### 5. Test Results and Measurement Data

## 5.1. Antenna requirement

# FCC Part15 C Section 15.203 /247(c) Standard requirement: 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 15.247(c) (1)(i) requirement: (i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi. E.U.T Antenna: The Bluetooth antenna internal antenna which permanently attached, and the best case gain of the antenna is 0dBi. Antenna 20 40 30



## 5.2. Conducted Emission

## 5.2.1. Test Specification

| Test Requirement: | FCC Part15 C Section                                                                                                                                                                                                                                                                                                                                                        | 15.207                                                                                                                                                                                                    | K                                                                                                                                                                                          |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Test Method:      | ANSI C63.10:2020                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                           |                                                                                                                                                                                            |  |  |
| Frequency Range:  | 150 kHz to 30 MHz                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                           |                                                                                                                                                                                            |  |  |
| Receiver setup:   | RBW=9 kHz, VBW=30                                                                                                                                                                                                                                                                                                                                                           | kHz, Sweep time                                                                                                                                                                                           | e=auto                                                                                                                                                                                     |  |  |
|                   | Frequency range Limit (dBuV)                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                           |                                                                                                                                                                                            |  |  |
|                   | (MHz)                                                                                                                                                                                                                                                                                                                                                                       | Quasi-peak                                                                                                                                                                                                | Áverage 🤇                                                                                                                                                                                  |  |  |
| Limits:           | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                    | 66 to 56*                                                                                                                                                                                                 | 56 to 46*                                                                                                                                                                                  |  |  |
|                   | 0.5-5                                                                                                                                                                                                                                                                                                                                                                       | 56                                                                                                                                                                                                        | 46                                                                                                                                                                                         |  |  |
|                   | 5-30                                                                                                                                                                                                                                                                                                                                                                        | 60                                                                                                                                                                                                        | 50                                                                                                                                                                                         |  |  |
|                   | Reference                                                                                                                                                                                                                                                                                                                                                                   | e Plane                                                                                                                                                                                                   | 1201                                                                                                                                                                                       |  |  |
| Test Setup:       | 40cm         E.U.T         AC power         Test table/Insulation plane         Remarkc         E.U.T. Equipment Under Test         LISN: Line Impedence Stabilization Ne         Test table height=0.8m                                                                                                                                                                    | power LISN<br>Filter AC power<br>Blane EMI<br>Receiver                                                                                                                                                    |                                                                                                                                                                                            |  |  |
| Test Mode:        | Charging + Transmittin                                                                                                                                                                                                                                                                                                                                                      | g Mode                                                                                                                                                                                                    |                                                                                                                                                                                            |  |  |
| Test Procedure:   | <ol> <li>The E.U.T is connect<br/>impedance stabilized<br/>provides a 500hm/5<br/>measuring equipmer</li> <li>The peripheral device<br/>power through a LIS<br/>coupling impedance<br/>refer to the block<br/>photographs).</li> <li>Both sides of A.C.<br/>conducted interferent<br/>emission, the relative<br/>the interface cables of<br/>ANSI C63.10:2020 or</li> </ol> | ation network<br>OuH coupling im<br>nt.<br>es are also conne<br>SN that provides<br>with 50ohm terr<br>diagram of the<br>line are checke<br>nce. In order to fi<br>e positions of equi<br>must be changed | (L.I.S.N.). This<br>pedance for the<br>ected to the main<br>s a 50ohm/50uh<br>nination. (Please<br>test setup and<br>ed for maximun<br>nd the maximun<br>ipment and all of<br>according to |  |  |
| Test Result:      | PASS                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                           |                                                                                                                                                                                            |  |  |
|                   | II AUU                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                           |                                                                                                                                                                                            |  |  |



Page 10 of 87

http://www.tct-lab.com

Fax: 86-755-27673332

Tel: 86-755-27673339

Hotline: 400-6611-140

## 5.2.2. Test Instruments

| Conducted Emission Shielding Room Test Site (843) |              |           |                  |               |               |  |  |
|---------------------------------------------------|--------------|-----------|------------------|---------------|---------------|--|--|
| Equipment                                         | Manufacturer | Model     | Serial<br>Number | Date of Cal.  | Due Date      |  |  |
| EMI Test<br>Receiver                              | R&S          | ESCI3     | 100898           | Jun. 27, 2024 | Jun. 26, 2025 |  |  |
| LISN                                              | Schwarzbeck  | NSLK 8126 | 8126453          | Jan. 21, 2025 | Jan. 20, 2026 |  |  |
| Attenuator                                        | N/A          | 10dB      | 164080           | Jun. 27, 2024 | Jun. 26, 2025 |  |  |
| Line-5                                            | тст          | CE-05     | /                | Jun. 27, 2024 | Jun. 26, 2025 |  |  |
| EMI Test<br>Software                              | EZ_EMC       | EMEC-3A1  | ) 1.1.4.2        | (4)           | 10            |  |  |

#### 5.2.3. Test data

dBu¥

80.0

70

60

50

40

30

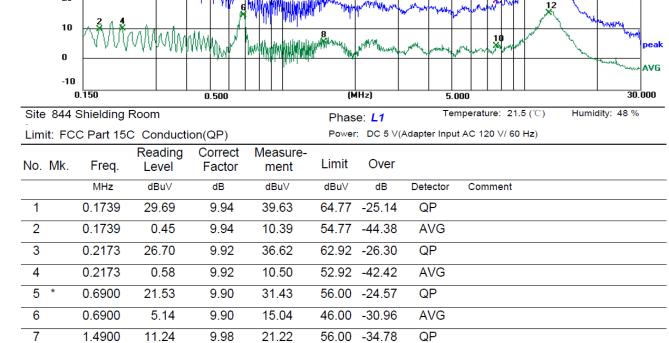
20

MMW

Please refer to following diagram for individual Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

FCC

CC


1!

1

Conduction(QP)

Conduction(AVG

11



#### Note:

1.4900

7.6580

7.6580

12.6859

12.6859

-3.78

9.50

-5.47

21.02

5.48

9.98

10.21

10.21

10.36

10.36

6.20

19.71

4.74

31.38

15.84

8

9 10

11

12

Freq. = Emission frequency in MHz Reading level  $(dB\mu V) = Receiver reading$ Corr. Factor (dB) = LISN factor + Cable loss Measurement  $(dB\mu V) = Reading \, level \, (dB\mu V) + Corr. Factor \, (dB)$ Limit  $(dB\mu V) = Limit$  stated in standard Margin (dB) = Measurement (dB $\mu$ V) – Limits (dB $\mu$ V) Q.P. =Quasi-Peak AVG =average \* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

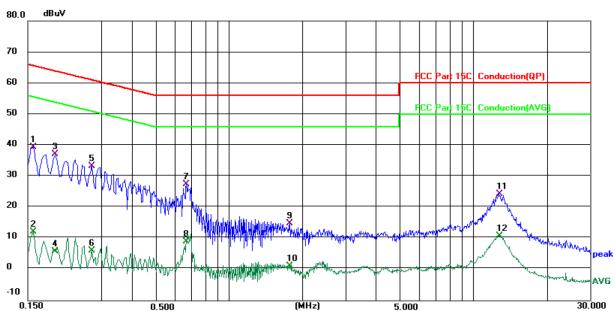
46.00 -39.80

60.00 -40.29

50.00 -45.26

60.00 -28.62

50.00 -34.16


AVG QP

AVG QP

AVG

Page 11 of 87

Report No.: TCT250407E012



## Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

| Site 844 Shielding Room            | Phase: N Temperature: 21.5 (°C) Humidity: 48 9 |
|------------------------------------|------------------------------------------------|
| Limit: FCC Part 15C Conduction(QP) | Power: DC 5 V(Adapter Input AC 120 V/ 60 Hz)   |
| Peading Correct Measure            |                                                |

| No. | Mk. | Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |         |
|-----|-----|---------|------------------|-------------------|------------------|-------|--------|----------|---------|
|     |     | MHz     | dBu∨             | dB                | dBu∨             | dBu∨  | dB     | Detector | Comment |
| 1   | *   | 0.1580  | 29.49            | 9.94              | 39.43            | 65.57 | -26.14 | QP       |         |
| 2   |     | 0.1580  | 2.17             | 9.94              | 12.11            | 55.57 | -43.46 | AVG      |         |
| 3   |     | 0.1940  | 27.15            | 9.93              | 37.08            | 63.86 | -26.78 | QP       |         |
| 4   |     | 0.1940  | -3.96            | 9.93              | 5.97             | 53.86 | -47.89 | AVG      |         |
| 5   |     | 0.2740  | 23.44            | 9.93              | 33.37            | 61.00 | -27.63 | QP       |         |
| 6   |     | 0.2740  | -3.74            | 9.93              | 6.19             | 51.00 | -44.81 | AVG      |         |
| 7   |     | 0.6700  | 17.47            | 9.94              | 27.41            | 56.00 | -28.59 | QP       |         |
| 8   |     | 0.6700  | -0.89            | 9.94              | 9.05             | 46.00 | -36.95 | AVG      |         |
| 9   |     | 1.7780  | 4.95             | 10.01             | 14.96            | 56.00 | -41.04 | QP       |         |
| 10  |     | 1.7780  | -8.81            | 10.01             | 1.20             | 46.00 | -44.80 | AVG      |         |
| 11  |     | 12.7739 | 13.96            | 10.42             | 24.38            | 60.00 | -35.62 | QP       |         |
| 12  |     | 12.7739 | 0.46             | 10.42             | 10.88            | 50.00 | -39.12 | AVG      |         |

#### Note1:

Freq. = Emission frequency in MHz Reading level ( $dB\mu V$ ) = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement  $(dB\mu V) = Reading \, level \, (dB\mu V) + Corr. Factor \, (dB)$ 

*Limit*  $(dB\mu V) = Limit$  stated in standard

Margin (dB) = Measurement (dB $\mu$ V) – Limits (dB $\mu$ V)

Q.P. =Quasi-Peak AVG =average

\* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

#### Note2:

Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Middle channel and Pi/4 DQPSK) was submitted only.

Report No.: TCT250407E012



# 5.3. Conducted Output Power

## 5.3.1. Test Specification

| Test Requirement:                                                                                                                                                                                                                                                                                                                                                                                                       | FCC Part15 C Section 15.247 (b)(1)                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Test Method:                                                                                                                                                                                                                                                                                                                                                                                                            | KDB 558074 D01 v05r02                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Limit:                                                                                                                                                                                                                                                                                                                                                                                                                  | Section 15.247 (b) The maximum peak conducted output<br>power of the intentional radiator shall not exceed the<br>following: (1) For frequency hopping systems operating<br>in the 2400-2483.5 MHz band employing at least 75<br>non-overlapping hopping channels, and all frequency<br>hopping systems in the 5725-5850 MHz band: 1 watt.<br>For all other frequency hopping systems in the<br>2400-2483.5 MHz band 0.125 watts. |  |  |  |
| Test Setup:                                                                                                                                                                                                                                                                                                                                                                                                             | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Test Mode:                                                                                                                                                                                                                                                                                                                                                                                                              | Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| Use the following spectrum analyzer settings:         Span = approximately 5 times the 20 dB bandwidth centered on a hopping channel         RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW         Sweep = auto         Detector function = peak         Trace = max hold         Allow the trace to stabilize.         Use the marker-to-peak function to set the marker to peak of the emission. |                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Test Result:                                                                                                                                                                                                                                                                                                                                                                                                            | PASS                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |

#### 5.3.2. Test Instruments

|                      |              | $(\mathcal{A} \mathbf{G}^*)$ |                  | $(\mathcal{A} \mathcal{C}^{*})$ | $(\mathcal{L}\mathcal{G}^{*})$ |
|----------------------|--------------|------------------------------|------------------|---------------------------------|--------------------------------|
| Equipment            | Manufacturer | Model No.                    | Serial<br>Number | Date of Cal.                    | Due Date                       |
| Spectrum<br>Analyzer | Agilent      | N9020A                       | MY49100619       | Jun. 27, 2024                   | Jun. 26, 2025                  |
| Combiner Box         | Ascentest    | AT890-RFB                    | 1                | 1                               | 1                              |



# 5.4. 20dB Occupy Bandwidth

#### 5.4.1. Test Specification

| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Test Method:      | KDB 558074 D01 v05r02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| Limit:            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Test Setup:       | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| Test Mode:        | Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| Test Procedure:   | <ol> <li>The RF output of EUT was connected to the spectrum<br/>analyzer by RF cable. The path loss was<br/>compensated to the results for each measurement.</li> <li>Set to the maximum power setting and enable the<br/>EUT transmit continuously.</li> <li>Use the following spectrum analyzer settings for 20dB<br/>Bandwidth measurement.<br/>Span = approximately 2 to 5 times the 20 dB<br/>bandwidth, centered on a hopping channel;<br/>1%≤RBW≤5% of the 20 dB bandwidth; VBW≥3RBW;<br/>Sweep = auto; Detector function = peak; Trace = max<br/>hold.</li> <li>Measure and record the results in the test report.</li> </ol> |  |  |  |
| Test Result:      | PASS (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |

### 5.4.2. Test Instruments

| Equipment            | Manufacturer | Model No. | Serial<br>Number | Date of Cal.  | Due Date      |
|----------------------|--------------|-----------|------------------|---------------|---------------|
| Spectrum<br>Analyzer | Agilent      | N9020A    | MY49100619       | Jun. 27, 2024 | Jun. 26, 2025 |
| Combiner Box         | Ascentest    | AT890-RFB | 1                | /             | /             |
|                      |              | <u></u>   |                  |               | -1.           |



# 5.5. Carrier Frequencies Separation

#### 5.5.1. Test Specification

| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | KDB 558074 D01 v05r02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Limit:            | Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.                                                                                                                                                                                                                                                                     |
| Test Setup:       | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Test Mode:        | Hopping mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Test Procedure:   | <ol> <li>The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.</li> <li>Set to the maximum power setting and enable the EUT transmit continuously.</li> <li>Enable the EUT hopping function.</li> <li>Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold.</li> <li>Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.</li> </ol> |
| Test Result:      | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

#### 5.5.2. Test Instruments

| Equipment            | Manufacturer | Model No. | Serial<br>Number | Date of Cal.  | Due Date      |
|----------------------|--------------|-----------|------------------|---------------|---------------|
| Spectrum<br>Analyzer | Agilent      | N9020A    | MY49100619       | Jun. 27, 2024 | Jun. 26, 2025 |
| Combiner Box         | Ascentest    | AT890-RFB | /                | /             | /             |

Page 15 of 87



# 5.6. Hopping Channel Number

## 5.6.1. Test Specification

| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Test Method:      | KDB 558074 D01 v05r02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| Limit:            | Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| Test Setup:       | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| Test Mode:        | Hopping mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Test Procedure:   | <ol> <li>The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.</li> <li>Set to the maximum power setting and enable the EUT transmit continuously.</li> <li>Enable the EUT hopping function.</li> <li>Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold.</li> <li>The number of hopping frequency used is defined as the number of total channel.</li> <li>Record the measurement data in report.</li> </ol> |  |  |  |
| Test Result:      | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |

## 5.6.2. Test Instruments

| Equipment            | Manufacturer | Model No. | Serial<br>Number | Date of Cal.  | Due Date      |
|----------------------|--------------|-----------|------------------|---------------|---------------|
| Spectrum<br>Analyzer | Agilent      | N9020A    | MY49100619       | Jun. 27, 2024 | Jun. 26, 2025 |
| Combiner Box         | Ascentest    | AT890-RFB | 1                | 1             | /             |
| 6                    |              |           |                  | (.)           | G             |

| Setup: |                   |
|--------|-------------------|
|        | Spectrum Analyzer |
|        |                   |

employed.

|                 | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Mode:      | Hopping mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Test Procedure: | <ol> <li>The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.</li> <li>Set to the maximum power setting and enable the EUT transmit continuously.</li> <li>Enable the EUT hopping function.</li> <li>Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set &gt;&gt; 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.</li> <li>Measure and record the results in the test report.</li> </ol> |
| Test Result:    | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

FCC Part15 C Section 15.247 (a)(1)

The average time of occupancy on any channel shall not

seconds multiplied by the number of hopping channels

be greater than 0.4 seconds within a period of 0.4

KDB 558074 D01 v05r02

## 5.7.2. Test Instruments

| Equipment            | Manufacturer | Model No. | Serial<br>Number | Date of Cal.  | Due Date      |
|----------------------|--------------|-----------|------------------|---------------|---------------|
| Spectrum<br>Analyzer | Agilent      | N9020A    | MY49100619       | Jun. 27, 2024 | Jun. 26, 2025 |
| Combiner Box         | Ascentest    | AT890-RFB |                  | /             | 1             |

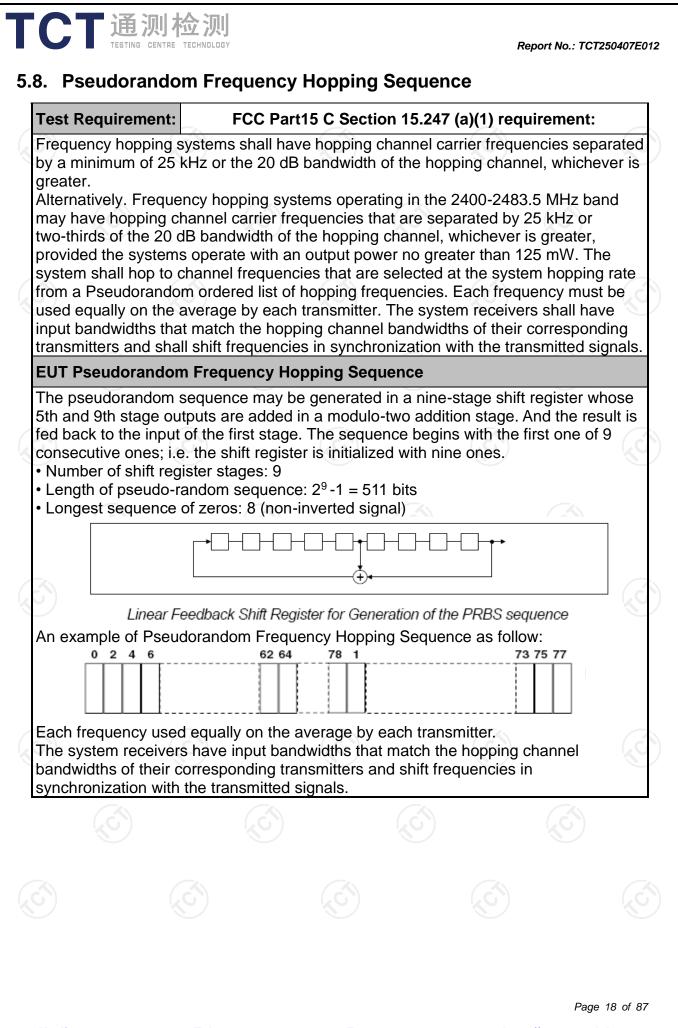
Report No.: TCT250407E012

# 

# 5.7. Dwell Time

**Test Method:** 

Limit:


**Test S** 

# 5.7.1. Test Specification

**Test Requirement:** 











# 5.9. Conducted Band Edge Measurement

#### 5.9.1. Test Specification

| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | KDB 558074 D01 v05r02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Limit:            | In any 100 kHz bandwidth outside the intentional<br>radiation frequency band, the radio frequency power<br>shall be at least 20 dB below the highest level of the<br>radiated power. In addition, radiated emissions which fall<br>in the restricted bands must also comply with the<br>radiated emission limits.                                                                                                                                                                                                                                    |
| Test Setup:       | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Test Mode:        | Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Test Procedure:   | <ol> <li>Set to the maximum power setting and enable the EUT transmit continuously.</li> <li>Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.</li> <li>Enable hopping function of the EUT and then repeat step 2 and 3.</li> <li>Measure and record the results in the test report.</li> </ol> |
| Test Result:      | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

#### 5.9.2. Test Instruments

| Equipment            | Manufacturer | Model No. | Serial<br>Number | Date of Cal.  | Due Date      |
|----------------------|--------------|-----------|------------------|---------------|---------------|
| Spectrum<br>Analyzer | Agilent      | N9020A    | MY49100619       | Jun. 27, 2024 | Jun. 26, 2025 |
| Combiner Box         | Ascentest    | AT890-RFB |                  | 1             | 5) 1          |

Page 19 of 87



# 5.10. Conducted Spurious Emission Measurement

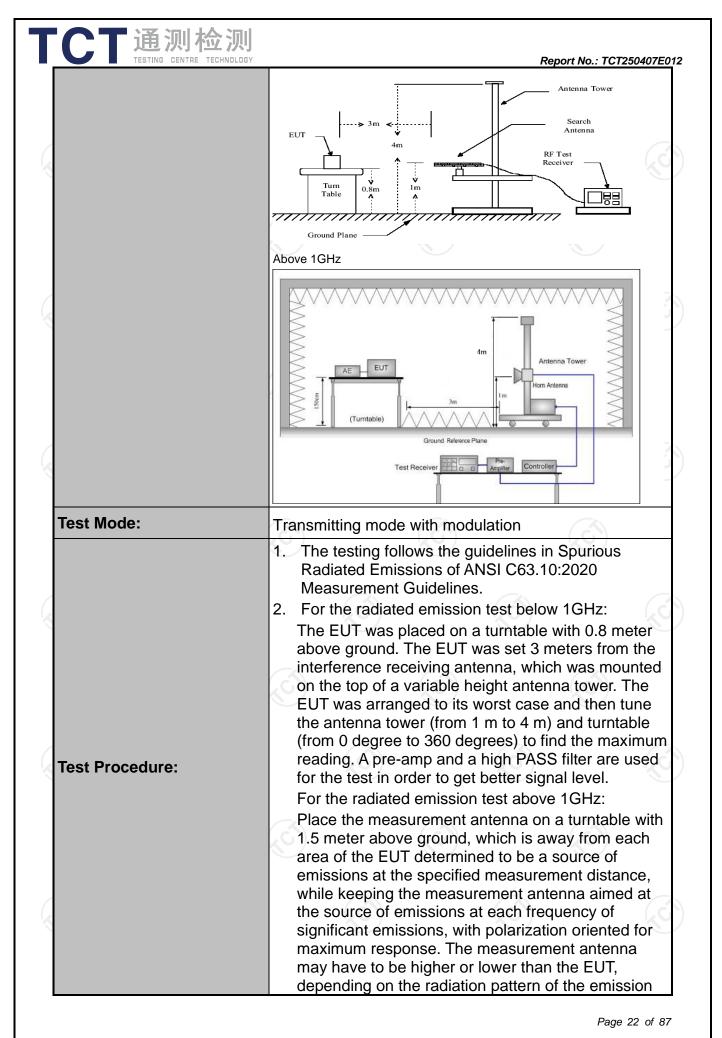
## 5.10.1. Test Specification

| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | KDB 558074 D01 v05r02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Limit:            | In any 100 kHz bandwidth outside the intentional<br>radiation frequency band, the radio frequency power<br>shall be at least 20 dB below the highest level of the<br>radiated power. In addition, radiated emissions which fall<br>in the restricted bands must also comply with the<br>radiated emission limits.                                                                                                                                                                                                                                                                                                                                      |
| Test Setup:       | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Test Mode:        | Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Test Procedure:   | <ol> <li>The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.</li> <li>Set to the maximum power setting and enable the EUT transmit continuously.</li> <li>Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.</li> <li>Measure and record the results in the test report.</li> <li>The RF fundamental frequency should be excluded against the limit line in the operating frequency band.</li> </ol> |
| Test Result:      | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

### 5.10.2. Test Instruments

| $(\mathcal{L}(\mathcal{L}))$ |                        |           |                  | $(\mathcal{L}\mathcal{L}^{*})$ | $(\mathcal{A} \mathcal{C} \mathcal{A}^{*})$ |  |
|------------------------------|------------------------|-----------|------------------|--------------------------------|---------------------------------------------|--|
| Equipment                    | Equipment Manufacturer |           | Serial<br>Number | Date of Cal.                   | Due Date                                    |  |
| Spectrum<br>Analyzer         | Agilent                | N9020A    | MY49100619       | Jun. 27, 2024                  | Jun. 26, 2025                               |  |
| Combiner Box                 | Ascentest              | AT890-RFB | 1                | /                              | 1                                           |  |

Page 20 of 87




# 5.11. Radiated Spurious Emission Measurement

#### 5.11.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

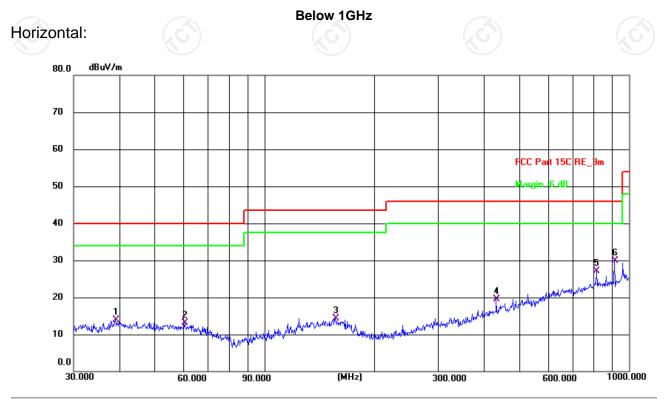
| ANSI C63.10              | $\cdot$ 2020                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FCC Part15 C Section 15.209       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| ANSI C63.10:2020         |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| 9 kHz to 25 0            | GHz                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| 3 m                      |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Horizontal &             | Vertical                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Frequency                | Detector                                                                                                                                                                                                             | RBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VBW                               | Remark<br>Quasi-peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| 150kHz-<br>30MHz         |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30kHz                             | Quasi-peak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| 30MHz-1GHz<br>Above 1GHz | Peak                                                                                                                                                                                                                 | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 300KHz<br>3MHz<br>10Hz            | Quasi-peak Value<br>Peak Value<br>Average Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|                          | T Call                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|                          |                                                                                                                                                                                                                      | (microvolts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | /meter)                           | Measurement<br>Distance (meters<br>300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|                          | /                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|                          |                                                                                                                                                                                                                      | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · · ·                             | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|                          | 6                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|                          |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|                          |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|                          |                                                                                                                                                                                                                      | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (meter<br>3                       | rs)<br>Average<br>Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|                          | stance = 3m                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   | Computer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| S.                       | 5)                                                                                                                                                                                                                   | (,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C)                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|                          | 3 m<br>Horizontal &<br>Frequency<br>9kHz-150kHz<br>150kHz-<br>30MHz<br>30MHz-1GHz<br>Above 1GHz<br>Frequency<br>0.009-0.4<br>0.490-1.1<br>1.705-3<br>30-88<br>88-210<br>216-96<br>Above 9<br>Frequency<br>Above 1GHz | 3 m         Horizontal & Vertical         Frequency       Detector         9kHz-150kHz       Quasi-peal         150kHz-       Quasi-peal         30MHz       Quasi-peal         30MHz-1GHz       Quasi-peal         Above 1GHz       Peak         Peak       Peak         0.009-0.490       0.490-1.705         1.705-30       30-88         88-216       216-960         Above 960       Frequency         Frequency       Fiel         Above 1GHz       Fiel         For radiated emissions below       Distance = 3m         For radiated emissions below       Distance = 3m         For radiated emissions below       Distance = 3m | 3 m         Horizontal & Vertical | 3 m         Horizontal & Vertical         Frequency       Detector       RBW       VBW         9kHz-150kHz       Quasi-peak       200Hz       1kHz         150kHz-       Quasi-peak       9kHz       30KHz         30MHz       300Hz       Quasi-peak       120KHz       300KHz         30MHz       100kHz       Quasi-peak       120KHz       300KHz         Above 1GHz       Peak       1MHz       30Hz         0.009-0.490       2400/F(KHz)       1.705-30       30         30-88       100       88-216       150         1.705-30       30       30-88       100         88-216       150       216-960       200         Above 960       500       3       30         88-216       150       216-960       200         Above 960       500       3       3         Soudout 1GHz       500       3       3         Above 1GHz       500       3       3         Soudout 3       30       3       3       3         For radiated emissions below 30MHz       Image: Soudout 3       1m       1m       1m         Stance = 3m |  |  |  |  |  |  |



Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

|                      | 通测检测              | receiving<br>measure<br>maximiz<br>antenna<br>restricte<br>above th<br>3. Set to t<br>EUT tra<br>4. Use the<br>(1) Spa<br>emi<br>(2) Set<br>for<br>Sw<br>= r<br>(3) Fo<br>col<br>15.3<br>On<br>Will<br>ler<br>Av<br>Le<br>Cor | ving aimed at the<br>g the maximum s<br>ement antenna el<br>ses the emissions<br>elevation for ma<br>d to a range of he<br>ne ground or refe<br>the maximum po<br>insmit continuous<br>following spectru<br>an shall wide eno<br>ission being meas<br>RBW=120 kHz f<br>f>1GHz ; VBW≥F<br>veep = auto; Dete<br>max hold for peak<br>r average measu<br>rrection factor me<br>35(c). Duty cycle<br>time =N1*L1+N2<br>here N1 is number<br>ofth of type 1 puls<br>rerage Emission I<br>vel + 20*log(Duty<br>rected Reading: A | emission source<br>ignal. The final<br>evation shall be to<br>a. The measurem<br>ximum emissions<br>eights of from 1 m<br>rence ground pla<br>wer setting and<br>sly.<br>um analyzer setti<br>ugh to fully captu<br>sured;<br>or f < 1 GHz, RB'<br>RBW;<br>ector function = p<br>c<br>rement: use duty<br>ethod per<br>= On time/100 m<br>*L2++Nn-1*LN<br>er of type 1 pulse<br>ses, etc.<br>Level = Peak Em<br>/ cycle)<br>Antenna Factor + | that which<br>ent<br>s shall be<br>n to 4 m<br>ne.<br>enable the<br>ngs:<br>ure the<br>W=1MHz<br>weak; Trace<br>v cycle<br>nilliseconds<br>n-1+Nn*Ln<br>s, L1 is<br>ission<br>- Cable |
|----------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test result          | s:                | PASS                                                                                                                                                                                                                          | J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ś                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                       |
|                      |                   |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                       |
|                      |                   |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                       |
|                      |                   |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                       |
|                      |                   |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                       |
| <u>Hotline: 400-</u> | -6611-140 Tel: 86 | -755-27673339                                                                                                                                                                                                                 | Fax: 86-755-2767                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | '3332 http://www                                                                                                                                                                                                                                                                                                                                                                                                                             | Page 23 of 87<br>.tct-lab.com                                                                                                                                                         |




### 5.11.2. Test Instruments

|                      | F            | adiated Emissio | n Test Site (966) |               |               |
|----------------------|--------------|-----------------|-------------------|---------------|---------------|
| Equipment            | Manufacturer | Model           | Serial Number     | Date of Cal.  | Due Date      |
| EMI Test<br>Receiver | R&S          | ESCI7           | 100529            | Jan. 21, 2025 | Jan. 20, 2026 |
| Spectrum<br>Analyzer | R&S          | FSQ40           | 200061            | Jun. 27, 2024 | Jun. 26, 2025 |
| Pre-amplifier        | SKET         | LNPA_0118G-45   | SK2021012102      | Jan. 21, 2025 | Jan. 20, 2026 |
| Pre-amplifier        | SKET         | LNPA_1840G-50   | SK202109203500    | Jan. 21, 2025 | Jan. 20, 2026 |
| Pre-amplifier        | HP           | 8447D           | 2727A05017        | Jun. 27, 2024 | Jun. 26, 2025 |
| Loop antenna         | Schwarzbeck  | FMZB1519B       | 00191             | Jun. 27, 2024 | Jun. 26, 2025 |
| Broadband<br>Antenna | Schwarzbeck  | VULB9163        | 340               | Jun. 29, 2024 | Jun. 28, 2025 |
| Horn Antenna         | Schwarzbeck  | BBHA 9120D      | 631               | Jun. 29, 2024 | Jun. 28, 2025 |
| Horn Antenna         | Schwarzbeck  | BBHA 9170       | 00956             | Jan. 23, 2025 | Jan. 22, 2026 |
| Coaxial cable        | SKET         | RE-03-D         | /                 | Jun. 27, 2024 | Jun. 26, 2025 |
| Coaxial cable        | SKET         | RE-03-M         | 1                 | Jun. 27, 2024 | Jun. 26, 2025 |
| Coaxial cable        | SKET         | RE-03-L         |                   | Jun. 27, 2024 | Jun. 26, 2025 |
| Coaxial cable        | SKET         | RE-04-D         | /                 | Jun. 27, 2024 | Jun. 26, 2025 |
| Coaxial cable        | SKET         | RE-04-M         | 1                 | Jun. 27, 2024 | Jun. 26, 2025 |
| Coaxial cable        | SKET         | RE-04-L         | 1                 | Jun. 27, 2024 | Jun. 26, 2025 |
| Antenna Mast         | Keleto       | RE-AM           | /                 | /             | /             |
| EMI Test<br>Software | EZ_EMC       | FA-03A2 RE+     | 1.1.4.2           | 1             | 1             |

Page 24 of 87

#### 5.11.3. Test Data

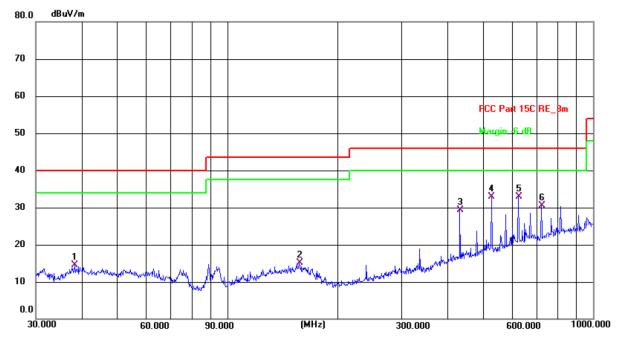
#### Please refer to following diagram for individual



Site 3m Anechoic Chamber2

Polarization: Horizontal

Temperature: 24.1(C) Humidity: 51 %


Report No.: TCT250407E012

| mit: FCC Part 15C RE_3m |                    |                   |                  |                   |       |                |          |     |        |
|-------------------------|--------------------|-------------------|------------------|-------------------|-------|----------------|----------|-----|--------|
| No.                     | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) |       | Margin<br>(dB) | Detector | P/F | Remark |
| 1                       | 39.0244            | 32.40             | -18.58           | 13.82             | 40.00 | -26.18         | QP       | Ρ   |        |
| 2                       | 60.4918            | 32.03             | -18.97           | 13.06             | 40.00 | -26.94         | QP       | Ρ   |        |
| 3                       | 156.4577           | 31.19             | -16.93           | 14.26             | 43.50 | -29.24         | QP       | Ρ   |        |
| 4                       | 432.5456           | 33.40             | -13.95           | 19.45             | 46.00 | -26.55         | QP       | Ρ   |        |
| 5                       | 815.9678           | 33.54             | -6.52            | 27.02             | 46.00 | -18.98         | QP       | Ρ   |        |
| 6 *                     | 912.8620           | 35.81             | -5.92            | 29.89             | 46.00 | -16.11         | QP       | Ρ   |        |

Page 25 of 87



#### Vertical:



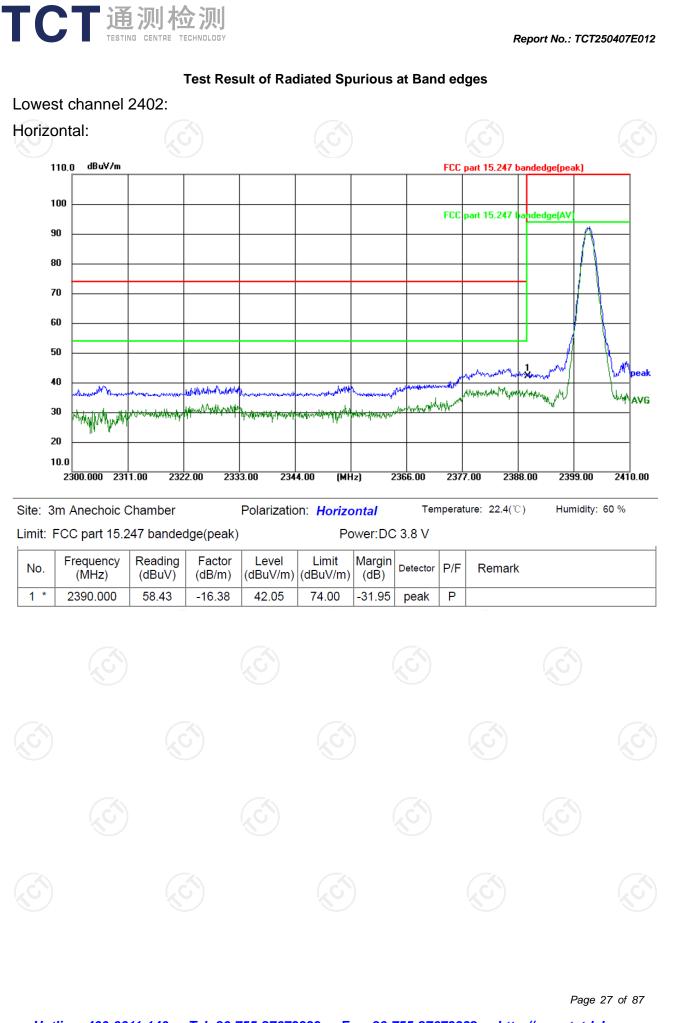
Site 3m Anechoic Chamber2Polarization:VerticalTemperature: 24.1(C)Humidity: 51 %

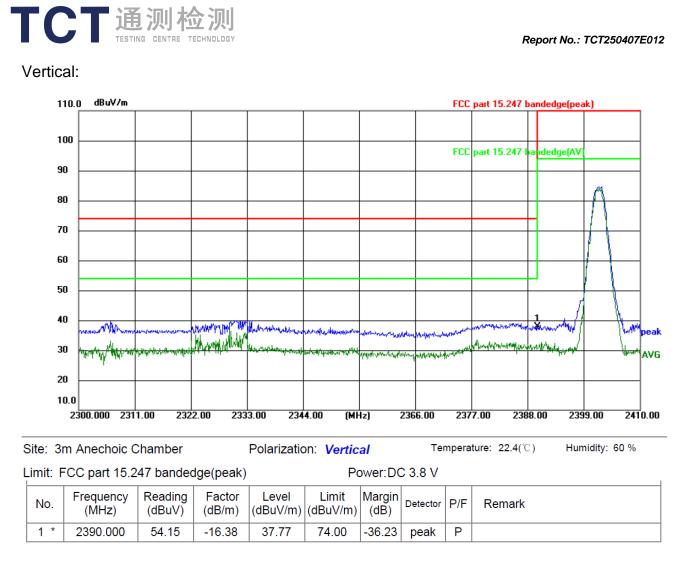
Limit: FCC Part 15C RE\_3m

Power: DC 3.8 V

|   | No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) |       | Margin<br>(dB) | Detector | P/F | Remark |
|---|-----|--------------------|-------------------|------------------|-------------------|-------|----------------|----------|-----|--------|
|   | 1   | 38.3462            | 33.26             | -18.72           | 14.54             | 40.00 | -25.46         | QP       | Ρ   |        |
| ſ | 2   | 157.5588           | 32.11             | -17.04           | 15.07             | 43.50 | -28.43         | QP       | Ρ   |        |
|   | 3   | 432.5457           | 43.28             | -13.95           | 29.33             | 46.00 | -16.67         | QP       | Ρ   |        |
|   | 4   | 528.2458           | 44.73             | -11.82           | 32.91             | 46.00 | -13.09         | QP       | Ρ   |        |
|   | 5 * | 625.0780           | 42.36             | -9.39            | 32.97             | 46.00 | -13.03         | QP       | Ρ   |        |
|   | 6   | 721.7259           | 38.93             | -8.36            | 30.57             | 46.00 | -15.43         | QP       | Ρ   |        |

**Note:** 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.


2. Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK) and the worst case Mode (Middle channel and Pi/4 DQPSK) was submitted only.


- 3. Freq. = Emission frequency in MHz
  - Measurement ( $dB\mu V/m$ ) = Reading level ( $dB\mu V$ ) + Corr. Factor (dB) Correction Factor= Antenna Factor + Cable loss – Pre-amplifier Limit ( $dB\mu V/m$ ) = Limit stated in standard
  - $Over (dB) = Measurement (dB\mu V/m) Limits (dB\mu V/m)$

\* is meaning the worst frequency has been tested in the test frequency range.

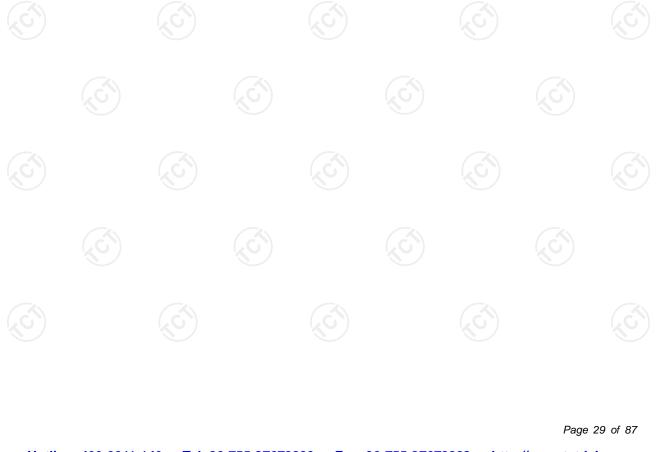
Page 26 of 87

Report No.: TCT250407E012








Report No.: TCT250407E012 Highest channel 2480: Horizontal: 110.0 dBuV/m 100 90 80 FCC part 15.247 andedge(peak) 70 60 FCC part 15.247 bandedge(AV 50 40 Mary Home Mapping and a feature the man and a second and the second With White the AVG 30 20 10.0 2475.000 2478.00 2481.00 2484.00 2487.00 (MHz) 2493.00 2496.00 2499.00 2502.00 2505.00

Site: 3m Anechoic Chamber Polarization: *Horizontal* Temperature: 22.4(°C) Humidity: 60 %

Limit: FCC part 15.247 bandedge(peak)

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F | Remark |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|--------|
| 1 * | 2483.500           | 66.37             | -16.09           | 50.28             | 74.00             | -23.72         | peak     | Ρ   |        |

Power: DC 3.8 V



#### T Report No.: TCT250407E012 Vertical: dBu¥/m 110.0 100 90 CTORES -80 FCC part 15.247 bandedge(peak) 70 60 FCC part 15.247 bandedge(AV 50 40 MANUM No Valla WWWWWWW AVG Without which which Maryhart where have a service 18 14 monthingha بديد الد 30 20 10.0 2475.000 2478.00 2481.00 2484.00 2487.00 (MHz) 2493.00 2496.00 2499.00 2502.00 2505.00 Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 22.4(℃) Humidity: 60 % Limit: FCC part 15.247 bandedge(peak) Power: DC 3.8 V Reading Factor Level Limit Frequency Margin Detector P/F No. Remark (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 2483.500 63.57 -16.09 47.48 peak 1 74.00 -26.52 Ρ 2483.500 -16.09 43.03 54.00 2 \* 59.12 -10.97 AVG Ρ Note: Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Pi/4 DQPSK) was submitted only. Page 30 of 87

#### Above 1GHz

| Modulation         | Type: Pi/4       | 4 DQPSK                   |                         |                                |       |                           |                        |                      |                |
|--------------------|------------------|---------------------------|-------------------------|--------------------------------|-------|---------------------------|------------------------|----------------------|----------------|
| Low chann          | el: 2402 N       | 1Hz                       |                         |                                |       |                           |                        |                      |                |
| Frequency<br>(MHz) | Ant. Pol.<br>H/V | Peak<br>reading<br>(dBµV) | AV<br>reading<br>(dBuV) | Correction<br>Factor<br>(dB/m) | Peak  | n Level<br>AV<br>(dBµV/m) | Peak limit<br>(dBµV/m) | AV limit<br>(dBµV/m) | Margin<br>(dB) |
| 4804               | Н                | 56.02                     |                         | -9.51                          | 46.51 |                           | 74                     | 54                   | -7.49          |
| 7206               | Н                | 46.33                     |                         | -1.41                          | 44.92 |                           | 74                     | 54                   | -9.08          |
|                    | H                |                           |                         |                                |       |                           |                        |                      |                |
|                    | <b>`</b> O``)    |                           | J.)                     | <b>`</b> )                     | (,    | ·C`)                      |                        | $(\mathcal{G})$      |                |
| 4804               | V                | 55.93                     |                         | -9.51                          | 46.42 |                           | 74                     | 54                   | -7.58          |
| 7206               | V                | 46.70                     |                         | -1.41                          | 45.29 |                           | 74                     | 54                   | -8.71          |
|                    | V                |                           |                         |                                |       |                           |                        |                      |                |
|                    |                  |                           |                         |                                | 2     |                           |                        |                      |                |

| Middle cha         | nnel: 2441       | MHz                       |                         | N.                             | ))    |                           |                        |                      |                |
|--------------------|------------------|---------------------------|-------------------------|--------------------------------|-------|---------------------------|------------------------|----------------------|----------------|
| Frequency<br>(MHz) | Ant. Pol.<br>H/V | Peak<br>reading<br>(dBµV) | AV<br>reading<br>(dBµV) | Correction<br>Factor<br>(dB/m) |       | n Level<br>AV<br>(dBµV/m) | Peak limit<br>(dBµV/m) | AV limit<br>(dBµV/m) | Margin<br>(dB) |
| 4882               | H                | 55.44                     |                         | -9.36                          | 46.08 |                           | 74                     | 54                   | -7.92          |
| 7323               | KOĤ              | 45.23                     | 1,0                     | -1.14                          | 44.09 | 0                         | 74                     | 54                   | -9.91          |
|                    | Ĥ                |                           |                         |                                |       |                           |                        |                      |                |
| 4882               | V                | 55.67                     |                         | -9.36                          | 46.31 |                           | 74                     | 54                   | -7.69          |
| 7323               | V                | 45.85                     |                         | -1.14                          | 44.71 |                           | 74                     | 54                   | -9.29          |
| <u> </u>           | V                |                           |                         |                                | /     |                           | K                      |                      |                |

#### High channel: 2480 MHz

| r ligh chann       |                  | /11.12                    |                         |                                |                  |     |            |          |             |
|--------------------|------------------|---------------------------|-------------------------|--------------------------------|------------------|-----|------------|----------|-------------|
| Frequency<br>(MHz) | Ant. Pol.<br>H/V | Peak<br>reading<br>(dBµV) | AV<br>reading<br>(dBµV) | Correction<br>Factor<br>(dB/m) | Emission Level   |     | Peak limit | AV limit | Margin      |
|                    |                  |                           |                         |                                | Peak<br>(dBµV/m) |     |            | (dBµV/m) | (dB)        |
| 4960               | Н                | 55.06                     | )                       | -9.20                          | 45.86            | ) : | 74         | 54       | -8.14       |
| 7440               | Н                | 46.21                     |                         | -0.96                          | 45.25            |     | 74         | 54       | -8.75       |
|                    | Н                |                           |                         |                                |                  |     |            |          |             |
| G)                 |                  | (.G)                      |                         | (.)                            |                  |     | (.c.)      |          | <b>)</b> .) |
| 4960               | V                | 54.96                     |                         | -9.20                          | 45.76            |     | 74         | 54       | -8.24       |
| 7440               | V                | 45.92                     |                         | -0.96                          | 44.96            |     | 74         | 54       | -9.04       |
|                    | V                |                           |                         |                                |                  |     |            |          |             |
|                    |                  |                           |                         |                                |                  |     |            |          |             |

#### Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB $\mu$ V/m)-Average limit (dB $\mu$ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Pi/4 DQPSK) was submitted only.

7. All the restriction bands are compliance with the limit of 15.209.

Report No.: TCT250407E012


#### **CT**通测检测 TESTING CENTRE TECHNOLOGY



# **Appendix A: Test Result of Conducted Test**

| Maximum Conducted Output Power |                |      |                             |                |         |  |  |  |  |
|--------------------------------|----------------|------|-----------------------------|----------------|---------|--|--|--|--|
| Condition                      | Condition Mode |      | Conducted<br>Power<br>(dBm) | Limit<br>(dBm) | Verdict |  |  |  |  |
| NVNT                           | 1-DH1          | 2402 | -0.14                       | 30             | Pass    |  |  |  |  |
| NVNT                           | 1-DH1          | 2441 | 0.43                        | 30             | Pass    |  |  |  |  |
| NVNT                           | 1-DH1          | 2480 | 0.16                        | 30             | Pass    |  |  |  |  |
| NVNT                           | 2-DH1          | 2402 | 2.09                        | 21             | Pass    |  |  |  |  |
| NVNT                           | 2-DH1          | 2441 | 2.62                        | 21             | Pass    |  |  |  |  |
| NVNT 🔇                         | 2-DH1          | 2480 | 0.81                        | 21             | Pass    |  |  |  |  |
| NVNT                           | 3-DH1          | 2402 | 1.94                        | 21             | Pass    |  |  |  |  |
| NVNT                           | 3-DH1          | 2441 | 2.61                        | 21             | Pass    |  |  |  |  |
| NVNT                           | 3-DH1          | 2480 | 2.42                        | 21             | Pass    |  |  |  |  |
|                                |                |      |                             |                |         |  |  |  |  |

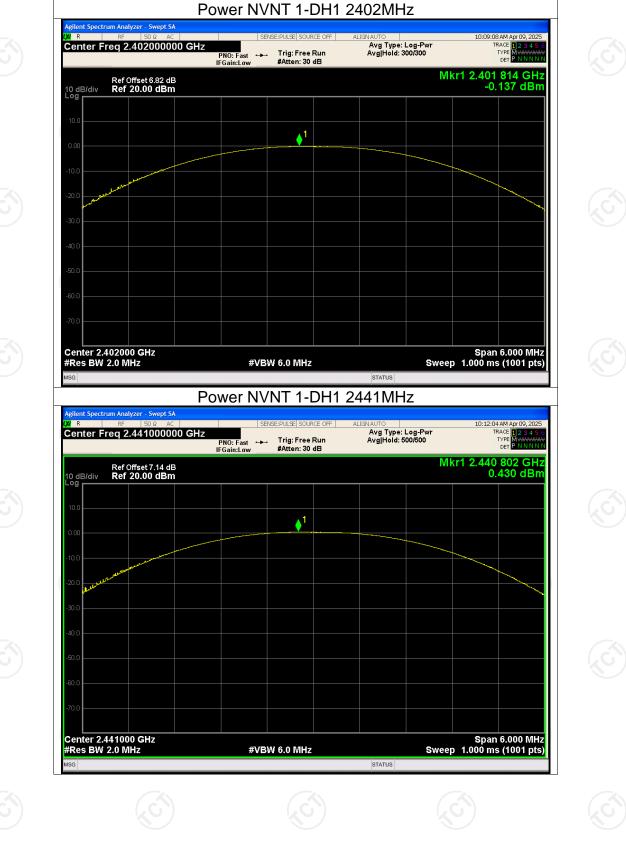








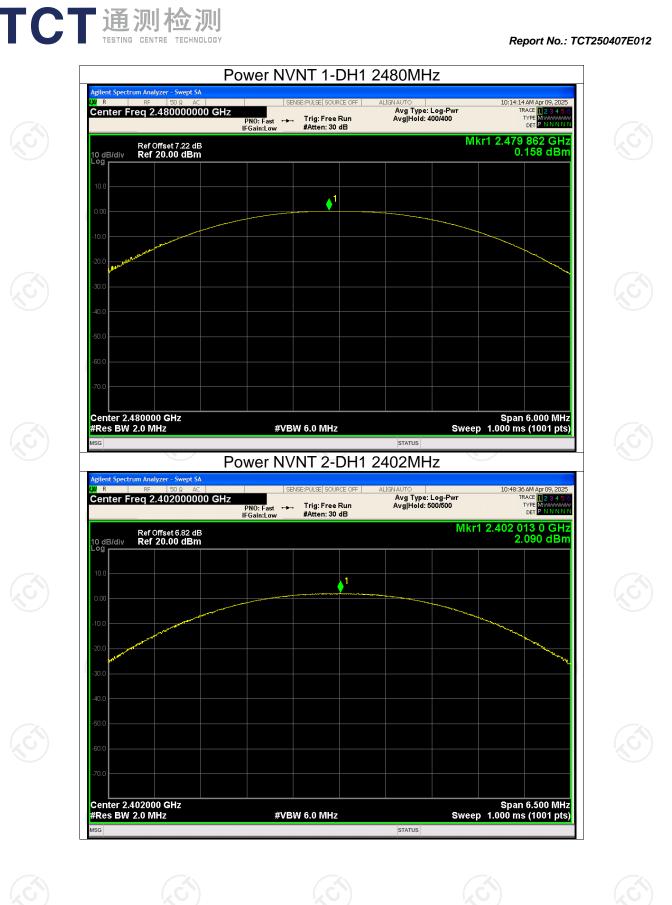


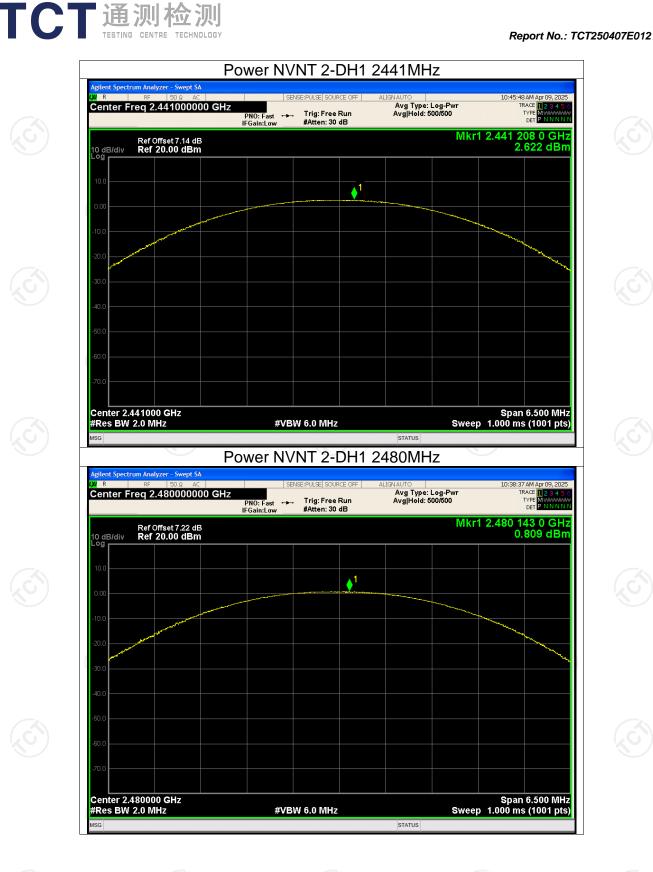


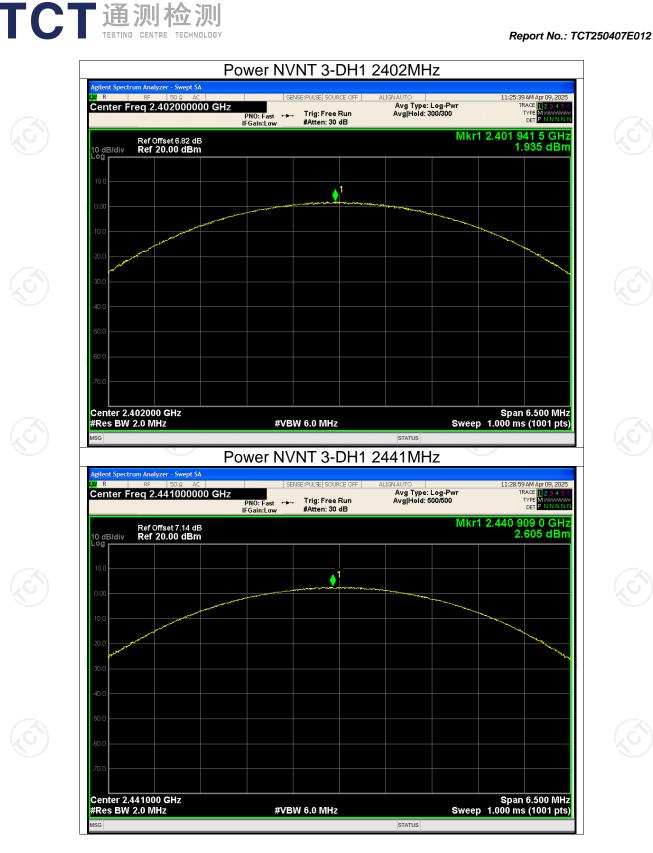




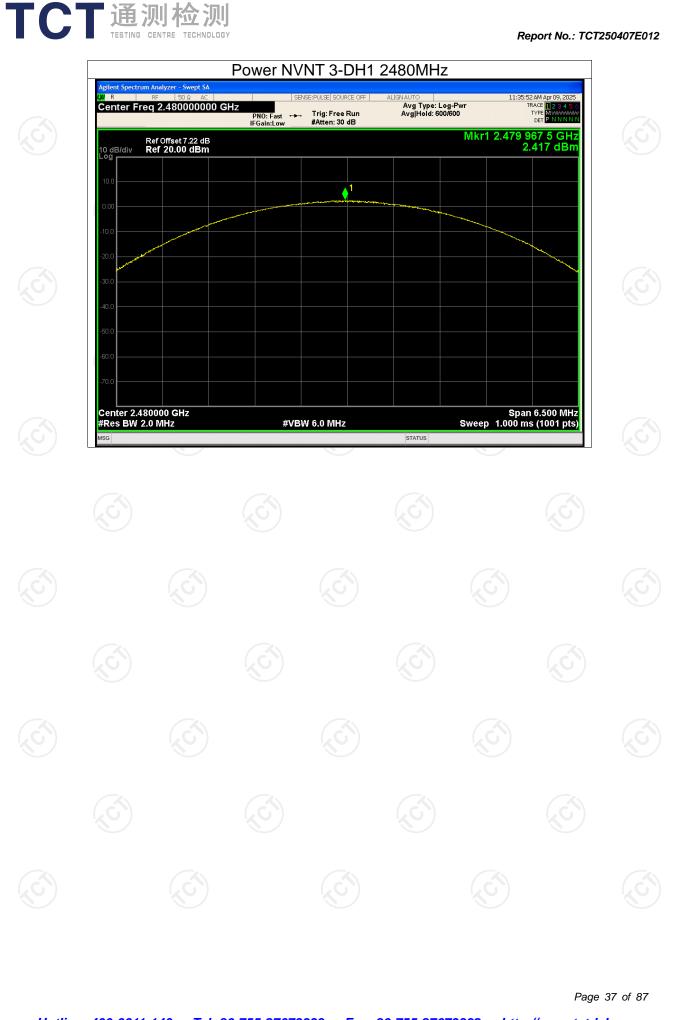




Page 32 of 87





**Test Graphs** 

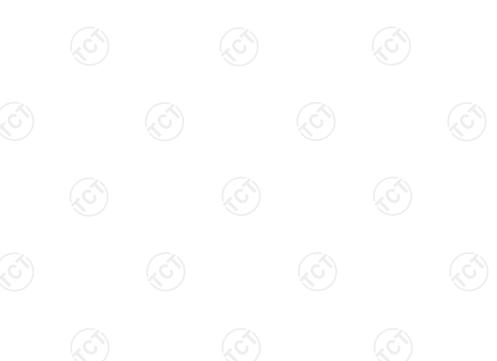
Report No.: TCT250407E012


Page 33 of 87








Page 36 of 87

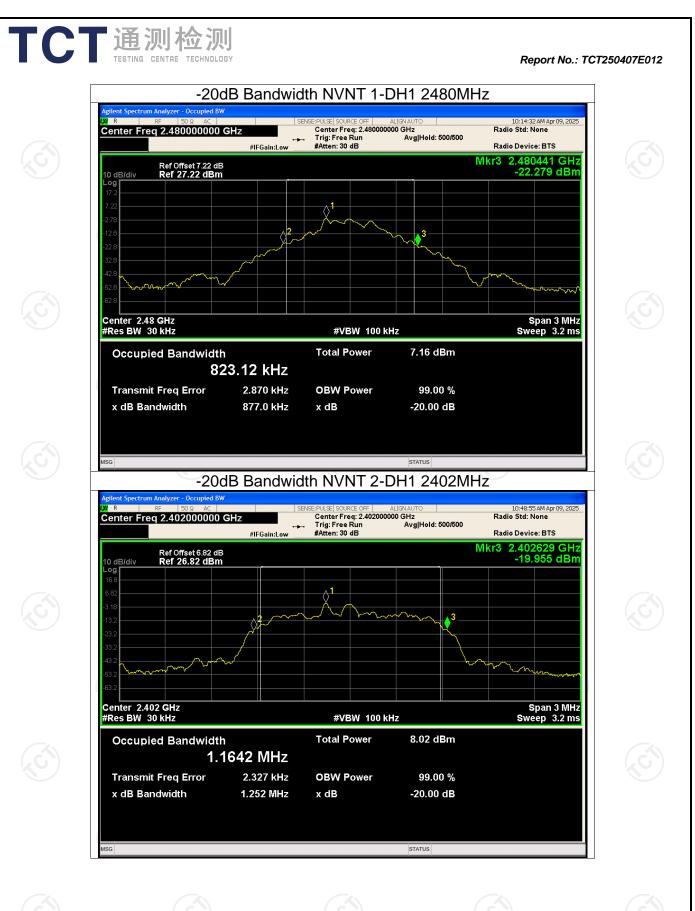


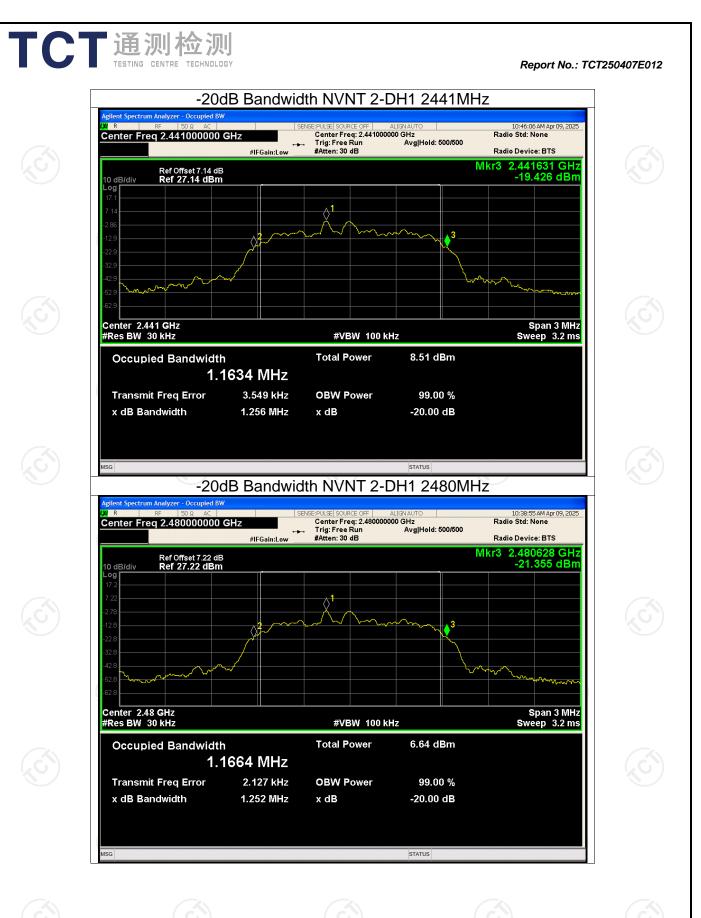
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



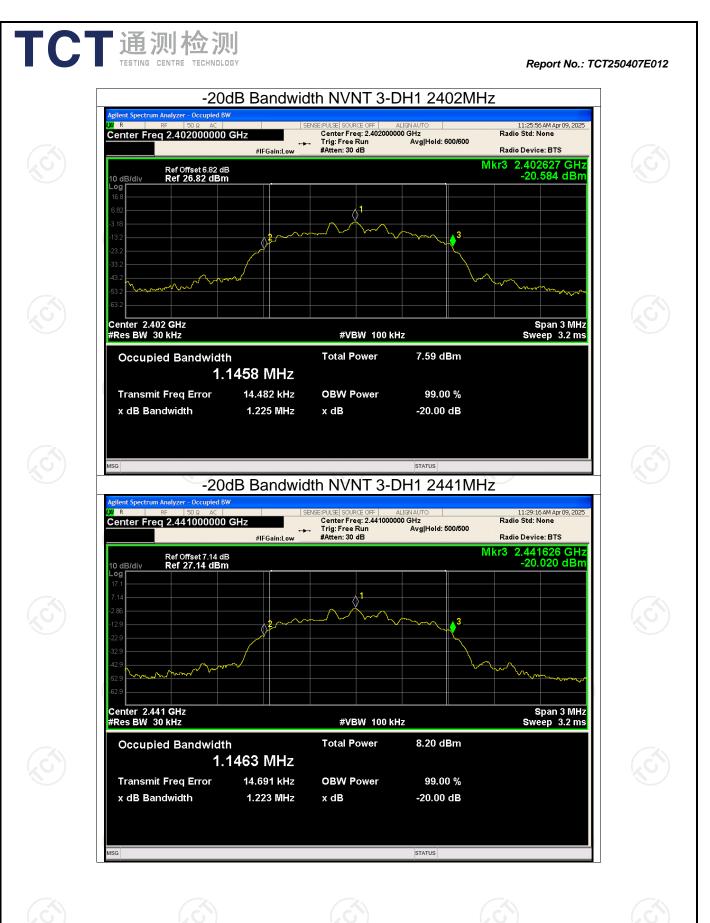
| Condition   | Mode  | Frequency<br>(MHz) | -20 dB<br>Bandwidth (MHz) | Verdict |
|-------------|-------|--------------------|---------------------------|---------|
| NVNT        | 1-DH1 | 2402               | 0.878                     | Pass    |
| NVNT 🚫      | 1-DH1 | 2441               | 0.877                     | Pass    |
| NVNT        | 1-DH1 | 2480               | 0.877                     | Pass    |
| NVNT        | 2-DH1 | 2402               | 1.252                     | Pass    |
| NVNT        | 2-DH1 | 2441               | 1.256                     | Pass    |
| <b>NVNT</b> | 2-DH1 | 2480               | 1.252                     | Pass    |
| NVNT        | 3-DH1 | 2402               | 1.225                     | Pass    |
| NVNT        | 3-DH1 | 2441               | 1.223                     | Pass    |
| NVNT        | 3-DH1 | 2480               | 1.221                     | Pass    |
| X           | )     |                    |                           |         |

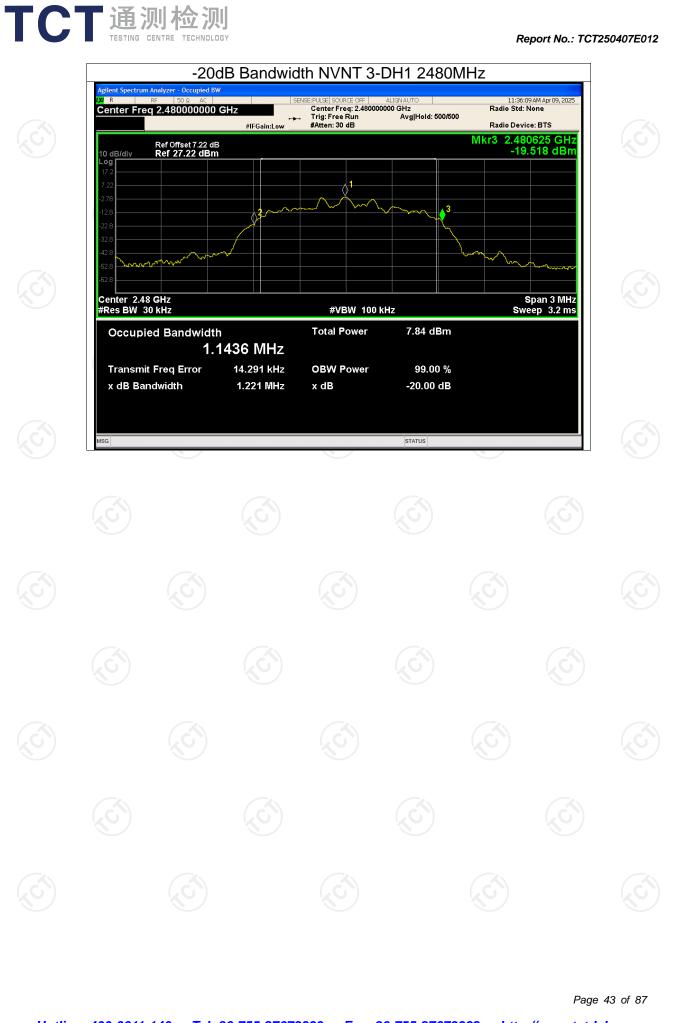






Report No.: TCT250407E012







Page 39 of 87





Page 41 of 87





Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

| Condition | wode  | (MHz)    | (MHz)    | (MHz) | (MHz) | verdict |
|-----------|-------|----------|----------|-------|-------|---------|
| NVNT      | 1-DH1 | 2401.854 | 2402.846 | 0.992 | 0.878 | Pass    |
| NVNT      | 1-DH1 | 2440.846 | 2441.846 | 1     | 0.878 | Pass    |
| NVNT      | 1-DH1 | 2479.007 | 2480.006 | 0.999 | 0.878 | Pass    |
| NVNT      | 2-DH1 | 2401.844 | 2402.844 | 1     | 0.837 | Pass    |
| NVNT      | 2-DH1 | 2440.844 | 2441.846 | 1.002 | 0.837 | Pass    |
| NVNT      | 2-DH1 | 2478.840 | 2479.846 | 1.006 | 0.837 | Pass    |
| NVNT      | 3-DH1 | 2401.846 | 2402.846 | 1     | 0.817 | Pass    |
| NVNT      | 3-DH1 | 2440.842 | 2441.846 | 1.004 | 0.817 | Pass    |
| NVNT      | 3-DH1 | 2478.848 | 2479.844 | 0.996 | 0.817 | Pass    |

#### Carrier Frequencies Separation Hopping Freq1 Hopping Freq2

Report No.:

HFS



Report No.: TCT250407E012

., n

Page 44 of 87

Limit

## **⊘**<sup>2</sup> **♦**<sup>1</sup> Span 2.000 MHz Sweep 1.000 ms (1001 pts) Center 2.402500 GHz #Res BW 100 kHz #VBW 300 kHz FUNCTION FUNCTION WIDTH 2.401 854 GHz 2.402 846 GHz -0.230 dBm -0.108 dBm CFS NVNT 1-DH1 2441MHz Agilent Spectrum Analyzer - Swept SA

**Test Graphs** CFS NVNT 1-DH1 2402MHz

:PULSE SOURCE OFF

PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB

Avg Type: Log-Pwi Avg|Hold>100/100

| LXIR        | RF                                     | 50 Ω AC                            |                                        |                        | SENSE:PU | LSE SOUR            | CE OFF | AL    | IGNAUTO                 |                    |                | 7 AM Apr 09, 2025                       |
|-------------|----------------------------------------|------------------------------------|----------------------------------------|------------------------|----------|---------------------|--------|-------|-------------------------|--------------------|----------------|-----------------------------------------|
| Center Fr   | eq 2                                   | .44150000                          | P                                      | NO: Wide G<br>Gain:Low |          | g: Free<br>tten: 30 |        |       | Avg Type:<br>Avg Hold:> | Log-Pwr<br>100/100 | TI             | RACE 12345<br>TYPE MMAAAAA<br>DET PNNNN |
| 10 dB/div   |                                        | Offset 7.14 dB<br><b>20.00 dBm</b> |                                        |                        |          |                     |        |       |                         | Mk                 | r1 2.440<br>0. | 846 GH:<br>121 dBn                      |
| 10.0        |                                        | 1                                  |                                        |                        |          |                     |        |       |                         |                    |                |                                         |
| -10.0       |                                        | ~~~                                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                        |          |                     |        |       |                         |                    |                |                                         |
| -20.0       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                    |                                        |                        | ~~~      | ~~~^ <sup>~~</sup>  |        |       |                         |                    |                |                                         |
| -30.0       |                                        |                                    |                                        |                        |          |                     |        |       |                         |                    |                |                                         |
| -50.0       |                                        |                                    |                                        |                        |          |                     |        |       |                         |                    |                |                                         |
| -60.0       |                                        |                                    |                                        |                        |          |                     |        |       |                         |                    |                |                                         |
| Center 2.4  | 4150                                   | 00 GHz                             |                                        |                        |          |                     |        |       |                         |                    | Span           | 2.000 MH                                |
| #Res BW     |                                        |                                    |                                        |                        | BW 30    |                     |        |       |                         |                    |                | s (1001 pts                             |
| MKR MODE TR | C SCL                                  | ×<br>2.4                           | 440 846 GHz                            | ۲<br>0.12              | 21 dBm   |                     | CTION  | FUNCT | ION WIDTH               | FU                 | NCTION VALUE   |                                         |
| 2 N 1       | f                                      |                                    | 441 846 GHz                            | 0.11                   | 1 dBm    |                     |        |       |                         |                    |                |                                         |
| 4 5         |                                        |                                    |                                        |                        |          |                     |        |       |                         |                    |                |                                         |
| 6           |                                        |                                    |                                        |                        |          |                     |        |       |                         |                    |                |                                         |
| 8           |                                        |                                    |                                        |                        |          |                     |        |       |                         |                    |                |                                         |
| 9           |                                        |                                    |                                        |                        |          |                     |        |       |                         |                    |                |                                         |
| 11          |                                        |                                    |                                        |                        |          |                     |        |       |                         |                    |                | >                                       |
| SG          |                                        |                                    |                                        |                        |          | 113                 |        |       | STATUS                  |                    |                | 2                                       |
|             |                                        |                                    |                                        |                        |          |                     |        |       | 0100                    |                    |                |                                         |

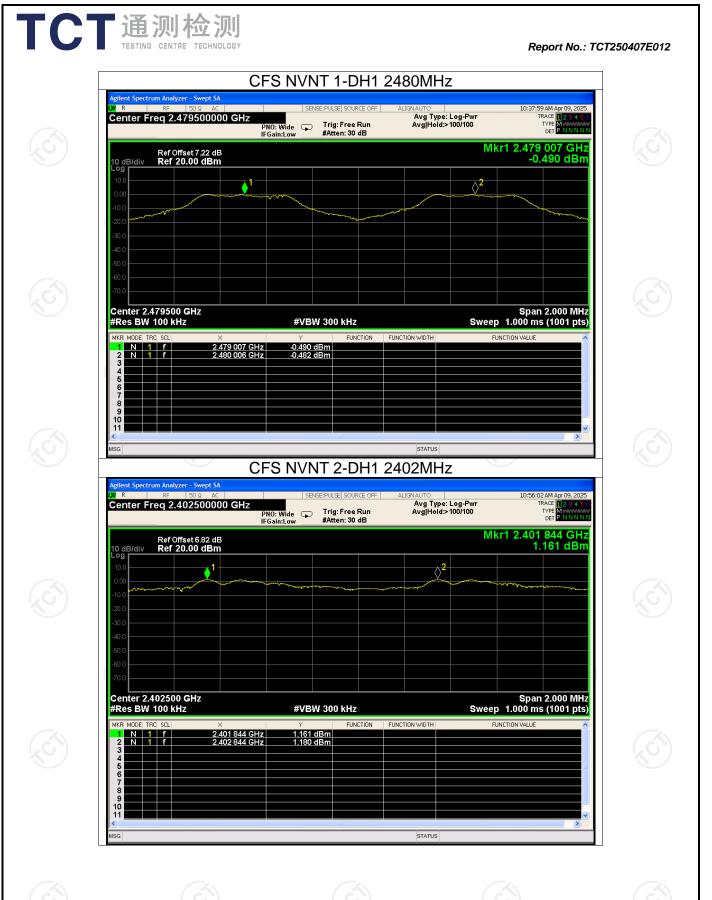
#### Report No.: TCT250407E012

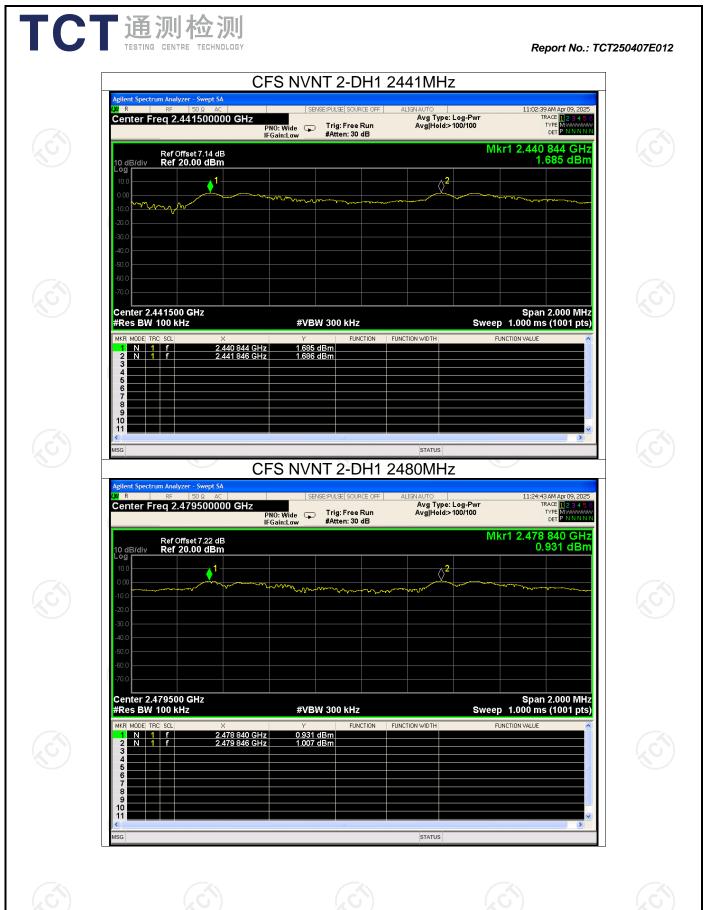
TRACE TYPE DET

Mkr1 2.401 854 GHz -0.230 dBm



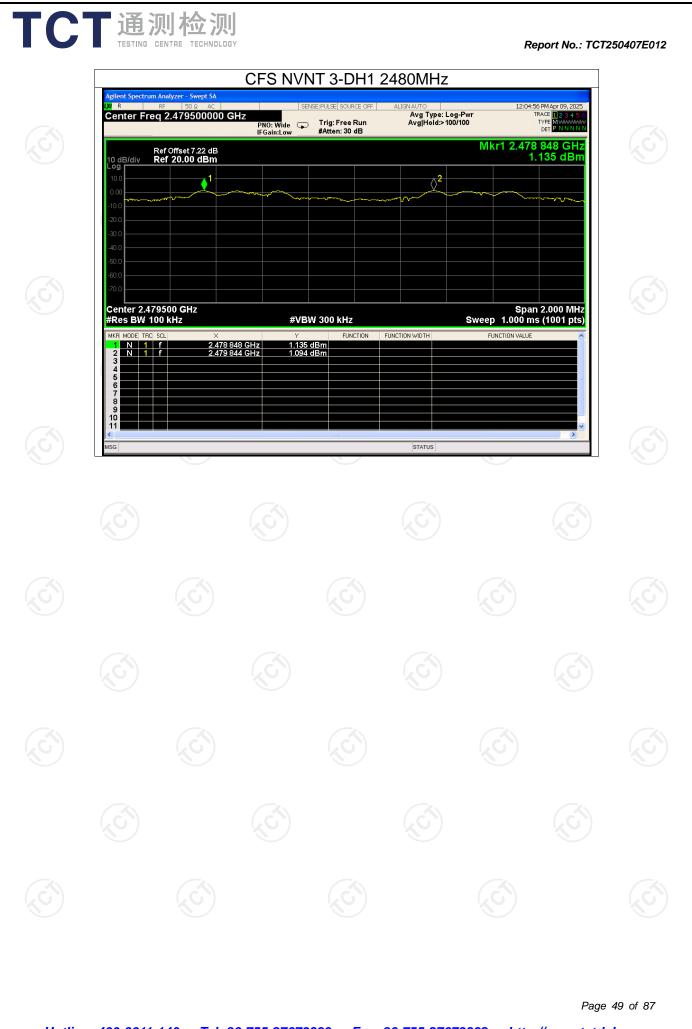



N 1 f N 1 f


234





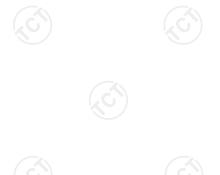









Page 48 of 87




| Condition | Mode  | Frequency<br>(MHz) | Hopping<br>Mode | Max Value<br>(dBc) | Limit<br>(dBc) | Verdict |
|-----------|-------|--------------------|-----------------|--------------------|----------------|---------|
| NVNT      | 1-DH1 | 2402               | No-Hopping      | -49.29             | -20            | Pass    |
| NVNT      | 1-DH1 | 2480               | No-Hopping      | -48.99             | -20            | Pass    |
| NVNT      | 2-DH1 | 2402               | No-Hopping      | -49.50             | -20            | Pass    |
| NVNT      | 2-DH1 | 2480               | No-Hopping      | -48.24             | -20            | Pass    |
| NVNT      | 3-DH1 | 2402               | No-Hopping      | -48.46             | -20            | Pass    |
| NVNT 🐇    | 3-DH1 | 2480               | No-Hopping      | -48.90             | -20            | Pass    |

| Condition | Mode               | Frequency                       | Hopping   | Max |
|-----------|--------------------|---------------------------------|-----------|-----|
| ГСТ       | 追测<br>TESTING CENT | <b>  检 测]</b><br>TRE TECHNOLOGY | Band Edge |     |
|           |                    |                                 |           |     |



Page 50 of 87



#### Band Edge NVNT 1-DH1 2402MHz No-Hopping Ref **U**R SENSE: PULSE SOURCE OFF TRACE TYPE DET Center Freq 2.402000000 GHz Avg Type: Log-Pwr Avg|Hold: 1000/1000 PNO: Wide 🔸 Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.402 168 GHz -0.345 dBm Ref Offset 6.82 dB Ref 20.00 dBm 10 dB/div Log 1 Annaparte manual hr Center 2.402000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz STATUS Band Edge NVNT 1-DH1 2402MHz **No-Hopping Emission** gilent Spectrum Analyzer - Swept SA 55 AM Apr 09, 2025 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N **U**R SENSE:PULSE SOURCE Center Freq 2.356000000 GHz Avg Type: Log-Pwr Avg|Hold: 1000/1000 PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.402 2 GHz -0.183 dBm Ref Offset 6.82 dB Ref 20.00 dBm 10 dB/div Log 1 Ŷ $\langle \rangle^4 \langle \rangle^3$ Stop 2.40600 GHz Sweep 9.600 ms (1001 pts) Start 2.30600 GHz #Res BW 100 kHz #VBW 300 kHz FUNCTION WIDTH FUNCTION FUNCTION VALUE 0.185 dBm 6.981 dBm 0.850 dBm 19.639 dBm 1 f 1 f 1 f <u>GHz</u> GHz N 5 8 9 10 11

Test Graphs

**ГСТ**通测检测

TESTING CENTRE TECHNOLOGY

Report No.: TCT250407E012

Page 51 of 87



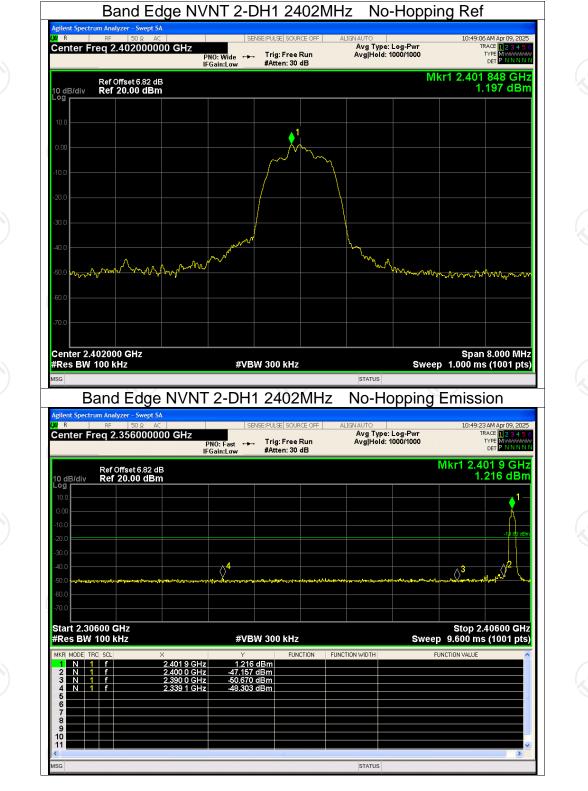

STATUS

## Band Edge NVNT 1-DH1 2480MHz No-Hopping Ref Content Speed on Analyzer Sologic Speed on Analyzer N R RF 50 Ω AC Center Freq 2.4800000000 GHz GHz GHz GHz SENSE: PULSE SOURCE OFF Avg Type: Log-Pwr Avg|Hold: 1000/1000 PNO: Wide ↔→→ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.479 848 GHz 0.094 dBm Ref Offset 7.22 dB Ref 20.00 dBm 10 dB/div Log Ø ww Aman m m Center 2.480000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz STATUS

#### Band Edge NVNT 1-DH1 2480MHz **No-Hopping Emission**

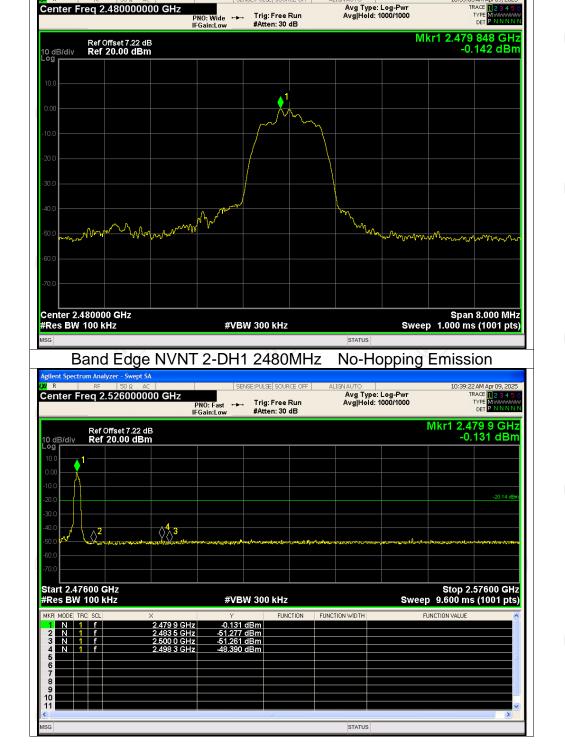
| Agilent Spectrum Analyzer - Swept SA                                                      |                                  |                                                    |                                              |                              |                                                                     |
|-------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------|----------------------------------------------|------------------------------|---------------------------------------------------------------------|
| XX         R         50.0.         AC         Center         Freq 2.526000000         GHz | PNO: East +++ Trig               | se source off<br>g: Free Run<br>ten: 30 dB         | ALIGNAUTO<br>Avg Type: Log<br>Avg Hold: 1000 | g-Pwr TR                     | AM Apr 09, 2025<br>ACE 1 2 3 4 5 6<br>TYPE MWWWW<br>DET P N N N N N |
| Ref Offset 7.22 dB<br>10 dB/div Ref 20.00 dBm                                             |                                  |                                                    |                                              | Mkr1 2.47<br>0.1             | 79 9 GHz<br>116 dBm                                                 |
| 10.0 10.0                                                                                 |                                  |                                                    |                                              |                              |                                                                     |
| 0.00                                                                                      |                                  |                                                    |                                              |                              |                                                                     |
| -10.0                                                                                     |                                  |                                                    |                                              |                              | -19.91 dBm                                                          |
| -30.0                                                                                     |                                  |                                                    |                                              |                              |                                                                     |
| -40.0 $4$ $3$ $-50.0$ $4$ $3$                                                             |                                  |                                                    |                                              |                              |                                                                     |
| -60.0                                                                                     |                                  | a no standa an |                                              |                              | al ann an still a fhailean ta fhaile                                |
| -70.0                                                                                     |                                  |                                                    |                                              |                              |                                                                     |
| Start 2.47600 GHz<br>#Res BW 100 kHz                                                      | #VBW 30                          | 0 kHz                                              |                                              | Stop 2.3<br>Sweep   9.600 ms | 57600 GHz<br>(1001 pts)                                             |
| MKR MODE TRC SCL X                                                                        | Y<br>1z 0.116 dBm                | FUNCTION FUI                                       | NCTION WIDTH                                 | FUNCTION VALUE               | ^                                                                   |
| 2 N 1 f 2.483 5 G<br>3 N 1 f 2.500 0 G                                                    | lz -51.008 dBm<br>lz -50.695 dBm |                                                    |                                              |                              |                                                                     |
| 4 N 1 f 2.496 1 GH                                                                        | lz -48.905 dBm                   |                                                    |                                              |                              | =                                                                   |
| 8<br>8                                                                                    |                                  |                                                    |                                              |                              |                                                                     |
| 9 10                                                                                      |                                  |                                                    |                                              |                              |                                                                     |
| 11<br><                                                                                   |                                  | Ш                                                  |                                              |                              | ×                                                                   |
| MSG                                                                                       |                                  |                                                    | STATUS                                       |                              |                                                                     |




10:14:42 AM Apr 09, 2025 TRACE 123456 TYPE MWWWW DET PNNNNN



Page 52 of 87








Report No.: TCT250407E012

Page 53 of 87

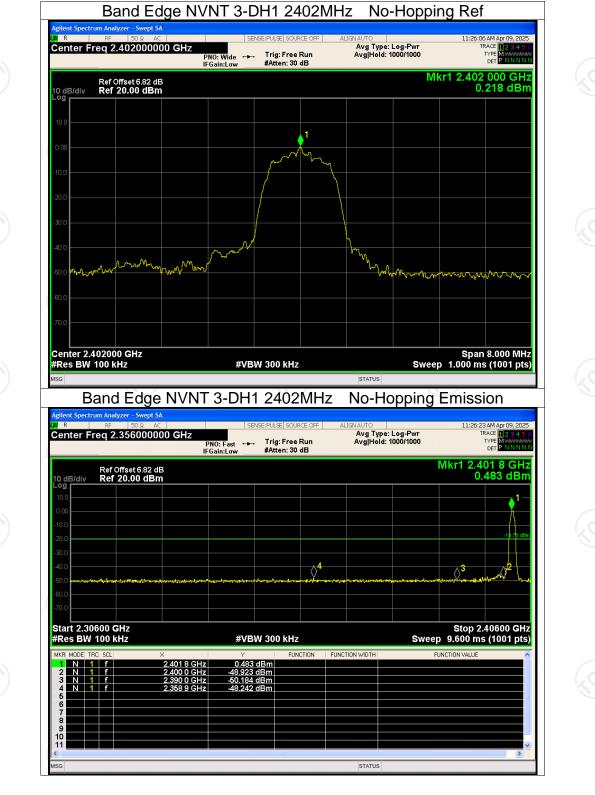


Band Edge NVNT 2-DH1 2480MHz No-Hopping Ref

SENSE:PULSE SOURCE OF



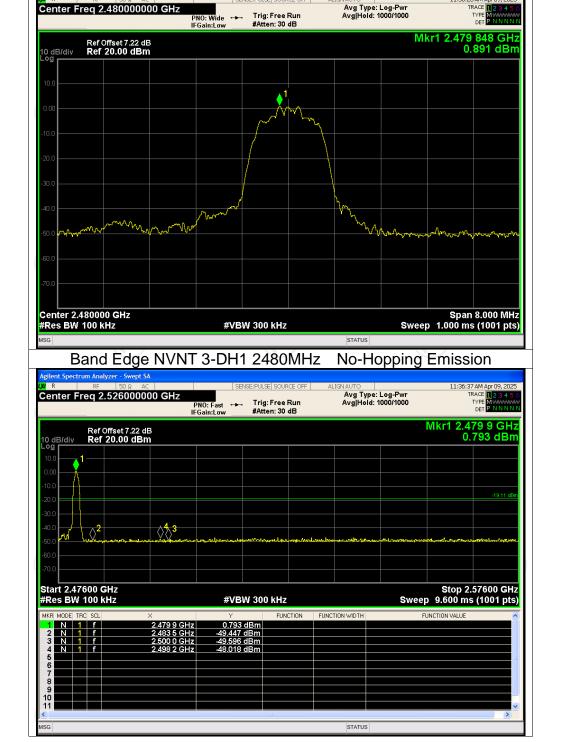
**U**R


# 

Center Freg 2.480000000 GHz

Report No.: TCT250407E012

TRACE






**FCT**通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT250407E012

Page 55 of 87

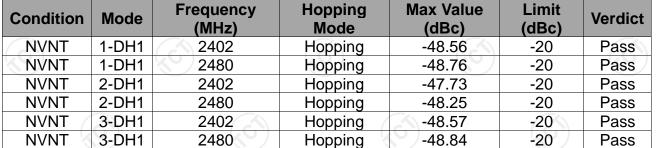


Band Edge NVNT 3-DH1 2480MHz No-Hopping Ref

SENSE: PULSE SOURCE OF



# **FCT**通测检测 TESTING CENTRE TECHNOLOGY


Center Freg 2.480000000 GHz

**U**R

Report No.: TCT250407E012

20 AM A TRACE





### Band Edge(Hopping)

#### Report No.: TCT250407E012

Page 57 of 87

| TCT | 通测检测                      |
|-----|---------------------------|
|     | TESTING CENTRE TECHNOLOGY |

-47.431 dBm -51.133 dBm -48.710 dBm

蛊

3 N 4 N 5

10 11

#### Band Edge(Hopping) NVNT 1-DH1 2402MHz Hopping Ref nt Spectr **U**R SENSE:PULSE SOURCE OFF 06 AM Apr 09, TRACE Center Freq 2.402000000 GHz Avg Type: Log-Pwr Avg|Hold: 5000/5000 RACE 12345 TYPE MWWWWW DET P N N N N PNO: Wide ---- Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.402 848 GHz -0.152 dBm Ref Offset 6.82 dB Ref 20.00 dBm 10 dB/div Log 1 W Center 2.402000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz STATUS Band Edge(Hopping) NVNT 1-DH1 2402MHz Hopping Emission gilent Spectrum Analyzer - Swept SA 19:26 AM Apr 09, 2025 TRACE 1 2 3 4 5 TYPE MWWWWW DET P N N N N B SENSE:PULSE SOURCE OFF Center Freq 2.356000000 GHz Avg Type: Log-Pwr Avg|Hold: 5000/5000 PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.404 8 GHz -0.093 dBm Ref Offset 6.82 dB Ref 20.00 dBm 10 dB/div Log **0**4 $\Diamond^3$ Stop 2.40600 GHz Sweep 9.600 ms (1001 pts) Start 2.30600 GHz #Res BW 100 kHz #VBW 300 kHz FUNCTION WIDTH FUNCTION FUNCTION VALUE

Test Graphs

STATUS

Page 58 of 87



Report No.: TCT250407E012



Page 59 of 87



Band Edge(Hopping) NVNT 2-DH1 2402MHz Hopping Ref

Avg Type: Log-Pwr Avg|Hold: 5000/5000

wwwwwwwwwwwwwww

SENSE:PULSE SOURCE OFF

PNO: Wide ↔→→ Trig: Free Run IFGain:Low #Atten: 30 dB

M

Center Freg 2.402000000 GHz

Ref Offset 6.82 dB Ref 20.00 dBm

man

**U**R

10 dB/div Log Report No.: TCT250407E012

TDACE

Mkr1 2.405 840 GHz 1.027 dBm

TYPE MWWWWW

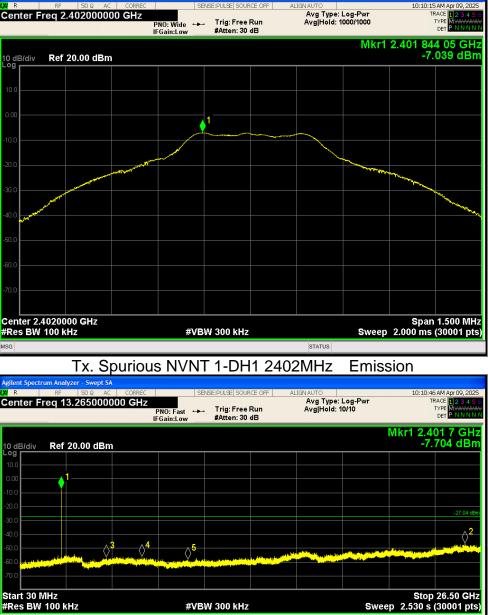
Page 60 of 87







Page 63 of 87

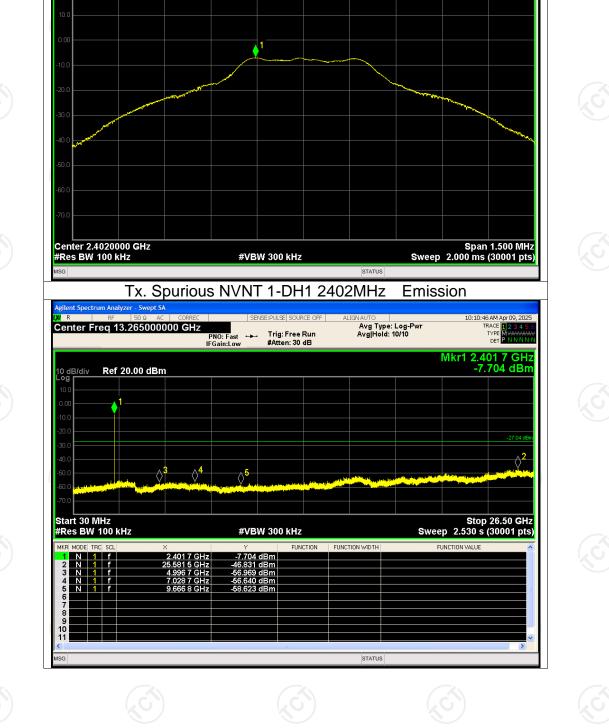

#### **Conducted RF Spurious Emission**

| Condition | Mode  | Frequency (MHz) | Max Value (dBc) | Limit (dBc) | Verdict |  |  |  |
|-----------|-------|-----------------|-----------------|-------------|---------|--|--|--|
| NVNT      | 1-DH1 | 2402            | -39.79          | -20         | Pass    |  |  |  |
| NVNT      | 1-DH1 | 2441            | -40.38          | -20         | Pass    |  |  |  |
|           | 1-DH1 | 2480            | -40.03          | -20         | Pass    |  |  |  |
| NVNT      | 2-DH1 | 2402            | -41.21          | -20         | Pass    |  |  |  |
| NVNT      | 2-DH1 | 2441            | -46.51          | -20         | Pass    |  |  |  |
| NVNT      | 2-DH1 | 2480            | -40.79          | -20         | Pass    |  |  |  |
| NVNT 🚫    | 3-DH1 | 2402            | -39.33          | -20         | Pass    |  |  |  |
| NVNT      | 3-DH1 | 2441            | -40.04          | -20         | Pass    |  |  |  |
| NVNT      | 3-DH1 | 2480            | -40.72          | -20         | Pass    |  |  |  |
| (C)       |       | S)              | <u>(</u> )      | S)          | Ś       |  |  |  |

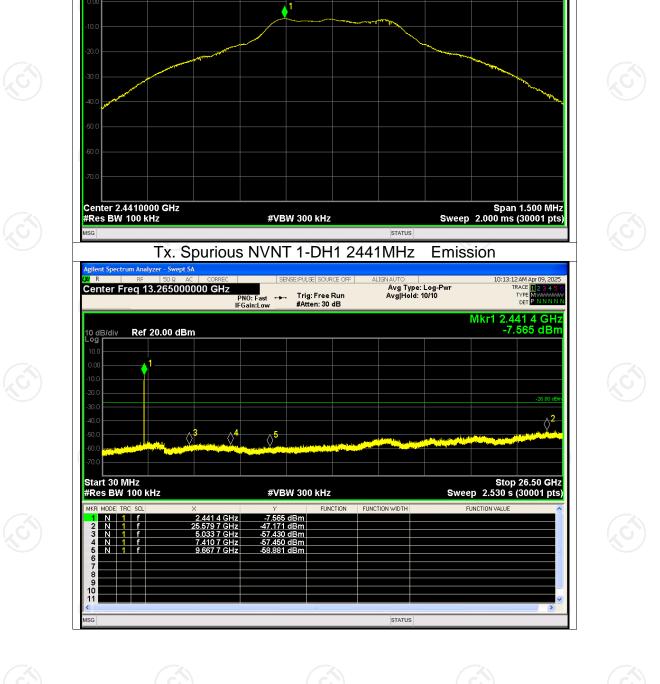


Report No.: TCT250407E012

Page 64 of 87




**Test Graphs** Tx. Spurious NVNT 1-DH1 2402MHz


U F

Report No.: TCT250407E012

Ref



Page 65 of 87



Tx. Spurious NVNT 1-DH1 2441MHz

SENSE:PULSE SOURCE OFF

PNO: Wide 🛶 Trig: Free Run IFGain:Low #Atten: 30 dB

R

10 dB/div Log

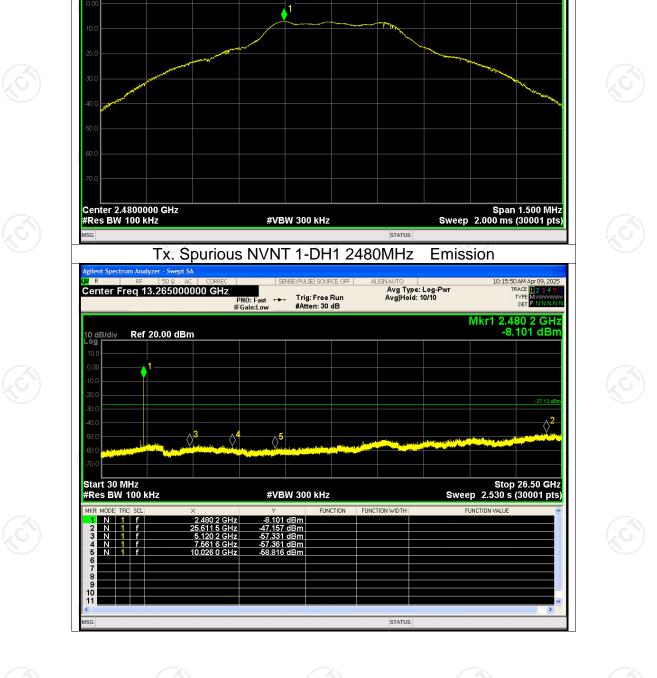
**FCT**通测检测 TESTING CENTRE TECHNOLOGY

Center Freq 2.441000000 GHz

Ref 20.00 dBm

Report No.: TCT250407E012

10:12:41 AM Apr 09, TRACE


Mkr1 2.440 845 50 GHz -6.795 dBm

TYPE MWWWWW DET P N N N N

Ref

Avg Type: Log-Pwr Avg|Hold: 1000/1000

Page 66 of 87



# Tx. Spurious NVNT 1-DH1 2480MHz

PNO: Wide 🛶 Trig: Free Run IFGain:Low #Atten: 30 dB

SENSE:PULSE SOURCE OFF

**FCT**通测检测 TESTING CENTRE TECHNOLOGY

Center Freq 2.480000000 GHz

Ref 20.00 dBm

**U**R

10 dB/div Log Report No.: TCT250407E012

Ref

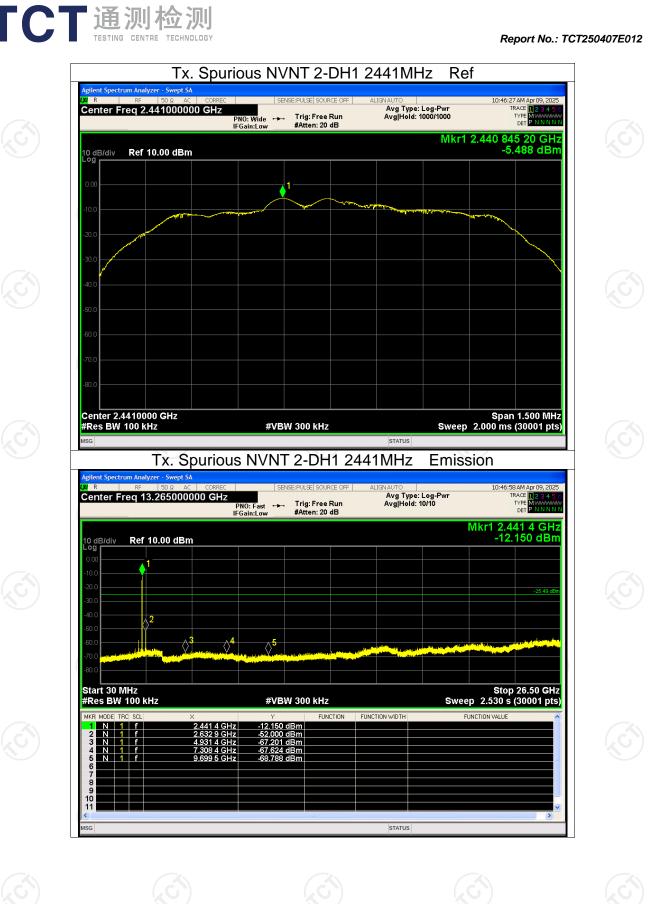
Avg Type: Log-Pwr Avg|Hold: 1000/1000 10:15:19 AM TRACE

Mkr1 2.479 846 85 GHz -7.124 dBm

Page 67 of 87



Tx. Spurious NVNT 2-DH1 2402MHz


SENSE:PULSE SOURCE OFF

**FCT**通测检测 TESTING CENTRE TECHNOLOGY

R

Report No.: TCT250407E012

Ref



Page 69 of 87



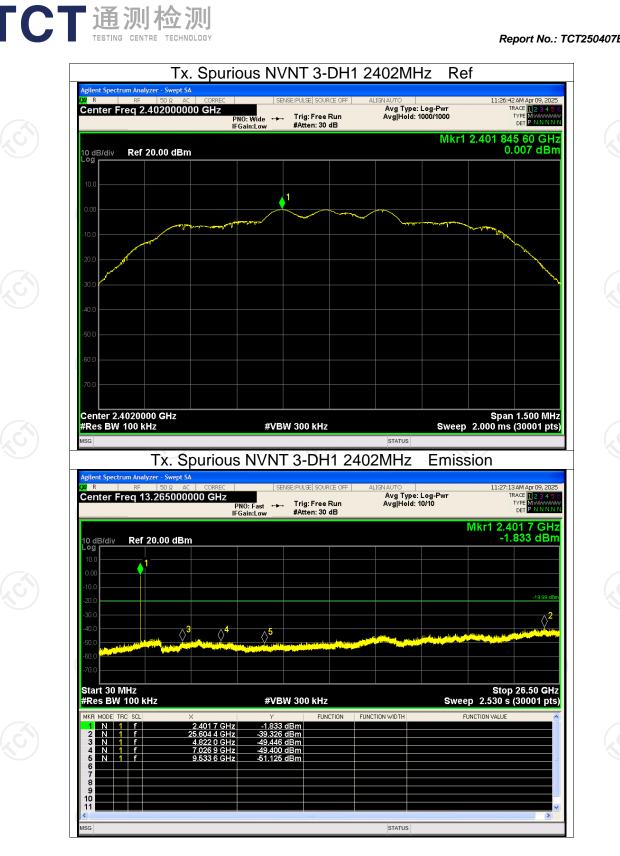
Tx. Spurious NVNT 2-DH1 2480MHz

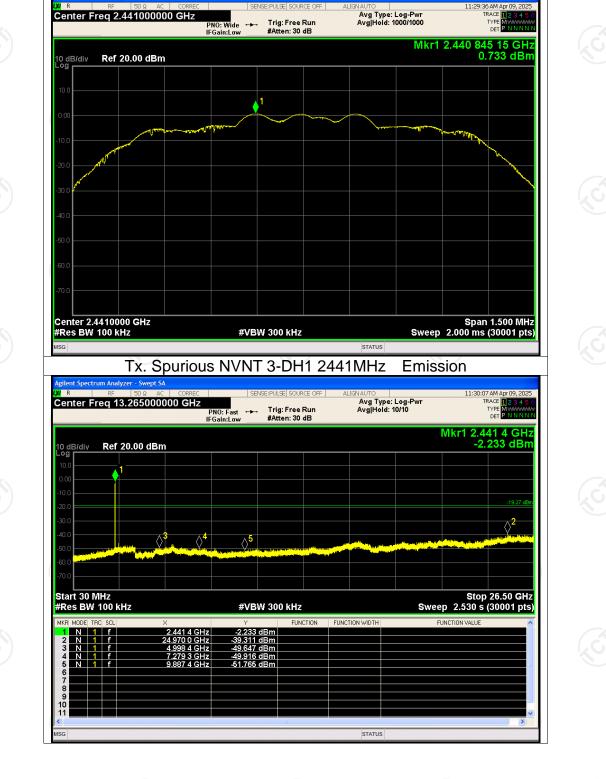
SENSE:PULSE SOURCE OFF

PNO: Wide 🛶 Trig: Free Run IFGain:Low #Atten: 30 dB

Center Freq 2.480000000 GHz

**U**R


#### Report No.: TCT250407E012


Ref

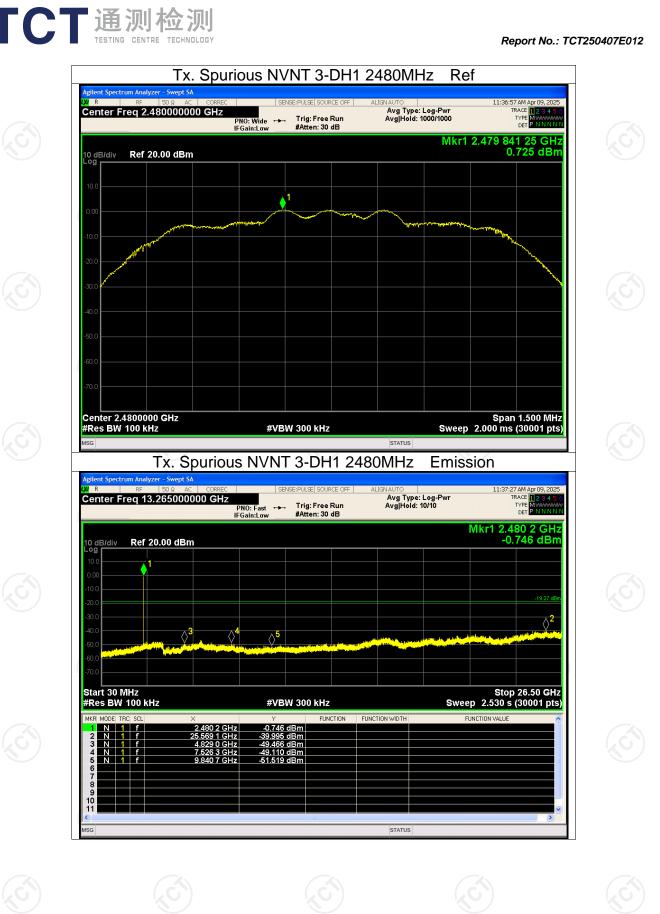
Avg Type: Log-Pwr Avg|Hold: 1000/1000

10:41:42 AM Apr 09

TYPE MWWWWW DET P N N N N

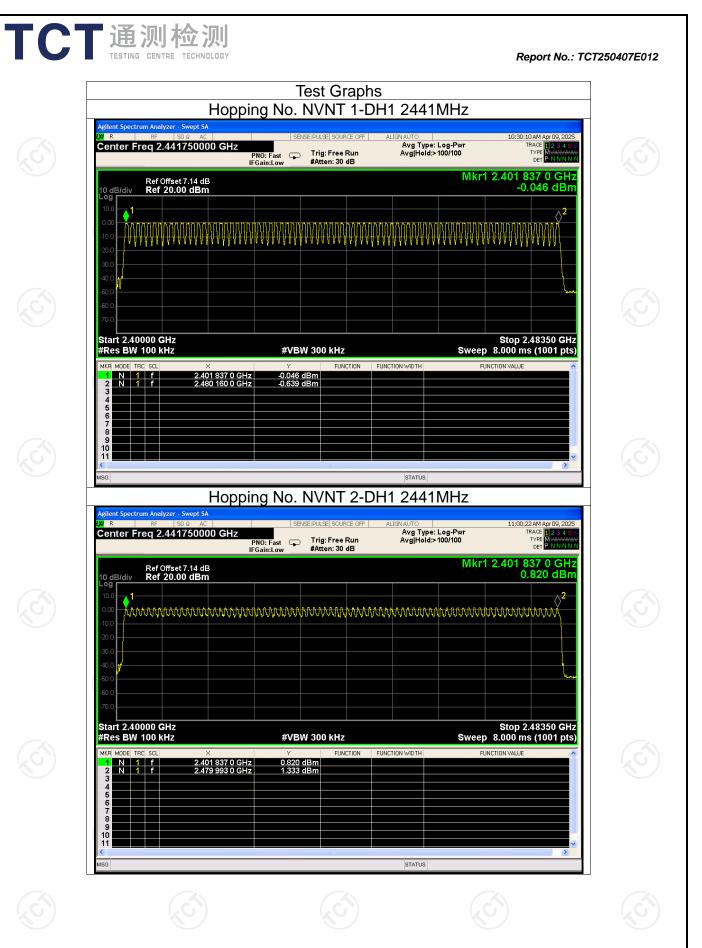





Tx. Spurious NVNT 3-DH1 2441MHz

**FCT**通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT250407E012


Ref

Page 72 of 87

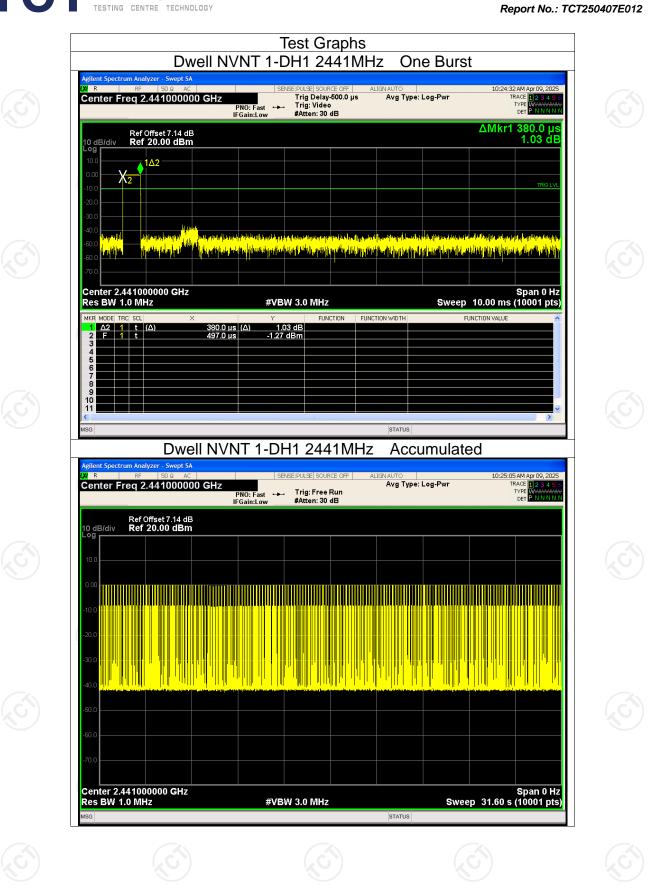


Page 73 of 87

| SS<br>SS | Verd<br>Pas<br>Pas<br>Pas | Limit<br>15<br>15<br>15 | y Channel<br>umber | Iopping N           79           79           79           79           79           79 | e F<br>1<br>1 | Mode<br>1-DH <sup>2</sup><br>2-DH <sup>2</sup><br>3-DH <sup>2</sup> | Condition<br>NVNT<br>NVNT<br>NVNT |  |
|----------|---------------------------|-------------------------|--------------------|-----------------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------|-----------------------------------|--|
|          |                           |                         |                    |                                                                                         |               |                                                                     |                                   |  |
|          |                           |                         |                    |                                                                                         |               |                                                                     |                                   |  |
|          |                           |                         |                    |                                                                                         |               |                                                                     |                                   |  |
|          |                           |                         |                    |                                                                                         |               |                                                                     |                                   |  |
|          |                           |                         |                    |                                                                                         |               |                                                                     |                                   |  |
|          |                           |                         |                    |                                                                                         |               |                                                                     |                                   |  |
|          |                           |                         |                    |                                                                                         |               |                                                                     |                                   |  |
|          |                           |                         |                    |                                                                                         |               |                                                                     |                                   |  |
|          |                           |                         |                    |                                                                                         |               |                                                                     |                                   |  |
|          |                           |                         |                    |                                                                                         |               |                                                                     |                                   |  |



| .809 dBm | Pwr 17<br>00<br>Mkr1 2.401 5 |        | #Atten: 30 dB           | Hz<br>PNO: Fast<br>IFGain:Low | H(<br>Analyzer - Swept SA<br>RF 50 Ω AC<br>2.441750000 G<br>2.441750000 G<br>Action Content of the second sec | Center Fre                                                                 |  |
|----------|------------------------------|--------|-------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|
|          | Stop 2.<br>Sweep 8.000 ms    |        | W 300 kHz<br>GBm<br>dBm | Y<br>3 0 GHz -4.809           | 0 KHz<br>SCL ×<br>f 2.401 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -200<br>-300<br>-400<br>-500<br>-500<br>-500<br>-500<br>-500<br>-500<br>-5 |  |
| <b>v</b> |                              | STATUS |                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8<br>9<br>10<br>11<br>×                                                    |  |
|          |                              |        |                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                            |  |
|          |                              |        |                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                            |  |
|          |                              |        |                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                            |  |
|          |                              |        |                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                            |  |
|          |                              |        |                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                            |  |
|          |                              |        |                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                            |  |


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

|           |       |                    | Dwe                   | II Time                        |                |                        |               |         |
|-----------|-------|--------------------|-----------------------|--------------------------------|----------------|------------------------|---------------|---------|
| Condition | Mode  | Frequency<br>(MHz) | Pulse<br>Time<br>(ms) | Total<br>Dwell<br>Time<br>(ms) | Burst<br>Count | Period<br>Time<br>(ms) | Limit<br>(ms) | Verdict |
| NVNT      | 1-DH1 | 2441               | 0.38                  | 120.84                         | 318            | 31600                  | 400           | Pass    |
| NVNT      | 1-DH3 | 2441               | 1.64                  | 267.32                         | 163            | 31600                  | 400           | Pass    |
| NVNT      | 1-DH5 | 2441               | 2.89                  | 312.12                         | 108            | 31600                  | 400           | Pass    |
| NVNT 🔇    | 2-DH1 | 2441               | 0.39                  | 124.80                         | 320            | 31600                  | 400           | Pass    |
| NVNT      | 2-DH3 | 2441               | 1.64                  | 264.04                         | 161            | 31600                  | 400           | Pass    |
| NVNT      | 2-DH5 | 2441               | 2.89                  | 312.12                         | 108            | 31600                  | 400           | Pass    |
| NVNT      | 3-DH1 | 2441               | 0.39                  | 124.41                         | 319            | 31600                  | 400           | Pass    |
| NVNT      | 3-DH3 | 2441               | 1.64                  | 252.56                         | 154            | 31600                  | 400           | Pass    |
| NVNT      | 3-DH5 | 2441               | 2.89                  | 323.68                         | 112            | 31600                  | 400           | Pass    |

Report No.: TCT250407E012



Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



CT通测检测

1Δ2 a ang dag dapan pana ana ani ani ang ang dang dan mana adi ta bapan dalaman ng manapati panana papat dan na pan Wrl Center 2.441000000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 10.00 ms (10001 pts) #VBW 3.0 MHz FUNCTION FUNCTION ' -46.34 dB 0.30 dBm 1.640 ms (∆) 497.0 µs Δ2 1 t (Δ) F 1 t 2 3 6 89 10 11 MSG Dwell NVNT 1-DH3 2441MHz Accumulated - Swept SA SENSE:PULSE SOURCE OFF ALIGNAUTO 01:50:49 PM Apr 09, 2025 TRACE 12345 ( TYPE WAWAWA DET P N N N N Center Freq 2.441000000 GHz PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB Ref Offset 7.14 dB Ref 20.00 dBm 10 dB/div Log Center 2.441000000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 31.60 s (10001 pts) #VBW 3.0 MHz STATUS

**ГСТ**通测检测

R

10 dB/div Log

X-2

TESTING CENTRE TECHNOLOGY

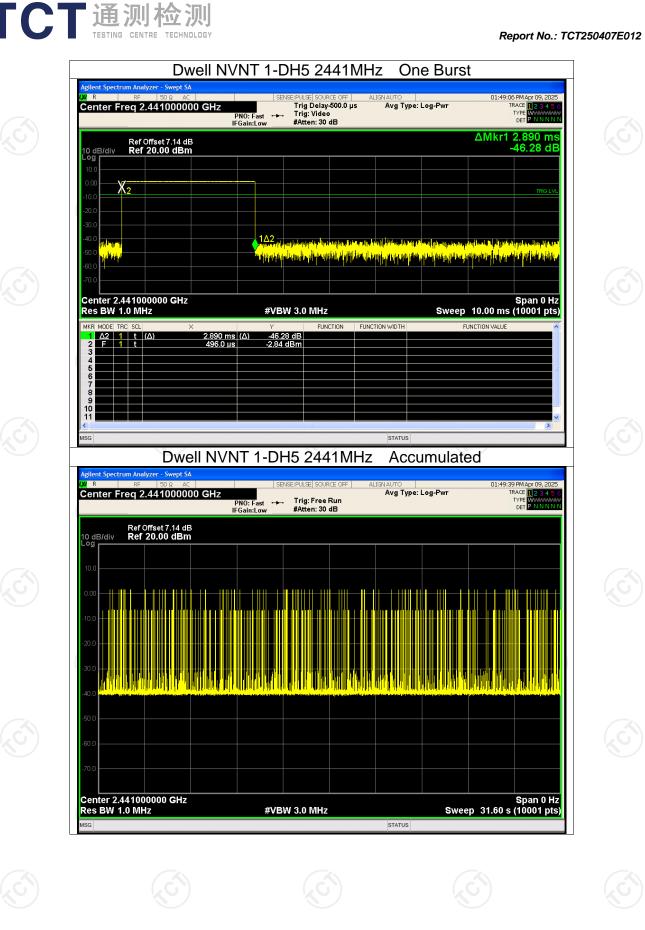
Center Freg 2.441000000 GHz

Ref Offset 7.14 dB Ref 20.00 dBm

Dwell NVNT 1-DH3 2441MHz

PN0: Fast →→ Trig: Video #Atten: 30 dB

## Report No.: TCT250407E012


01:50:16 PM Apr 09, 20 TRACE 1 2 3 4

ΔMkr1 1.640 ms -46.34 dB

TYPE WWWWWWW

One Burst

Avg Type: Log-Pwr



| Center Freq 2.441000000 G                                                        | Hz Trig Delay-500.0 µs<br>PNO: Fast ↔ Trig: Video<br>IFGain:Low #Atten: 30 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Avg Type: Log-Pwr                                                                                                                                                                                                                 | TRACE 123456<br>TYPE WWWWW<br>DET PNNNNN<br>VIKr1 390.0 μs                      |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Ref Offset 7.14 dB<br>0 dB/div Ref 20.00 dBm<br>.0g                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                   | 4.95 dB                                                                         |
|                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                   | TRIG LVL                                                                        |
| 20.0                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>م</u>                                                                                                                                                                                                                          |                                                                                 |
| 50.0 <mark>d. hayan generaliya ya Ni wana a</mark> na a                          | an de stander blagt hen som flaver flaver for som sverse hen stålader av til barrer yfter<br>Mens flaver verstang par flaver proget i set forskiller og stålader for som                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N de service de la constante d<br>Propositivada de la constante d | n de tra discontra colletta a la sector<br>Na na marca e la sector de la sector |
| 70.0                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                   |                                                                                 |
| Center 2.441000000 GHz<br>Res BW 1.0 MHz                                         | #VBW 3.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sweep 10.0                                                                                                                                                                                                                        | Span 0 Hz<br>0 ms (10001 pts)                                                   |
| 2 F 1 t 4                                                                        | Υ         FUNCTION         FL           90.0 μs         (Δ)         4.95 dB         4.95 dB           96.0 μs         -4.88 dBm         4.88 dBm         4.88 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NCTION WIDTH FUNCTION                                                                                                                                                                                                             | VALUE                                                                           |
| 3<br>4<br>5<br>6                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                   |                                                                                 |
| 7<br>8<br>9<br>10                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                   |                                                                                 |
| sg                                                                               | Li contra | STATUS                                                                                                                                                                                                                            | ×                                                                               |
|                                                                                  | NVNT 2-DH1 2441MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | z Accumulated                                                                                                                                                                                                                     |                                                                                 |
| gilent Spectrum Analyzer - Swept SA<br>R RF 50 Ω AC<br>Center Freq 2.441000000 G |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ALIGNAUTO AVg Type: Log-Pwr                                                                                                                                                                                                       | 10:56:56 AM Apr 09, 2025<br>TRACE 123456<br>TYPE WWWWWW                         |
| Ref Offset 7.14 dB                                                               | PNO: Fast ++- Trig: Free Run<br>IFGain:Low #Atten: 30 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                   | DET PNNNNN                                                                      |
| 0 dB/div Ref 20.00 dBm                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                   |                                                                                 |
| 10.0                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                   |                                                                                 |
|                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                   |                                                                                 |
| 20.0                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                   |                                                                                 |
| 30.0 ·····                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                   |                                                                                 |
| 40.0 <b>- 10 - 10 - 10 - 10 - 10 - 10 - 10 - </b>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                   |                                                                                 |
| 50.0                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                   |                                                                                 |
| 70.0                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                   |                                                                                 |
| Center 2.441000000 GHz                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                   |                                                                                 |
|                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                   | Span 0 Hz<br>.60 s (10001 pts)                                                  |

TCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT250407E012

ΔMkr1 1.640 ms -0.89 dB Ref Offset 7.14 dB Ref 20.00 dBm 10 dB/div Log **r** <mark>\_1∆2</mark> ХĮ with a strand handly difference its than a new with and a pills a bid a statistical strands to be to state the state to a , il pr Center 2.441000000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 10.00 ms (10001 pts) #VBW 3.0 MHz -0.89 dB 0.82 dBm 1.640 ms (Δ) 497.0 μs Δ2 1 t (Δ) F 1 t 2 3 89 10 11 usg Dwell NVNT 2-DH3 2441MHz Accumulated ent SA SENSE:PULSE SOURCE OFF ALIGNAUTO 01:48:47 PM Apr 09, 2025 TRACE 1 2 3 4 5 ( TYPE WWWWW DET P N N N N P Center Freq 2.441000000 GHz PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 30 dB Ref Offset 7.14 dB Ref 20.00 dBm 10 dB/div Log Center 2.441000000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 31.60 s (10001 pts) #VBW 3.0 MHz STATUS

**ГСТ**通测检测

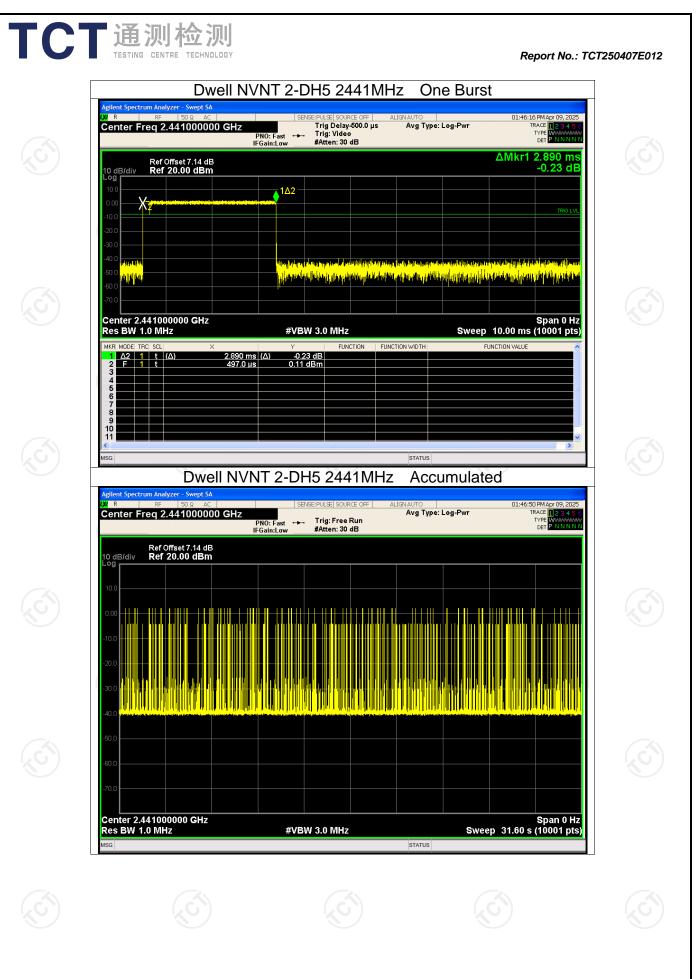
R

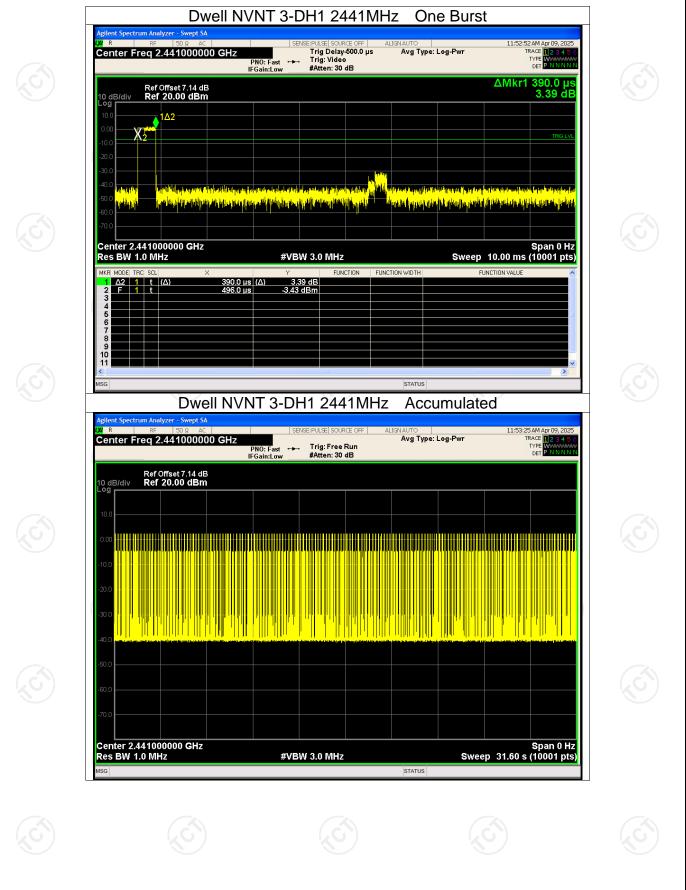
TESTING CENTRE TECHNOLOGY

Center Freg 2.441000000 GHz

Dwell NVNT 2-DH3 2441MHz

PN0: Fast →→ Trig: Video #Atten: 30 dB

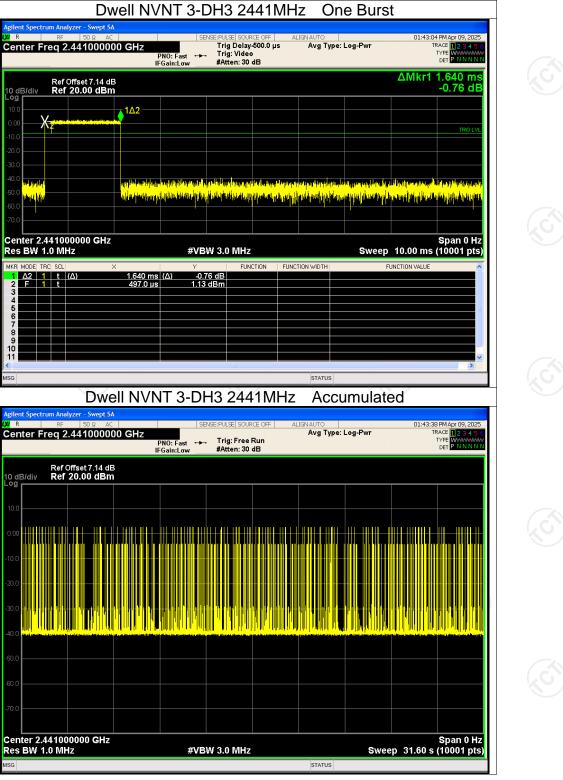

Report No.: TCT250407E012


01:48:14 PM Apr 09, 20 TRACE 1 2 3 4

TYPE WWWWWWW

One Burst

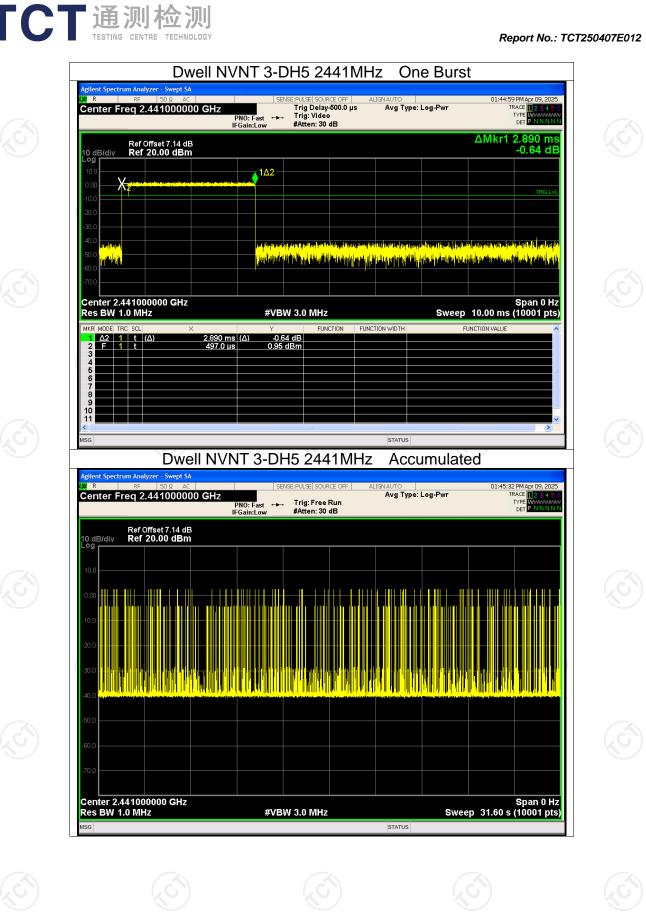
Avg Type: Log-Pwr

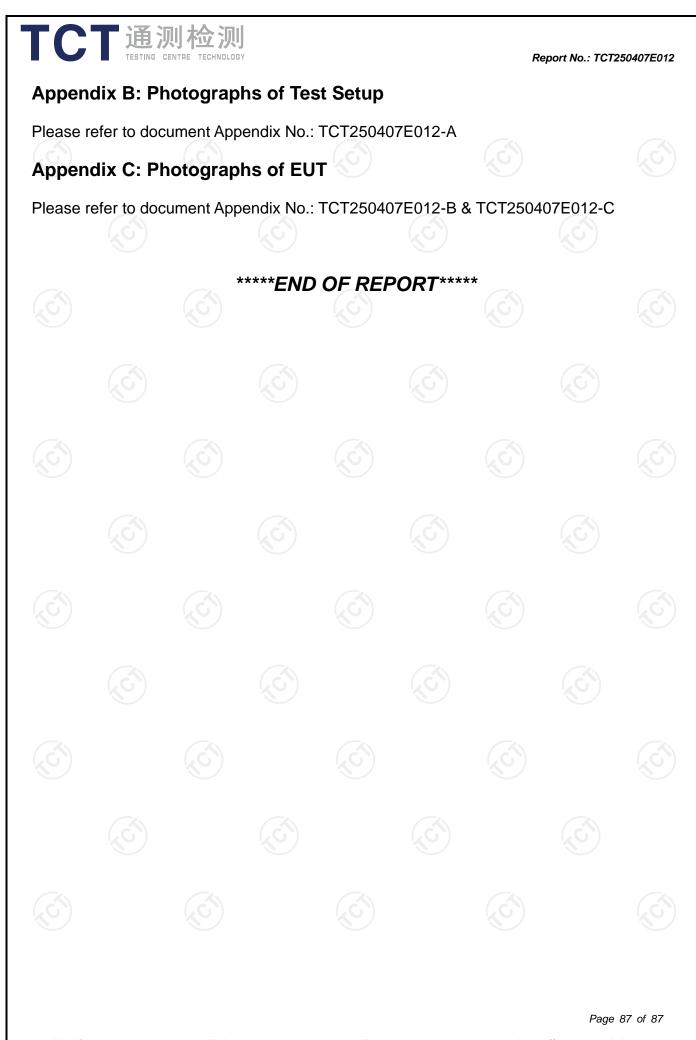





**「CT**通测检测

TESTING CENTRE TECHNOLOGY


Report No.: TCT250407E012




**ГСТ**通测检测

TESTING CENTRE TECHNOLOGY

Report No.: TCT250407E012



