

4740 Discovery Drive | Lincoln, NE 68521 tel- 402.323.6233 | tel -888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com

Amended FCC/ISED Test Report

Prepared for:

Lynq Technologies

Address:

4760 Walnut St Ste 108 Boulder, CO 80301

EUT: LNQ2900

 FCC ID:
 2ARHMLNQ2900

 IC ID:
 24896-LNQ2900

Test Report No:

R230330-00-E2B

Approved by:

le Winter

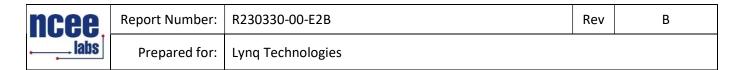
Blake Winter EMC Test Engineer iNARTE EMC-50662-E

DATE:

July 1, 2024

Total Pages:

33


The Nebraska Center for Excellence in Electronics (NCEE) authorizes the above named company to reproduce this report provided it is reproduced in its entirety for use by the company's employees only. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. NCEE accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

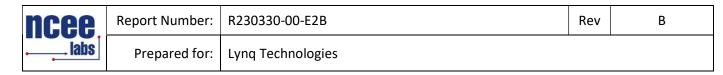
ncee labs	Report Number:	R230330-00-E2B		В
	Prepared for:	Lynq Technologies		

REVISION PAGE

Rev. No.	Date	Description
		Issued by BWinter
0	4 April 2024	Reviewed by KVepuri
		Prepared by BWinter
		Revision A by BWinter
А	18 April 2024	 For Unrestricted Band Edge, change from dBm or dBuV to dB because it is relative.
_		Revision B by BWinter
B 1 July 2024		Cover Page: Add FCC ID and IC ID.

CONTENTS

Revi	sion Pag	ge2
1.0	Sum	imary of test results4
2.0	EUT	Description5
	2.1	Equipment under test
	2.2	Description of test modes
	2.3	Description of support units
3.0	Labo	oratory description7
	3.1	Laboratory description
	3.2	Test personnel
	3.3	Test equipment
4.0	Deta	illed results9
	4.1	Duty Cycle
	4.2	Radiated emissions
	4.3	Peak Output Power
	4.4	Bandwidth
	4.5	Bandedges
	4.6	Carrier Frequency SepAration, Number of Hopping Channels, Time of occupancy
	4.7	Conducted AC Mains Emissions
Арр	endix A	: Sample Calculation
Арр	endix B	– Measurement Uncertainty
REP		ID33


1.0 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

- (1) US Code of Federal Regulations, Title 47, Part 15
- (2) ISED RSS-Gen, Issue 5
- (3) ISED RSS-247, Issue 2

ANSI C63.10-2013 was used as a test method, with guidance from KBD 558074 D01 v05

	SUMMARY						
Standard Section	Test Type and Limit	Result	Remark				
FCC 15.203	Unique Antenna Requirement	Pass	Internal antenna				
FCC 15.35 RSS-Gen, 6.10	Duty cycle of pulsed emissions	Informative only	Not Applicable; the duty cycle is >98%.				
FCC 15.209 RSS-Gen, 7.1	Receiver Radiated Emissions	Pass	Meets the requirement of the limit.				
FCC 15.247(a)(1)(i) RSS-247, 5.1(c)	Maximum Bandwidth, Limit: Max. 250kHz	Pass	Meets the requirement of the limit.				
FCC 15.247(b)(1) RSS-247, 5.1	Maximum Peak Output Power, Limit: Max. 24 dBm	Pass	Meets the requirement of the limit.				
FCC 15.209 RSS-Gen, 8.9 RSS-247, 5.5	Transmitter Radiated Emissions	Pass	Meets the requirement of the limit.				
FCC 15.247(a) (1) (i) RSS-247, 5.1(c)	Frequency hopping system, Limit: Max. 0.4 Seconds in 20 Second Period	Pass	Customer attests that the EUT meets the requirement				
FCC 15.209, 15.205 RSS-Gen, 8.9 RSS-247, 5.5	Band Edge Measurement, Limit: 20dB less than the peak value of fundamental frequency	Pass	Meets the requirement of the limit.				
FCC 15.207 RSS-Gen. 8.8	Conducted AC Emissions	Pass	Meets the requirement of the limit.				

2.0 EUT DESCRIPTION

2.1 EQUIPMENT UNDER TEST

Summary

The Equipment Under Test (EUT) was a LNQ2900 LORA device manufactured by Lynq Technologies. It operates in the 902 to 928 MHz band and has transmit and receive capabilities.

EUT	LNQ2900
EUT Received	11/10/2023
EUT Tested	11/22/2023 - 3/19/2024
Serial No.	011480 (assigned by NCEE Labs), conducted 011481 (assigned by NCEE Labs), radiated
Operating Band	902 – 928 MHz
Device Type	FHSS
Power Supply	USB power supply, SN P161400162A1
Antenna	Internal

NOTE: For more detailed features description, please refer to the manufacturer's specifications or user's manual.

2.2 DESCRIPTION OF TEST MODES

The EUT operates on, and was tested at the frequencies below:

Channel	Frequency
Low	902.3
Middle	915.0
High	927.7

These are the only three representative channels tested in the frequency range according to FCC Part 15.31 and RSS-Gen Table A1. See the operational description for a list of all channel frequency and designations.

This EUT was set to transmit in a worse-case scenario with modulation on. The manufacturer modified the unit to transmit continuously on the lowest, highest and one channel in the middle.

2.3 DESCRIPTION OF SUPPORT UNITS

None

3.0 LABORATORY DESCRIPTION

3.1 LABORATORY DESCRIPTION

All testing was performed at the following Facility:

The Nebraska Center for Excellence in Electronics (NCEE Labs) 4740 Discovery Drive Lincoln, NE 68521

A2LA Certificate Number:	1953.01
FCC Accredited Test Site Designation No:	US1060
Industry Canada Test Site Registration No:	4294A-1
NCC CAB Identification No:	US0177

Environmental conditions varied slightly throughout the tests.

3.2 TEST PERSONNEL

No.	D. PERSONNEL TITLE		ROLE		
1	Blake Winter	Test Engineer	Testing and Report		
2	Karthik Vepuri	Test Engineer	Review		

Notes:

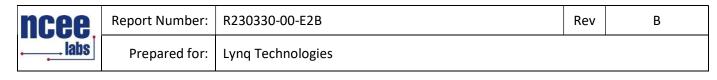
All personnel are permanent staff members of NCEE Labs. No testing or review was sub-contracted or performed by sub-contracted personnel.

ncee.	Report Number:	R230330-00-E2B		В
labs	Prepared for:	Lynq Technologies		

3.3 **TEST EQUIPMENT**

DESCRIPTION AND MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CALIBRATION DATE	CALIBRATION DUE DATE
Keysight MXE Signal Analyzer (44GHz)**	N9038A	MY59050109	July 17, 2023	July 17, 2025
Keysight MXE Signal Analyzer (26.5GHz)**	N9038A	MY56400083	July 17, 2023	July 17, 2025
SunAR RF Motion	JB1	A091418	July 26, 2023	July 26, 2024
ETS EMCO Red Horn Antenna	3115	00218576	July 31, 2023	July 31, 2024
ETS EMCO Amplifier*	3115-PA	00218576	January 22, 2024	January 22, 2026
Trilithic High Pass Filter*	6HC330	23042	June 5, 2023	June 5, 2025
ETS – Lindgren- VSWR on 10m Chamber***	10m Semi- anechoic chamber- VSWR	4740 Discovery Drive	July 30, 2020	July 30, 2024
NCEE Labs-NSA on 10m Chamber*	10m Semi- anechoic chamber- NSA	NCEE-001	May 25, 2022	May 25, 2024
TDK Emissions Lab Software	V11.25	700307	NA	NA
RF Cable (preamplifier to antenna)*	MFR-57500	90-195-040	June 5, 2023	June 5, 2025
RF Cable (antenna to 10m chamber bulkhead)*	FSCM 64639	01E3872	June 5, 2023	June 5, 2025
RF Cable (10m chamber bulkhead to control room bulkhead)*	FSCM 64639	01E3864	June 5, 2023	June 5, 2025
RF Cable (control room bulkhead to test receiver)*	FSCM 64639	01F1206	June 5, 2023	June 5, 2025
N connector bulkhead (10m chamber)*	PE9128	NCEEBH1	June 5, 2023	June 5, 2025
N connector bulkhead (control room)*	PE9128	NCEEBH2	June 5, 2023	June 5, 2025
Keysight MXE Signal Analyzer (44GHz)**	N9038A	MY59050109	July 17, 2023	July 17, 2025

*Internal Calibration **2 year cal cycle ***4 year cal cycle Notes:


All equipment is owned by NCEE Labs and stored permanently at NCEE Labs facilities.

4.0 DETAILED RESULTS

	Radio Measurements							
CHANNEL Occupied 20 dB Bandwidth (kHz) (kHz)		Conducted Power (dBm)	Conducted Power (mW)	RESULT				
Low	126.4	144.8	29.50	891.3	Pass			
Mid	Mid 126.6 144		29.55	901.6	Pass			
High	126.2	144.2	29.71	935.4	Pass			
20 dB Ban	dwidth Limit = 2	250 kHz max	Peak Ou	tput Power Lim	it = 30 dBm;			

Unrestricted Band-Edge								
CHANNEL	Band edge /Measurement Frequency (MHz)	Relative Highest out of band level (dB)	Relative Fundamental (dB)	Measurement Type	Delta (dB)	Min Delta (dB)	Result	
Low	902	-74.33	-29.80	Peak	44.53	20	Pass	
High	928	66.95	108.07	Peak	41.12	20	Pass	

	Peak Vs	Average Lir	nit- Restricted Ba	and-Edge		
CHANNEL	Band edge /Measurement Frequency (MHz)	Highest out of band level (dBuV/m @ 3m)	Measurement Type	Limit (dBuV/m @ 3m)*	Margin	Result
Low	608-614	31.57	Peak	46.02	14.45	Pass
High	960-1000	37.42	Peak	53.98	16.56	Pass
	i is the peak limit ta t to show complian		CC Part 15.209; P	eak values a	ire compar	ed to

4.1 DUTY CYCLE

The duty cycle is > 98%.

4.2 RADIATED EMISSIONS

Test Method: ANSI C63.10:2013, Section 6.5, 6.6

Limits for radiated emissions measurements:

Emissions radiated outside of the specified bands shall be applied to the limits in 15.209 as followed:

FREQUENCIES (MHz)	FIELD STRENGTH (µV/m)	MEASUREMENT DISTANCE (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	3
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

2. Emission level (dBuV/m) = 20 * log * Emission level (μ V/m).

3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits by more than 20dB under any condition of modulation.

Test procedures:

a. The EUT was placed on the top of a rotating table above the ground plane in a 10 meter semianechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The table was 0.8m high for measurements form 30MHz-1Ghz and 1.5m for measurements from 1GHz and higher.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna was a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are used to make the measurement.

d. For each suspected emission, the EUT was arranged to maximize its emissions and then the antenna height was varied from 1 meter to 4 meters and the rotating table was turned from 0 degrees to 360 degrees to find the maximum emission reading.

e. The test-receiver system was set to use a peak detector with a specified resolution bandwidth. For spectrum analyzer measurements, the composite maximum of several analyzer sweeps was used for final measurements.

f. If the emission level of the EUT in peak mode was 6dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 6 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. The EUT was maximized in all 3 orthogonal positions. The results are presented for the axis that had the highest emissions.

- h. The orientation with the worst-case emissions was used for final measurements.
- i. Receive mode emissions were tested and found to be within the measurement noise floor of the test laboratory

NOTE:

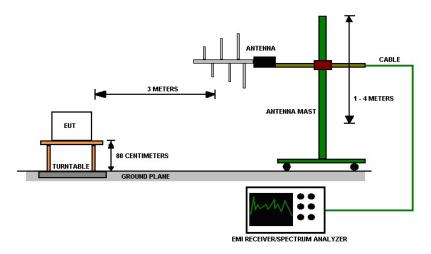
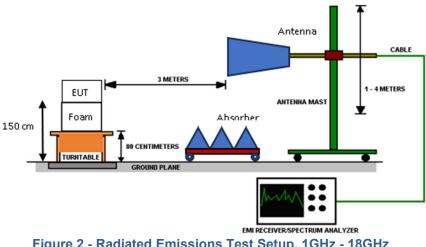
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequencies below 1GHz.

2. The resolution bandwidth 1 MHz for all measurements and at frequencies above 1GHz, A peak detector was used for all measurements above 1GHz. Measurements were made with an EMI Receiver.

Deviations from test standard:

No deviation.

Test setup:

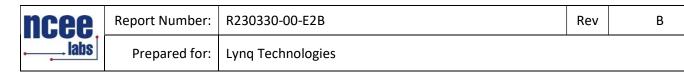

Figure 1 - Radiated Emissions Test Setup, 30MHz – 1GHz

Figure 2 - Radiated Emissions Test Setup, 1GHz - 18GHz

EUT operating conditions

The EUT was powered by internal battery unless specified and set to transmit continuously on the lowest frequency channel, highest frequency channel and one in the middle of its operating range.

Test results:

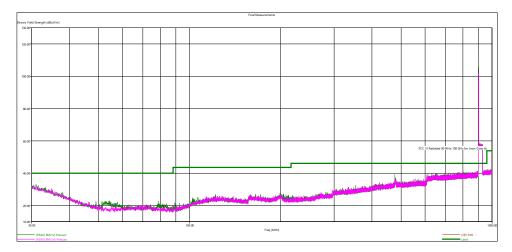


Figure 3 - Radiated Emissions Plot, 30 MHz-1 GHz Low Channel

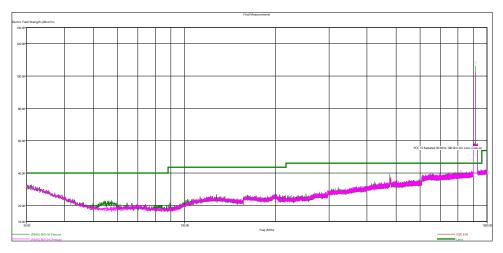


Figure 4 - Radiated Emissions Plot, 30 MHz-1 GHz, Mid Channel

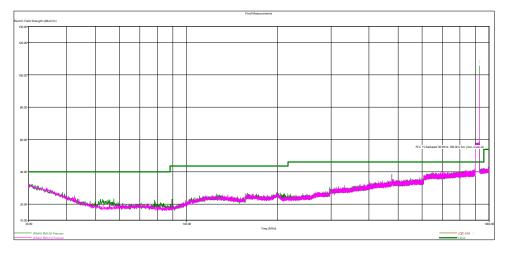
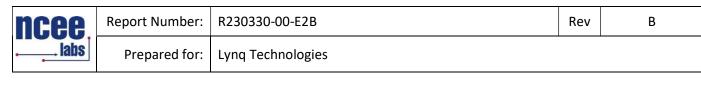



Figure 5 - Radiated Emissions Plot, 30 MHz-1 GHz High Channel

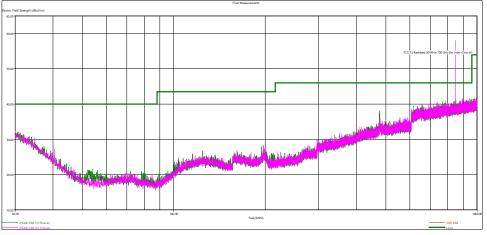


Figure 6 - Radiated Emissions Plot, 30 MHz-1 GHz Receive Mode

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Limit value Emission level.

5. The EUT was measured in both the horizontal and vertical orientation. It was found that the Horizontal position produced the highest emissions, and this orientation was used for all testing. See Annex A for test photos.

Quasi-Peak Measurements, 30 MHz -1 GHz*								
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel	
MHz	dBµV/m	dBµV/m	dB	cm.	deg.			
902.315760	108.30	NA	NA	126.23	171.50	V	Low	
915.047280	108.67	NA	NA	121.04	177.50	V	Mid	
927.693840	108.19	NA	NA	118.95	174.75	V	High	
848.547360	35.10	46.02	10.92	178.41	107.50	Н	RX	

*All other measurements found to be at least 6dB below the limit line.

	Pea	ak Measur	ements, 1	GHz - 10	GHz**		
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel
MHz	dBµV/m	dBµV/m	dB	cm.	deg.		
1804.48	41.56	NA*	NA	459.01	201.25	Н	Low
6316.452000	52.13	NA*	NA	150.00	252.00	Н	Low
5489.960000	48.41	NA*	NA	250.65	247.75	Н	Mid
6404.914000	56.03	NA*	NA	141.64	250.50	Н	Mid
3660.338000	46.26	73.98	27.72	182.35	21.50	V	Mid
9150.530000	55.36	73.98	18.62	192.50	233.25	V	Mid
5566.360000	50.00	NA*	NA	479.37	230.25	Н	High
6493.594000	54.37	NA*	NA	198.11	283.25	Н	High
3710.684000	48.92	73.98	25.06	185.76	185.50	V	High
9276.520000	53.94	NA*	NA	150.71	230.25	V	High

*Unrestricted harmonics are at least 20dB below the fundamental peak. **Receive-only scan did not have any peaks within 6dB of the Average Limit Line.

	Ave	rage Meas	urements	s, 1 GHz- <i>'</i>	10 GHz**		
Frequency	Average Level*	Limit	Margin	Height	Angle	Pol	Channel
MHz	dBµV/m	dBµV/m	dB	cm.	deg.		
1804.48	41.56	NA*	NA	459.01	201.25	Н	Low
6316.452000	52.13	NA*	NA	150.00	252.00	Н	Low
5489.960000	41.37	NA*	NA	250.65	247.75	Н	Mid
6404.914000	50.38	NA*	NA	141.64	250.50	Н	Mid
3660.338000	38.07	53.98	15.91	182.35	21.50	V	Mid
9150.530000	44.51	53.98	9.47	192.50	233.25	V	Mid
5566.360000	43.02	NA*	NA	479.37	230.25	Н	High
6493.594000	45.15	NA*	NA	198.11	283.25	Н	High
3710.684000	44.00	53.98	9.98	185.76	185.50	V	High
9276.520000	43.38	NA*	NA	150.71	230.25	V	High

The EUT was maximized in all 3 orthogonal axes. The worst-case (z-axis) is shown in the table above. *In unrestricted bands, harmonics are at least 20dB below fundamental levels.

**Receive-only mode did not have any peaks within 6dB of the Average Limit Line.

4.3 PEAK OUTPUT POWER

Test Method: ANSI C63.10, Section(s) 11.9.2.2.2

Limits of bandwidth measurements:

For an FHSS system with 50 channels or more, the output power is required to be less than 1000 mW or 30 dBm.

Conducted power was measured.

Test procedure: Conducted

Deviations from test standard:

No deviation.

Test setup:

See Section 4.2

EUT operating conditions:

The EUT was powered by USB and set to transmit continuously on the lowest frequency channel, highest frequency channel and one in the middle of its operating range.

Test results:

Refer to section 4.0 for the results table.

Ceysight Spectrum Analyzer - Swept SA RF PRESEL 50 Ω DC	SENSE:INT SO	JRCE OFF ALIGN AUTO	1	06:59:01 PM Feb 13, 20
W 10 MHz	SENSE INT SU		ype: Voltage	TRACE 1234
	PNO: Fast Trig: Free IFGain:Low #Atten: 3	Run Avg H	old:>100/100	DET P N N N
Ref Offset 20.56 dB IB/div Ref 40.56 dBm			М	kr1 902.30 MI 29.500 dB
6		1		
6				
4				
-			- And	allen hanne ter any
Produced and a set of a last				and a state of the state of the
4				
4				
nter 902.30 MHz es BW (-6dB) 10 MHz	VBW 50 MHz		Sweep 1	Span 20.00 M .000 ms (1001 p
Contraction in the second second second		STATU	-50	

Figure 7 – Output Power, Low Channel.

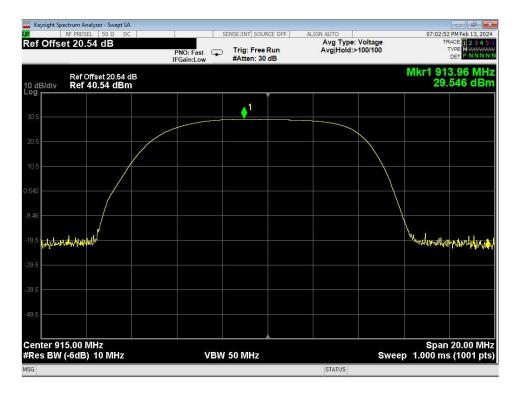


Figure 8 – Output Power, Mid Channel

Rev

			Span	с.Щаучала 20.00 М
			Minifest Anna	ic Whyten yr
			Winfrankan	ic
			Minghan w	ic.Withound for
			Winthalitan	in Whitember
			Martinet Marine	ic. WWw.entyr
∮ ¹				
The second secon			29.	
			Mkr1 926	6.76 M
Fast Trig: Free Run #Atten: 30 dB	Avg Hold:>100	0/100	T	
SENSE:INT SOURCE OFF	ALIGN AUTO	ltage	07:08:19 TR	ACE 1 2 3 4
	#Aften: 30 dB	Fast Trig: Free Run :Low #Atten: 30 dB	Avg Type: Voltage Fast Trig: Free Run Avg Hold:>100/100	Fast 😱 Trig: Free Run Avg Hold:>100/100 T

Figure 9 – Output Power, High Channel

4.4 BANDWIDTH

Test Method: ANSI C63.10, Section(s) 6.9.2 (20 dB BW) ANSI C63.10, Section(s) 6.9.3 (99% BW)

Limits of bandwidth measurements:

From FCC Part 15.247 (1) (i) and RSS-247 5.1(c)

The maximum allowed 20 dB bandwidth of the hopping channel is 250 kHz.

Test procedures:

Bandwidth measurement was taken at a distance of 3m from the EUT. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 3 kHz RBW.

The 20dB bandwidth is defined as the bandwidth of which is higher than peak power minus 20dB.

The 99% occupied bandwidth was measured using the test receiver's occupied bandwidth function.

Test setup:

All the measurements were done at 3m test distance while operating at low, mid, and high channels. See Section 4.3 for more details.

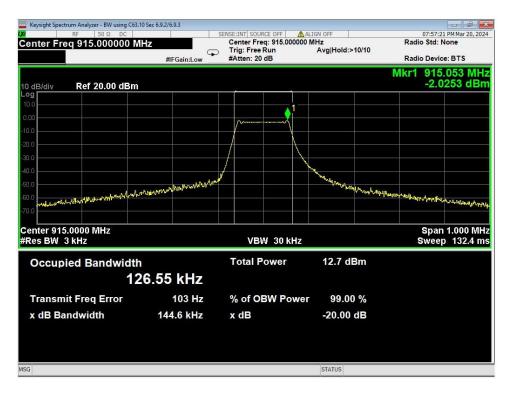
Deviations from test standard:

No deviation.

Test setup:

The transmitter was connected to the receiver through a 20dB attenuator.

EUT operating conditions:


The EUT was powered by USB and set to transmit continuously on the lowest frequency channel, highest frequency channel and one in the middle of its operating range.

Test results:

Keysight Spectrum Analyzer - BW using C63.	10 Sec 6.9.2/6.9.3			
RF 50 Ω DC		SENSE:INT SOURCE OFF	ALIGN OFF	07:53:33 PM Mar 20, 2
IB -20.00 dB	#IFGain:Low	Center Freq: 902.300 Trig: Free Run #Atten: 20 dB	0000 MHz Avg Hold:>10/10	Radio Std: None Radio Device: BTS
dB/div Ref 20.00 dBm				Mkr1 902.247 Mi -1.7712 dB
0		1		
]				
0	date manuscrathy alang	1	wettermad wares why	
mould have we we we have the second of the s	Len Juni III			monte and the second of the second
nter 902.3000 MHz es BW 3 kHz		VBW 30 kH		Span 1.000 M Sweep 132.4
Occupied Bandwidth		Total Power	12.7 dBm	
12	6.40 kHz			
Fransmit Freq Error	271 Hz	% of OBW Pov	wer 99.00 %	
k dB Bandwidth	144.8 kHz	x dB	-20.00 dB	

Keysight Spectrum Analyzer - BW using C63	.10 Sec 6.9.2/6.9.3		W	
RF 50 Ω DC			ALIGN OFF	07:59:39 PM Mar 20, 20
nter Freq 927.700000 M	1HZ #IFGain:Low →	Center Freq: 927.7000 Trig: Free Run #Atten: 20 dB	000 MHz Avg Hold:>10/10	Radio Std: None Radio Device: BTS
dB/div Ref 20.00 dBm				Mkr1 927.647 Mi -1.6518 dB
		1		
)				
May under man the advertised	www.amanayananayana	м ²	Charles and a second and a seco	when the many ward and the second
Holman halver have been ha				and a permitted from the second of the secon
nter 927.7000 MHz es BW 3 kHz		VBW 30 kH	z	Span 1.000 M Sweep 132.4 i
Occupied Bandwidth	1	Total Power	12.7 dBm	
12	26.16 kHz			
Fransmit Freq Error	312 Hz	% of OBW Pow	/er 99.00 %	
dB Bandwidth	144.2 kHz	x dB	-20.00 dB	

Figure 12 - Bandwidth, High Channel

4.5 BANDEDGES

Test Method: ANSI C63.10, Section(s) 6.10.6

Limits of bandedge measurements:

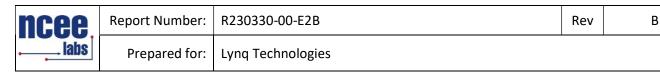
For emissions outside of the allowed band of operation (902 – 928MHz), the emission level needs to be 20dB under the maximum fundamental field strength. However, if the emissions fall within one of the restricted bands from 15.205 the field strength levels need to be under that of the limits in 15.209.

Test procedures:

All measurements were taken at a distance of 3m from the EUT.

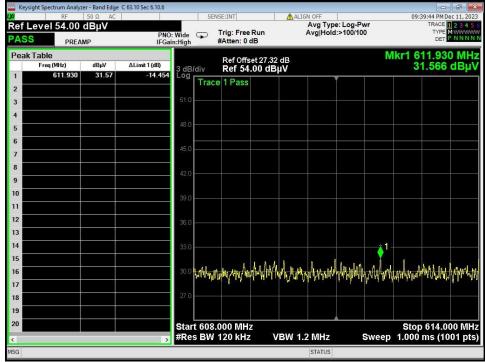
The EUT was maximized in all 3 orthogonal positions in a similar manner as described in Section 4.2.

Deviations from test standard:

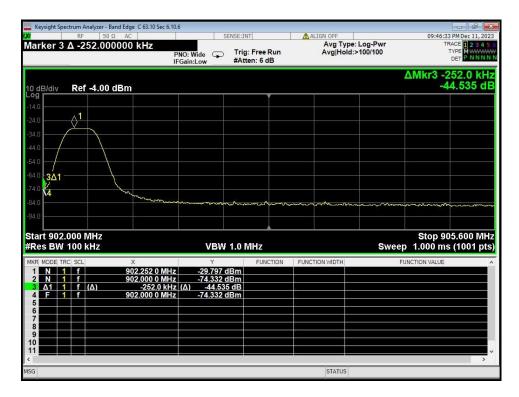

No deviation.

Test setup:

All the measurements were done at 3m test distance while operating on the highest and lowest channel depending on which band edge was investigated.


EUT operating conditions:

The EUT was powered by internal battery unless specified and set to transmit continuously on the lowest frequency channel and the highest frequency channel.



Test results:

Refer to section 4.0 for the results table.

ncee.	Report Number:	R230330-00-E2B	Rev	В
labs	Prepared for:	Lynq Technologies		

	RF 50 Ω	DC		SENSE:INT		ALIGN OFF		10:13:	48 PM Dec 11, 20
ef Offs ASS	et 32.00 dB		PNO: Fast ⊂ IFGain:High	Trim Free	Run	Avg Type: Avg Hold:>			TYPE MWWW DET PNNN
) dB/div	Ref Offset 32 d Ref 98.99 dE							Mkr1 96 37.	61.20 Mł 421 dBµ
Trac	e 1 Pass				ľ				
9.0									
9.0									
3.0 									
9.0									
9.0									
ao 1		and a she bearing	6 . In A . A . I		data n k Sa				Sector more
9.0	mplotylipographicatures	and the second and the	an Anna (A. Prodri Maria).	and the start	alkalangu ca (aya	ALL THE PLANE AND A CHAI	ՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠ	Loc Pryory Developments	una mana pala
0.0									
99									
	6000 GHz							Stop 1	1.00000 G
tes BW	100 kHz		VB	W 1.0 MHz			Swee	p 3.733 m	is (1001 p

Figure 15 –Band-edge Measurement, High Channel, Restricted Frequency

	RF	50 Ω DC		S	ENSE:INT	ALIGN OFF		10:15:46 PM Dec 11, 2
art Fre		6.000000 REAMP	MHz	NO: Wide 🖵 Gain:Low	Trig: Free Run #Atten: 20 dB		e: Log-Pwr :>100/100	TRACE 2 3 4 TYPE MWWW DET P N N N
) dB/div		Offset 32 dB 120.00 dB	ŧμV				М	kr1 927.648 Mi 108.077 dBi
ng								∮ 1
100							-	
0.0								
0.0								24
0.0						- Arton		
0.0		m		mmmm	man man and a second			
0.0								
0.0								
tart 926 Res BW				VBW	1.0 MHz		Sweep	Stop 928.000 M 1.000 ms (1001 p
Res BW	100	(Hz	x	Ý	FUNCTION	FUNCTION WIDTH		Stop 928.000 M 1.000 ms (1001 p ICTION VALUE
Res BW	RC SCL 1 f 1 f	(Hz (Δ)	927.648 MHz 352 kHz	γ 108.077 d (Δ) -41.123	FUNCTION BUV 3 dB	FUNCTION WIDTH		1.000 ms (1001 p
Res BW	RC SCL 1 f 1 f	(Hz (Δ)	927.648 MHz	γ 108.077 d (Δ) -41.123	FUNCTION BUV 3 dB	FUNCTION WIDTH		1.000 ms (1001 p
Res BW	RC SCL 1 f 1 f	(Hz (Δ)	927.648 MHz 352 kHz	γ 108.077 d (Δ) -41.123	FUNCTION BUV 3 dB	FUNCTION WIDTH		1.000 ms (1001 p
Res BW	RC SCL 1 f 1 f	(Hz (Δ)	927.648 MHz 352 kHz	γ 108.077 d (Δ) -41.123	FUNCTION BUV 3 dB	FUNCTION WIDTH		1.000 ms (1001 p
Res BW	RC SCL 1 f 1 f	(Hz (Δ)	927.648 MHz 352 kHz	γ 108.077 d (Δ) -41.123	FUNCTION BUV 3 dB	FUNCTION WIDTH		1.000 ms (1001 p

4.6 CARRIER FREQUENCY SEPARATION, NUMBER OF HOPPING CHANNELS, TIME OF OCCUPANCY

Test Method: ANSI C63.10, Section 7.8.2, 7.8.3, 7.8.4

Limits for Time of Occupancy

Average time of occupancy on any frequency should not exceed 0.4 seconds within a 20 second period.

Test procedures: The method from FCC DA 00-705

Test setup: Radiated measurements.

EUT operating conditions:

The EUT was powered by USB and set to Hopping mode (which requires a 2nd device).

Test results:

On time recorded was 280.8ms

Time of Occupancy = 280.8ms < 400ms (15.247 Limit)

Total Hop Count = 168 Channels (as attested by the customer)

Frequency Separation: Customer attests that the minimum frequency separation meets the requirements:

Separation: 150kHz 20dB Bandwidth: 144.8kHz

_ . . .

Rev

В

Prepared for: Lynq Technologies

Channel Number	Frequency (MHz)	Channel Number	Frequency (MHz)	Channel Number	Frequency (MHz)
1	902.475	57	910.875	113	919.27
2	902.625	58	911.025	114	919.42
3	902.775	59	911.175	115	919.57
4	902.925	60	911.325	116	919.72
5	903.075	61	911.475	117	919.87
6	903.225	62	911.625	118	920.02
7	903.375	63	911.775	119	920.17
8	903.525	64	911.925	120	920.32
9	903.675	65	912.075	121	920.47
10	903.825	66	912.225	122	920.62
11	903.975	67	912.375	123	920.7
12	904.125	68	912.525	124	920.92
13	904.275	69	912.675	125	921.0
14	904.425	70	912.825	126	921.2
15	904.575	71	912.975	127	921.3
16	904.725	72	913.125	128	921.5
17	904.875	73	913.275	129	921.6
18	905.025	74	913.425	130	921.8
19	905.175	75	913.575	131	921.9
20	905.325	76	913.725	132	922.1
21	905.475	77	913.875	133	922.2
22	905.625	78	914.025	134	922.4
23	905.775	79	914.175	135	922.5
24	905.925	80	914.325	136	922.7
25	906.075	81	914.475	137	922.8
26	906.225	82	914.625	138	923.0
27	906.375	83	914.775	139	923.1
28	906.525	84	914.925	140	923.3
29	906.675	85	915.075	141	923.4
30	906.825	86	915.225	142	923.6
31	906.975	87	915.375	143	923.7
32	907.125	88	915.525	144	923.9
33	907.275	89	915.675	145	924.0
34	907.425	90	915.825	146	924.2
35	907.575	91	915.975	147	924.3
36	907.725	92	916.125	148	924.5
37	907.875	93	916.275	149	924.6
38	908.025	94	916.425	150	924.8
39	908.175	95	916.575	151	924.9
40	908.325	96	916.725	152	925.1
41	908.475	97	916.875	153	925.2
42	908.625	98	917.025	154	925.4
43	908.775	99	917.175	155	925.5
44	908.925	100	917.325	156	925.7
45		101	917.475	157	925.8
46		102	917.625	158	926.0
47	909.375	103		159	926.1
48		104	917.925	160	926.3
49		105	918.075	161	926.4
50		106	918.225	162	926.6
51	909.975	107	918.375	162	926.7
52		107	918.525	163	926.9
53		109	918.675	165	927.0
54		110	918.825	165	927.2
55		110	918.975	160	927.2
56		112	919.125	167	927.5

		nalyzer - Swept SA			1						
		EL 50 Ω DC 0.760 ms		NO: Wide Gain:Low	Trig	NT SOURCE g Delay-1. g: Video ten: 30 dE	.000 s	ALIGN AUTO Avg Type	: Voltage		8 PM Feb 16, 20 RACE 2 3 4 TYPE WWWW DET P N N N
)dB/div og √r ∧	Ref	0.00 dBm									280.8 m -66.12 d
0.0 0.0											
0.0											TRIG L
).0).0 	2 Δ 1	life to a diamontal and a	t en tille setter av Mark bits	e-tedau lie	de al sel ta constati	and the second second		المربعي والطريقيا فقالم المراجع والمربع والمربعي مربط والمربع والمربع والمربع والمربع	the second second		
enter 91		0000 MHz R) 120 kHz		v	'BW 910	kHz			Swe	ep 21.00 s	Span 0 F (50001 pt
R MODE TR		>			Ý	FUNCTI		FUNCTION WIDTH		FUNCTION VALUE	-8
1 Ν 1 2 Δ1 1 3	t	(Δ)	999.3 ms 280.8 ms		0.59 dBm -66.12 dB						
							ļ	STATUS			>

Figure 17 – On time

4.7 CONDUCTED AC MAINS EMISSIONS

Test Method: ANSI C63.10-2013, Section(s) 6.2

Limits for conducted emissions measurements:

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56	56 to 46	
0.5-5	56	46	
5-30	60	50	

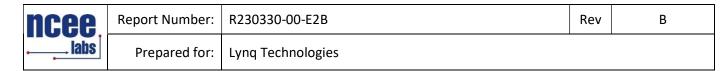
Notes:

1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz

3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

Test Procedures:


- a. The EUT was placed 0.8m above a ground reference plane and 0.4 meters from the conducting wall of a shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). The LISN provides 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference as well as the ground.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels over 10dB under the prescribed limits are not reported.
- d. Results were compared to the 15.207 limits.

Deviation from the test standard:

No deviation

EUT operating conditions:

Details can be found in section 2.1 of this report. USB power supply was used for AC Conducted Emissions.

Test Results:

Figure 18 - Conducted Emissions, Line

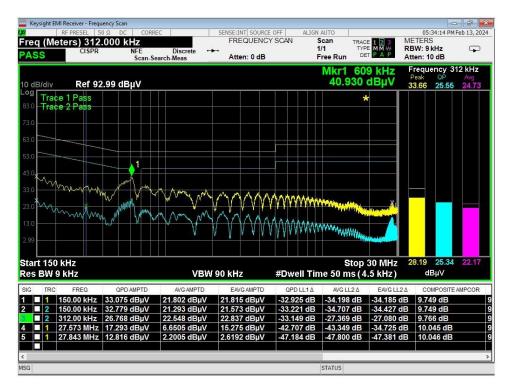


Figure 19 - Conducted Emissions, Neutral

The Nebraska Center for Excellence in Electronics					
4740 Discovery Drive					
Lincoln, NE 68521	Page 30 of 33				

Incee	Report Number:	R230330-00-E2B	Rev	В
	Prepared for:	Lynq Technologies		

APPENDIX A: SAMPLE CALCULATION

Radiated Emissions

The field strength is calculated in decibels (dB) by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = R + AF - (-CF + AG)

where FS = Field Strength

R = Receiver Amplitude Receiver reading in $dB\mu V$

AF = Antenna Factor

CF = Cable Attenuation Factor

AG = Preamplifier Amplifier Gain

Assume a receiver reading of 55.00 dB μ V is obtained. The Antenna Factor of 12.00 and a Cable Factor of 1.10 is added. The Amplifier Gain of 20 dB is subtracted, giving a field strength of 48.10 dB μ V/m.

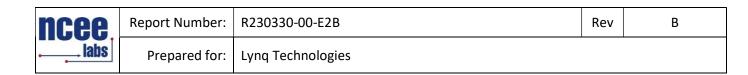
 $FS = 55.00 + 12.00 - (-1.10 + 20.00) = 48.1 \text{ dB}\mu\text{V/m}$

The 48.1 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

Level in $\mu V/m = Common Antilogarithm [(48.1 dB \mu V/m)/20] = 254.1 \mu V/m$

Conducted Emissions

Receiver readings are compared directly to the conducted emissions limits in decibels (dB) by adding the cable loss and LISN insertion loss to the receiver reading. The basic equations with a sample calculation is as follows;


FS = R + IL - (-CF)

where V = Conducted Emissions Voltage Measurement

 $R = Receiver reading in dB\mu V$

IL = LISN Insertion Loss

CF = Cable Attenuation Factor

APPENDIX B – MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels apply to tests performed in this test report:

Test	Frequency Range	NCEE Labs Uncertainty Value (dB)	Maximum Uncertainty Values per CISPR 16-4- 2:2011/A1:2018
AC Line Conducted	150kHz -	3.03	3.60
Emissions	30MHz		
Radiated Emissions, 3m	30MHz - 1GHz	4.19	5.34
Radiated Emissions, 3m	1GHz – 18GHz	5.08	5.48

Expanded uncertainty values are calculated to a confidence level of 95%.

NCEE Labs meets the maximum uncertainty requirements per CISPR 16-4-2:2011/A1:2018, and therefore does not require a minimum passing margin to state that an EUT is less than the field strength limits of the applicable CISPR, IEC or EN limit per CISPR 16-4-2:2011/A1:2018, Section 4.1.

NCEE Labs employs tilting when testing at 3m test distance. The maximum uncertainty associated with this method is used.

Maximum uncertainty values show the worst-case of all test distances used.

ncee.	Report Number:	R230330-00-E2B	Rev	В
	Prepared for:	Lynq Technologies		

REPORT END