

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China

Tel: +86-755-27521059 Fax: +86-755-27521011 Http://www.sz-ctc.org.cn

TEST REPORT

Report No.: CTC20231666E15

FCC ID.....: 2AR24-XBOX

Applicant Shenzhen Absen Optoelectronic Co.,Ltd

No.2018, Xuegang Rd, Bantian, Longgang District, Shenzhen,

Guangdong, P.R. China

Manufacturer...... Shenzhen Absen Optoelectronic Co.,Ltd

No.2018, Xuegang Rd, Bantian, Longgang District, Shenzhen,

Guangdong, P.R. China

Product Name: LED Multimedia Processor

Trade Mark Absen

Model/Type reference....: X-Box

Listed Model(s) /

Standard: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of receipt of test sample........ Aug. 18, 2023

Date of testing...... Aug. 19, 2023 ~ Dec. 3, 2023

Date of issue...... Aug. 09, 2024

Result.....: PASS

Compiled by:

(Printed name+signature) Lucy Lan

, ,

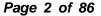
Supervised by:

(Printed name+signature) Eric Zhang

Approved by:

(Printed name+signature) Totti Zhao

Testing Laboratory Name: CTC Laboratories, Inc.


Address...... Room 101 Building B, No. 7, Lanqing 1st Road, Luhu

Community, Guanhu Subdistrict, Longhua District, Shenzhen,

Lucy lan Zic Zhang Jeanso

Guangdong, China

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The Test Result in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely corresponds to the test sample.

Table of Contents

Page

Report No.: CTC20231666E15

1. TE	EST SUMMARY	3
1.1.	TEST STANDARDS	3
1.2.	REPORT VERSION	3
1.3.	TEST DESCRIPTION	3
1.4.	TEST FACILITY	4
1.5.	Measurement Uncertainty	5
1.6.	Environmental Conditions	5
2. GE	ENERAL INFORMATION	6
2.1.	CLIENT INFORMATION	6
2.2.	GENERAL DESCRIPTION OF EUT	6
2.3.	ACCESSORY EQUIPMENT INFORMATION	7
2.4.	Operation State	8
2.5.	Measurement Instruments List	9
3. TE	EST ITEM AND RESULTS	10
3.1.	CONDUCTED EMISSION	10
3.2.	RADIATED EMISSION	13
3.3.	BAND EDGE EMISSIONS (RADIATED)	30
3.4.	BAND EDGE AND SPURIOUS EMISSIONS (CONDUCTED)	47
3.5.	DTS BANDWIDTH	64
3.6.	OUTPUT POWER	74
3.7.	Power Spectral Density	76
3.8.	DUTY CYCLE	80
3.9.	Antenna Requirement	86

Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Page 3 of 86

Report No.: CTC20231666E15

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands 902–928MHz, 2400–2483.5MHz, and 5725–5850MHz.

ANSI C63.10-2013: American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

1.2. Report Version

Revised No.	Report No.	Date of issue	Description
01	CTC20231666E15	Aug. 09, 2024	Original

1.3. Test Description

FCC Part 15 Subpart C (15.247)					
Test Item	Result	Test Engineer			
Antenna Requirement	15.203	Pass	Lucy Lan		
Conducted Emission	15.207	Pass	Lucy Lan		
Conducted Band Edge and Spurious Emissions	15.247(d)	Pass	Lucy Lan		
Radiated Band Edge and Spurious Emissions	15.205&15.209& 15.247(d)	Pass	Lucy Lan		
6dB Bandwidth	15.247(a)(2)	Pass	Lucy Lan		
Conducted Max Output Power	15.247(b)(3)	Pass	Lucy Lan		
Power Spectral Density	15.247(e)	Pass	Lucy Lan		
Transmitter Radiated Spurious	15.209&15.247(d)	Pass	Lucy Lan		

Note:

- 1. The measurement uncertainty is not included in the test result.
- 2. N/A: means this test item is not applicable for this device according to the technology characteristic of device.

CTC Laboratories, Inc.

Page 4 of 86

Report No.: CTC20231666E15

1.4. Test Facility

Address of the report laboratory

CTC Laboratories, Inc.

Add: Room 101 of Building B, Room 107, 108, 207, 208 of Building A, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 951311, Aug 26, 2017.

Accreditation Administration of the People's Republic of China: http://yz.cnca.cn

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

Test Items	Measurement Uncertainty	Notes
DTS Bandwidth	±0.0196%	(1)
Maximum Conducted Output Power	±0.686 dB	(1)
Maximum Power Spectral Density Level	±0.743 dB	(1)
Band-edge Compliance	±1.328 dB	(1)
Unwanted Emissions In Non-restricted Freq Bands	9kHz-1GHz: ±0.746dB 1GHz-26GHz: ±1.328dB	(1)
Conducted Emissions 9kHz~30MHz	±3.08 dB	(1)
Radiated Emissions 30~1000MHz	±4.51 dB	(1)
Radiated Emissions 1~18GHz	±5.84 dB	(1)
Radiated Emissions 18~40GHz	±6.12 dB	(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.6. Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15 °C to 35 °C
Relative Humidity:	20 % to 75 %
Air Pressure:	101 kPa

Page 6 of 86

Report No.: CTC20231666E15

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	Shenzhen Absen Optoelectronic Co.,Ltd		
Address:	18-20/F, Tower A, Building 3, Phase I, Tian An Cloud Park, N0.2018, Xuegang Rd, Bantian, Longgang District, Shenzhen, Guangdong, P.R. China		
Manufacturer: Shenzhen Absen Optoelectronic Co.,Ltd			
Address:	18-20/F, Tower A, Building 3, Phase I, Tian An Cloud Park, N0.2018, Xuegang Rd, Bantian, Longgang District, Shenzhen, Guangdong, P.R. China		
Factory:	Huizhou Absen Optoelectronic Limited.		
Address:	No. 03, Donghua South road, Dongjiang Hi-tech Industry Park, Huizhou. Guangdong, China		

2.2. General Description of EUT

Product Name:	LED Multimedia Processor
Trade Mark:	Absen
Model/Type reference:	X-Box
Listed Model(s):	/
Model Difference:	/
Power Supply:	AC 100-240V~2.6A 50/60Hz
RF Module Model:	BL-M8811CU2
Hardware Version:	/
Software Version:	/
2.4G Wi-Fi	
Modulation:	802.11b: DSSS (CCK, DQPSK, DBPSK) 802.11g/ n: OFDM (BPSK, QPSK, 16QAM, 64QAM)
Operation Frequency:	802.11b/ g/ n(HT20): 2412MHz~2462MHz 802.11n(HT40): 2422MHz~2452MHz
Channel Number:	802.11b/ g/ n(HT20): 11 channels 802.11n(HT40): 7 channels
Channel Separation:	5MHz
Antenna Type:	PCB Antenna
Antenna Gain:	2.14dBi

2.3. Accessory Equipment Information

Equipment Information							
Name Model S/N Manufacturer							
Notebook ThinkPad T460s / Lenovo		Lenovo					
Cable Information	Cable Information						
Name Shielded Type Ferrite Core Length							
USB Cable	Unshielded	NO	150cm				
Test Software Information							
Name	Version	/	1				
adb.exe	/	/	/				

Accreditation Administration of the People's Republic of China: http://yz.cnca.cn

2.4. Operation State

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing.

Operation Frequency List:

Channel	Frequency (MHz)
01	2412
02	2417
03	2422
04	2427
05	2432
06	2437
07	2442
08	2447
09	2452
10	2457
11	2462

Note: CH 01~CH 11 for 802.11b/g/n(HT20), CH 03~CH 09 for 802.11n(HT40)

Data Rated:

Preliminary tests were performed in different data rate, and found which the below bit rate is worst case mode, so only show data which it is the worsted case mode.

Test Mode	Data Rate (worst mode)	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(HT20)/n(HT40)	HT-MCS0	

Test Mode:

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

CTC Laboratories, Inc.

2.5. Measurement Instruments List

RF Tes	RF Test System							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until			
1	Spectrum Analyzer	R&S	FSV40-N	101654	Aug. 07, 2024			
2	High and low temperature test chamber	ESPEC	MT3035	/	Mar. 24, 2024			
3	Test Software	WCS	WCS-WCN	2023.08.04	/			

Radiate	Radiated Emission (3m chamber 3)						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until		
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9163	01026	Dec. 18, 2024		
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Dec. 01, 2024		
3	Test Receiver	Keysight	N9038A	MY56400071	Dec. 16, 2023		
4	Broadband Amplifier	SCHWARZBECK	BBV9743B	259	Dec. 16, 2023		
5	Mirowave Broadband Amplifier	SCHWARZBECK	BBV9718C	111	Dec. 16, 2023		
6	3m chamber 3	YIHENG	EE106	/	Aug. 28, 2026		
7	Test Software	FARA	EZ-EMC	FA-03A2	/		

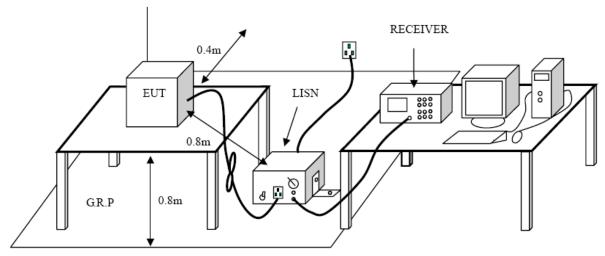
Conduc	cted Emission					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until	
1	LISN	ENV216	101112	Dec. 16, 2023		
2	LISN	R&S	ENV216	101113	Dec. 16, 2023	
3	EMI Test Receiver	R&S	ESCS30	100353	Dec. 16, 2023	
4	ISN CAT6	Schwarzbeck	NTFM 8158	CAT6-8158-0046	Dec. 16, 2023	
5	ISN CAT5	Schwarzbeck	NTFM 8158	CAT5-8158-0046	Dec. 16, 2023	
6	Test Software	R&S	EMC32	6.10.10	/	

Note: 1. The Cal. Interval was one year.

- 2. The Cal. Interval was three years of the antenna.
- 3. The cable loss has been calculated in test result which connection between each test instruments.

3. TEST ITEM AND RESULTS

3.1. Conducted Emission


<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207

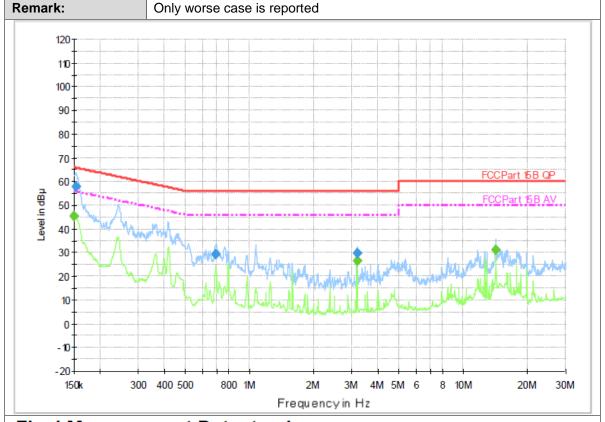
Fraguency (MHz)	Conducted Limit (dBµV)						
Frequency (MHz)	Quasi-peak	Average					
0.15 - 0.5	66 to 56 *	56 to 46 *					
0.5 - 5	56	46					
5 - 30	60	50					

^{*} Decreases with the logarithm of the frequency.

Test Configuration

Test Procedure

- The EUT was setup according to ANSI C63.10:2013 requirements.
- The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting 2. ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50 ohm / 50 µH coupling impedance for the measuring equipment.
- The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a 7. receiver bandwidth of 9 kHz.
- During the above scans, the emissions were maximized by cable manipulation.


Test Mode

Please refer to the clause 2.4.

Test Result

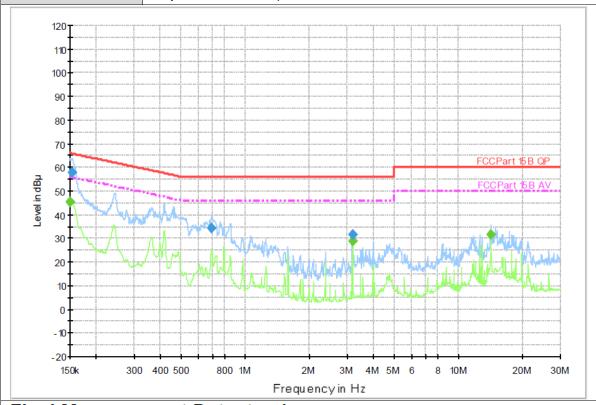
Test Voltage:	AC 120V/60Hz
Terminal:	Line

Final Measurement Detector 1

		- u - u - u - u - u - u - u - u - u - u	· · · · · ·							
	Frequency (MHz)	QuasiPeak	Meas.	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin	Limit	Comment
- 1	(IVITZ)	(dB µ V)	Time	(K□Z)			(ub)	(dB)	(dB μ	
			(ms)						V)	
	0.153020	58.0	1000.00	9.000	On	L1	9.4	7.8	65.8	
	0.694760	29.2	1000.00	9.000	On	L1	9.5	26.8	56.0	
	3.167000	29.8	1000.00	9.000	On	L1	9.5	26.2	56.0	

Final Measurement Detector 2

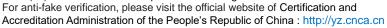
			=						
Frequency	Average	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
(MHz)	(dB μ V)	Time	(kHz)			(dB)	(dB)	(dB μ	
		(ms)						V)	
0.150000	45.3	1000.00	9.000	On	L1	9.4	10.7	56.0	
3.167000	26.4	1000.00	9.000	On	L1	9.5	19.6	46.0	
14.151110	31.1	1000.00	9.000	On	L1	9.8	18.9	50.0	


Emission Level = Read Level + Correct Factor

Test Voltage: AC 120V/60Hz

Terminal: Neutral

Remark: Only worse case is reported


Final Measurement Detector 1

Frequency (MHz)	QuasiPeak (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)	Comment
0.154250	57.9	1000.00	9.000	On	N	9.3	8.0	65.8	
0.694760	34.5	1000.00	9.000	On	N	9.4	21.5	56.0	
3.167000	31.4	1000.00	9.000	On	N	9.4	24.6	56.0	

Final Measurement Detector 2

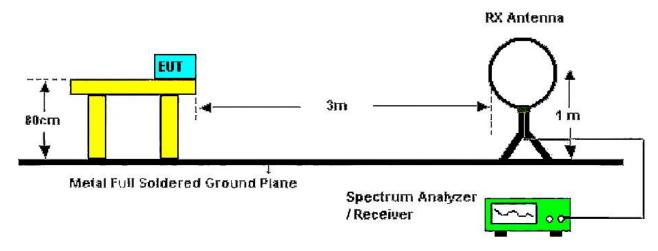
Frequency (MHz)	Average (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)	Comment
0.150600	45.5	1000.00	9.000	On	N	9.3	10.5	56.0	
3.167000	28.7	1000.00	9.000	On	N	9.4	17.3	46.0	
14.151110	31.6	1000.00	9.000	On	N	9.6	18.4	50.0	

Emission Level = Read Level + Correct Factor

3.2. Radiated Emission

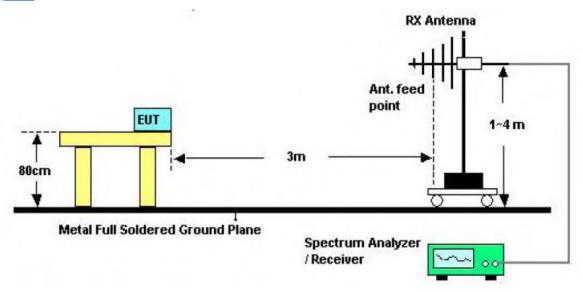
<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209

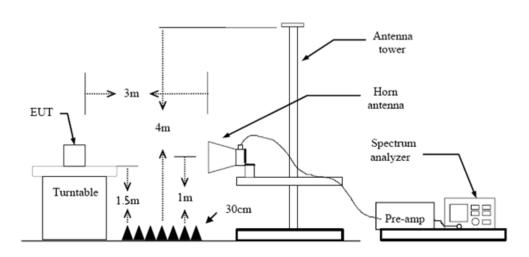

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F (kHz)	300
0.490~1.705	24000/F (kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Fraguency Panga (MHz)	dBµV/m (at 3 meters)					
Frequency Range (MHz)	Peak	Average				
Above 1000	74	54				

Note:


- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBμV/m)=20log Emission Level (μV/m).

Test Configuration



Below 30MHz Test Setup

30-1000MHz Test Setup

Above 1GHz Test Setup

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
- (1) Span shall wide enough to fully capture the emission being measured;
- (2) 9k 150kHz:

RBW=300 Hz, VBW=1 kHz, Sweep=auto, Detector function=peak, Trace=max hold

(3) 0.15M - 30MHz:

RBW=10 kHz, VBW=30 kHz, Sweep=auto, Detector function=peak, Trace=max hold

(4) 30M - 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the

peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Report No.: CTC20231666E15

(5) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.8 Duty Cycle.

Test Mode

Please refer to the clause 2.4.

Test Result

9 kHz~30 MHz

From 9 kHz to 30 MHz: The conclusion is PASS.

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Ant. No.	Ant 1											
Ant. Pol.	Horizontal											
Test Mode:	TX 802.11b Mode 2412MHz											
Remark:	Only worse case is reported.											
90.0 dBuV/m												
80												
70												
60	FCC Part15 RE-Class B 30-1000M											
50	Margin -6 dB											
30												
20												
10	What was the state of the state											
0												
-10 30.000 60	0.00 (MHz) 300.00 1000.00											

No.	Frequency (MHz)	Reading (dBuV)	<u> </u>			Margin (dB)	Detector
1	172.9133	54.29	-18.33	35.96	43.50	-7.54	QP
2!	214.6233	53.12	-15.54	37.58	43.50	-5.92	QP
3	381.7867	51.00	-11.39	39.61	46.00	-6.39	QP
4	415.0900	49.03	-10.88	38.15	46.00	-7.85	QP
5	496.5700	48.84	-9.36	39.48	46.00	-6.52	QP
6 *	812.4667	44.51	-4.15	40.36	46.00	-5.64	QP

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

An	t. No.			Aı	nt 1												
An	t. Pol.			Ve	ertic	al											
Tes	st Mode):		T	X 80	2.11	b Mode	2412MH	Z								
Re	Remark:					Only worse case is reported.											
90.0) dBu√,	/m															ı
80																	
70																	
60											FCC Pa	rt15 RE	-Clas	s B 3	0-1000)M	
50											Margin	6 dB		ď		<u> </u>	
40									<u>_</u>		. 1	2 3 X N	!	X Juli	* *		
30						_		<u> </u>	Mi.	المح	.		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	YYY WA	hunner and	ght of the	
20	www	What	My	Mu.	ik	١,	J. Hran Halled and Jah	الموالم المحام	A . NAM	/"WW	MARAN T	U					
10	4444		.,,.		MUT)	of the Parket	Milako. L	WIND I									
0																	
-10 3	0.000		61	0.00				(MHz)	30	00.00					100	0.00
								,									

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	214.6233	52.16	-15.54	36.62	43.50	-6.88	QP
2	413.4733	48.54	-10.90	37.64	46.00	-8.36	QP
3	468.7633	49.58	-9.92	39.66	46.00	-6.34	QP
4!	500.1267	49.47	-9.29	40.18	46.00	-5.82	QP
5 *	624.9333	48.39	-6.81	41.58	46.00	-4.42	QP
6	812.4667	42.44	-4.15	38.29	46.00	-7.71	QP

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11b Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4823.588	40.15	2.11	42.26	74.00	-31.74	peak
2 *	4824.002	26.99	2.11	29.10	54.00	-24.90	AVG

Remarks:

 $1. Factor \ (dB/m) = Antenna \ Factor \ (dB/m) + Cable \ Factor \ (dB) - Pre-amplifier \ Factor$

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11b Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
	1	4823.771	41.35	2.11	43.46	74.00	-30.54	peak
Γ	2 *	4823.971	33.22	2.11	35.33	54.00	-18.67	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11b Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4873.865	25.35	2.18	27.53	54.00	-26.47	AVG
2	4874.567	39.14	2.18	41.32	74.00	-32.68	peak

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11b Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector
1 *	4873.983	29.53	2.18	31.71	54.00	-22.29	AVG
2	4874.037	40.29	2.18	42.47	74.00	-31.53	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11b Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4923.911	24.95	2.26	27.21	54.00	-26.79	AVG
2	4924.505	39.22	2.26	41.48	74.00	-32.52	peak

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11b Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4923.845	26.70	2.26	28.96	54.00	-25.04	AVG
2	4924.152	41.24	2.26	43.50	74.00	-30.50	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11g Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)			Detector
1	4823.751	40.67	2.11	42.78	74.00	-31.22	peak
2 *	4824.808	23.95	2.11	26.06	54.00	-27.94	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11g Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4824.003	39.83	2.11	41.94	74.00	-32.06	peak
2 *	4824.651	24.23	2.11	26.34	54.00	-27.66	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11g Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4873.583	24.05	2.18	26.23	54.00	-27.77	AVG
2	4874.759	39.08	2.18	41.26	74.00	-32.74	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11g Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4874.569	40.54	2.18	42.72	74.00	-31.28	peak
2 *	4874.721	24.07	2.18	26.25	54.00	-27.75	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11g Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4923.192	39.72	2.25	41.97	74.00	-32.03	peak
2 *	4924.495	23.15	2.26	25.41	54.00	-28.59	AVG

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11g Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4924.619	23.56	2.26	25.82	54.00	-28.18	AVG
2	4924.960	38.99	2.26	41.25	74.00	-32.75	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4823.253	24.14	2.10	26.24	54.00	-27.76	AVG
2	4823.685	39.67	2.11	41.78	74.00	-32.22	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)			Detector
1	4823.912	39.17	2.11	41.28	74.00	-32.72	peak
2 *	4824.256	24.58	2.11	26.69	54.00	-27.31	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4873.281	24.04	2.18	26.22	54.00	-27.78	AVG
2	4874.361	39.54	2.18	41.72	74.00	-32.28	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.471	38.84	2.18	41.02	74.00	-32.98	peak
2 *	4874.727	24.32	2.18	26.50	54.00	-27.50	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4923.868	40.82	2.26	43.08	74.00	-30.92	peak
2 *	4924.113	23.41	2.26	25.67	54.00	-28.33	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4923.031	38.64	2.25	40.89	74.00	-33.11	peak
2 *	4923.875	24.56	2.26	26.82	54.00	-27.18	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 2422MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4843.861	24.56	2.13	26.69	54.00	-27.31	AVG
2	4844.459	40.25	2.13	42.38	74.00	-31.62	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT40) Mode 2422MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4843.562	24.33	2.13	26.46	54.00	-27.54	AVG
2	4843.567	39.01	2.13	41.14	74.00	-32.86	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4873.131	24.91	2.18	27.09	54.00	-26.91	AVG
2	4873.815	38.82	2.18	41.00	74.00	-33.00	peak

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT40) Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4874.456	40.59	2.18	42.77	74.00	-31.23	peak
2 *	4874.897	24.07	2.18	26.25	54.00	-27.75	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 2452MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4903.189	39.15	2.21	41.36	74.00	-32.64	peak
2 *	4903.501	23.74	2.22	25.96	54.00	-28.04	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

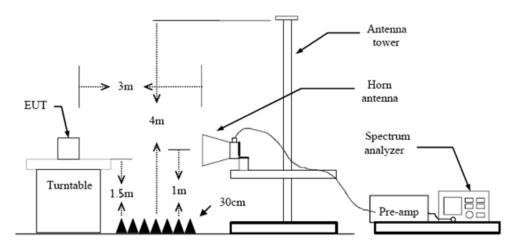
2.Margin value = Level -Limit value

Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT40) Mode 2452MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4903.497	40.00	2.22	42.22	74.00	-31.78	peak
2 *	4904.377	23.47	2.22	25.69	54.00	-28.31	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


3.3. Band Edge Emissions (Radiated)

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d)

Restricted Frequency Band	(dBµV/m) (at 3m)				
(MHz)	Peak	Average			
2310 ~ 2390	74	54			
2483.5 ~ 2500	74	54			

Test Configuration

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- 5. The receiver set as follow:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.8 Duty Cycle.

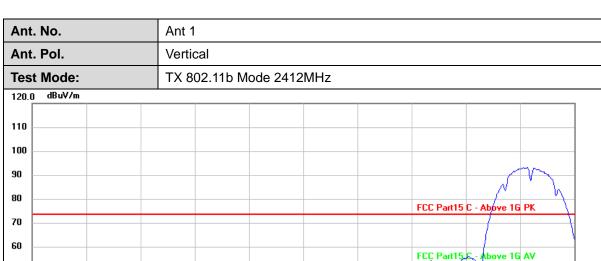
Test Mode

Please refer to the clause 2.4.

Test Result

Ant. No.	Ant 1				
Ant. Pol.	Horizontal				
Test Mode:	TX 802.11b Mode 2412MHz				
20.0 dBuV/m					
110					
100					
90					
80	FCC Part15 C - Above 1G PK				
70					
60	FCC Part/15 C, Above 1G AV				
50	* /				
40	3				
30					
20					
10					
0.0 2302.800 2314.80	2326.80 2338.80 2350.80 (MHz) 2374.80 2386.80 2398.80 2410.80 2422.80				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	17.14	31.31	48.45	74.00	-25.55	peak
2 *	2390.000	6.02	31.31	37.33	54.00	-16.67	AVG


Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2421.60

2409.60

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	18.64	31.31	49.95	74.00	-24.05	peak
2 *	2390.000	4.69	31.31	36.00	54.00	-18.00	AVG

(MHz)

2373.60

2385.60

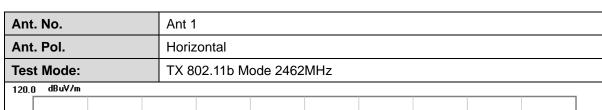
2397.60

Remarks:

2301.600 2313.60

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

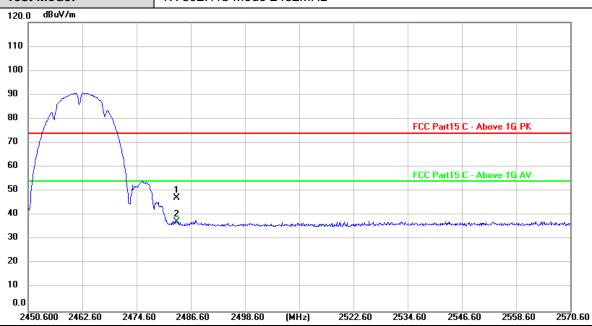
2349.60


2337.60

2325.60

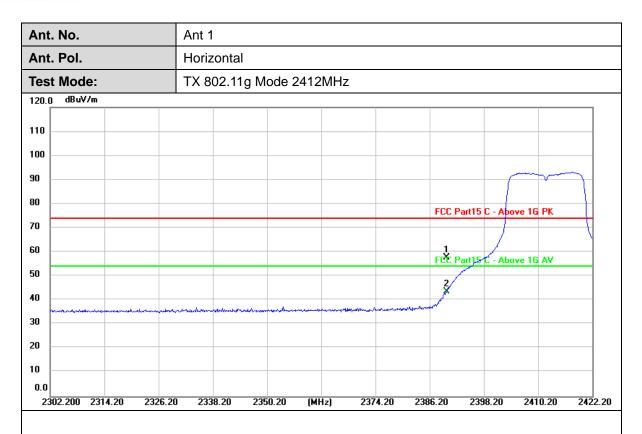
2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	17.20	31.48	48.68	74.00	-25.32	peak
2 *	2483.500	6.80	31.48	38.28	54.00	-15.72	AVG

Remarks:

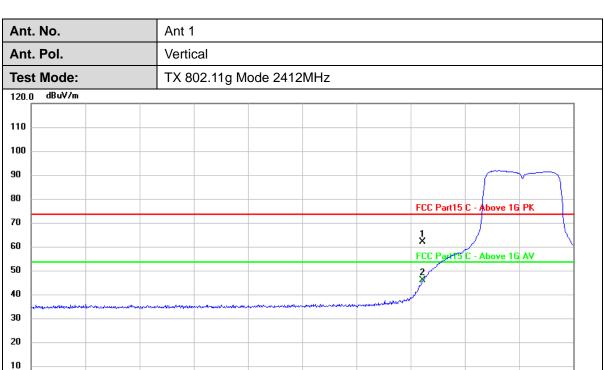
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


Ant. No. Ant 1 Ant. Pol. Vertical **Test Mode:** TX 802.11b Mode 2462MHz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	15.67	31.48	47.15	74.00	-26.85	peak
2 *	2483.500	5.88	31.48	37.36	54.00	-16.64	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1	2390.000	26.32	31.31	57.63	74.00	-16.37	peak	
2 *	2390.000	12.28	31.31	43.59	54.00	-10.41	AVG	


Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2423.20

2411.20

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	31.33	31.31	62.64	74.00	-11.36	peak
2 *	2390.000	15.39	31.31	46.70	54.00	-7.30	AVG

(MHz)

2375.20

2387.20

2399.20

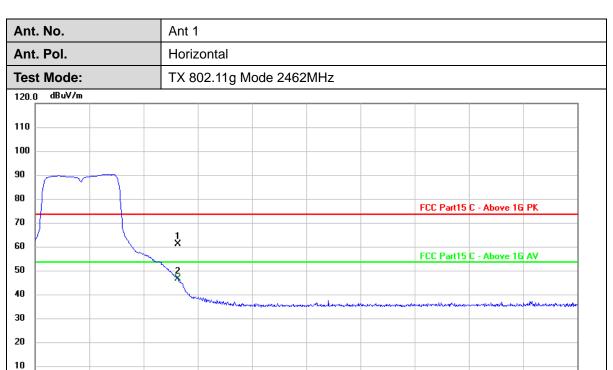
Remarks:

0.0

2303.200 2315.20

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2351.20


2339.20

2327.20

2571.80

2559.80

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	30.21	31.48	61.69	74.00	-12.31	peak
2 *	2483.500	15.77	31.48	47.25	54.00	-6.75	AVG

(MHz)

2523.80

2535.80

2547.80

Remarks:

0.0

2451.800 2463.80

2475.80

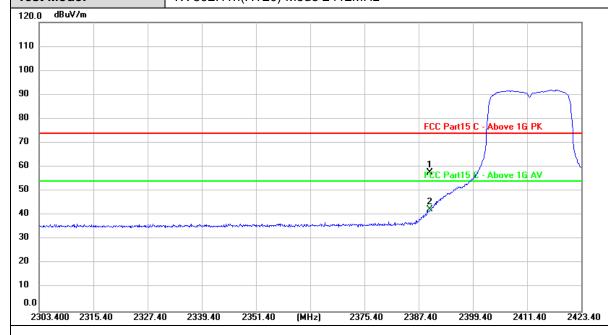
2487.80

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2499.80

Ant. No.

Report No.: CTC20231666E15 Ant 1 Vertical



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	25.51	31.48	56.99	74.00	-17.01	peak
2 *	2483.500	9.23	31.48	40.71	54.00	-13.29	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No. Ant 1 Ant. Pol. Horizontal TX 802.11n(HT20) Mode 2412MHz **Test Mode:**

Report No.: CTC20231666E15

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390.000	26.52	31.31	57.83	74.00	-16.17	peak
2 *	2390.000	11.17	31.31	42.48	54.00	-11.52	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant	. No.			Ant											
Ant	. Pol.			Vert	ical					•					
Tes	t Mode:			TX 8	302.11	ln(H	20) N	lode 24	12MH	Z					
120.0) dBuV/m										î				
110															
100															
90														v	_
80											FCC D	15.6		DV	\downarrow
70											FLL Part	15 L -	Above 16	PK	
60											1 X				\
50											FCC Part	15 /2 -	Above 16	AV	
40											3				
30	and granter diseased,	hadrandar and the sea	ugan	annagen gertlem			eccipant of the form	and the same of lands	لوميد سيمتمير ميوم	and the second s					
20															
10															
0.0															

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)		Detector
1	2390.000	28.12	31.31	59.43	74.00	-14.57	peak
2 *	2390.000	14.37	31.31	45.68	54.00	-8.32	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

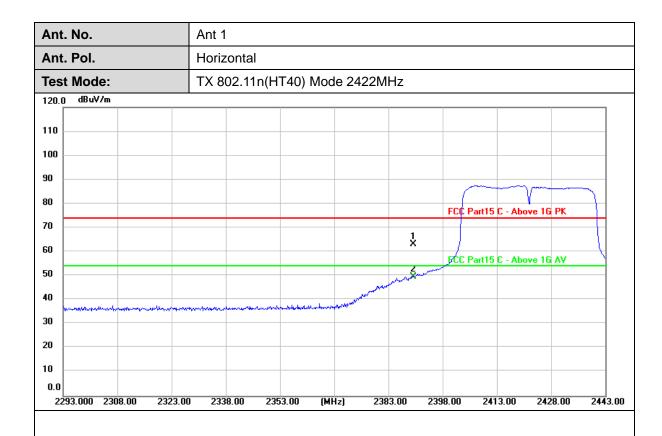
Ant. No. Ant 1

AIIL. NO.		Anti							
Ant. Pol.		Horiz	ontal						
Test Mode:		TX 8	02.11n(F	1T20) Mc	de 2462N	lHz			
120.0 dBuV/m									
110									
00									
10									
10									
							FCC Part15	C - Above 1G	PK
0		1 X							
50							FCC Part15	C - Above 1G	AV
50		2							
10		774	None .						
10			Marken or server	and to the same of the same of the	and the same of th	Market State Company	-4	Anadria Maria Maria	and the earth of a regular
20									
0									
0.0 2450.600 2462	2.60 2474.6	50 2 4 8	6.60 24	198.60 (I	MHz) 25	22.60 253	34.60 2 54	46.60 255	8.60 25

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	2483.500	34.42	31.48	65.90	74.00	-8.10	peak
2	2483.500	12.86	31.48	44.34	54.00	-9.66	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



Ant. No.	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 2462MHz
120.0 dBuV/m	
110	
100	
90	
80	
70	FCC Part15 C - Above 1G PK
60	
50	T FCC Part15 C - Above 1G AV
40	2
30	The water was a second of the
20	
10	
0.0	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	25.05	31.48	56.53	74.00	-17.47	peak
2 *	2483.500	7.23	31.48	38.71	54.00	-15.29	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	31.85	31.31	63.16	74.00	-10.84	peak
2 *	2390.000	18.40	31.31	49.71	54.00	-4.29	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

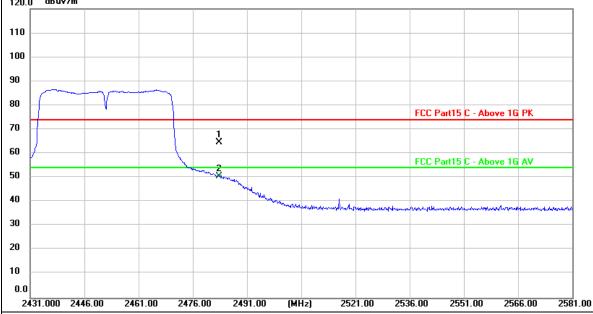
中国国家认证认可监督管理委员会

Ant	. No.		Ant 1							
Ant	. Pol.		Vertic	cal						
Tes	t Mode:		TX 8	02.11n(HT40) N	/lode 2422	MHz			
120.0) dBuV/m									
110										
100										
90										
80										
70							_	FCC Part15	C - Above 10	G PK
60							×			
							2	FCC Part15	C - Above 10	AV
50 40						NAWA	A STATE OF THE STA			
	desperant and a second	بيوريال بروي المارية	tylett rantom et tymber	ylattireedystroseed	and the second second	addings with the total				
20										
10 n n										
0.0	93.000 2308.00	2323.0	n 233	8.00 2	2353.00	(MHz) 2	2383.00 23	398.00 24	13.00 24	28.00 24

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	33.02	31.31	64.33	74.00	-9.67	peak
2 *	2390.000	19.04	31.31	50.35	54.00	-3.65	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



 Ant. No.
 Ant 1

 Ant. Pol.
 Horizontal

 Test Mode:
 TX 802.11n(HT40) Mode 2452MHz

 120.0
 dBuV/m

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	33.30	31.48	64.78	74.00	-9.22	peak
2 *	2483.500	19.05	31.48	50.53	54.00	-3.47	AVG

Remarks

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant. No.	Ant 1	Ant 1 Vertical							
Ant. Pol.	Verti								
Test Mod	TX 8	02.11n(H	IT40) Mod	le 2452M	Hz				
120.0 dBu\	//m								
110									
100									
90									
80	7								
70							FCC Part15	C - Above 1	G PK
60			1 X						
			2				FCC Part15	C - Above 1	G AV
40			Markey	Mary Mary Mark Mark Mark Mark Mark Mark Mark Mark					
30				-	and and the second law and a	happy the same second	er beginning de grander betreit de betreit d	-remain redementary	angan william with the bay an
20									
10									
0.0									

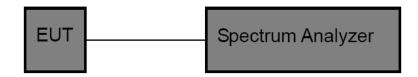
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2483.500	33.80	31.48	65.28	74.00	-8.72	peak
2 *	2483.500	19.63	31.48	51.11	54.00	-2.89	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Page 47 of 86

Report No.: CTC20231666E15


3.4. Band Edge and Spurious Emissions (Conducted)

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Configuration

Test Procedure

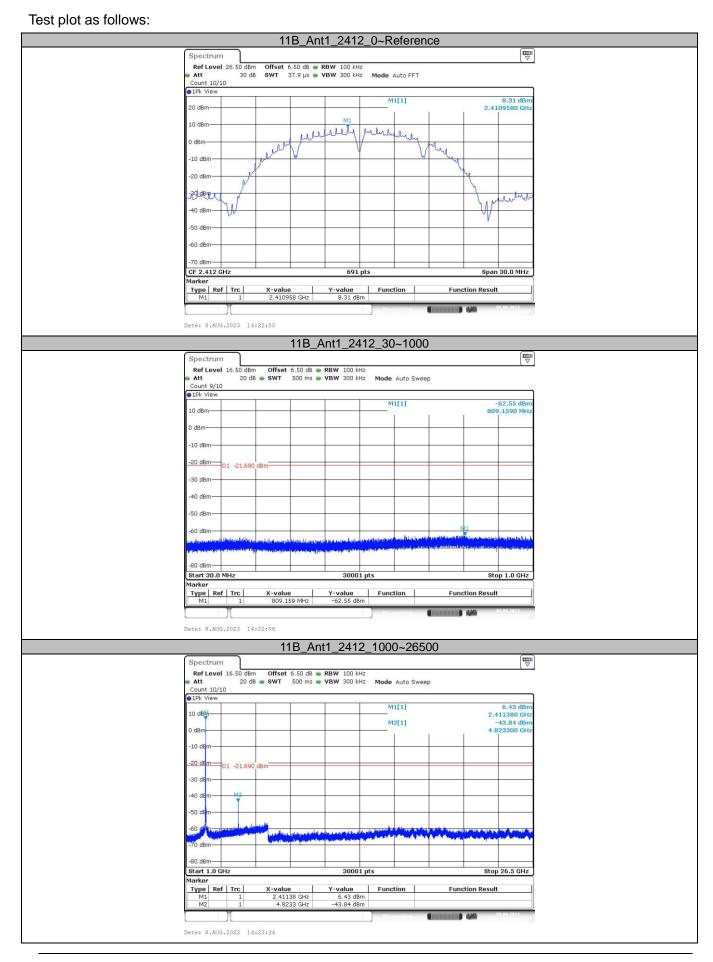
- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings: RBW = 100 kHz, VBW ≥ RBW, scan up through 10th harmonic. Sweep = auto, Detector function = peak, Trace = max hold.
- 4. Measure and record the results in the test report.

Test Mode

Please refer to the clause 2.4.

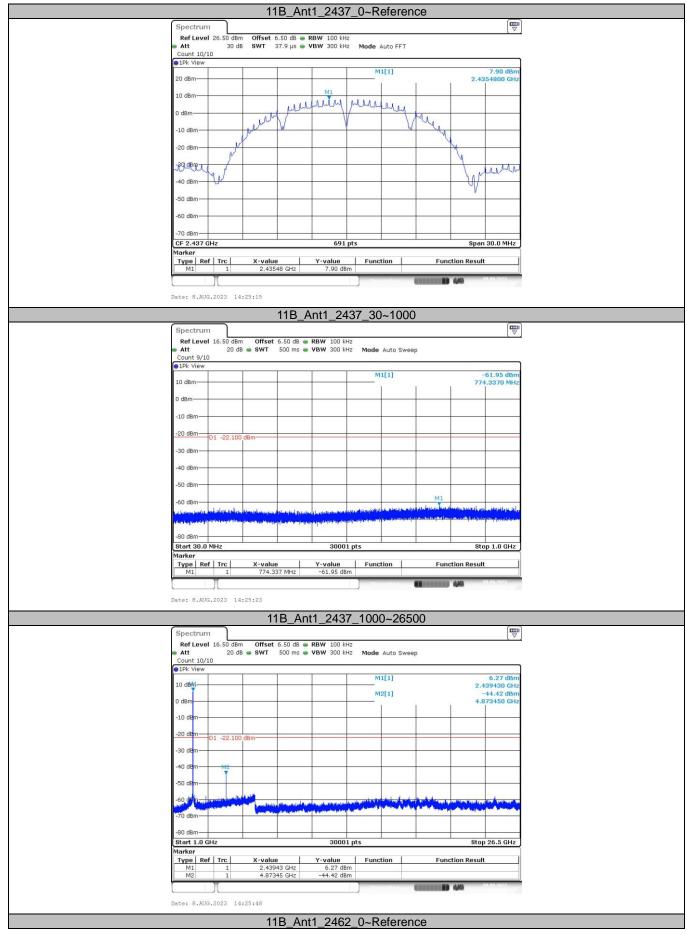
CTC Laboratories, Inc.

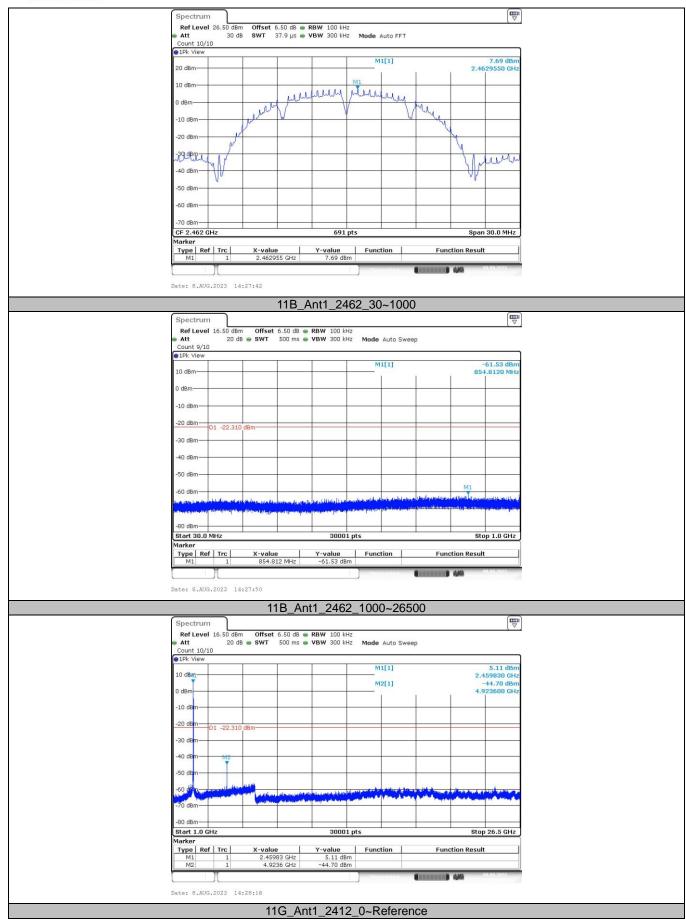
Test Result


Conducted Spurious Emissions Test

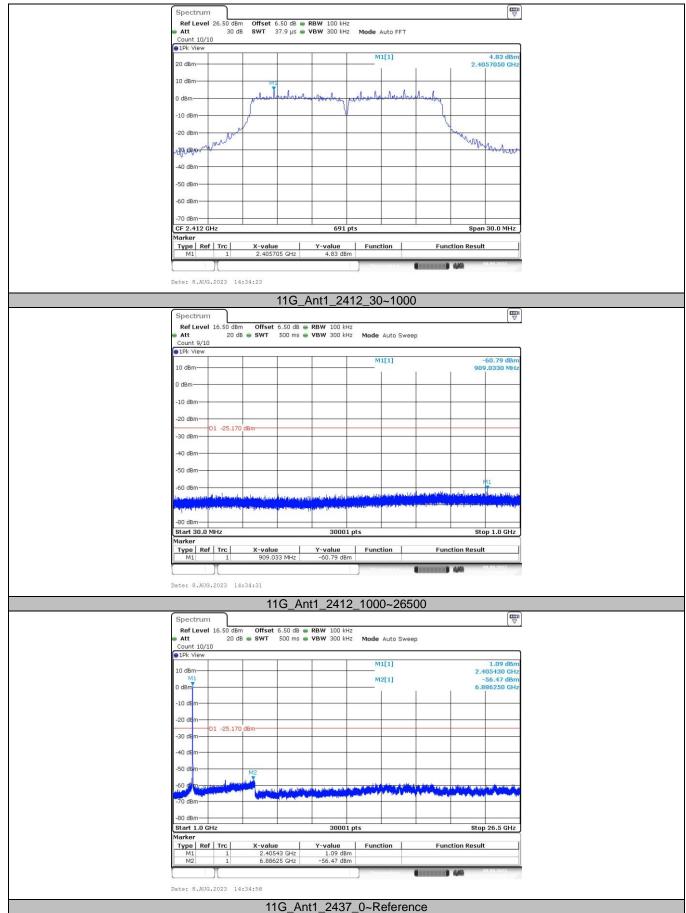
TestMode	Antenna	Frequency[MHz]	FreqRange [Mhz]	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
		2412	Reference	8.31	8.31		PASS
			30~1000	8.31	-62.55	≤-21.69	PASS
			1000~26500	8.31	-43.84	≤-21.69	PASS
			Reference	7.90	7.90		PASS
11B	Ant1	2437	30~1000	7.90	-61.95	≤-22.1	PASS
			1000~26500	7.90	-44.42	≤-22.1	PASS
			Reference	7.69	7.69		PASS
		2462	30~1000	7.69	-61.53	≤-22.31	PASS
			1000~26500	7.69	-44.7	≤-22.31	PASS
			Reference	4.83	4.83		PASS
		2412	30~1000	4.83	-60.79	≤-25.17	PASS
			1000~26500	4.83	-56.47	≤-25.17	PASS
		2437	Reference	4.75	4.75		PASS
11G	Ant1		30~1000	4.75	-61.52	≤-25.25	PASS
			1000~26500	4.75	-55.78	≤-25.25	PASS
		2462	Reference	4.33	4.33		PASS
			30~1000	4.33	-61.96	≤-25.67	PASS
			1000~26500	4.33	-55.44	≤-25.67	PASS
	Ant1	2412 unt1 2437	Reference	4.14	4.14		PASS
			30~1000	4.14	-62.04	≤-25.86	PASS
			1000~26500	4.14	-56.8	≤-25.86	PASS
			Reference	3.89	3.89		PASS
11N20SISO			30~1000	3.89	-61.36	≤-26.11	PASS
			1000~26500	3.89	-56.59	≤-26.11	PASS
			Reference	3.85	3.85		PASS
		2462	30~1000	3.85	-61.69	≤-26.15	PASS
			1000~26500	3.85	-56.97	≤-26.15	PASS
			Reference	1.06	1.06		PASS
		2422	30~1000	1.06	-61.82	≤-28.94	PASS
			1000~26500	1.06	-56.65	≤-28.94	PASS
			Reference	0.87	0.87		PASS
11N40SISO	Ant1	1 2437	30~1000	0.87	-60.48	≤-29.13	PASS
			1000~26500	0.87	-56.86	≤-29.13	PASS
			Reference	0.92	0.92		PASS
		2452	30~1000	0.92	-60.62	≤-29.08	PASS
			1000~26500	0.92	-55.36	≤-29.08	PASS

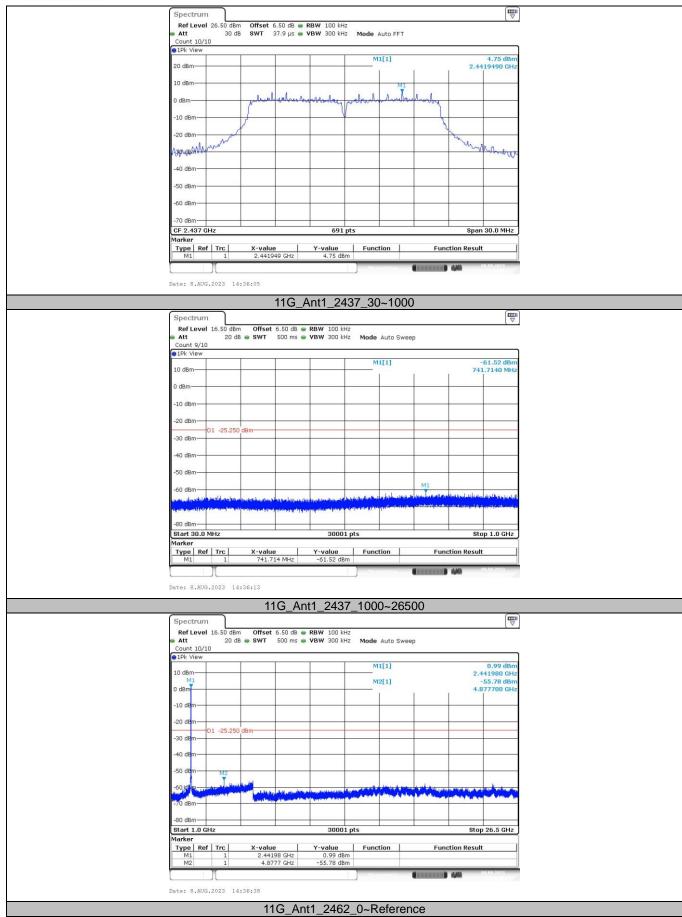
Band Edge Conducted Test

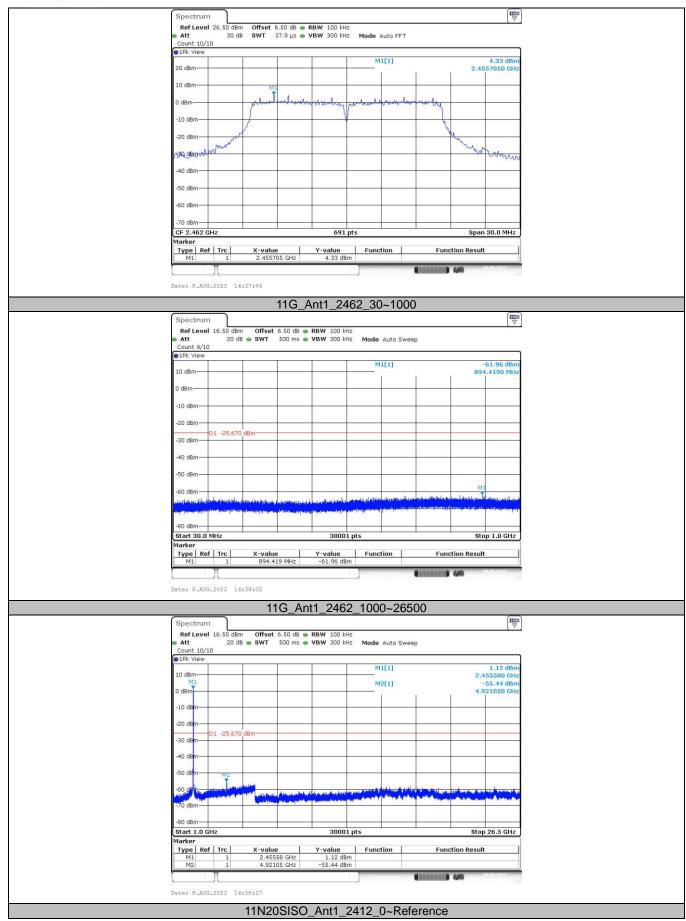

TestMode	Antenna	ChName	Frequency[MHz]	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
11B	Ant1	Low	2412	7.92	-29.67	≤-22.08	PASS
116		High	2462	6.74	-45.91	≤-23.26	PASS
11G	Ant1	Low	2412	1.94	-28.42	≤-28.06	PASS
116		High	2462	2.72	-39.2	≤-27.28	PASS
11N20SISO	Ant1	Low	2412	4.14	-31.78	≤-25.86	PASS
1111203130		High	2462	3.62	-44.03	≤-26.38	PASS
11N40SISO	Ant1	Low	2422	1.02	-31.9	≤-28.98	PASS
1111405150		High	2452	0.87	-31.7	≤-29.13	PASS

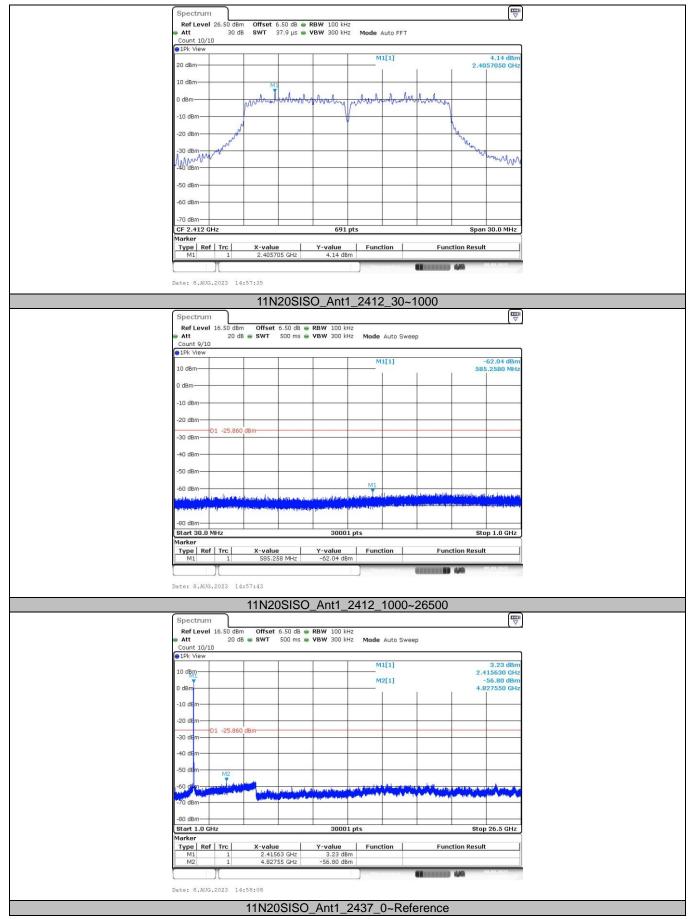


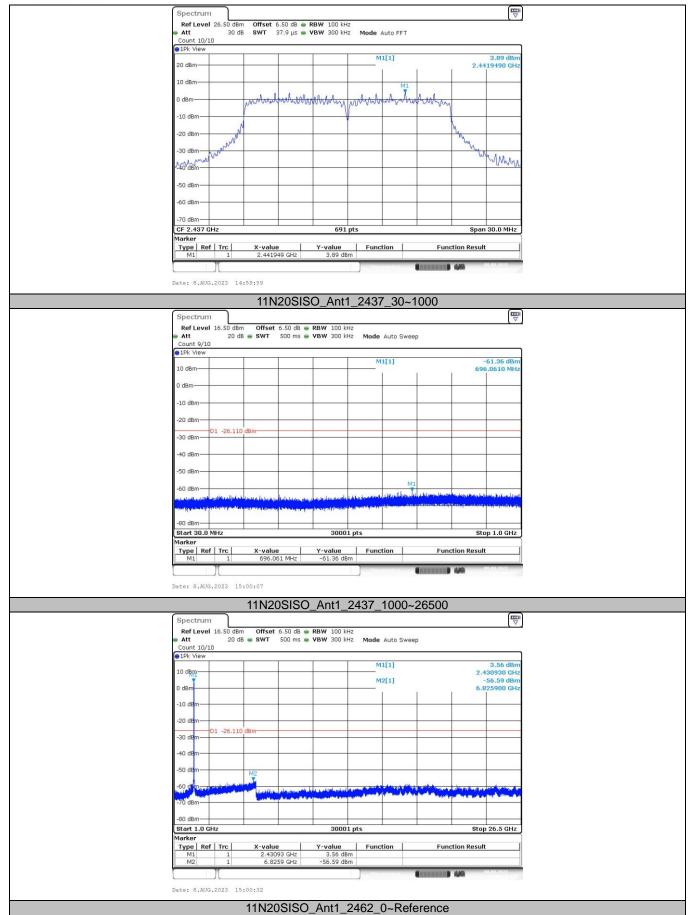
CTC Laboratories, Inc.

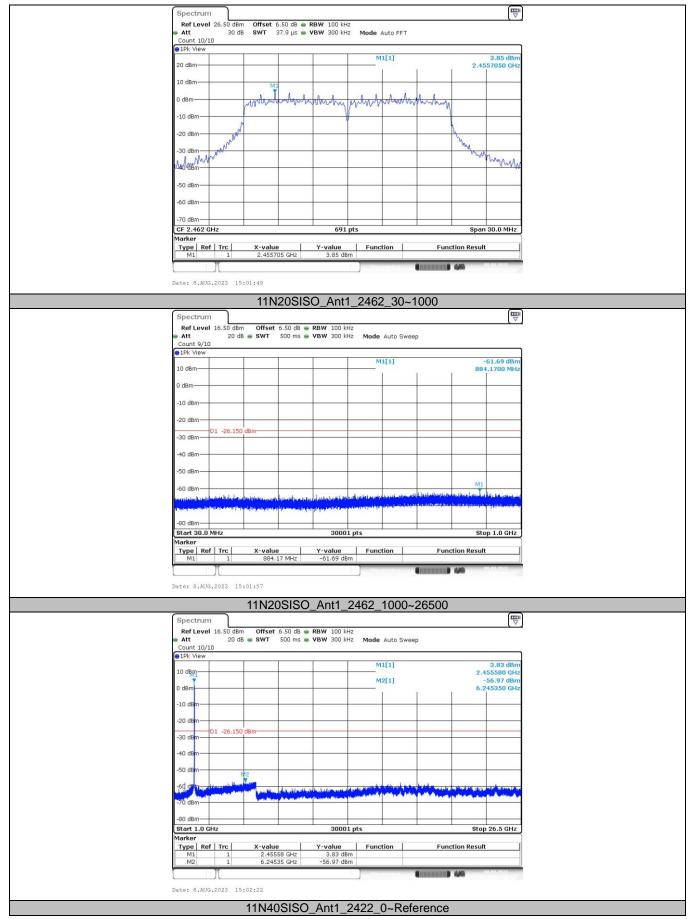


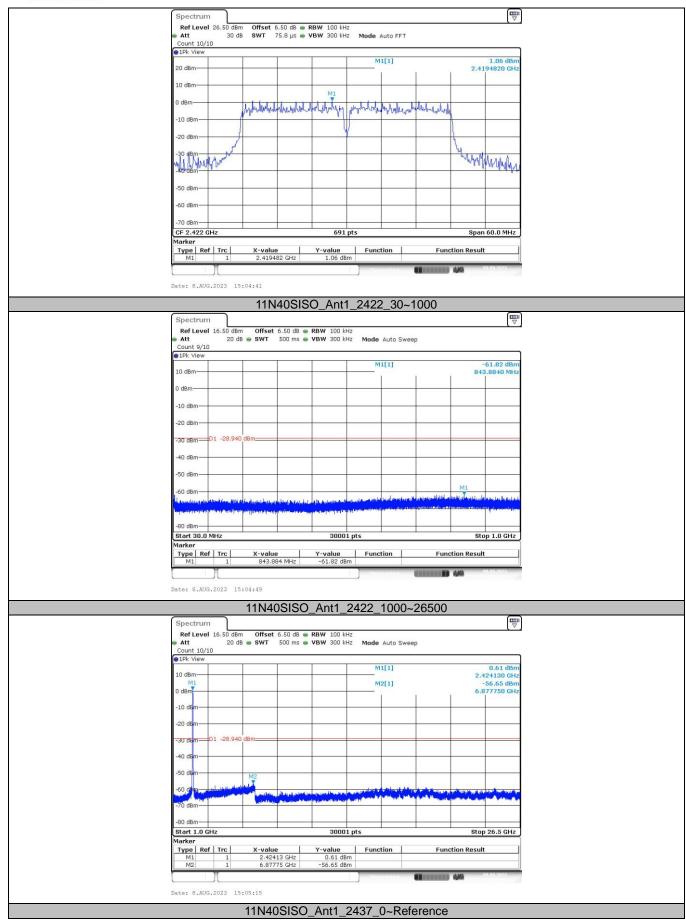


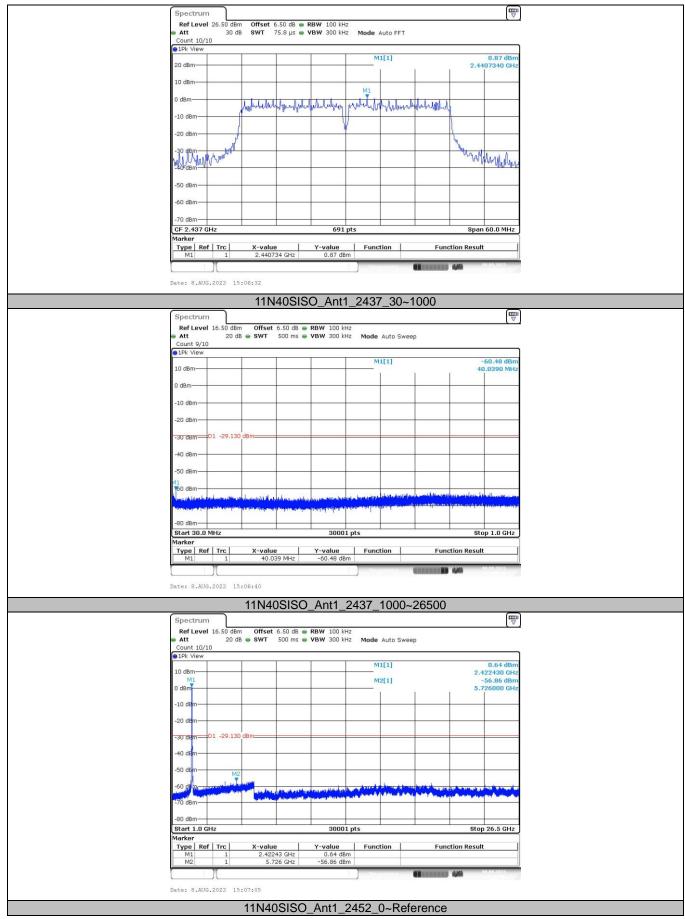


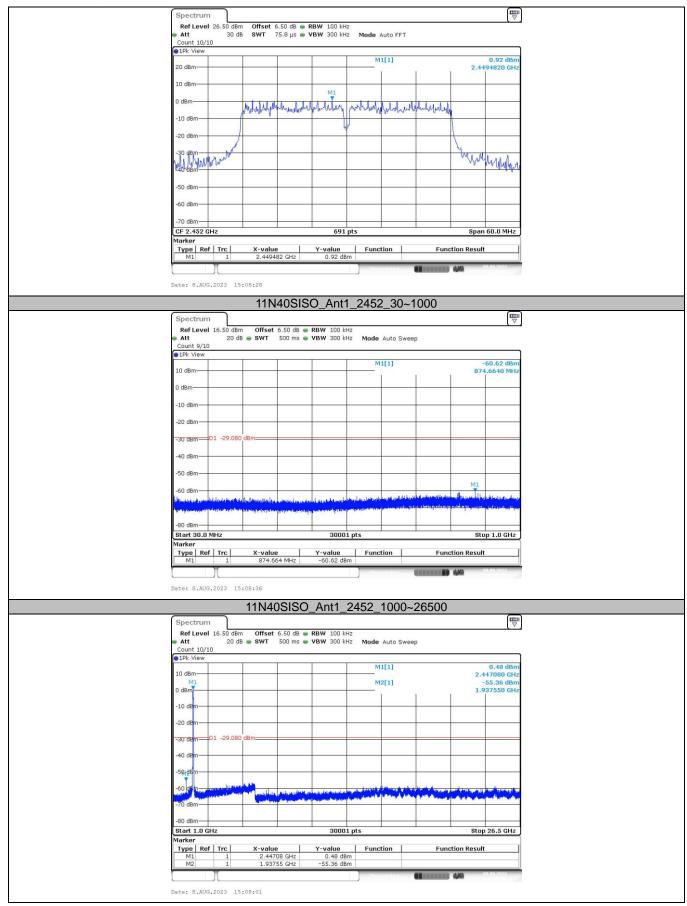


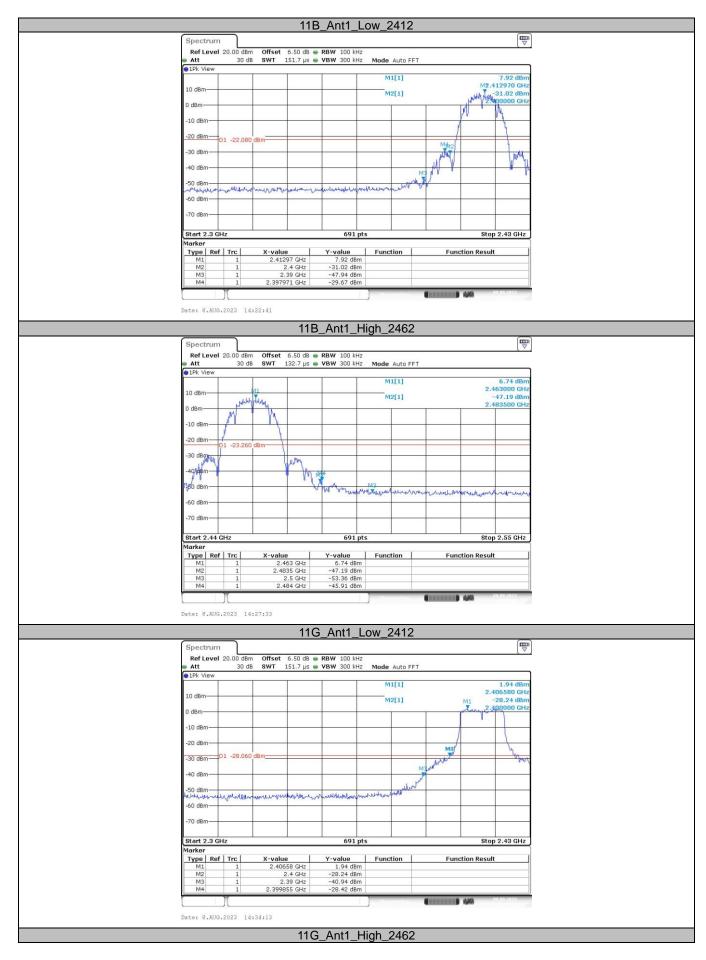


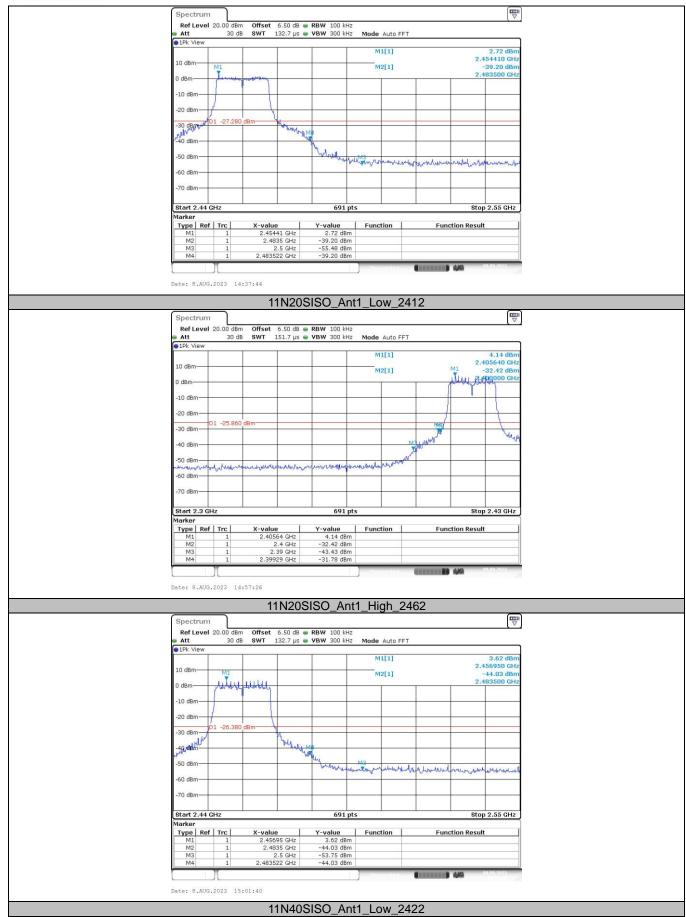


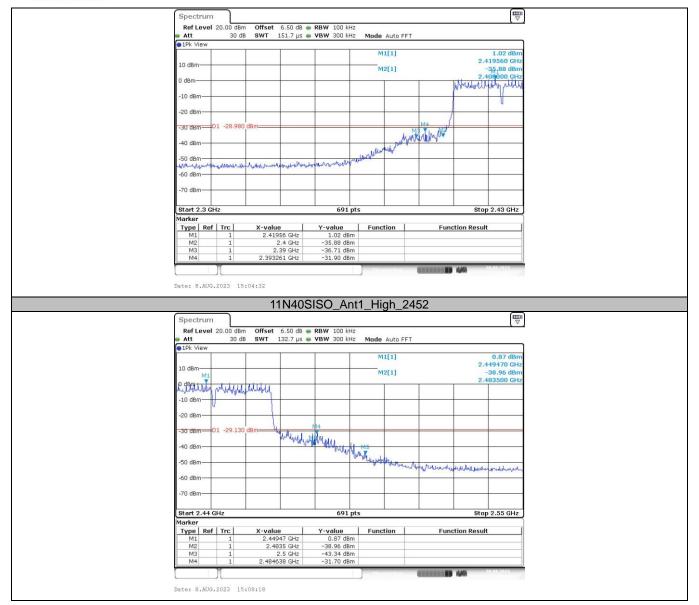








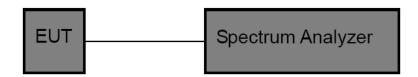




CTC Laboratories, Inc.

Page 64 of 86

Report No.: CTC20231666E15

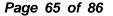

3.5. DTS Bandwidth

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2)

Test Item	Limit	Frequency Range (MHz)	
DTS Bandwidth	≥500 kHz (6dB bandwidth)	2400~2483.5	

Test Configuration


Test Procedure

- The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. DTS Spectrum Setting:
 - (1) Set RBW = 100 kHz.
 - (2) Set the video bandwidth (VBW) ≥ 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.
 - OCB Spectrum Setting:
 - (1) Set RBW = 1% ~ 5% occupied bandwidth.
 - (2) Set the video bandwidth (VBW) ≥ 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.

NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

Test Mode

Please refer to the clause 2.4.

Test Result

Mode	Channel	99% BW (MHz)	6 dB Bandwidth (MHz)	Limit (MHz)	Result
	1	15.225	10.08	0.5	PASS
IEEE 802.11b	6	15.145	10.08	0.5	PASS
	11	15.145	10.08	0.5	PASS
	1	17.183	16.32	0.5	PASS
IEEE 802.11g	6	17.183	16.36	0.5	PASS
	11	17.343	16.36	0.5	PASS
	1	17.822	17.04	0.5	PASS
IEEE 802.11n_20	6	17.902	17.60	0.5	PASS
	11	17.822	17.24	0.5	PASS
	3	36.444	35.36	0.5	PASS
IEEE 802.11n_40	6	36.763	35.76	0.5	PASS
	9	36.204	35.12	0.5	PASS