APPENDIX C PROBE CALIBRATION CERTIFICATES Certificate No: Z22-60101 Issued: May 23, 2022 Report No.: SZNS221206-59345E-SA Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 http://www.caict.ac.cn E-mail: cttl@chinattl.com BACL **CALIBRATION CERTIFICATE** Client Object EX3DV4 - SN: 7441 Calibration Procedure(s) FF-Z11-004-02 Calibration Procedures for Dosimetric E-field Probes Calibration date: May 16, 2022 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |--|----------------|--|-----------------------| | Power Meter NRP2 | 101919 | 15-Jun-21(CTTL, No.J21X04466) | Jun-22 | | Power sensor NRP-Z91 101547 | | 15-Jun-21(CTTL, No.J21X04466) | Jun-22 | | Power sensor NRP-Z91 | 101548 | 15-Jun-21(CTTL, No.J21X04466) | Jun-22 | | Reference 10dBAttenuate | or 18N50W-10dB | 20-Jan-21(CTTL, No.J21X00486) | Jan-23 | | Reference 20dBAttenuate | or 18N50W-20dB | 20-Jan-21(CTTL, No.J21X00485) | Jan-23 | | Reference Probe EX3DV | 4 SN 7464 | 26-Jan-22(SPEAG, No.EX3-7464_Jan2 | 22) Jan-23 | | DAE4 | SN 1555 | 20-Aug-21(SPEAG, No.DAE4-1555_Au | ug21/2) Aug-22 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | SignalGenerator MG3700A 6201052605
Network Analyzer E5071C MY46110673 | | 16-Jun-21(CTTL, No.J21X04467)
14-Jan-22(CTTL, No.J22X00406) | Jun-22
Jan-23 | | | Name | Function | Signature | | Calibrated by: Yu Zongying | | SAR Test Engineer | | | Reviewed by: Lin Hao | | SAR Test Engineer | 三 林岩 园 | | Approved by: Qi Dianyuan | | SAR Project Leader | 拉眼草 | Certificate No: Z22-60101 Page 1 of 9 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: ettl@chinattl.com http://www.caict.ac.cn Glossary: TSL tissue simulating liquid sensitivity in free space convF sensitivity in TSL / NORMx,y,z diode compression point CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ=0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, *IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques*, June 2013 b) IEC 62209-1, *Measurement procedure for the assessment of Specific Absorption Rate (SAR) from - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. - Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No:Z22-60101 Page 2 of 9 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7441 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |-------------------------|----------|----------|----------|-----------| | $Norm(\mu V/(V/m)^2)^A$ | 0.40 | 0.47 | 0.39 | ±10.0% | | DCP(mV) ⁸ | 90.9 | 102.2 | 105.6 | | #### **Modulation Calibration Parameters** | UID | Communication
System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Unc ^E
(k=2) | |------|------------------------------|-----|---------|-----------|------|---------|----------|---------------------------| | 0 CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 147.5 | ±2.7% | | | | | Y | 0.0 | 0.0 | 1.0 | | 169.7 | | | | | Z | 0.0 | 0.0 | 1.0 | | 155.0 | 7 | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No:Z22-60101 Page 3 of 9 ^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 4). ^B Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7441 #### Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|----------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 10.04 | 10.04 | 10.04 | 0.12 | 1.39 | ±12.1% | | 900 | 41.5 | 0.97 | 9.61 | 9.61 | 9.61 | 0.16 | 1.41 | ±12.1% | | 1450 | 40.5 | 1.20 | 8.52 | 8.52 | 8.52 | 0.28 | 0.95 | ±12.1% | | 1750 | 40.1 | 1.37 | 8.32 | 8.32 | 8.32 | 0.29 | 0.88 | ±12.19 | | 1900 | 40.0 | 1.40 | 7.94 | 7.94 | 7.94 | 0.27 | 1.03 | ±12.19 | | 2000 | 40.0 | 1.40 | 7.99 | 7.99 | 7.99 | 0.25 | 1.15 | ±12.19 | | 2300 | 39.5 | 1.67 | 7.78 | 7.78 | 7.78 | 0.65 | 0.65 | ±12.19 | | 2450 | 39.2 | 1.80 | 7.54 | 7.54 | 7.54 | 0.65 | 0.67 | ±12.19 | | 2600 | 39.0 | 1.96 | 7.30 | 7.30 | 7.30 | 0.64 | 0.67 | ±12.19 | | 3300 | 38.2 | 2.71 | 7.09 | 7.09 | 7.09 | 0.47 | 0.89 | ±13.39 | | 3500 | 37.9 | 2.91 | 6.89 | 6.89 | 6.89 | 0.42 | 0.95 | ±13.39 | | 3700 | 37.7 | 3.12 | 6.55 | 6.55 | 6.55 | 0.42 | 1.01 | ±13.39 | | 3900 | 37.5 | 3.32 | 6.60 | 6.60 | 6.60 | 0.35 | 1.35 | ±13.39 | | 4400 | 36.9 | 3.84 | 6.34 | 6.34 | 6.34 | 0.35 | 1.35 | ±13.39 | | 4600 | 36.7 | 4.04 | 6.26 | 6.26 | 6.26 | 0.45 | 1.20 | ±13.39 | | 4800 | 36.4 | 4.25 | 6.16 | 6.16 | 6.16 | 0.45 | 1.25 | ±13.39 | | 4950 | 36.3 | 4.40 | 5.85 | 5.85 | 5.85 | 0.50 | 1.15 | ±13.39 | | 5250 | 35.9 | 4.71 | 5.35 | 5.35 | 5.35 | 0.55 | 1.15 | ±13.39 | | 5600 | 35.5 | 5.07 | 4.85 | 4.85 | 4.85 | 0.55 | 1.20 | ±13.39 | | 5750 | 35.4 | 5.22 | 4.83 | 4.83 | 4.83 | 0.55 | 1.20 | ±13.39 | c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz
frequency validity can be extended to ±110 MHz. Certificate No:Z22-60101 Page 4 of 9 F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Certificate No:Z22-60101 Page 5 of 9 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn ## Receiving Pattern (Φ), θ=0° ## f=600 MHz, TEM ### f=1800 MHz, R22 Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2) Certificate No:Z22-60101 Page 6 of 9 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn ### Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ±0.9% (k=2) Certificate No:Z22-60101 Page 7 of 9 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chinn Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn ### **Conversion Factor Assessment** ### f=750 MHz,WGLS R9(H_convF) ### f=1750 MHz,WGLS R22(H_convF) ### **Deviation from Isotropy in Liquid** Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2) Certificate No:Z22-60101 Page 8 of 9 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: ettl@chinattl.com http://www.caiet.uc.cn ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7441 #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 100.7 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 9mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 1.4mm | Certificate No:Z22-60101 Page 9 of 9 ### APPENDIX D DIPOLE CALIBRATION CERTIFICATES Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Report No.: SZNS221206-59345E-SA Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates **BACL USA** Client Certificate No: D750V3-1194_Jan20 ### **CALIBRATION CERTIFICATE** Object D750V3 - SN:1194 QA CAL-05.v11 Calibration procedure(s) Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: January 13, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) ID# Cal Date (Certificate No.) Scheduled Calibration Primary Standards Power meter NRP SN: 104778 03-Apr-19 (No. 217-02892/02893) Apr-20 Power sensor NRP-Z91 SN: 103244 03-Apr-19 (No. 217-02892) Apr-20 Power sensor NRP-Z91 SN: 103245 03-Apr-19 (No. 217-02893) Apr-20 Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-19 (No. 217-02894) Apr-20 Type-N mismatch combination SN: 5047.2 / 06327 04-Apr-19 (No. 217-02895) Apr-20 Reference Probe EX3DV4 SN: 7349 31-Dec-19 (No. EX3-7349_Dec19) Dec-20 DAE4 SN: 601 27-Dec-19 (No. DAE4-601_Dec19) Dec-20 Secondary Standards Check Date (in house) Scheduled Check SN: GB39512475 Power meter E4419B 30-Oct-14 (in house check Feb-19) In house check: Oct-20 Power sensor HP 8481A SN: US37292783 In house check: Oct-20 07-Oct-15 (in house check Oct-18) Power sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-18) In house check: Oct-20 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-18) In house check: Oct-20 Network Analyzer Agilent E8358A SN: US41080477 In house check: Oct-20 31-Mar-14 (in house check Oct-19) Name Function Signature Calibrated by: Leif Klysner Laboratory Technician Katja Pokovic Technical Manager Approved by: Issued: January 14, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D750V3-1194_Jan20 Page 1 of 6 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Report No.: SZNS221206-59345E-SA Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D750V3-1194_Jan20 Page 2 of 6 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.3 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | Report No.: SZNS221206-59345E-SA ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.8 ± 6 % | 0.88 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.11 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.55 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.39 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.62 W/kg ± 16.5 % (k=2) | Certificate No: D750V3-1194_Jan20 ### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance,
transformed to feed point | 53.7 Ω - 2.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.1 dB | Report No.: SZNS221206-59345E-SA ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.030 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D750V3-1194_Jan20 #### **DASY5 Validation Report for Head TSL** Date: 13.01.2020 Report No.: SZNS221206-59345E-SA Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1194 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.88 \text{ S/m}$; $\varepsilon_r = 42.8$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(10.07, 10.07, 10.07) @ 750 MHz; Calibrated: 31.12.2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.12.2019 Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) ### Dipole Calibration for Head Tissue re-measure 13.01.2020/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.56 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.16 W/kg #### SAR(1 g) = 2.11 W/kg; SAR(10 g) = 1.39 W/kg Smallest distance from peaks to all points 3 dB below = 17 mm Ratio of SAR at M2 to SAR at M1 = 66.8% Maximum value of SAR (measured) = 2.78 W/kg 0 dB = 2.78 W/kg = 4.44 dBW/kg Certificate No: D750V3-1194_Jan20 Page 5 of 6 ### Impedance Measurement Plot for Head TSL Client ATC Certificate No: Z21-60438 ### **CALIBRATION CERTIFICATE** Object D835V2 - SN: 4d103 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: October 27, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|---|-----------------------| | Power Meter NRP2 | 106277 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Power sensor NRP8S | 104291 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Reference Probe EX3DV4 | SN 7517 | 03-Feb-21(CTTL-SPEAG,No.Z21-60001) | Feb-22 | | DAE4 | SN 1556 | 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) | Jan-22 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 01-Feb-21 (CTTL, No.J21X00593) | Jan-22 | | NetworkAnalyzer E5071C | MY46110673 | 14-Jan-21 (CTTL, No.J21X00232) | Jan-22 | | | | | | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 龙龙 | | Reviewed by: | Lin Hac | SAR Test Engineer | 林坊 | | Approved by: | Qi Dianyuan | SAR Project Leader | con | Issued: October 31, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z21-60438 Page 1 of 6 Add: No.52 HuaYunnBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.ehinattl.com Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 Report No.: SZNS221206-59345E-SA - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z21-60438 Page 2 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY52 | V52.10.4 | |--------------------------|---| | Advanced Extrapolation | | | Triple Flat Phantom 5.1C | | | 15 mm | with Spacer | | dx, dy, dz = 5 mm | | | 835 MHz ± 1 MHz | | | | Advanced Extrapolation Triple Flat Phantom 5.1C 15 mm dx, dy, dz = 5 mm | Report No.: SZNS221206-59345E-SA #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.6 ± 6 % | 0.90 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.42 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.65 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.57 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.27 W/kg ± 18.7 % (k=2) | Certificate No: Z21-60438 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.7Ω- 0.83jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 31.3dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.303 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG |
-----------------|-------| |-----------------|-------| Certificate No: Z21-60438 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn DASY5 Validation Report for Head TSL Date: 10.27.2021 Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d103 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.904$ S/m; $\epsilon_r = 41.62$; $\rho = 1000$ kg/m³ Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN7517; ConvF(9.81, 9.81, 9.81) @ 835 MHz; Calibrated: 2021-02-03 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2021-01-15 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.95 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.77 W/kg SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.57 W/kg Smallest distance from peaks to all points 3 dB below = 19,4 mm Ratio of SAR at M2 to SAR at M1 = 64.3% Maximum value of SAR (measured) = 3.29 W/kg 0 dB = 3.29 W/kg = 5.17 dBW/kg Certificate No: Z21-60438 Page 5 of 6 #### Impedance Measurement Plot for Head TSL Certificate No: Z21-60438 Page 6 of 6 E-mail: cttl@chinattl.com Certificate No: Z20-60411 BACL Client CALIBRATION CERTIFICATE Object D1800V2 - SN: 2d018 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: October 15, 2020 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Power Meter NRP2 106276 12-May-20 (CTTL, No.J20X02965) May-21 Power sensor NRP6A 101369 12-May-20 (CTTL, No.J20X02965) May-21 SN 3617 ReferenceProbe EX3DV4 30-Jan-20(SPEAG,No.EX3-3617_Jan20) Jan-21 DAE4 SN 771 10-Feb-20(CTTL-SPEAG,No.Z20-60017) Feb-21 ID# Secondary Standards Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Signal Generator E4438C MY49071430 25-Feb-20 (CTTL, No.J20X00516) Feb-21 MY46110673 10-Feb-20 (CTTL, No.J20X00515) NetworkAnalyzer E5071C Feb-21 Name **Function** Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: October 22, 2020 Certificate No: Z20-60411 Page 1 of 6 This calibration certificate shall not be reproduced except in full without written approval of the laboratory CALIBRATION LABORATORY Add: No.51 Xueyuun Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinatl.com http://www.chinatl.cn lossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 Report No.: SZNS221206-59345E-SA - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz. #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z20-60411 Page 2 of 6 Add: No.51 Xuzyuun Road, Haldlan District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl/@chinattl.com http://www.chinattl.com ### **Measurement Conditions** | ASY system configuration, as far as | not given on page 1. | | |-------------------------------------|--------------------------|-------------| | DASY Version | DASY52 | V52.10.4 | | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1800 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.3 ± 6 % | 1.41 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | 7000 | **** | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.88 W/kg | | SAR for nominal Head TSL parameters | normalized to 1VV | 39.3 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ⁵ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 5.15 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.5 W/kg ± 18.7 % (k=2) | Certificate No: Z20-60411 Add: No.51 Xueyuan Road, Haidisn District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fux: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.com ### Appendix (Additional assessments outside the scope of CNAS L0570) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 47.1Ω- 3.20 Ω | | |--------------------------------------|---------------|--| | Return Loss | - 27.0dB | | #### General Antenna Parameters and Design | Electrical Delectors of the Rest | | |----------------------------------|----------| | Electrical Delay (one direction) | 1.070 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### Additional EUT Data | THE RESIDENCE OF THE PARTY T | |
--|-------| | Manufactured by | SPEAG | Certificate No: Z20-60411 Page 4 of 6 Add: No.51 Xueyum Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fnx: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn ### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China Date: 10.15.2020 DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 2d018 Communication System: UID 0, CW; Frequency: 1800 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1800 MHz; σ = 1.414 S/m; ϵ_c = 40.26; ρ = 1000 kg/m³ Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(8.2, 8.2, 8.2) @ 1800 MHz; Calibrated: 2020-01-30 - Sensor-Surface; 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2020-02-10 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ## System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.92 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) - 18.7 W/kg SAR(1 g) = 9.88 W/kg; SAR(10 g) = 5.15 W/kg Smallest distance from peaks to all points 3 dB below = 9.8 mm Ratio of SAR at M2 to SAR at M1 = 53,4% Maximum value of SAR (measured) = 15.4 W/kg 0 dB = 15.4 W/kg = 11.88 dBW/kg Certificate No: Z20-60411 Page 5 of 6 Add: No.51 Xusyuan Road, Haidian District, Belijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.com/http:// ## Impedance Measurement Plot for Head TSL Certificate No: Z20-60411 Certificate No: Z21-60439 Client ATC #### CALIBRATION CERTIFICATE Object D1900V2 - SN: 5d128 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: October 27, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|---|-----------------------| | Power Meter NRP2 | 106277 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Power sensor NRP8S | 104291 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Reference Probe EX3DV4 | SN 7517 | 03-Feb-21(CTTL-SPEAG,No.Z21-50001) | Feb-22 | | DAE4 | SN 1556 | 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) | Jan-22 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 01-Feb-21 (CTTL, No.J21X00593) | Jan-22 | | NetworkAnalyzer E5071C | MY46110673 | 14-Jan-21 (CTTL, No.J21X00232) | Jan-22 | Name Function Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: October 31, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z21-60439 Page 1 of 6 Add: No.52 HunYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.en lossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 Report No.: SZNS221206-59345E-SA - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z21-60439 Page 2 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax:
+86-10-62304633-2504 http://www.chinattl.com Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | Report No.: SZNS221206-59345E-SA Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.D | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.1 ± 6 % | 1.38 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.91 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 40.0 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 5.05 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.3 W/kg ± 18.7 % (k=2) | Certificate No: Z21-60439 Add: No.52 HuaYuanBei Road, Haidiun District, Beijing, 100191, China Tel; +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.7Ω+ 7.45jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 21.5dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.110 ns | |----------------------------------|----------| | meaning condy (and another) | 11010 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoin: may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|----------| | | 0, 2, 10 | Certificate No: Z21-60439 Page 4 of 6 Date: 10.27.2021 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d128 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f=1900 MHz; $\sigma=1.379$ S/m; $\epsilon_r=40.06$; $\rho=1000$ kg/m³ Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN7517; ConvF(7.81, 7.81, 7.81) @ 1900 MHz; Calibrated: 2021-02-03 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2021-01-15 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501) ### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.6 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 19.3 W/kg ### SAR(1 g) = 9.91 W/kg; SAR(10 g) = 5.05 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 51.5% Maximum value of SAR (measured) = 15.8 W/kg 0 dB = 15.8 W/kg = 11.99 dBW/kg Certificate No: Z21-60439 Page 5 of 6 #### Impedance Measurement Plot for Head TSL Certificate No: Z21-60439 Page 6 of 6 Add: No.51 Xuayuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn Client BACL Certificate No: Z20-60412 ### **CALIBRATION CERTIFICATE** Object D2450V2 - SN: 751 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: October 13, 2020 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|---|-----------------------| | Power Meter NRP2 | 106276 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | Power sensor NRP6A | 101369 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | ReferenceProbe EX3DV4 | SN 3617 | 30-Jan-20(SPEAG,No.EX3-3617_Jan20) | Jan-21 | | DAE4 | SN 771 | 10-Feb-20(CTTL-SPEAG,No.Z20-60017) | Feb-21 | | Secondary Standards | ID# | Call Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 25-Feb-20 (CTTL, No.J20X00516) | Feb-21 | | NetworkAnalyzer E5071C | MY46110673 | 10-Feb-20 (CTTL, No.J20X00515) | Feb-21 | | | | | | | | Name | Function | Signature | |----------------|-------------|--------------------|------------------------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 長1 | | Reviewed by: | Lin Hao | SAR Test Engineer | 林先 | | Approved by: | Qi Dianyuan | SAR Project Leader | wa | | | | la | sued: October 22, 2020 | This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z20-60412 Page 1 of 6 Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn Glossary: tissue simulating liquid TSL ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z20-60412 Page 2 of 6 Add: No.51 Xueyuan Road, Haidian District, Beljing, 100191, China Tol: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn Measurement Conditions Measurement Conditions Measurement Conditions Measurement Conditions Measurement Conditions | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | | | | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.0 ± 6 % | 1.81
mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | **** | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.3 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 53.0 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.12 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.4 W/kg ± 18.7 % (k=2) | Certificate No: Z20-60412 # Appendix (Additional assessments outside the scope of CNAS L0570) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.6Ω+ 4.03 jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 25.7dB | | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.022 ns | |----------------------------------|-----------| | 7,1 | 1.022 115 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: Z20-60412 Page 4 of 6 Add: No.51 Xuvyuan Road, Haidism District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62301633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn # DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 751 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle; 1:1 Medium parameters used: f = 2450 MHz; σ = 1.809 S/m; ε_r = 39.02; ρ = 1000 kg/m³ Phantom section: Center Section DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(7.65, 7.65, 7.65) @ 2450 MHz; Calibrated: 2020-01-30 Report No.: SZNS221206-59345E-SA Date: 10.13.2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2020-02-10 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.1 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 28.1 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.12 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 47.6% Maximum value of SAR (measured) = 22.7 W/kg 0 dB = 22.7 W/kg = 13.56 dBW/kg Certificate No: Z20-60412 Page 5 of 6 # Impedance Measurement Plot for Head TSL Certificate No: Z20-60412 Page 6 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Client BACL Certificate No: Z22-60329 # **CALIBRATION CERTIFICATE** Object D2600V2 - SN: 1162 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: August 22, 2022 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Scheduled Calibration | |-----------------------| | Sep-22 | | Sep-22 | | Jan-23 | | Jan-23 | | Scheduled Calibration | | Jan-23 | | Jan-23 | | | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | · 数数 | | Reviewed by: | Lin Hao | SAR Test Engineer | 林光 | | Approved by: | Qi Dianyuan | SAR Project Leader | 24 | Issued: August 26, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z22-60329 Page 1 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Additional Documentation:** c) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z22-60329 Page 2 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2600 MHz ±1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|---------------|--------------|-----------------| | Nominal Head TSL parameters | 22.0 ℃ | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ±0.2) ℃ | 39.6 ±6 % | 1.97 mho/m ±6 % | | Head TSL temperature change during test | <1.0 ℃ | - | - | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|-------------------------| | SAR measured | 250 mW input power | 13.7 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 54.9 W/kg ±18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.26 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.1 W/kg ±18.7 % (k=2) | Certificate No: Z22-60329 Page 3 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn # Appendix (Additional assessments outside the scope of CNAS L0570) ### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 47.7Ω- 6.35jΩ | | |--------------------------------------|---------------|-----| | Return Loss | - 23.2dB | -11 | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.053 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. # **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: Z22-60329 Page 4 of 6 Date: 2022-08-22
Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn # **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1162 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 1.967$ S/m; $\epsilon_r = 39.55$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY5** Configuration: - Probe: EX3DV4 SN7464; ConvF(7.64, 7.64, 7.64) @ 2600 MHz; Calibrated: 2022-01-26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2022-01-12 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.27 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 28.6 W/kg SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.26 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 48.7% Maximum value of SAR (measured) = 23.2 W/kg 0 dB = 23.2 W/kg = 13.65 dBW/kg Certificate No: Z22-60329 Page 5 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn # Impedance Measurement Plot for Head TSL Client ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland **BACL USA** S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Report No.: SZNS221206-59345E-SA Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Certificate No: D5GHzV2-1301_Jan20 # **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN:1301 Calibration procedure(s) QA CAL-22.v4 Calibration Procedure for SAR Validation Sources between 3-6 GHz Calibration date: January 10, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Certificate No: D5GHzV2-1301_Jan20 | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 03-Apr-19 (No. 217-02892/02893) | Apr-20 | | Power sensor NRP-Z91 | SN: 103244 | 03-Apr-19 (No. 217-02892) | Apr-20 | | Power sensor NRP-Z91 | SN: 103245 | 03-Apr-19 (No. 217-02893) | Apr-20 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-19 (No. 217-02894) | Apr-20 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-19 (No. 217-02895) | Apr-20 | | Reference Probe EX3DV4 | SN: 3503 | 31-Dec-19 (No. EX3-3503_Dec19) | Dec-20 | | DAE4 | SN: 601 | 27-Dec-19 (No. DAE4-601_Dec19) | Dec-20 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 | | | Name | Function | Signature | | Calibrated by: | Michael Weber | Laboratory Technician | M.NESET | | Approved by: | Katja Pokovic | Technical Manager | ann | Issued: January 14, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Page 1 of 8 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Accreditation No.: SCS 0108 Report No.: SZNS221206-59345E-SA Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D5GHzV2-1301_Jan20 Page 2 of 8 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.3 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5800 MHz ± 1 MHz | | Report No.: SZNS221206-59345E-SA ### Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.8 ± 6 % | 4.48 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.13 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.33 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.0 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.3 ± 6 % | 4.83 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.59 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 85.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.44 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.1 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1301_Jan20 Page 3 of 8 # Head TSL parameters at 5800 MHz The following parameters and calculations were applied. | |
Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.0 ± 6 % | 5.03 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | Report No.: SZNS221206-59345E-SA ### SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.10 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.2 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.29 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.6 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1301_Jan20 ### Appendix (Additional assessments outside the scope of SCS 0108) # Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 47.8 Ω - 3.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 28.2 dB | Report No.: SZNS221206-59345E-SA #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 51.9 Ω + 1.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 31.4 dB | #### Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | 51.2 Ω + 3.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 29.6 dB | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.192 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D5GHzV2-1301_Jan20 Page 5 of 8 #### DASY5 Validation Report for Head TSL Date: 10.01.2020 Report No.: SZNS221206-59345E-SA Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1301 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5250 MHz; σ = 4.48 S/m; ϵ_r = 34.8; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 4.83 S/m; ϵ_r = 34.3; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 5.03 S/m; ϵ_r = 34; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.45, 5.45, 5.45) @ 5250 MHz, ConvF(5, 5, 5) @ 5600 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 31.12.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.91 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 28.2 W/kg SAR(1 g) = 8.13 W/kg; SAR(10 g) = 2.33 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 70.1% Maximum value of SAR (measured) = 18.1 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 78.16 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 32.2 W/kg SAR(1 g) = 8.59 W/kg; SAR(10 g) = 2.44 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 67.4% Maximum value of SAR (measured) = 19.8 W/kg ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.29 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 32.5 W/kg SAR(1 g) = 8.1 W/kg; SAR(10 g) = 2.29 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 65.1% Maximum value of SAR (measured) = 19.4 W/kg Certificate No: D5GHzV2-1301_Jan20 Page 6 of 8 0 dB = 18.1 W/kg = 12.58 dBW/kg # Impedance Measurement Plot for Head TSL Certificate No: D5GHzV2-1301_Jan20