EMI Test Report

Tested in accordance with
Federal Communications Commission (FCC)
Personal Communications Services
CFR 47, Parts 2, 22 and 24
and
Industry Canada, RSS-133 and RSS-129

Research In Motion Limited

REPORT NO.: RIM-0110-0410-03

PRODUCT MODEL NO: RAR20CN

TYPE NAME: BlackBerry Wireless Handheld

FCC ID: L6ARAR20CN IC: 2503A-RAR20CN

Date: _____10 November 2004_____

hund had

Report No. RIM-0110-0410-03

Declaration

Statement of Performance:

The BlackBerry Wireless Handheld, model RAR20CN ASY-07338-001 Rev. B and accessories when configured and operated per RIM's operation instructions, performs within the requirements of the test standards.

Declaration:

We hereby certify that:

Maurin Battler

M. Stray

The test data reported herein is an accurate record of the performance of the sample(s) tested.

The test equipment used was suitable for the tests performed and within the manufacturers published specifications and operating parameters.

The test methods were consistent with the methods described in the relevant standards.

Tested by Reviewed by:

Maurice Battler Paul Lock

Compliance Specialist Senior Compliance Specialist

Date: 10 November 2004 Date: 17 November 2004

Tested and Reviewed by:

Approved by:

Masud S. Attayi, P.Eng. Paul G. Cardinal, Ph.D.

Senior Compliance Engineer Manager, Compliance and Certification

Date: 12 November 2004 Date: 17 November 2004

Table of Contents

A) Scope Pg. 3	3
B) Product Identification Pg. 3	3
C) Support Equipment Used for Testing of the EUT Pg. 3	3
D) Test Voltage Pg. 4	4
E) Test Results Chart Pg. 4	4
F) Modifications to EUT Pg. 4	4
G) Summary of Results Pg. S	5
H) Compliance Test Equipment Used Pg. 7	7
Appendix 1 Conducted Emissions Test Data/Plots	
Appendix 2 Conducted RF Output Power Test Data	
Appendix 3 Frequency Stability Test Data	
Appendix 4 Radiated Emissions Test Data	

A) Scope

This report details the results of compliance tests which were performed in accordance to the requirements of:

FCC CFR 47 Part 2, Oct. 1, 2000

FCC CFR 47 Part 22, Subpart H, Cellular Radiotelephone Services, Oct. 1, 2000

FCC CFR 47 Part 24 Subpart E, Broadband PCS, Oct 1. 2000

Industry Canada, RSS-129 Issue 2, Sept. 25, 1999, 800 MHz Dual-Mode CDMA Cellular Telephones

Industry Canada, RSS-133 Issue 2, Rev. 1 Nov. 6, 1999, 2.0 GHz Personal Communications Services

B) Product Identification

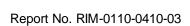
The equipment under test (EUT) was tested at the Research In Motion (RIM) EMI test facility, located at:

305 Phillip Street

Waterloo, Ontario

Canada, N2L 3W8

Phone: 519 888 7465 Fax: 519 880-8173 Web Site: www.rim.com


The testing began on October 20, 2004 and completed on November 05, 2004. The sample equipment under test (EUT) included:

- 1a BlackBerry Wireless Handheld, model number RAR20CN, ASY-07338-001 Rev. B, PIN number 3004B2FF, FCC ID L6ARAR20CN, IC: 2503A-RAR20CN.
- 1b BlackBerry Wireless Handheld, model number RAR20CN, ASY-07338-001 Rev. B, PIN number 3004B300, FCC ID L6ARAR20CN, IC: 2503A-RAR20CN.

The transmit frequency bands for the Handheld are: Cellular 824 to 849 MHz, PCS 1850 to 1910 MHz and Bluetooth 2402 to 2480 MHz.

C) Support Equipment Used for the Testing of the EUT

- 1) Agilent Wireless Communication Test Set, model 8960, serial number US41070110
- 2) Communication Tester, Rohde & Schwarz, model CMU 200, serial number 100965
- 3) DC Power Supply, H/P, model 6632B, serial number US37472178

D) Test Voltage

The ac input voltage was 120 volts, 60 Hz where applicable. This configuration was per RIM's specifications.

E) Test Results Chart

SPECIFICATION	Test Type	MEETS REQUIREMENTS	Performed By
FCC CFR 47 Part 22, Subpart H IC RSS-129	Radiated Spurious/harmonic Emissions, ERP, LO	Yes	Masud Attayi
FCC CFR 47 Part 22, Subpart H IC RSS-129	Conducted Emissions, Occupied Bandwidth, Frequency Stability	Yes	Maurice Battler
FCC CFR 47 Part 24, Subpart E IC RSS-133	Radiated Spurious/harmonic Emissions, EIRP, LO	Yes	Masud Attayi
FCC CFR 47 Part 24, Subpart E IC RSS-133	Conducted Emissions, Occupied Bandwidth, Frequency Stability	Yes	Maurice Battler

F) Modifications to EUT

No modifications were required to the EUT.

G) Summary of Results

- The EUT passed the Conducted Spurious Emissions requirements in the Cellular band as per 47 CFR 22.917, CFR 22.901(d) and RSS-129. The EUT was measured on the low, middle and high channels. The frequency range investigated was from 10 MHz to 20 GHz. See APPENDIX 1 for the test data.
- 2) The EUT passed the Conducted Spurious Emissions requirements in the PCS band as per 47 CFR 2.1057, CFR 24.238 and RSS-133. The EUT was measured on the low, middle and high channels. The frequency range investigated was from 10 MHz to 20 GHz. See APPENDIX 1 for the test data.
- 3) The EUT passed the Occupied Bandwidth requirements in the Cellular band as per 47 CFR 2.202, CFR 22.917 and RSS-129. The channels measured were low, middle and high. See APPENDIX 1 for the test data.
- 4) The EUT passed the Occupied Bandwidth and channel mask requirements in the PCS band as per 47 CFR 2.202, CFR 24.238 and RSS-133. The channels measured were low, middle and high. See APPENDIX 1 for the test data.
- 5) The EUT passed the Conducted RF Output Power requirements for both the Cellular and PCS bands. The channels measured were low, middle and high.

 See APPENDIX 2 for the test data.
- 6) The EUT passed the Frequency Stability and RF Power Stability vs. Temperature and Voltage requirements for Cellular band as per 22.917 and RSS-129.

The maximum frequency error measured was less than 0.1 ppm.

The temperature range was from -30° C to $+60^{\circ}$ C in 10° temperature steps. The EUT was measured on low, middle and high channels at each temperature step. The EUT was measured at low (3.5 volts), nominal (3.8 volts) and high (4.2 volts) dc input voltage at each temperature step and channel at maximum output power.

See APPENDIX 3 for the test data.

7) The EUT passed the Frequency Stability vs. Temperature and Voltage requirements for the PCS band as per 24.235 and RSS-133. The maximum frequency error measured was less than 0.1 ppm.

The temperature range was from -30° C to $+60^{\circ}$ C in 10 degree temperature steps. The EUT was measured on low, middle and high channels at each temperature step. The EUT was measured at low (3.5 volts), nominal (3.8 volts) and high (4.2 volts) dc input voltage at each temperature step and channel at maximum output power.

See APPENDIX 3 for the test data.

8) The radiated spurious emissions/harmonics and ERP/EIRP were measured for both Cellular and PCS bands. The results are within the limits. The EUT was placed on a nonconductive wooden table, 80 cm high plus 20 cm high styrofoam on top of the table which was positioned on a remotely rotatable turntable. The EUT height of one metre was set in order to align it with the lowest height of the receiving antenna. The test distance used between the EUT and the receiving antenna was three metres. At this point the emissions were maximized by elevating the antenna in the range of 1 to 4 metres. The turntable was rotated to determine the azimuth of the peak emissions. The maximum emissions level was recorded. The measurements were performed in a semi-anechoic chamber. The semi-anechoic chamber FCC registration number is **778487** and the Industry Canada file number is **IC4240**. The EUT was measured on the low, middle and high channels.

The highest ERP in the Cellular band measured was 25.3 dBm at 848.32 MHz (channel 777). The highest EIRP in the PCS band measured was 28.1 dBm at 1880.00 MHz (channel 600). To view the test data see APPENDIX 4.

The radiated carrier harmonics were measured up to the 10th harmonic for low, middle and high channels in the Cellular and PCS bands.

The Cellular radiated carrier harmonic emissions had a test margin of greater than 25 dB. The lowest test margin for the PCS band was 23.3 dB below the limit at 3760.0 MHz. To view the test data see APPENDIX 4.

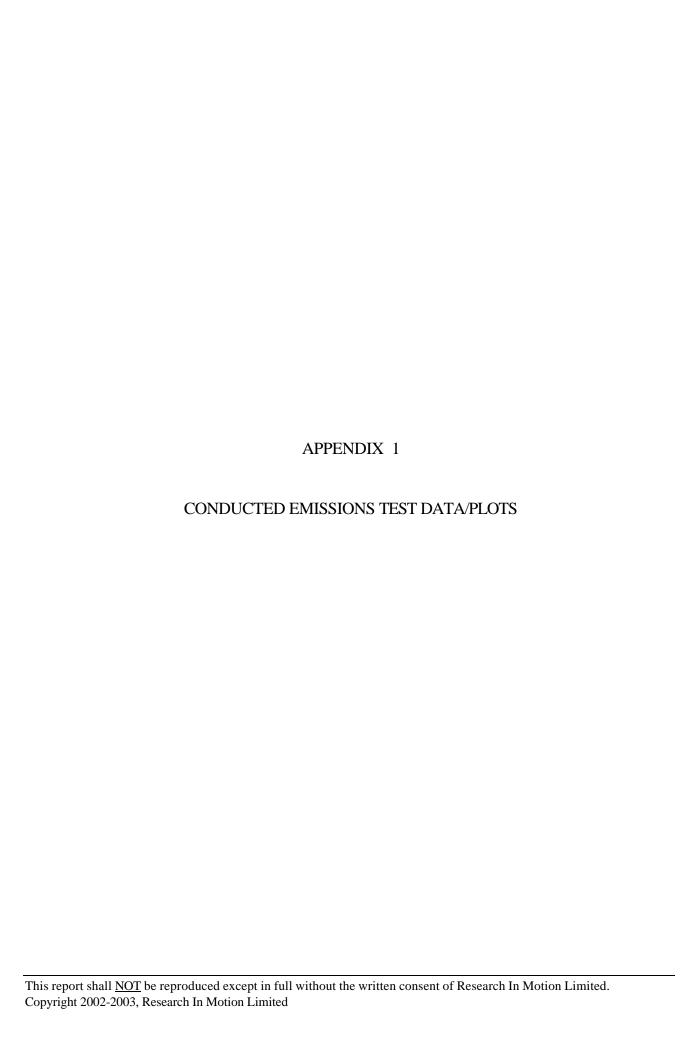
The EUT's RF local oscillator emissions were measured in the Cellular band on the low, middle and high channels (1013, 384 and 777) in the standalone upright position. Both the horizontal and vertical antenna polarizations were measured. The Cellular RF local oscillator emissions were in the NF.

The EUT's RF local oscillator emissions were measured in the PCS band on the low, middle and high channels (25, 600 and 1175) in the standalone upright position. Both the horizontal and vertical antenna polarizations were measured. The PCS RF local oscillator emissions were in the NF.

The radiated harmonics for Bluetooth in frequency hopping mode were measured in simultaneous transmission with the Cellular and then the PCS band up to the 10^{th} harmonics. Both the horizontal and vertical polarizations were measured. The harmonics emissions above the 2^{nd} harmonics were in the NF for the Cellular and the PCS bands.

Sample Calculation:

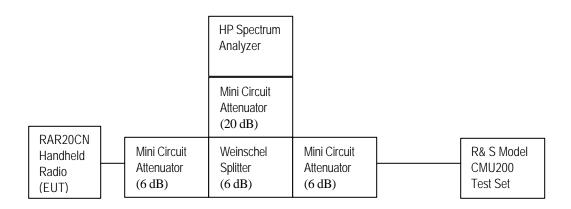
Field Strength ($dB\mu V/M$) is calculated as follows:


 $FS = Measured Level (dB\mu V) + A.F. (dB/m) + Cable Loss (dB) - Preamp (dB) + Filter Loss (dB)$

Measurement Uncertainty ±4.0 dB

H) Compliance Test Equipment Used

<u>UNIT</u>	MANUFACTURER	MODEL	SERIAL NUMBER	CAL DUE DATE (YY MM DD)	<u>USE</u>	
Preamplifier	Sonoma	310N/11909A	185831	04-11-05	Radiated Emissions	
Preamplifier system	TDK RF Solutions	PA-02	080010	04-11-05	Radiated Emissions	
EMC Analyzer	Agilent	E7405A	US40240226	05-07-29	Radiated Emissions	
Hybrid Log Antenna	TDK	HLP-3003C	017301	04-12-16	Radiated Emissions	
Horn Antenna	TDK	HRN-0118	30201	05-01-08	Radiated Emissions	
Horn Antenna	TDK	HRN-0118	30101	05-09-21	Radiated Emissions	
Dipole Antenna	Schwarzbeck	UHAP	1018	05-01-09	Radiated Emissions	
Dipole Antenna	Schwarzbeck	UHAP	973	04-12-01	Radiated Emissions	
Wireless Communication Test Set	Agilent	8960	US41070110	05-08-03	Radiated Emissions	
Communication Tester	Rohde & Schwarz	CMU 200	100965	05-06-11	Conducted Emissions	
Spectrum Analyzer	HP	8563E	3745A08112	05-07-20	Conducted Emissions	
DC Power Supply	НР	6632B	US37472178	05-08-01	Conducted Emissions	
Temperature Probe	Hart Scientific	61161-302	21352860	05-09-10	Frequency Stability	
Environmental Chamber	ESPEC Corp.	SH-240S1	91007118	N/R	Frequency Stability	
Environment Monitor	Control Company	1870	230355189	06-01-11	RF Conducted Emissions	
Environment Monitor	Control Company	1870	230355190	06-01-11	Radiated Emissions	
Temperature Probe	Hart Scientific	61161-302	21352860	05-09-10	Frequency Stability	


Appendix 1 Page 1 of 13

Test Date: October 20 to November 05, 2004

Conducted Emission Test Results

This appendix contains measurement data pertaining to conducted spurious emissions, 99% power bandwidth and the channel mask.

Test Setup Diagram

Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer	HP	8563E	374A08112	30 Hz – 26.5 GHz
Splitter	Weinschel	1515	ME092	DC – 18 GHz
Attenuator	Mini Circuit	MCL BW-S20W2		DC – 18 GHz
Attenuator	Mini Circuit	MCL BW-S6W2		DC – 18 GHz
Attenuator	Mini Circuit	MCL BW-S6W2		DC – 18 GHz
Universal Radio Communication Tester	Rohde & Schwarz	CMU200	100965	

This report shall <u>NOT</u> be reproduced except in full without the written consent of Research In Motion Limited. Copyright 2002-2004, Research In Motion Limited

Appendix 1 Page 2 of 13

Test Date: October 20 to November 05, 2004

Conducted Emission Test Data cont'd

The conducted spurious emissions – As per 47 CFR 2.202, 47 CFR 2.1057, 47 CFR 24.238, RSS-133, CFR 22 Subpart H and RSS-129 were measured from 10 MHz to 20 GHz. The EUT emissions were in the noise floor.

See figures 1 to 12 for the plots of the conducted spurious emissions.

Test Data for Cellular and PCS selected Frequencies

Cellular Frequency (MHz)	-99% Occupied Bandwidth (MHz)
824.700	1.279
836.520	1.279
848.310	1.269

PCS Frequency (MHz)	99% Occupied Bandwidth (MHz)
1851.200	1.270
1880.000	1.280
1908.750	1.280

Measurement Plots for Cellular and PCS

Refer to the following measurement plots for more detail.

See Figures 1 to 12 for plots of the Spurious Emission results

See Figures 13 to 18 for the plots of the 99% Occupied Bandwidth.

See Figures 19 to 20 for plots of the channel mask results.

The RF power output was at maximum for all the recorded measurements shown below.

Figure 1: Cellular, Spurious Conducted Emissions, Low channel

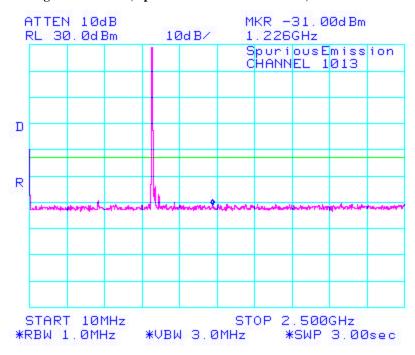


Figure 2: Cellular, Spurious Conducted Emissions, Low channel

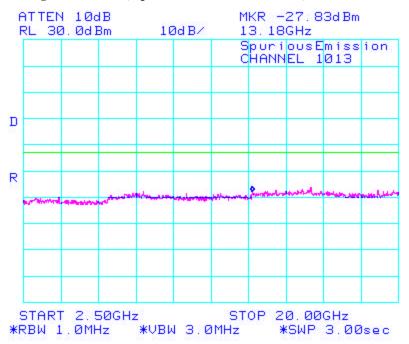


Figure 3: Cellular, Spurious Conducted Emissions, Middle Channel

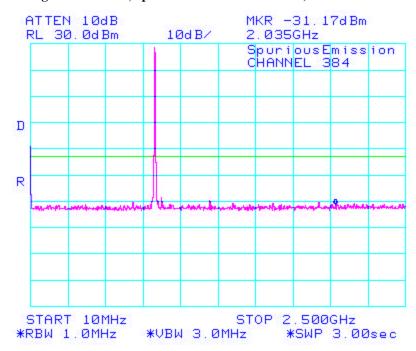
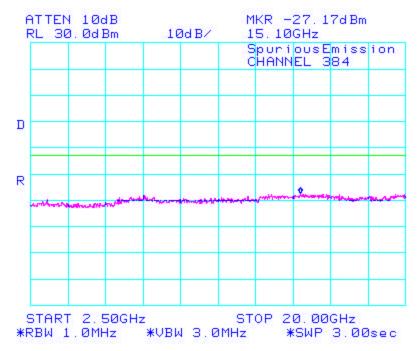



Figure 4: Cellular, Spurious Conducted Emissions, Middle Channel

Test Date: October 20 to November 05, 2004

Figure 5: Cellular, Spurious Conducted Emissions, High Channel

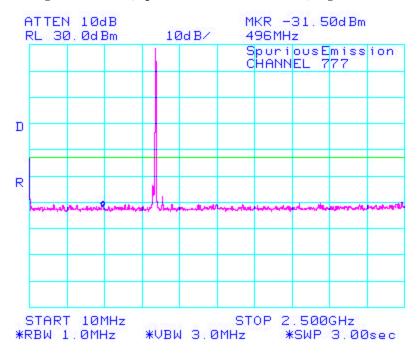
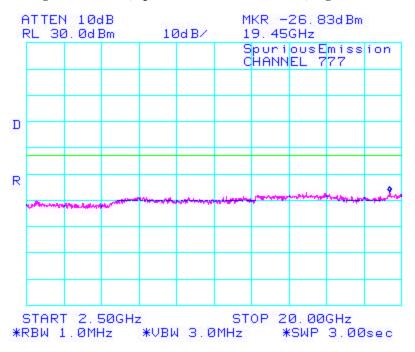



Figure 6: Cellular, Spurious Conducted Emissions, High Channel

Test Date: October 20 to November 05, 2004

Figure 7: PCS, Spurious Conducted Emissions, Low Channel

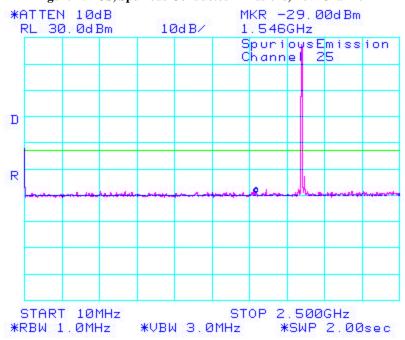


Figure 8: PCS, Spurious Conducted Emissions, Low Channel

Test Date: October 20 to November 05, 2004

Figure 9: PCS, Spurious Conducted Emissions, Middle Channel

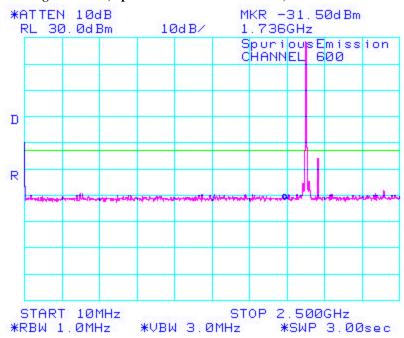


Figure 10: PCS, Spurious Conducted Emissions, Middle Channel

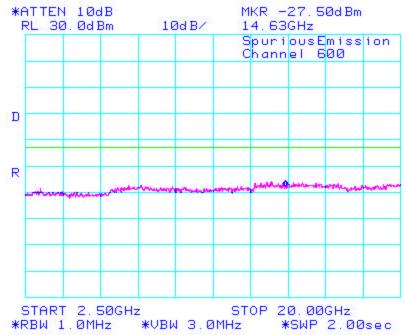


Figure 11: PCS, Spurious Conducted Emissions, High Channel

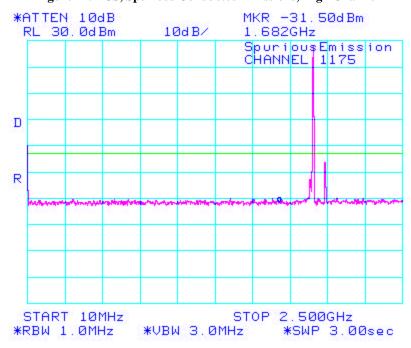


Figure 12: PCS, Spurious Conducted Emissions, High Channel

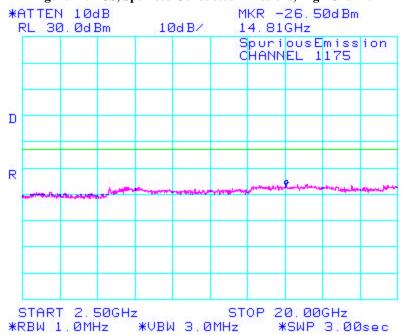


Figure 13: Occupied Bandwidth, Cellular Low Channel

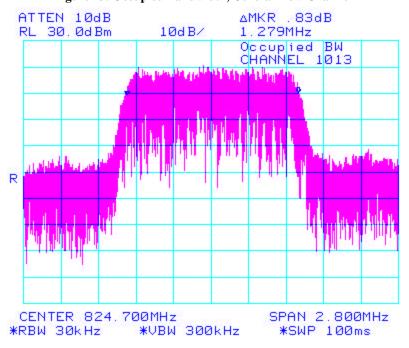


Figure 14: Occupied Bandwidth, Cellular Middle Channel

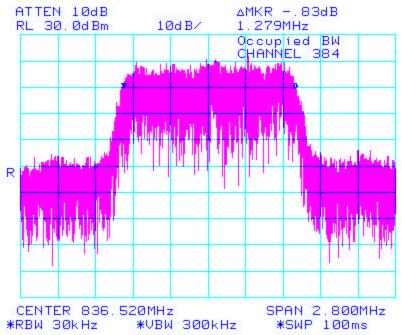


Figure 15: Occupied Bandwidth, Cellular High Channel

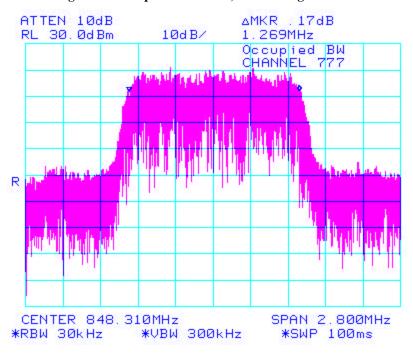
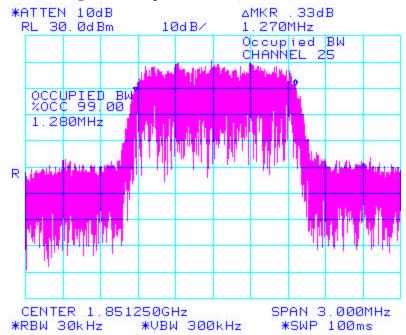



Figure 16: Occupied Bandwidth, PCS Low Channel

Test Date: October 20 to November 05, 2004

Figure 17: Occupied Bandwidth, PCS Middle Channel

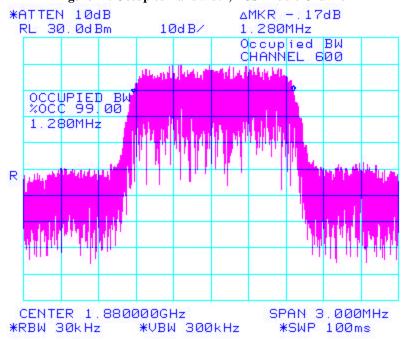


Figure 18: Occupied Bandwidth, PCS High Channel

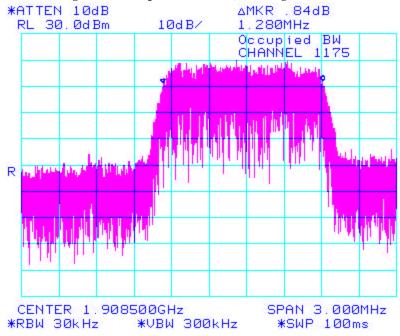


Figure 19: PCS, Low Channel Mask

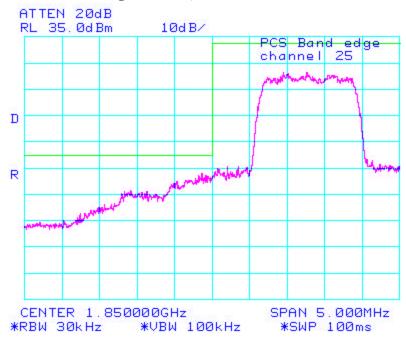
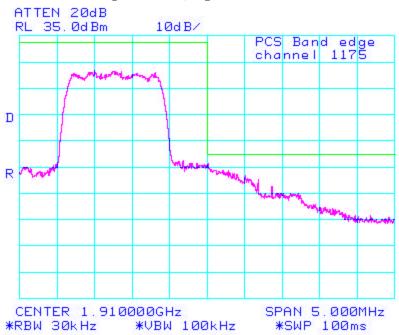
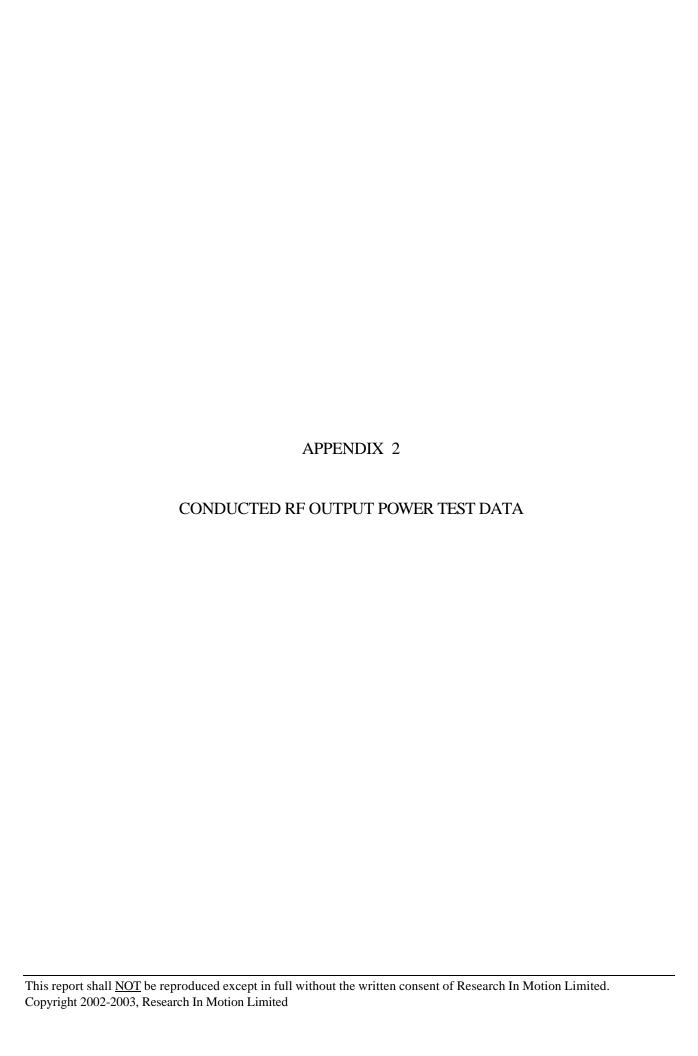



Figure 20: PCS, High Channel Mask



Test Date: October 20 to November 05, 2004

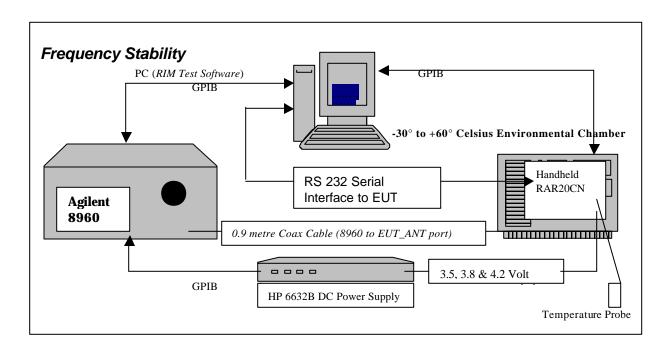
Conducted Emission Test-Setup Photo

Appendix 2 Page 1 of 1

Test Date: October 20 to November 05, 2004

Report No. RIM-0110-0410-03

Conducted RF Output Power Test Data


The conducted RF output power was measured using the Agilent Wireless Communication Test Set, model 8960. Low, middle and high channels were measured at maximum radio output power. Peak nominal output power is 24.5 dBm for Cellular and 23.0 dBm for PCS.

Test results

Channel	Frequency (MHz)	Maximum Output Power
Chamier	(1112)	(dBm)
	Cellula	<u>r</u>
1013	824.700	24.95
384	836.520	24.80
777	848.310	24.86
	<u>PCS</u>	
25	1851.200	23.76
600	1880.000	23.60
1175	1908.750	23.70

Frequency Stability Test Data

SYSTEM	Model	Serial Number	Calibration Due Date.
Agilent Wireless Communication Test Set	8960	US41070110	13 Aug. 2005
HP System DC Power Supply	6632B	US37472178	01-Aug2005
Network Analyzer	HP 8720D	US36140834	05-Aug2004
Calibration Kit	HP85033D	3423A02787	28-Sept2004
Espec Environmental Chamber	SH240S1	91007118	N/A
Hart Temperature Probe	61161-302	21352860	10-Sept. 2005

CFR 47 Chapter 1 - Federal Communications Commission Rules

Part 2 Required Measurements

- 2.995 Frequency Stability Procedures
- (a,b) Frequency Stability Temperature Variation
- (d) Frequency Stability Voltage Variation

24.235 *Frequency Stability*.

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

This report shall <u>NOT</u> be reproduced except in full without the written consent of Research In Motion Limited. Copyright 2002-2004, Research In Motion Limited

Appendix 3 Page 2 of 11

Test Date: October 20 to November 05, 2004

Report No. RIM-0110-0410-03

The RAR20CN handheld, (referred as EUT herein and after) transmitted frequencies are less than 0.1 ppm of the received frequency from the Agilent, Wireless Communication Test Set.

The EUT meets the requirements as stated in CFR 47 chapter 1, Section 24.235, RSS-133, CFR 47 chapter 1, Section 22.917 and RSS-129 Frequency Stability.

Frequency Stability measurement devices were configured as presented in the block diagram recording frequency, power, data, temperatures, and stepped voltages controlled via a GPIB interface linked to the Environmental chamber, a DC power supply, and the Communications Test Set. A 0.9-meter coax cable was calibrated to characterize the insertion loss for the transmitted frequencies between the RF input/output of the Wireless Communication Test Set and the EUT antenna port; located inside the environmental chamber.

Calibration for the Cable Loss was performed in the RF Laboratory on October 29, 2004

Procedure:

Full_Two port Calibration of 8720D using the 85033D was completed.

The cable assembly from the RF input to the RF output was measured at the following Frequencies:

PCS Frequency (MHz)	Cable loss (dB)
1851.20	1.26
1880.00	1.26
1908.75	1.26

Cellular Frequency (MHz)	Cable loss (dB)
824.70	0.83
836.52	0.83
848.31	0.83

Procedure:

The EUT was placed in the Temperature chamber and connected to Wireless Communication Test Set outside as shown in the figure above. Dry air was pumped inside the temperature chamber to maintain a backpressure during the test. The EUT was kept in the off condition at all times except when the measurements were to be made.

The chamber was switched on and the temperature was set to -30°C.

After the chamber stabilized at -30°C there was a soak period of one hour to alleviate moisture in the chamber, the EUT voltage was enabled.

The system software recorded the frequency, power, and associated measurements.

A Computer system controlled the automated software. This application was given the command of activating all machines intrinsic to the temperature and voltage tests controlling the Wireless Communication Test Set via the GPIB Bus. The Environmental Chamber was instructed through an RS-232 serial line. The EUT dialogue was passed through a serial connection.

This report shall <u>NOT</u> be reproduced except in full without the written consent of Research In Motion Limited. Copyright 2002-2004, Research In Motion Limited

Appendix 3 Page 3 of 11

Report No. RIM-0110-0410-03

Test Date: October 20 to November 05, 2004

The EUT repetitively transmitted 100 bursts for each set of programmed parameters recording temperature, voltage settings, and systematically selected frequencies. The power supply was cycled from minimum voltage 3.5 volts, to 3.8 volts to 4.2 volts nominal voltage.

The frequency error was measured at a maximum output power and recorded by the automated system test software.

The EUT output power and frequency was measured at 3.5 volts, 3.8 volts and 4.2 volts. The transmit frequency was varied in 3 steps consisting of 824.70, 836.52, and 848.31 MHz for the cellular band and 1851.20, 1880.00 and 1908.75 MHz for the PCS band. This frequency was recorded in MHz and deviation from nominal, in Parts Per Million.

After the initial one-hour soak at the beginning of the start of the measurement tests, a period of thirty minutes soak was initialized between each ascending temperature step, before proceeding to the next measurement test cycle.

PROCEDURE:

The test system software for commencing the Frequency Stability Tests carried through the following cycle.

- 1. Switch on the HP 6632B power supply; Wireless Communication Test Set, and Environmental Chamber.
- 2. Start test program
- 3. Set the Temperature to −30 degrees Celsius and maintain a period of one- hour soak time, with the EUT supply voltage disabled.
- 4. Set power supply voltage to 3.5 Volts.
- 5. Set up Wireless Communication Test Set.
- 6. Command the Wireless Communication Test Set to switch to the low channel.
- 7. Enable the voltage to the EUT, and connect a link to the Wireless Communication Test Set.
- 8. EUT is commanded to Transmit 100 Bursts.
- 9. Software logs the following data from the Wireless Communication Test Set, power supply and temperature chamber: Traffic Channel Number, Traffic Channel Frequency, Power Level, Chamber Temperature, Supply Voltage, Power, Frequency Error.
- 10. The Wireless Communication Test Set commands the EUT to change frequency to the middle channel and high channel and repeats steps 7 to 9.
- 11. Repeat steps 5 to 10 changing the supply voltage to 3.8 Volts
- 12. Increase temperature by 10 degrees Celsius and soak for 1/2 hour.
- 13. Repeat steps 4 12 for temperatures -30 degrees to 60 degrees Cekius.
- 14. Repeat steps 5 to 10 changing the supply voltage to 4.2 Volts

Procedure 5 to 10 was repeated at room temperature (20 degrees Celsius) with the power supply voltage set to 3.5, 3.8 and 4.2 Volts.

Appendix 3 Page 4 of 11

Report No. RIM-0110-0410-03

Test Date: October 20 to November 05, 2004

Cellular Channel results: channels 1013, 384 and 777 @ 20°C maximum transmitted power

Traffic Channel Number	Cellular Frequency (MHz)	Power Level (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
1013	824.700	23.58	3.5	20	-0.29	-0.0003
384	836.520	24.29	3.5	20	-0.50	-0.0006
777	848.310	24.26	3.5	20	0.00	0.0000

Traffic Channel Number	cellular Frequency (MHz)	Power Level (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
1013	824.700	23.77	3.8	20	-1.25	-0.0015
384	836.520	24.49	3.8	20	0.50	0.0006
777	848.310	24.44	3.8	20	0.24	0.0003

Traffic Channel Number	Cellular Frequency (MHz)	Power Level (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
1013	824.700	23.81	4.2	20	-0.27	-0.0003
384	836.520	24.41	4.2	20	-0.44	0.0005
777	848.310	24.54	4.2	20	-0.65	-0.0008

Appendix 3 Page 5 of 11

Test Date: October 20 to November 05, 2004

Cellular Results: channel 1013 @ maximum transmitted power

Traffic Channel Number	Frequency (MHz)	Power Level (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
1013	824.700	23.76	3.5	-30	0.95	0.0011
1013	824.700	23.60	3.5	-20	0.33	0.0004
1013	824.700	23.44	3.5	-10	0.44	0.0005
1013	824.700	23.44	3.5	0	-0.23	-0.0003
1013	824.700	23.52	3.5	10	0.02	0.0000
1013	824.700	23.40	3.5	20	-0.29	-0.0003
1013	824.700	23.54	3.5	30	0.76	0.0009
1013	824.700	23.67	3.5	40	0.88	0.0011
1013	824.700	23.69	3.5	50	-0.13	-0.0002
1013	824.700	23.62	3.5	60	-0.62	-0.0007

Traffic Channel Number	Frequency (MHz)	Power Level (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
1013	824.700	23.77	3.8	-30	-0.02	0.0000
1013	824.700	23.74	3.8	-20	0.30	0.0004
1013	824.700	23.58	3.8	-10	0.67	0.0008
1013	824.700	23.49	3.8	0	-0.02	0.0000
1013	824.700	23.57	3.8	10	0.31	0.0004
1013	824.700	23.63	3.8	20	-1.25	-0.0015
1013	824.700	23.61	3.8	30	0.43	0.0005
1013	824.700	23.70	3.8	40	-0.88	-0.0011
1013	824.700	23.74	3.8	50	0.27	0.0003
1013	824.700	23.77	3.8	60	0.80	0.0010

Traffic Channel Number	Frequency (MHz)	Power Level (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
1013	824.700	23.77	4.2	-30	-1.06	-0.0013
1013	824.700	23.71	4.2	-20	-0.72	-0.0009
1013	824.700	23.66	4.2	-10	0.69	0.0008
1013	824.700	23.57	4.2	0	0.77	0.0009
1013	824.700	23.60	4.2	10	0.67	0.0008
1013	824.700	23.68	4.2	20	-0.27	-0.0003
1013	824.700	23.74	4.2	30	-0.56	-0.0007
1013	824.700	23.75	4.2	40	-0.80	-0.0010
1013	824.700	23.86	4.2	50	0.69	0.0008
1013	824.700	23.89	4.2	60	-0.34	-0.0004

This report shall <u>NOT</u> be reproduced except in full without the written consent of Research In Motion Limited. Copyright 2002-2004, Research In Motion Limited

Appendix 3 Page 6 of 11

Report No. RIM-0110-0410-03

Test Date: October 20 to November 05, 2004

Cellular Results: channel 384 @ maximum transmitted power

Traffic Channel Number	Frequency (MHz)	Power Level (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
384	836.520	23.73	3.5	-30	-0.27	-0.0003
384	836.520	23.53	3.5	-20	0.26	0.0003
384	836.520	23.39	3.5	-10	0.13	0.0002
384	836.520	23.33	3.5	0	0.23	0.0003
384	836.520	23.27	3.5	10	0.36	0.0004
384	836.520	23.26	3.5	20	-0.50	-0.0006
384	836.520	23.20	3.5	30	0.35	0.0004
384	836.520	23.22	3.5	40	0.55	0.0007
384	836.520	23.36	3.5	50	0.54	0.0007
384	836.520	23.39	3.5	60	0.83	0.0010

Traffic Channel Number	Frequency (MHz)	Power Level (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
384	836.520	23.71	3.8	-30	-0.91	-0.0011
384	836.520	23.52	3.8	-20	-0.84	-0.0010
384	836.520	23.50	3.8	-10	-1.26	-0.0015
384	836.520	23.36	3.8	0	-0.23	-0.0003
384	836.520	23.32	3.8	10	-0.51	-0.0006
384	836.520	23.29	3.8	20	0.50	0.0006
384	836.520	23.36	3.8	30	0.23	0.0003
384	836.520	23.32	3.8	40	-0.12	-0.0001
384	836.520	23.33	3.8	50	0.52	0.0006
384	836.520	23.39	3.8	60	0.01	0.0000

Traffic Channel Number	Frequency (MHz)	Power Level (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
384	836.520	23.67	4.2	-30	-0.54	-0.0006
384	836.520	23.60	4.2	-20	0.48	0.0006
384	836.520	23.51	4.2	-10	0.05	0.0001
384	836.520	23.32	4.2	0	0.70	0.0008
384	836.520	23.29	4.2	10	-0.20	-0.0002
384	836.520	23.32	4.2	20	-0.44	-0.0005
384	836.520	23.37	4.2	30	0.39	0.0005
384	836.520	23.42	4.2	40	-0.10	-0.0001
384	836.520	23.35	4.2	50	1.19	0.0014
384	836.520	23.43	4.2	60	-0.84	-0.0010

This report shall <u>NOT</u> be reproduced except in full without the written consent of Research In Motion Limited. Copyright 2002-2004, Research In Motion Limited

Test Date: October 20 to November 05, 2004

Cellular Results: channel 777 @ maximum transmitted power

Traffic Channel Number	Frequency (MHz)	Power Level (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	РРМ
777	848.310	24.68	3.5	-30	-0.49	-0.0006
777	848.310	24.27	3.5	-20	-0.07	-0.0001
777	848.310	23.90	3.5	-10	-0.19	-0.0002
777	848.310	23.80	3.5	0	0.56	0.0007
777	848.310	23.57	3.5	10	0.12	0.0001
777	848.310	23.54	3.5	20	0.00	0.0000
777	848.310	23.33	3.5	30	0.21	0.0003
777	848.310	23.24	3.5	40	-0.29	-0.0003
777	848.310	23.21	3.5	50	-0.58	-0.0007
777	848.310	23.29	3.5	60	0.13	0.0002

Traffic Channel Number	Frequency (MHz)	Power Level (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
777	848.310	24.48	3.8	-30	0.53	0.0006
777	848.310	24.37	3.8	-20	0.86	0.0010
777	848.310	24.08	3.8	-10	0.33	0.0004
777	848.310	23.86	3.8	0	-0.15	-0.0002
777	848.310	23.65	3.8	10	-0.15	-0.0002
777	848.310	23.52	3.8	20	0.24	0.0003
777	848.310	23.40	3.8	30	0.99	0.0012
777	848.310	23.31	3.8	40	0.27	0.0003
777	848.310	23.33	3.8	50	0.21	0.0003
777	848.310	23.38	3.8	60	0.15	0.0002

Traffic Channel Number	Frequency (MHz)	Power Level (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
777	848.310	24.34	4.2	-30	1.10	0.0013
777	848.310	24.31	4.2	-20	0.45	0.0005
777	848.310	23.96	4.2	-10	1.20	0.0014
777	848.310	23.81	4.2	0	0.42	0.0005
777	848.310	23.60	4.2	10	-0.35	-0.0004
777	848.310	23.52	4.2	20	-0.65	-0.0008
777	848.310	23.41	4.2	30	-0.46	-0.0005
777	848.310	23.26	4.2	40	0.12	0.0001
777	848.310	23.38	4.2	50	-0.26	-0.0003
777	848.310	23.40	4.2	60	0.02	0.0000

This report shall <u>NOT</u> be reproduced except in full without the written consent of Research In Motion Limited. Copyright 2002-2004, Research In Motion Limited

Test Date: October 20 to November 05, 2004

PCS Channel results: channels 25, 600, & 1175 @ 20°C maximum transmitted power

Traffic Channel Number	PCS Frequency (MHz	Power Level (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
25	1851.200	22.18	3.5	20	-0.42	-0.0002
600	1880.000	22.34	3.5	20	0.12	0.0001
1175	1908.750	22.45	3.5	20	1.79	0.0009

Traffic Channel Number	PCS Frequency (MHz	Power Level (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
25	1851.200	22.13	3.8	20	-0.07	0.0000
600	1880.000	22.38	3.8	20	-0.59	-0.0003
1175	1908.750	22.47	3.8	20	-1.37	-0.0007

Traffic Channel Number	Frequency		Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
25	1851.200	22.18	4.2	20	0.72	0.0004
600	1880.000	22.33	4.2	20	-0.92	-0.0005
1175	1908.750	22.52	4.2	20	-0.06	0.0000

Test Date: October 20 to November 05, 2004

PCS Results: channel 25 @ maximum transmitted power

Traffic Channel Number	Frequency (MHz)	Power Level (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	РРМ
25	1851.20	22.23	3.5	-30	-1.12	-0.0006
25	1851.20	22.16	3.5	-20	0.73	0.0004
25	1851.20	22.12	3.5	-10	1.63	0.0009
25	1851.20	22.10	3.5	0	-1.46	-0.0008
25	1851.20	22.15	3.5	10	0.85	0.0005
25	1851.20	22.18	3.5	20	-0.42	-0.0002
25	1851.20	22.13	3.5	30	0.18	0.0001
25	1851.20	22.13	3.5	40	1.87	0.0010
25	1851.20	22.15	3.5	50	0.05	0.0000
25	1851.20	22.14	3.5	60	-0.28	-0.0002

Traffic Channel Number	Frequency (MHz)	Power Level (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	РРМ
25	1851.20	22.13	3.8	-30	2.11	0.0011
25	1851.20	22.09	3.8	-20	1.25	0.0007
25	1851.20	22.13	3.8	-10	0.79	0.0004
25	1851.20	22.10	3.8	0	-1.04	-0.0006
25	1851.20	22.17	3.8	10	-0.50	-0.0003
25	1851.20	22.13	3.8	20	-0.07	0.0000
25	1851.20	22.19	3.8	30	0.65	0.0003
25	1851.20	22.16	3.8	40	-0.22	-0.0001
25	1851.20	22.16	3.8	50	0.96	0.0005
25	1851.20	22.15	3.8	60	1.81	0.0010

Traffic Channel Number	Frequency (MHz)	Power Level (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
25	1851.20	22.04	4.2	-30	-0.94	-0.0005
25	1851.20	22.12	4.2	-20	-0.85	-0.0005
25	1851.20	22.06	4.2	-10	-0.19	-0.0001
25	1851.20	22.19	4.2	0	0.42	0.0002
25	1851.20	22.17	4.2	10	2.07	0.0011
25	1851.20	22.18	4.2	20	0.72	0.0004
25	1851.20	22.19	4.2	30	0.09	0.0000
25	1851.20	22.22	4.2	40	-0.10	-0.0001
25	1851.20	22.21	4.2	50	0.34	0.0002
25	1851.20	22.20	4.2	60	0.43	0.0002

This report shall <u>NOT</u> be reproduced except in full without the written consent of Research In Motion Limited. Copyright 2002-2004, Research In Motion Limited

PCS Results: channel 600 @ maximum transmitted power

Traffic Channel Number	Frequency (MHz)	Power Level (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
600	1880.00	22.39	3.5	-30	1.49	0.0008
600	1880.00	22.40	3.5	-20	0.04	0.0000
600	1880.00	22.40	3.5	-10	-1.81	-0.0010
600	1880.00	22.38	3.5	0	-0.90	-0.0005
600	1880.00	22.35	3.5	10	1.09	0.0006
600	1880.00	22.34	3.5	20	0.12	0.0001
600	1880.00	22.34	3.5	30	0.42	0.0002
600	1880.00	22.41	3.5	40	0.18	0.0001
600	1880.00	22.39	3.5	50	1.04	0.0006
600	1880.00	22.46	3.5	60	-1.98	-0.0011

Traffic Channel Number	Frequency (MHz)	Power Level (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
600	1880.00	22.38	3.8	-30	-1.86	-0.0010
600	1880.00	22.41	3.8	-20	1.52	0.0008
600	1880.00	22.40	3.8	-10	0.40	0.0002
600	1880.00	22.37	3.8	0	0.63	0.0003
600	1880.00	22.35	3.8	10	1.37	0.0007
600	1880.00	22.38	3.8	20	-0.59	-0.0003
600	1880.00	22.38	3.8	30	-0.11	-0.0001
600	1880.00	22.37	3.8	40	-1.56	-0.0008
600	1880.00	22.36	3.8	50	1.80	0.0010
600	1880.00	22.38	3.8	60	-1.06	-0.0006

Traffic Channel Number	Frequency (MHz)	Power Level (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	РРМ
600	1880.00	22.36	4.2	-30	-0.49	-0.0003
600	1880.00	22.38	4.2	-20	0.29	0.0002
600	1880.00	22.37	4.2	-10	1.52	0.0008
600	1880.00	22.32	4.2	0	0.50	0.0003
600	1880.00	22.36	4.2	10	1.15	0.0006
600	1880.00	22.33	4.2	20	-0.92	-0.0005
600	1880.00	22.41	4.2	30	-0.09	0.0000
600	1880.00	22.39	4.2	40	0.93	0.0005
600	1880.00	22.35	4.2	50	-1.07	-0.0006
600	1880.00	22.45	4.2	60	1.10	0.0006

Test Date: October 20 to November 05, 2004

PCS Results: channel 1175 @ maximum transmitted power

Traffic Channel Number	Frequency (MHz)	Power Level (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	РРМ
1175	1908.75	22.24	3.5	-30	1.03	0.0005
1175	1908.75	22.31	3.5	-20	-1.60	-0.0008
1175	1908.75	22.45	3.5	-10	0.90	0.0005
1175	1908.75	22.44	3.5	0	-1.84	-0.0010
1175	1908.75	22.45	3.5	10	1.12	0.0006
1175	1908.75	22.45	3.5	20	1.79	0.0009
1175	1908.75	22.45	3.5	30	1.78	0.0009
1175	1908.75	22.48	3.5	40	0.06	0.0000
1175	1908.75	22.43	3.5	50	1.87	0.0010
1175	1908.75	22.50	3.5	60	-1.50	-0.0008

Traffic Channel Number	Frequency (MHz)	Power Level (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	РРМ
1175	1908.75	22.22	3.8	-30	-1.71	-0.0009
1175	1908.75	22.41	3.8	-20	-0.74	-0.0004
1175	1908.75	22.34	3.8	-10	-0.33	-0.0002
1175	1908.75	22.42	3.8	0	-2.06	-0.0011
1175	1908.75	22.44	3.8	10	-0.56	-0.0003
1175	1908.75	22.47	3.8	20	-1.37	-0.0007
1175	1908.75	22.48	3.8	30	-0.19	-0.0001
1175	1908.75	22.46	3.8	40	0.08	0.0000
1175	1908.75	22.49	3.8	50	-0.40	-0.0002
1175	1908.75	22.49	3.8	60	0.04	0.0000

Traffic Channel Number	Frequency (MHz)	Power Level (dBm)	Voltage (Volts)	Temperature (Celsius)	Frequency Error (Hz)	PPM
1175	1908.75	22.25	4.2	-30	0.47	0.0002
1175	1908.75	22.31	4.2	-20	1.26	0.0007
1175	1908.75	22.40	4.2	-10	-0.02	0.0000
1175	1908.75	22.47	4.2	0	-0.51	-0.0003
1175	1908.75	22.48	4.2	10	0.76	0.0004
1175	1908.75	22.52	4.2	20	-0.06	0.0000
1175	1908.75	22.53	4.2	30	0.19	0.0001
1175	1908.75	22.52	4.2	40	-1.08	-0.0006
1175	1908.75	22.52	4.2	50	0.35	0.0002
1175	1908.75	22.54	4.2	60	1.06	0.0006

This report shall <u>NOT</u> be reproduced except in full without the written consent of Research In Motion Limited. Copyright 2002-2004, Research In Motion Limited

Appendix 4 Page 1 of 9

Test Date: October 20 to November 05, 2004

Report No. RIM-0110-0410-03

Radiated Emissions Test Data Results

Test Distance was 3.0 metres.

Cellular Band

October 20, 2004

								Su	bstitution	Method		
		EUT		Rx Antenna		Spectrum Analyzer		Tracking Generator				
Туре	Ch	Frequency (MHz)	Band	Туре	Pol.	Reading (dBuV)	Max (V,H) (dBuV)	Pol. Tx-Rx	Reading (dBm)	Corrected Reading (relative to dipole)	Limit (dBm)	Diff to Limit (dB)
Call	ular R	,	<u> </u>		l	(4541)	(4247)		(4211)	<u> </u>	(42111)	(42)
Cellular Band (ERP)												
Han	dheld	Standalone	, on it	s side								
F0	1013	824.70	800	Dipole	V	71.4	82.8	VV	7.3	23.65	27.78	-4.13
F0	1013	824.70	800	Dipole	Н	82.8	02.0	нн	6.2	23.03	21.10	-4.13
F0	384	836.52	800	Dipole	V	70.7	82.2	VV	7.5	23.85	27.78	-3.93
F0	384	836.52	800	Dipole	Н	82.2	02.2	нн	6.6	23.65	21.10	-3.93
F0	777	848.32	800	Dipole	V	70.8	82.8	VV	8.9	25.25	27.78	-2.53
F0	777	848.32	800	Dipole	Н	82.8	02.0	нн	7.3	20.20	21.10	-2.53

ERP = Tracking Generator Level + Antenna Gain - Cable Loss + Preamp

<u>Example</u>: 824.70 MHz = 7.3 (Tracking Generator Level) - 7.8 (Antenna Loss) - 2.15 (Dipole Factor) - 3.8 (Cable Loss) + 30.1 (Preamp Gain) = 23.65 dBm (Reading Relative to Dipole)

Appendix 4 Page 2 of 9

Test Date: October 20 to November 05, 2004

Report No. RIM-0110-0410-03

Radiated Emissions Test Data Results cont'd

Test Distance was 3.0 metres.

Cellular Band

October 20, 2004

					Substitution Method							
EUT		Rx Antenna		Spectrum Analyzer		Tracking Generator						
Туре	Ch	Frequency (MHz)	Band	Type	Pol.	Reading (dBuV)	Max (V,H) (dBuV)	Pol. Tx-Rx	Reading	Corrected Reading (relative to dipole)	Limit	Diff to Limit (dB)

Cellular Band (Harmonics)

Handheld Standalone, on its side

Low Channel - 824.70 MHz

2 nd	1013	1649.40	800	Horn	V	61.0	61.5	V-V	-42.6	-38.2	-13	-25.2
2 nd	1013	1649.40	800	Horn	Н	61.5	01.5	H-H	-41.7	-36.2	-13	-25.2
3 rd	1013	2474.10	800	Horn	V	NF	NF	V-V				
3 rd	1013	2474.20	800	Horn	Н	NF	INF	H-H				

The harmonics were investigated up to the 10th harmonic.

Emissions above the 2nd harmonic were in the noise floor (NF)

Middle Channel – 836.52 MHz

2 nd	384	1673.04	800	Horn	٧	57.3	58.0	V-V	-45.9	-41.8	-13	-28.8
2 nd	384	1673.04	800	Horn	Н	58.0	56.0	H-H	-45.3	-41.0	-13	-20.0
3 rd	384	2509.56	800	Horn	٧	NF	NF	V-V				
3 rd	384	2509.56	800	Horn	Ι	NF	INF	H-H				

The harmonics were investigated up to the 10th harmonic.

Emissions above the 2nd harmonic were in the NF

High Channel – 848.32 MHz

2 nd	777	1696.64	800	Horn	٧	58.0	56.6	V-V	-45.7	-41.8	-13	-28.8
2 nd	777	1696.64	800	Horn	Н	56.6	50.0	H-H	-45.3	-41.0	-13	-20.0
3 rd	777	2544.96	800	Horn	٧	NF	NF	V-V				
3 rd	777	2544.96	800	Horn	Н	NF	INF	H-H				

The harmonics were investigated up to the 10th harmonic.

Emissions above the 2nd harmonic were in the NF

Appendix 4 Page 3 of 9

Test Date: October 20 to November 05, 2004

Report No. RIM-0110-0410-03

Radiated Emissions Test Data Results cont'd

	D' /	2	\sim	
Test	Distance	was 3	()	metres

Cellular Band

October 20, 2004

								Subs	titution N	/lethod	
		EUT		Rx Ant	enna	Spectrum Ar	nalyzer	Trac	king Ger	nerator	
Туре	Ch	Frequency (MHz)	Band	Туре	Pol.	Reading (dBuV)	Max (V,H) (dBuV)	Pol. Tx-Rx	Reading (dBm))	Corrected Reading (relative to dipole) (dBm))	Diff to Limit (dB)

Cellular BAND

RF Local Oscillator (LO)

Low Channel

F0	1013	1739.40	800	Horn	V	NF	NF	V-V		12	
F0	1013	1739.40	800	Horn	Н	NF	INF	H-H		-13	

No Emissions could be seen.

Middle Channel

F0	384	1763.04	800	Horn	V	NF	NF	V-V		12	
F0	384	1763.04	800	Horn	Н	NF	INF	Н-Н		-13	}

No Emissions could be seen.

High Channel

F0	777	1786.62	800	Horn	V	NF	NF	V-V		-13	
F0	777	1786.62	800	Horn	Н	NF	INF	H-H			}

No Emissions could be seen.

This report shall <u>NOT</u> be reproduced except in full without the written consent of Research In Motion Limited. Copyright 2002-2004, Research In Motion Limited

Appendix 4 Page 4 of 9

Report No. RIM-0110-0410-03

Test Date: October 20 to November 05, 2004

Radiated Emissions Test Data Results cont'd

Test distance is 3.0 metres

November 05, 2004

	FUT							Sub	stitution M	lethod		
		EUT		Rx Ante	enna	Spectrum	Analyzer	Tra	cking Gen	erator		
Туре	Ch	Frequency (MHz)	Band	Туре	Pol.	Reading (dBuV)	Max (V,H) (dBuV)	Pol. Tx-Rx	Reading (dBm)	Corrected Reading (relative to dipole)	Limit	Diff to Limit

Cellular and Bluetooth transmitting in frequency hopping mode

Handheld Standalone, upright position

Low Channel - 824.70 MHz

2 nd	1013	1649.40	800	Horn	V	62.6	65.2	V-V	-38.3	-34.4	-13	-21.4
2 nd	1013	1649.40	800	Horn	Н	65.2	05.2	H-H	-37.9	-34.4	-13	-21.4
3 rd	1013	2474.10	800	Horn	V	NF	NF	V-V				
3 rd	1013	2474.20	800	Horn	Н	NF	INF	H-H				

The harmonics were investigated up to the 10th harmonic.

Emissions above the 2nd harmonic were in the noise floor (NF)

Middle Channel – 836.52 MHz

2 nd	384	1673.04	800	Horn	٧	61.7	62.7	V-V	-40.6	-36.7	-13	-23.7
2 nd	384	1673.04	800	Horn	Н	62.7	02.7	H-H	-40.2	-30.7	-13	-23.1
3 rd	384	2509.56	800	Horn	V	NF	NF	V-V				
3 rd	384	2509.56	800	Horn	Н	NF	INF	H-H				

The harmonics were investigated up to the 10th harmonic.

Emissions above the 2nd harmonic were in the NF

High Channel - 848.32 MHz

2	2 nd	777	1696.64	800	Horn	V	61.2	61.2	V-V	-41.9	-38.0	-13	-25.0
2	2 nd	777	1696.64	800	Horn	Н	57.9	61.2	H-H	-41.5	-36.0	-13	-25.0
3	3 rd	777	2544.96	800	Horn	V	NF	NF	V-V				
3	3 rd	777	2544.96	800	Horn	Н	NF	INF	Н-Н				

The harmonics were investigated up to the 10^{th} harmonic.

Emissions above the 2nd harmonic were in the noise floor (NF)

This report shall <u>NOT</u> be reproduced except in full without the written consent of Research In Motion Limited. Copyright 2002-2004, Research In Motion Limited

Appendix 4 Page 5 of 9

Test Date: October 20 to November 05, 2004

Report No. RIM-0110-0410-03

Radiated Emissions Test Data Results cont'd

Test Distance was 3.0 metres.

1880.00

1908.75

1908.75

F0

F₀

F₀

600

1175

1175

1900

1900

1900

Horn

Horn

Horn

PCS Band

October 20, 2004

								5	Substitut	ion Method				
		EUT		Recei Anten	_	Spectrum	Analyzer	-	Tracking	Generator				
Туре	Ch	Frequency	Band	Туре	Pol.	Reading	Max (V,H)	Pol.	Reading	Corrected Reading (relative to Isotropic Radiator)	Limit	Diff to Limit		
	(MHz)					(dBuV)	dBuV	Tx-Rx	(dBm)	(dBm)	(dBm)	(dB)		
	PCS BAND (EIRP) Handheld Standalone, upright position													
F0	25	1851.25	1900	Horn	V	90.6	90.6	V-V	-9.2	27.4	33	-5.6		
F0	25	1851.25	1900	00 Horn H		81.1	90.0	Н-Н	-8.0	21.4	33	-5.0		
F0	600	1880.00	1900	Horn	V	90.0	90.0	V-V	-8.8	28.1	33	-4.9		

EIRP = Tracking Generator Level + Antenna Factor - Cable Loss + Preamp Gain

Н

٧

Н

<u>Example</u>: 1851.25 MHz = -8.0 (Tracking Generator Level) + 8.4 (Antenna Factor) - 5.6 (Cable Loss) + 32.6 (Preamp Gain) = 27.4 dBm (Reading Relative to Isotropic Radiator)

81.9

89.5

82.0

H-H

V-V

H-H

89.5

-7.3

-9.1

-7.8

27.6

33

-5.4

This report shall <u>NOT</u> be reproduced except in full without the written consent of Research In Motion Limited. Copyright 2002-2004, Research In Motion Limited

Appendix 4 Page 6 of 9

Report No. RIM-0110-0410-03

Test Date: October 20 to November 05, 2004

Radiated Emissions Test Data Results cont'd

Test Distance was 3.0 metres.

PCS Band

October 20, 2004

								Su	bstitutior	Method		
		EUT		Receive Ante	enna	Spectrur	n Analyzer	Tr	acking G	enerator		
Туре	Ch	Frequency (MHz)	Band	Pol. Type	Pol.	Reading (dBuV)	Max (V,H)	Pol.	Reading (dBm)	Corrected Reading (relative to Isotropic Radiator) (dBm)	Limit (dBm)	Diff to Limit (dB)

PCS BAND (Harmonics)

Handheld Standalone, upright position

Low Channel 1851.25 MHz

2 nd	25	3702.50	1900	Horn	V	45.5	45.5	V-V	-41.3	-37.9	-13	-24.9
2 nd	25	3702.50	1900	Horn	Н	42.1	43.3	Н-Н	-41.6	-57.9	-13	-24.3

The harmonics were investigated up to the 10th harmonic.

Emissions above the 2nd harmonic were in the NF

Middle Channel 1880.00 MHz

2 nd	600	3760.00	1900	Horn	V	45.9	45.9	V-V	-39.8	-36.3	-13	_22 2
2 nd	600	3760.00	1900	Horn	Н	42.7	43.3	H-H	-39.7	-30.3		-23.3

The harmonics were investigated up to the 10th harmonic.

Emissions above the 2nd harmonic were in the NF

High Channel 1908.75 MHz

2 nd	1175	3817.50	1900	Horn	٧	NF	NF	V-V		-13	
2 nd	1175	3817.50	1900	Horn	Η	NF	INI	H-H		-13	

The harmonics were investigated up to the 10th harmonic.

No Emissions could be seen.

Appendix 4 Page 7 of 9

Test Date: October 20 to November 05, 2004

Report No. RIM-0110-0410-03

Radiated Emissions Test Results cont'd

Test Distance was 3.0 metres.

PCS Band

October 20, 2004

The measurements were performed in transmit mode with the handheld in standalone upright position.

							Subs	titution N	/lethod		
	EUT		Rx Ant	enna	Spectrum	Analyzer	Trac	king Ger	erator		
Type Ch	Frequency (MHz)	Band	Туре	Pol.	Reading (dBuV)	Max (V,H)	Pol. Tx-Rx	Reading (dBm)	Corrected Reading (relative to Isotropic Radiator) (dBm)	Limit (dBm)	Diff to Limit

PCS Band RF LO

Low Channel

F0	25	1716.67	1900	Horn	٧	NF	NF	V-V		12	
F0	25	1716.67	1900	Horn	Н	NF	INF	H-H		-13	

No Emissions could be seen.

Middle Channel

F0	600	1742.22	1900	Horn	>	NF	NF	V-V		12	
F0	600	1742.22	1900	Horn	Η	NF	INF	H-H		-13	

No Emissions could be seen.

High Channel

F0	1175	1767.78	1900	Horn	V	NF	NF	V-V		-13	
F0	1175	1767.78	1900	Horn	Н	NF	INF	H-H		-13	

No Emissions could be seen.

Appendix 4 Page 8 of 9

Test Date: October 20 to November 05, 2004

Report No. RIM-0110-0410-03

Radiated Emissions Test Results cont'd

Test Distance was 3.0 metres.

November 05, 2004

							Su	bstitution	Method		
	EUT		Receive Ante	enna	Spectrur	n Analyzer	Tr	acking G	enerator		
Type C	h Frequency (MHz)	Band	Pol. Type	Pol.	Reading (dBuV)	Max (V,H)	Pol. Tx-Rx	Reading (dBm)	Corrected Reading (relative to Isotropic Radiator) (dBm)	Limit (dBm)	Diff to Limit (dB)

PCS and Bluetooth transmitting in frequency hopping mode

Handheld Standalone, upright position

Low Channel 1851.25 MHz

2 nd	25	3702.50	1900	Horn	V	46.4	46.4	V-V	-40.4	-37.0	-13	-24.0
2 nd	25	3702.50	1900	Horn	Н	44.0	40.4	Н-Н	-40.6	-57.0	-13	-24.0
3 rd	25	5553.75	1900	Horn	٧	NF	NF	V-V			-13	
3 rd	25	5553.75	1900	Horn	Н	NF	INI	Н-Н			-13	

The harmonics were investigated up to the 10th harmonic.

Emissions above the 3rd harmonic were in the NF

Middle Channel 1880.00 MHz

2 nd	600	3760.00	1900	Horn	>	45.3	45.3	V-V	-40.5	-37.1	-13	-24.1
2 nd	600	3760.00	1900	Horn	Η	42.2	45.5	Н-Н	-40.7	-57.1	-13	-24.1
3 rd	600	5640.00	1900	Horn	>	NF	Nf	V-V			-13	
3 rd	600	5640.00	1900	Horn	Н	NF	INI	H-H			-13	

The harmonics were investigated up to the 10th harmonic.

Emissions above the 3rd harmonic were in the NF

High Channel 1908.75 MHz

2 nd	1175	3817.50	1900	Horn	٧	41.1	41.1	V-V	-47.4	-44.0	-13	-31.0
2 nd	1175	3817.50	1900	Horn	Н	39.4		Н-Н	-47.4			
3 rd	1175	5726.25	1900	Horn	٧	NF	NF	V-V			-13	
3 rd	1175	5726.25	1900	Horn	Н	NF		Н-Н				

The harmonics were investigated up to the 10th harmonic.

Emissions above the 3rd harmonic were in the NF

This report shall <u>NOT</u> be reproduced except in full without the written consent of Research In Motion Limited. Copyright 2002-2004, Research In Motion Limited

Radiated Emissions Test Photo cont'd

Radiated Emissions at 3.0 metres