Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Nokia China

CALIBRATION CERTIFICATE

Object(s) ET3DV6 - SN:1650

Calibration procedure(s) QA CAL-01,v2

Calibration procedure for dosimetric E-field probes

Calibration date: March 23, 2004

Condition of the calibrated item In Tolerance (according to the specific calibration document)

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature 22 +/- 2 degrees Celsius and humidity < 75%.

Calibration Equipment used (M&TE critical for calibration)

Model Type	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration		
Power meter EPM E4419B	GB41293874	2-Apr-03 (METAS, No 252-0250)	Apr-04		
Power sensor E4412A	MY41495277	2-Apr-03 (METAS, No 252-0250)	Apr-04		
Reference 20 dB Attenuator	SN: 5086 (20b)	3-Apr-03 (METAS, No. 251-0340)	Apr-04		
Fluke Process Calibrator Type 702	SN: 6295803	8-Sep-03 (Sintrel SCS No. E-030020)	Sep-04		
Power sensor HP 8481A	MY41092180	18-Sep-02 (SPEAG, in house check Oct-03)	In house check: Oct 05		
RF generator HP 8684C	US3642U01700	4-Aug-99 (SPEAG, in house check Aug-02)	In house check: Aug-05		
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Oct-03)	In house check: Oct 05		

Name Function Signature
Calibrated by: Nico Vetterli Technician

Approved by: Katja Pokovic Laboratory Director

Date issued: March 23, 2004

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

DASY - Parameters of Probe: ET3DV6 SN:1650

Sensitivity in Free Space

Diode Compression^A

NormX	1.82 μ V/(V/m) ²	DCP X	97	mV
NormY	1.88 $\mu V/(V/m)^2$	DCP Y	97	mV
NormZ	1.78 μV/(V/m) ²	DCP Z	97	mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Plese see Page 7.

Boundary Effect

Head

900 MHz

Typical SAR gradient: 5 % per mm

Sensor Cener to	3.7 mm	4.7 mm	
SAR _{be} [%]	Without Correction Algorithm	8.6	4.2
SAR _{be} [%]	With Correction Algorithm	0.0	0.1

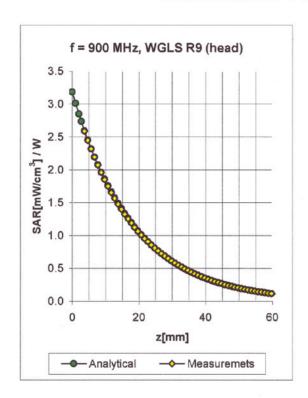
Head

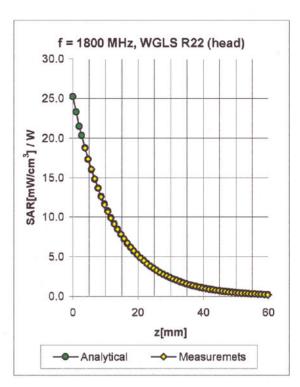
1800 MHz

Typical SAR gradient: 10 % per mm

Sensor to Surface	3.7 mm	4.7 mm	
SAR _{be} [%]	Without Correction Algorithm	12.8	8.7
SAR _{be} [%]	With Correction Algorithm	0.2	0.2

Sensor Offset


Probe Tip to Sensor Center 2.7 mm


Optical Surface Detection in tolerance

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A numerical linearization parameter: uncertainty not required

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^B	Tissue	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	800-1000	Head	41.5 ± 5%	$0.97 \pm 5\%$	0.86	1.56	6.53 ± 11.3% (k=2)
1800	1710-1910	Head	40.0 ± 5%	1.40 ± 5%	0.48	2.58	5.36 ± 11.7% (k=2)
900	800-1000	Body	$55.0 \pm 5\%$	$1.05 \pm 5\%$	0.68	1.79	6.23 ± 11.3% (k=2)
1800	1710-1910	Body	53.3 ± 5%	$1.52 \pm 5\%$	0.58	2.71	4.73 ± 11.7% (k=2)

^B The total standard uncertainty is calculated as root-sum-square of standard uncertainty of the Conversion Factor at calibration frequency and the standard uncertainty for the indicated frequency band.