

FCC Co-location Radio Test Report

APPLICANT	:	Nokia Shanghai Bell Co., Ltd.
EQUIPMENT	:	NOKIA ONT
BRAND NAME	:	NOKIA
MODEL NAME	:	XS-2437X-B
FCC ID	:	2ADZRXS2437XB
STANDARD	:	FCC Part 15 Subpart C §15.247
		FCC Part 15 Subpart E §15.407
TEST DATE(S)	:	Oct. 01, 2024

We, Sporton International Inc. (Kunshan), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Kunshan), the test report shall not be reproduced except in full.

JasonJia

Approved by: Jason Jia

Sporton International Inc. (Kunshan) No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
1	GEN	ERAL DESCRIPTION	4
	1.1	Applicant	4
	1.2	Manufacturer	4
	1.3	Product Feature of Equipment Under Test	4
	1.4	Modification of EUT	4
	1.5	Testing Location	5
	1.6	Test Software	5
	1.7	Applicable Standards	5
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	6
	2.1	Carrier Frequency and Channel	6
	2.2	Test Mode	6
	2.3	Connection Diagram of Test System	7
	2.4	EUT Operation Test Setup	7
3	TEST	RESULT	8
	3.1	Unwanted Emissions Measurement	8
4	LIST	OF MEASURING EQUIPMENT	13
5	MEA	SUREMENT UNCERTAINTY	14
AP	PEND	IX A. RADIATED SPURIOUS EMISSION	
AP	PEND	IX B. DUTY CYCLE PLOTS	
AP	PEND	IX C. SETUP PHOTOGRAPHS	

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR462802D	Rev. 01	Initial issue of report	Dec. 16, 2024

1 General Description

1.1 Applicant

Nokia Shanghai Bell Co., Ltd. No.388, Ningqiao Rd, Pilot Free Trade Zone, Shanghai, 201206 P.R. China

1.2 Manufacturer

Nokia of America Corporation

2301 Sugar Bush Rd. Raleigh, NC 27612

1.3 Product Feature of Equipment Under Test

Product Feature		
Equipment NOKIA ONT		
Brand Name	NOKIA	
Model Name XS-2437X-B		
Part Number 3TN00958xxxx, 3TN00961xxxx (x can be A-Z or blar		
FCC ID 2ADZRXS2437XB		
SN Code	Code Radiation: ALCLEB4BFE45	
EUT Stage	Production Unit	

Remark:

- **1.** The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
- **2.** Part Number are for marketing purpose only, 3TN00958xxxx are identical to 3TN00961xxxx except a power adapter is added to the unit.
- There are two samples under test, sample 1 is 1st antenna (Inpaq) and sample 2 is 2nd antenna (AOT). According to the difference, we choose the higher antenna gain of sample 1 to test.

Power Adapter				
AC Adapter 1 US	Brand Name	ShenZhen SOY	Model Name	SOY-1200400US-433
Power Rating		I/P: 100-240 Vac, 12000mA , O/P: 12Vdc,4000mA		
AC Adapter 2 US	Brand Name	MOSO	Model Name	MS-V4000R120-050A0-US
AC Adapter 2 05	Power Rating	I/P: 100-240 Vac, 13000mA , O/P: 12Vdc,4000mA		c,4000mA

1.4 Modification of EUT

No modifications are made to the EUT during all test items.

1.5 Testing Location

Sporton International Inc. (Kunshan) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International Inc. (Kunshan)			
	No. 1098, Pengxi North Road, Kunshan Economic Development Zone			
Test Site Location	Jiangsu Province 215300 People's Republic of China			
	TEL : +86-512-57900158			
	Sporton Site No.	FCC Designation No.	FCC Test Firm	
Test Site No.	Sporton Site No.	FCC Designation No.	Registration No.	
	03CH05-KS	CN1257	314309	

1.6 Test Software

ltem	Site	Manufacturer	Name	Version
1.	03CH05-KS	AUDIX	E3	210616

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- 47 CFR Part 15 Subpart E
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01
- FCC KDB 987594 D02 U-NII 6 GHz EMC Measurement v03
- FCC KDB 662911 D01 Multiple Transmitter Output v02r01.
- ANSI C63.10-2013

Remark: All test items were verified and recorded according to the standards and without any deviation during the test.

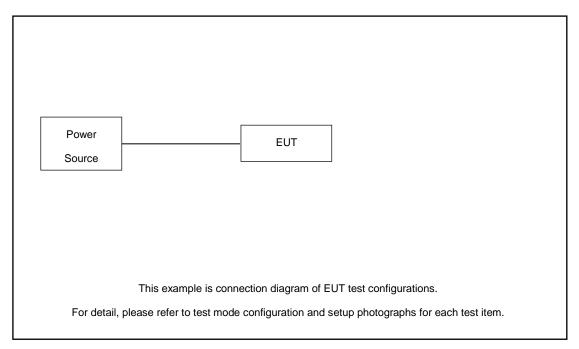
2 Test Configuration of Equipment Under Test

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report.

2.1 Carrier Frequency and Channel

2400 - 24	83.5 MHz	5500 - 5	720 MHz	6875 - 7125 MHz	
802.11b	e EHT40	802.11b	e EHT80	802.11be EHT20	
Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
9	2452	106	5530	233	7115

2.2 Test Mode


Final test modes are considering the modulation and worse data rates as below table.

Co-location		
WLAN 2.4G 802.11be EHT40 CH09 + WLAN 5G 802.11be EHT80 CH106		
+ WLAN 6G 802.11be EHT20 CH233 Link		

Remark: For Radiated Test Cases, The tests were performance with Adapter.

2.3 Connection Diagram of Test System

2.4 EUT Operation Test Setup

For WLAN RF test items, an engineering test program "QSPR.5.0-00202" TX Tool was provided and enabled to make EUT continuously transmit.

3 Test Result

3.1 Unwanted Emissions Measurement

This section is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement.

3.1.1 Limit of Unwanted Emissions

<For 2402 MHz ~ 2480 MHz>

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB.

<For 5500 MHz ~ 5720MHz >

For transmitters operating in the 5470-5600 MHz and 5650-5725MHz band: all emissions outside of the 5470-5600 MHz and 5650-5725MHz band shall not exceed an EIRP of -27 dBm/MHz.

<For 6875 MHz ~ 7125MHz >

For transmitters operating within the 5.925-7.125 GHz band: Any emissions outside of the 5.925-7.125 GHz band must not exceed an e.i.r.p. of -27 dBm/MHz.

EIRP (dBm)	Field Strength at 3m (dBµV/m)
- 27 (RMS)	68.3
- 7 (Peak)	88.3

According 987594 D02 U-NII 6GHz EMC Measurement v03 section G:

Unwanted emissions outside of restricted bands are measured with a RMS detector.

In addition, 15.35(b) applies where the peak emissions must be limited to no more than 20 dB above the average limit

Unwanted spurious emissions fallen in restricted bands shall comply with the general field strength limits as below table:

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

Note: The following formula is used to convert the EIRP to field strength.

$$\mathsf{E} = \frac{1000000\sqrt{30P}}{3} \quad \mu V/\mathsf{m}, \text{ where P is the eirp (Watts)}$$

EIRP (dBm)	Field Strength at 3m (dBµV/m)
- 27	68.2

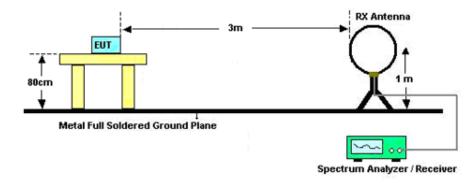
KDB789033 D02 v02r01 G)2)c)

(i) Sections 15.407(b)(1-3) specifies the unwanted emissions limit for the U-NII-1 and U-NII-2 bands. As specified, emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of -27 dBm/MHz.

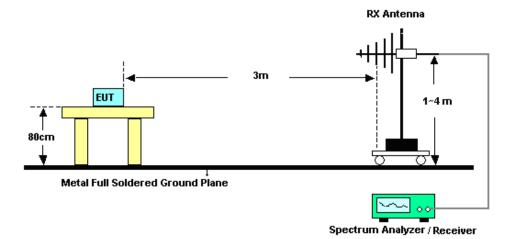
(ii) Section 15.407(b)(4) specifies the unwanted emissions limit for the U-NII-3 band. A band emissions mask is specified in Section 15.407(b)(4)(i). The emission limits are based on the use of a peak detector.

3.1.2 Measuring Instruments

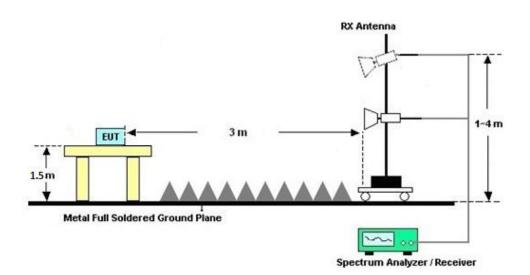
The measuring equipment is listed in this test report.


3.1.3 Test Procedures

- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r04. Section G) Unwanted emissions measurement.
 - (1) Procedure for Unwanted Emissions Measurements Below 1000MHz
 - RBW = 120 kHz
 - VBW = 300 kHz
 - Detector = Peak
 - Trace mode = max hold
 - (2) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz
 - RBW = 1 MHz
 - VBW ≥ 3 MHz
 - Detector = Peak
 - Sweep time = auto
 - Trace mode = max hold
 - (3) Procedures for Average Unwanted Emissions Measurements Above 1000MHz
 - RBW = 1 MHz
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on.
- 2. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 4. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.



3.1.4 Test Setup


For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

Sporton International Inc. (Kunshan) TEL : +86-512-57900158 FCC ID: 2ADZRXS2437XB

3.1.5 Test Results of Radiated Spurious Emissions (9kHz ~ 30MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.1.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix A.

3.1.7 Duty Cycle

Please refer to Appendix B.

3.1.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix A.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
EMI Test Receiver	Keysight	N9038A	MY572901 51	3Hz~8.5GHz;M ax 30dBm	Jul. 04, 2024	Oct. 01, 2024	Jul. 03, 2025	Radiation (03CH05-KS)
EXA Spectrum Analyzer	Keysight	N9010B	MY602421 26	10Hz-44G,MAX 30dB	Oct. 11, 2023	Oct. 01, 2024	Oct. 10, 2024	Radiation (03CH05-KS)
Loop Antenna	R&S	HFH2-Z2E	101125	9kHz~30MHz	Sep. 08, 2024	Oct. 01, 2024	Sep. 07, 2025	Radiation (03CH05-KS)
Bilog Antenna	TeseQ	CBL6111D	49921	30MHz-1GHz	Apr. 18, 2024	Oct. 01, 2024	Apr. 17, 2025	Radiation (03CH05-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	00218642	1GHz~18GHz	Apr. 11, 2024	Oct. 01, 2024	Apr. 10, 2025	Radiation (03CH05-KS)
SHF-EHF Horn	Com-power	AH-840	101093	18GHz~40GHz	Jan. 06, 2024	Oct. 01, 2024	Jan. 05, 2025	Radiation (03CH05-KS)
Amplifier	SONOMA	310N	381512	9KHz-1GHz	Jan. 02, 2024	Oct. 01, 2024	Jan. 01, 2025	Radiation (03CH05-KS)
Amplifier	EM	EM18G40GA	060852	18~40GHz	Jan. 02, 2024	Oct. 01, 2024	Jan. 01, 2025	Radiation (03CH05-KS)
high gain Amplifier	EM	EM01G18GA	060843	1Ghz-18Ghz	Jan. 03, 2024	Oct. 01, 2024	Jan. 02, 2025	Radiation (03CH05-KS)
Amplifier	EM	EM01G18GA	060833	1Ghz-18Ghz	Jan. 03, 2024	Oct. 01, 2024	Jan. 02, 2025	Radiation (03CH05-KS)
AC Power Source	Chroma	61601	F1040900 04	N/A	NCR	Oct. 01, 2024	NCR	Radiation (03CH05-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Oct. 01, 2024	NCR	Radiation (03CH05-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Oct. 01, 2024	NCR	Radiation (03CH05-KS)

NCR: No Calibration Required

5 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Radiated Emission Measurement (9 KHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	3.30 dB
--	---------

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	6.02 dB	
of 95% (U = 2Uc(y))		

Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	5.22 dB
--	---------

Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of Confidence	5.34 dB	
of 95% (U = 2Uc(y))		

----- THE END ------