

FCC DFS Test Report

FCC ID: 2BBLK-WL2079T

Test Report No...... RF230809011-01-005

Product(s) Name......: WiFi+BT Module

Model(s)..... WL00024

Trade Mark..... MTK

Applicant...... Huizhou Speed Wireless Technology Co., Ltd

Hi-tech District, Huizhou City, Guangdong Province, China

Receipt Date..... 2023.08.09

Issued Date...... 2023.10.21

Standards..... FCC CFR Title 47, Part 15, Subpart E

Testing Laboratory.....: Shenzhen Haiyun Standard Technical Co., Ltd.

Prepared By:	Checked By:	Approved By:	Standard
Black Ding	Tim Zhang	Misue Su	E LY : COM
Black Ding	7 in. zhang	Misue Su	HAIYUN A Report Sea

lable of Contents	Page
1. TEST LOCATION	4
2. TEST ENVIRONMENT CONDITIONS	4
3 . SUMMARY OF TEST RESULTS	4
4. GENERAL INFORMATION	5
4.1 GENERAL DESCRIPTION OF EUT	5
4.2 MAXIMUM OUTPUT POWER AND E.I.R.P.	7
4.3 DESCRIPTION OF TEST MODES	7
4.4 SUPPORT UNITS	7
5 . U-NII DFS RULE REQUIREMENTS	8
5.1 WORKING MODES AND REQUIRED TEST ITEMS	8
5.2 TEST LIMITS AND RADAR SIGNAL PARAMETERS	9
6 . MEASUREMENT INSTRUMENTS LIST	10
7 . DYNAMIC FREQUENCY SELECTION (DFS)	11
7.1 DFS MEASUREMENT SYSTEM	11
7.2 CALIBRATION OF DFS DETECTION THRESHOLD LEVEL	13
7.3 DEVIATION FROM TEST STANDARD	13
8 . TEST RESULTS	14
8.1 SUMMARY OF DFS TEST RESULT	14
8.2 DFS DETECTION THRESHOLD	15
8.3 CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME	16

History of this test report

Original Report Issue Date: 2023.10.21

- No additional attachment
- O Additional attachments were issued following record

Attachment No.	Issue Date	Description
Attachment No.	13346 Date	Description

1. TEST LOCATION

Company:	0	
Company.	Shenzhen Haiyun Standard Technical CO., Ltd.	
Address:	No. 110-113, 115, 116, Block B, Jinyuan Business Building, Bao' District, Shenzhen, China	
CNAS Registration Number:	CNAS L18252	
CAB identifier	CN0145	
A2LA Certificate Number	6823.01	
Telephone:	0755-26024411	

2. TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Test Voltage	Tested By
Dynamic Frequency Selection (DFS)	24.5°C	52%	DC 5V	Jason Huang

3. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC CFR Title 47, Part 15, Subpart E						
Standard(s) Section	`' IEST ITEM IEST RESUIT JUICOMENT REMARK					
FCC 15.407(h)	Transmit Power Control (TPC) and Dynamic Frequency Selection (DFS)		PASS			

4. GENERAL INFORMATION

4.1 GENERAL DESCRIPTION OF EUT

Report No.	POC230809011-S001	
Report Name	WiFi+BT Module	
Brand Name	MTK	
Test Model	WL00024	
Power Source	DC 3.3V~12V	
Operation Frequency Band(s) UNII-2A: 5250 MHz ~ 5350 MHz UNII-2C: 5470 MHz ~ 5725 MHz		
Modulation Type	OFDM, OFDMA	
Antenna gain	Ant1: 3.7dBi, Ant2: 3.2dBi	
Antenna type	PCB antenna	
Bit Rate of Transmitter	IEEE 802.11a: 54/48/36/24/18/12/9/6 Mbps IEEE 802.11n: up to 300 Mbps IEEE 802.11ac: up to 866.7 Mbps IEEE 802.11ax: up to 1201 Mbps	
Operating Mode(s)	 ☐ Master ☐ Client device without radar detection ☐ Client device with radar detection 	

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Channel List:

IEEE 802.11a IEEE 802.11n(HT20) IEEE 802.11ac(VHT20) IEEE 802.11ax(HE20)		IEEE 802.1	11n(HT40) 1ac(VHT40) I1ax(HE40)	IEEE 802.11ac(VHT80) IEEE 802.11ax(HE80)		
UNII	UNII-2A		UNII-2A		UNII-2A	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
52	5260	54	5270	58	5290	
56	5280	62	5310			
60	5300					
64	5320					

IEEE 802.11a IEEE 802.11n(HT20) IEEE 802.11ac(VHT20) IEEE 802.11ax(HE20)		IEEE 802.11n(HT40) IEEE 802.11ac(VHT40) IEEE 802.11ax(HE40)		IEEE 802.11ac(VHT80) IEEE 802.11ax(HE80)	
UNII	-2C	UNI	I-2C	UNI	I-2C
Channel	Frequency (MHz)	Channel	Frequency Channel		Frequency (MHz)
100	5500	102	5510	106	5530
104	5520	110	5550	122	5610
108	5540	118	5590		
112	5560	126	5630		
116	5580	134	5670		
120	5600				
124	5620				
128	5640				
132	5660				
136	5680				
140	5700				

4.2 MAXIMUM OUTPUT POWER AND E.I.R.P.

Non Beamforming							
Frequency Band (MHz)	Max Output Power (dBm)	DirectionI Gain (dBi)	Max. e.i.r.p. (dBm)	Max. e.i.r.p. (mW)			
5250~5350	18.54	6.46	25.00	316.23			
5470~5725	17.99	6.46	24.45	278.61			

Note:

1) U-NII devices operating in the 5.25-5.35 GHz band and the 5.47-5.6 GHz band and 5.65-5.725MHz shall employ a TPC mechanism. A TPC mechanism is not required for systems with an e.i.r.p. of less than 500 mW.

4.3 DESCRIPTION OF TEST MODES

Test Mode	Description	
Mode 1	IEEE 802.11a: 5260MHz	

4.4 SUPPORT UNITS

	Support Equipment						
No. Equipment Brand Name Model Name Remarks							
1	Mini PC	/	S10	DC 12V/4A			
2	Adapter	TEKA	TEKA-TE120250US	OUTPUT: DC 12V/2.5A			
3	Wireless Access Point	Nomadix, Inc.	AP 6WA	FCC ID: 2A3WK-AP6WAR1			

5. U-NII DFS RULE REQUIREMENTS

5.1 WORKING MODES AND REQUIRED TEST ITEMS

The manufacturer shall state whether the UUT is capable of operating as a Master and/or a Client. If the UUT is capable of operating in more than one operating mode then each operating mode shall be tested separately. See tables below for the applicability of DFS requirements for each of the operational modes.

Applicability of DFS requirements prior to µse a channel

Requirement	Operati nal ode			
Nequilement	Master	Client without radar detection	Client with radar detection	
Non-Occupancy Period	V	Not required	V	
DFS Detection Threshold	V	Not required	V	
Channel Availability Check Tim	V	Not required	Not required	
U-NII Detection Bandwidth	V	Not required	V	

Applicability of DFS requirements during normal operation

Demiliament	Operational Mode				
Requirement	Master	Client without radar detection	Client with radar detection		
DFS Detection Threshol	√	Not required	V		
Channel Closing Transmission Time	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		
Channel Move Tim	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		
U-NII Detection Bandwidth	V	Not required	V		

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes mµst be tested	Not required
Channel Move Time and Channel Closing Transmission Time	Test µsing widest BW mode available	Test µsing the widest BW mode available for the link
All other tests	Any single BW mode	Not required

Note: Frequencies selected for statistical performance check should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

5.2 TEST LIMITS AND RADAR SIGNAL PARAMETERS

DETECTION THRESHOLD VALUES

DFS Detection Thresholds for Master Devices and Client Devices with Radar Detection

Maximum Transmit Power	Value (See Notes 1, 2 and 3)
e.i.r.p. ≥ 200 milliwatt	-64 dBm
e.i.r.p. < 200 milliwatt and power spectral density < 10 dBm/MHz	-62 dBm
e.i.r.p. < 200 milliwatt that do not meet the power spectral density requirement	-64 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: e.i.r.p. is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

TEST LIMIT

DFS Response Requirement Values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds. See Note 1.
Channel Clasina Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over
Channel Closing Transmission Time	remaining 10 second period. See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the UNII
O-MIT Detection Bandwidth	99% transmission power bandwidth. See Note 3.

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plµs any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be μ sed. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

PARAMETERS OF DFS TEST SIGNALS

Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

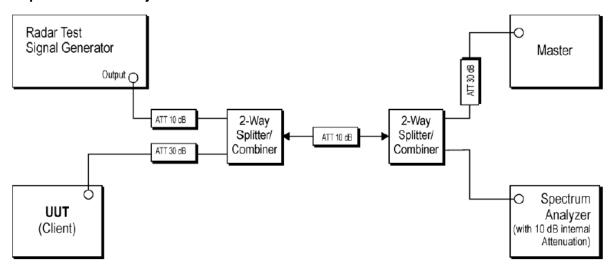
Short Pulse Radar Test Waveforms.

Radar	Pulse Width	PRI	Number of Pulses	Minimum	Minimum		
Type	(µsec)	(µsec)		Percentage of	Number of		
				Successful	Trials		
				Detection			
0	1	1428	18	See Note 1	See Note 1		

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

6. MEASUREMENT INSTRUMENTS LIST

	DFS								
No.	Equipment	Manufacturer	Type No.	Serial No.	Cal. date (yyyy/mm/dd)	Cal. Due date (yyyy/mm/dd)			
1	MXA Signal Analyzer	Keysight	N9021B	MY60080 169	2023/4/23	2024/4/22			
2	RF Control Unit	dsusoft	JS0806-2	21G80604 49	2023/4/23	2024/4/22			
3	power supply unit	dsusoft	JS0806-4 ADC	N/A	2023/4/23	2024/4/22			
4	VXG Signal Generator	Keysight	M9384B	MY61270 787	2023/4/23	2024/4/22			
5	EXG Analog Signal Generator	Keysight	N5173B	MY59101 282	2023/4/23	2024/4/22			
6	Test software	dsusoft	JS1120-3	/	/	/			

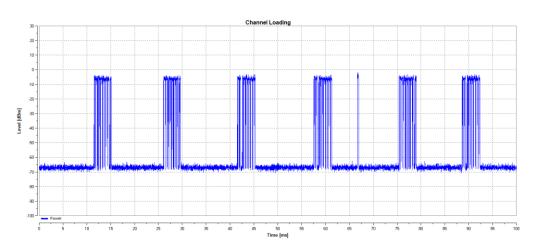

7. DYNAMIC FREQUENCY SELECTION (DFS)

7.1 DFS MEASUREMENT SYSTEM

Test Precedure

- 1. Master device and client device are set up by conduction method as the following configuration.
- 2. The client device is connected to notebook and to access a IP address on wireless connection with the master device.
- 3. Then the master device is connected to another notebook to access a IP address.
- 4. Finally, let the two IP addresses run traffic with each other through the Run flow software "Lan test" to reach 17% channel loading as below.

Setup for Client with injection at the Master



Radar Test Waveforms are injected into the Master.

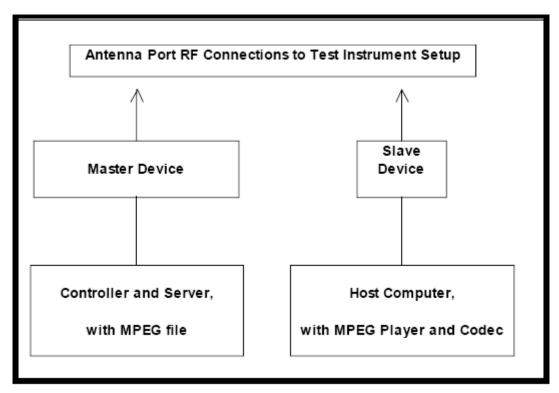
Channel Loading

IEEE 802.11a Mode

Frequency (MHz)	Duty cycle (%)	Limit(%)
5260	17.52	17.00

The signal monitoring equipment consists of a spectrum analyzer set to display 8001 bins on the horizontal axis. The time-domain resolution is 2 msec / bin with a 16 second sweep time, meeting the 10 second short pulse reporting criteria. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

Should multiple RF ports be utilized for the Master and/or Slave devices (for example, for diversity or MIMO implementations), additional combiner/dividers are inserted between the Master Combiner/Divider and the pad connected to the Master Device (and/or between the Slave Combiner/Divider and the pad connected to the Slave Device). Additional pads are utilized such that there is one pad at each RF port on each EUT.


7.2 CALIBRATION OF DFS DETECTION THRESHOLD LEVEL

A 50 ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected in place of the master device and the signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of -62dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. Measure the amplitude and calculate the difference from -64 dBm. Adjust the Reference Level Offset of the spectrum analyzer to this difference.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of -64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

Set the signal generator to produce a radar waveform, trigger a burst manually and measure the level on the spectrum analyzer. Readjust the amplitude of the signal generator as required so that the peak level of the waveform is at a displayed level equal to the required or desired interference detection threshold. Separate signal generator amplitude settings are determined as required for each radar type.

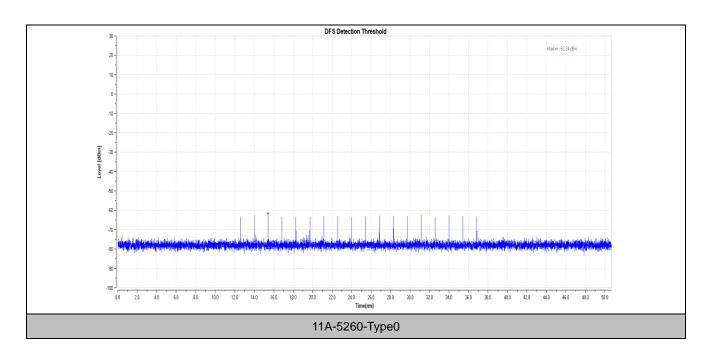
7.3 DEVIATION FROM TEST STANDARD

No deviation.

8. TEST RESULTS

8.1 SUMMARY OF DFS TEST RESULT

Claµse	Test Parameter	Remarks	Result
FCC 15.407	Channel Move Time	Applicable	Pass
FCC 15.407	Channel Closing Transmission Time	Applicable	Pass

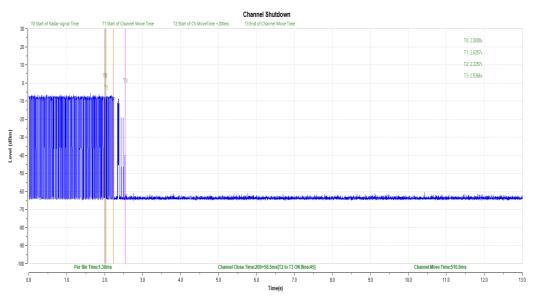


8.2 DFS DETECTION THRESHOLD

Calibration:

Note: Maximum Transmit Power is less than 200 milliwatt in this report, so detection threshold level is -62dBm

	Test Mode	Frequency[dbm]	Radar Type	Result	Limit[dbm]	Verdict
Ī	11A	5260	Type0	-62.24	-62	PASS



8.3 CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME

TX (IEEE 802.11A Mode)

Radar signal 0

Note: T0 denotes the Radar Injection Start.

T1 denotes the start of Channel Move Time upon the end of the last Radar burst.

T2 denotes the data transmission time of 200ms from T1.

T3 denotes the end of Channel Move Time.

TestMode	Frequency[MHz]	CCTT[ms]	Limit[ms]	CMT[ms]	Limit[ms]	Verdict
11A	5260	200+58.5	200+60	510.9	10000	PASS

End of Test Report