

FCC CFR47 PART 15 SUBPART E CERTIFICATION

TEST REPORT

FOR

802.11a/b/g MINI PCI TYPE 3B CARD

MODEL NUMBER: PA3375U-1MPC

FCC ID: CJ6UPA3375WL

REPORT NUMBER: 04U2843-2

ISSUE DATE: JULY 20, 2004

Prepared for TOSHIBA CORPORATION DIGITAL MEDIA NETWORK COMPANY 2-9, SUEHIRO-CHO OME, TOKYO 198-8710 JAPAN

> Prepared by COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037, USA TEL: (408) 463-0885 FAX: (408) 463-0888

TABLE OF CONTENTS

1.]	ГES	ST RESULT CERTIFICATION	.4
2.	ŀ	EUI	Г DESCRIPTION	5
3.	J	ГES	ST METHODOLOGY	6
4.	ŀ	FAC	CILITIES AND ACCREDITATION	6
5.	(CAI	LIBRATION AND UNCERTAINTY	.7
	5.1.		MEASURING INSTRUMENT CALIBRATION	. 7
	5.2.		MEASUREMENT UNCERTAINTY	. 7
	5.3.		TEST AND MEASUREMENT EQUIPMENT	. 8
6.	S	SET	TUP OF EQUIPMENT UNDER TEST	.9
7.	A	APF	PLICABLE LIMITS AND TEST RESULTS	11
	7.1.	•	EMISSION BANDWIDTH	11
	7.2.	•	PEAK POWER	15
	7.3.		MAXIMUM PERMISSIBLE EXPOSURE	20
	7.4.		AVERAGE POWER	23
	7.5.		PEAK POWER SPECTRAL DENSITY	24
	7.6.	•	PEAK EXCURSION	29
	7.7.	•	CONDUCTED SPURIOUS EMISSIONS	33
	7 () 7 () 7 () 7 () 7 () 7 7 () 7 7	7.8.1 7.8.2 7.8.2 7.8.2 7.8.4 7.8.4 7.8.4	 TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHz, MOBILE LAPTOP NFIGURATION, TIAN01 ANTENNA SET	 40 43 52 61 70 A 79 A 88
	7	7.8.9	9. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz, HTL017 ANTENNA SET1	01
	7.9.	•	POWERLINE CONDUCTED EMISSIONS	05

Page 2 of 118

8.	SETUP PHOTOS	10	8
----	--------------	----	---

Page 3 of 118

1. TEST RESULT CERTIFICATION

COMPANY NAME:	TOSHIBA CORPORATION DIGITAL MEDIA NETWORK COMPANY 2-9, SUEHIRO-CHO OME, TOKYO 198-8710 JAPAN
EUT DESCRIPTION:	802.11a/b/g MINI PCI TYPE 3B CARD
MODEL:	PA3375U-1MPC
DATE TESTED:	JUNE 11 TO JULY 15, 2004

APPLICABLE STANDARDS					
STANDARD	TEST RESULTS				
FCC PART 15 SUBPART E	NO NON-COMPLIANCE NOTED				

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: This document reports conditions under which testing was conducted and results of tests performed. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document.

Note: The 5.2 GHz band is applicable to this report; other bands of operation (2.4 and 5.8 GHz) are documented in a separate report.

Approved & Released For CCS By:

Tested By:

MH

MIKE HECKROTTE ENGINEERING MANAGER COMPLIANCE CERTIFICATION SERVICES

DAVID GARCIA EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 4 of 118

2. EUT DESCRIPTION

The EUT is an 802.11a/b/g transceiver Mini PCI card installed in a Toshiba Tablet host laptop computer, including co-location with the Toshiba PA3232U-1BTM Bluetooth radio card.

The transmitter has a maximum peak conducted output power as follows:

5150 to 5250 MHz Authorized Band

Frequency Band Mode		Output Power	Output Power
(MHz)		(dBm)	(mW)
5180 - 5250	802.11a	11.08	12.82

5250 to 5350 MHz Authorized Band

Frequency Band	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
5250 - 5320	802.11a	15.80	38.02

The radio utilizes two identical film antennas for diversity (main and auxiliary). Three antenna models are available: Hitachi model HTL017, Hitachi model HTL008 and Tyco model TIAN01.

The TIAN01 has the highest gain in the 5.2 GHz band. The HTL017 and HTL008 both have a lower gain.

Final compliance tests were performed with two host computers; one system was equipped with HTL017 antennas and the other system was equipped with TIAN01 antennas.

The Bluetooth radio card has a modular approval, FCC ID: CJ6UPA3232BT. The Bluetooth radio utilizes a film antenna with a maximum gain of 1.22 dBi.

TIAN01 ANTENNA

This antenna model has a maximum assembly gain of 1.6 dBi in the 5.2 GHz band.

HTL017 ANTENNA

This antenna model has a maximum assembly gain of 1.2 dBi in the 5.2 GHz band.

The host computer can be configured as a laptop-style notebook computer or as a tablet-style notebook computer. The display section is rotated and inverted to change between these configurations.

In the laptop configuration, the system is a mobile transmitter. In the tablet configuration, the system is a hand-held portable transmitter.

Page 5 of 118

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4/2001, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

4. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.

Page 6 of 118

5. CALIBRATION AND UNCERTAINTY

5.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

5.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 7 of 118

5.3. TEST AND MEASUREMENT EQUIPMENT

TEST EQUIPMENT LIST								
Description	Manufacturer	Model	Serial Number	Cal Due				
EMI Receiver, 9 kHz ~ 2.9 GHz	HP	8542E	3942A00286	11/21/2004				
RF Filter Section	HP	85420E	3705A00256	11/21/04				
30MHz 2Ghz	Sunol Sciences	JB1 Antenna	A121003	12/22/04				
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	6717	2/4/05				
Spectrum Analyzer	Agilent	E4446A	MY43360112	1/13/05				
Preamplifier, 1 ~ 26 GHz	Miteq	NSP10023988	646456	4/25/05				
EMI Test Receiver	R & S	ESHS 20	827129/006	7/17/04				
LISN, 10 kHz ~ 30 MHz	FCC	50/250-25-2	114	10/13/04				
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	8379443	10/13/04				
Site A Line Stabilizer / Conditioner	Tripplite	LC-1800a	A0051681	CNR				
EMI Test Receiver	R & S	ESHS 20	827129/006	7/17/04				
AC Power Source, 10KVA	ACS	AFC-10K-AFC-2	J1568	CNR				
10dB Pad	Weinschel	56-10	M251	CNR				
PreAmplifier 26-40 GHz	Miteq	NSP4000-SP2	924343	6/1/05				
Antenna, Horn 26 ~ 40 GHz	ARA	MWH-2640/B	1029	12/3/04				
Antenna, Horn, 18 ~ 26 GHz	ARA	MWH-1826/B	1013	2/4/05				
Hi Pass Filter_4GHz	Micro_Tronic	HPM13351	4	N/A				
Hi Pass Filter_7.6GHz	Micro_Tronic	HPM13195	1	N/A				

The following test and measurement equipment was utilized for the tests documented in this report:

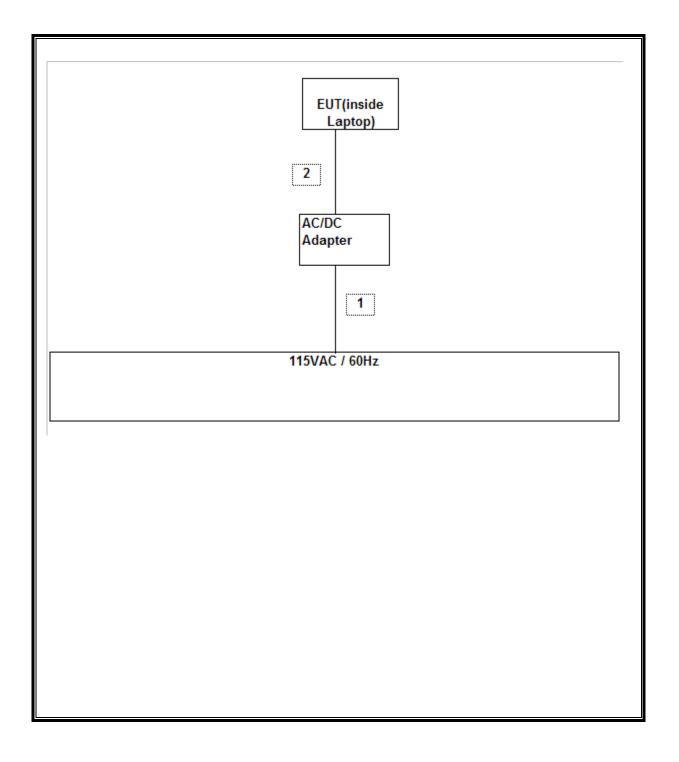
Page 8 of 118

6. SETUP OF EQUIPMENT UNDER TEST

SUPPORT EQUIPMENT

Description	Manufacturer	Model	Serial Number	FCC ID
LAPTOP	TOSHIBA	PPM20U-AAA8	Z3044588JU	DOC
LAPTOP	TOSHIBA	PPM20U-AAA8	Z3044587JU	DOC
AC ADAPTER	TOSHIBA	PA3282U-1ACA	O148662	DOC
AC ADAPTER	TOSHIBA	PA3282U-1ACA	O654860	DOC

I/O CABLES


	I/O CABLE LIST									
		Connector Type	Cable Type	Cable Length	Remarks					
1	AC	1	US 115V	Un-shielded	1m	No				
2	DC	1	DC	Un-shielded	2m	No				

TEST SETUP

The EUT is installed in a host laptop computer. Test software exercised the radio card.

Page 9 of 118

SETUP DIAGRAM FOR TESTS

Page 10 of 118

7. APPLICABLE LIMITS AND TEST RESULTS

7.1. EMISSION BANDWIDTH

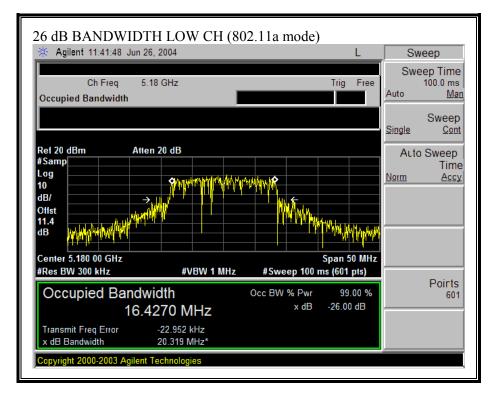
<u>LIMIT</u>

§15.403 (c) <u>Emission bandwidth</u>. For purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Determination of the emissions bandwidth is based on the use of measurement instrumentation employing a peak detector function with an instrument resolutions bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

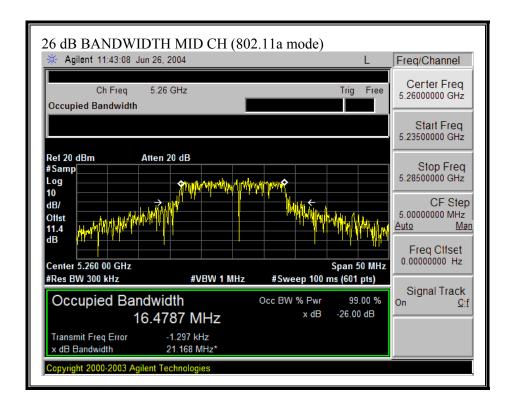
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 1% to 3% of the 26 dB bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled.

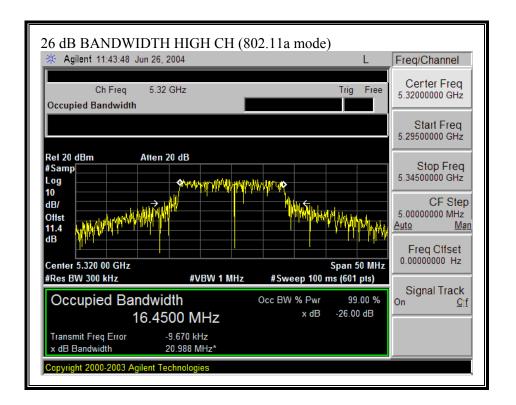
RESULTS


No non-compliance noted:

802.11a Mode


Channel	Frequency	В	10 Log B
	(MHz)	(MHz)	(dB)
Low	5180	20.32	13.08
Middle	5260	21.17	13.26
High	5320	20.99	13.22

Page 11 of 118


26 dB EMISSION BANDWIDTH (802.11a MODE)

Page 12 of 118

Page 13 of 118

Page 14 of 118

7.2. PEAK POWER

<u>LIMIT</u>

§15.407 (a) (1) For the band 5.15-5.25 GHz, the peak transmit power over the frequency band of operation shall not exceed the lesser of 50 mW (17 dBm) or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 4 dBm in any 1-MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

§15.407 (a) (1) For the band 5.25-5.35 GHz, the peak transmit power over the frequency band of operation shall not exceed the lesser of 250 mW (24 dBm) or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1-MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

Page 15 of 118

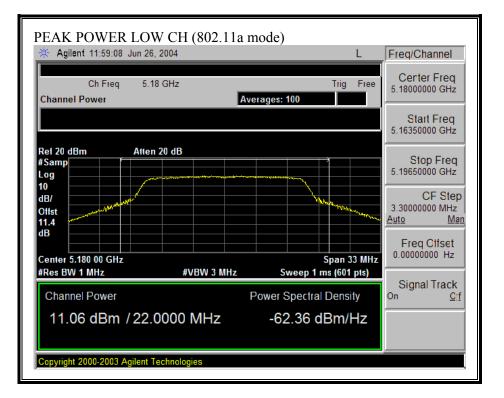
LIMITS AND RESULTS

No non-compliance noted:

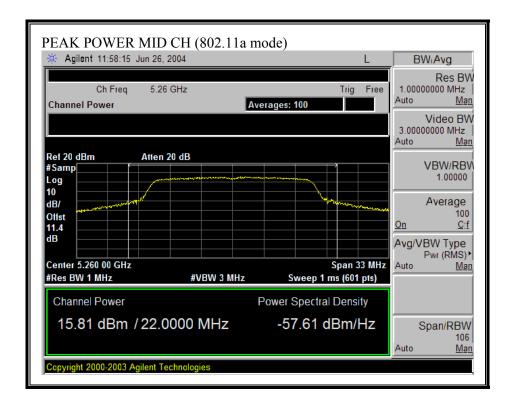
Limit in 5150 to 5250 MHz Band

Mode	Frequency	Fixed	В	4 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
802.11a	5180	17	20.319	17.08	2.18	17.00

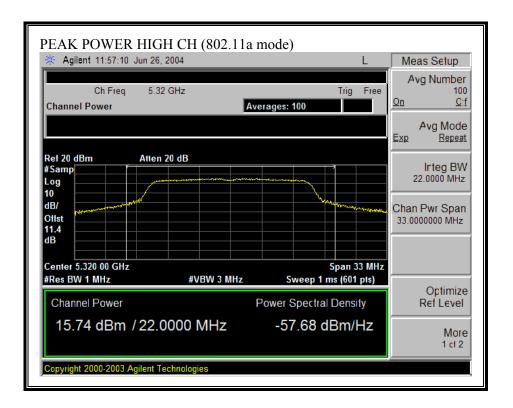
Limit in 5250 to 5350 MHz Band


Mode	Frequency	Fixed	В	11 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
802.11a	5260	24	21.168	24.26	3.39	24.00
802.11a	5320	24	20.988	24.22	3.47	24.00

802.11a mode Results


Channel	Channel Frequency		Limit	Margin	
	(MHz)	(dBm)	(dBm)	(dB)	
Low	5180	11.06	17.00	-5.94	
Middle	5260	15.81	24.00	-8.19	
High	5320	15.74	24.00	-8.26	

Page 16 of 118


PEAK POWER (802.11a mode)

Page 17 of 118

Page 18 of 118

Page 19 of 118

7.3. MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

\$1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
(A) Lim	its for Occupational	/Controlled Exposu	res		
0.3–3.0	614	1.63	*(100)	6	
3.0–30	1842/f	4.89/f	*(900/f2)	6	
30–300	61.4	0.163	1.0	6	
300–1500			f/300	6	
1500–100,000			5	6	
(B) Limits	for General Populati	on/Uncontrolled Exp	posure		
0.3–1.34	614	1.63	*(100)	30	
1.34–30	824 <i>/</i> f	2.19/f	*(180/f ²)	30	

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

f = frequency in MHz * = Plane-wave equivalent power density NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-pational/controlled limits apply provided he or she is made aware of the potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be ex-posed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposed are the exposed as a consequence of their employment may not be fully aware of the potential for

exposure or can not exercise control over their exposure.

Page 20 of 118

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)} / d$

where

and

E = Field Strength in Volts/meter

P = Power in Watts

 $S = E^{2}/3770$

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d = \sqrt{((30 * P * G) / (3770 * S))}$

Changing to units of Power to mW and Distance to cm, using:

P(mW) = P(W) / 1000 and d(cm) = 100 * d(m)

yields

 $d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$ $d = 0.282 * \sqrt{(P * G / S)}$

where

d = distance in cm P = Power in mW G = Numeric antenna gain S = Power Density in mW/cm^2

Substituting the logarithmic form of power and gain using:

P (mW) = 10 ^ (P (dBm) / 10) and G (numeric) = 10 ^ (G (dBi) / 10) yields $d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$ Equation (1) where d = MPE distance in cm P = Power in dBm G = Antenna Gain in dBi $S = Power Density Limit in mW/cm^2$

Equation (1) and the measured peak power is used to calculate the MPE distance.

Page 21 of 118

LIMITS

From \$1.1310 Table 1 (B), S = 1.0 mW/cm^2

RESULTS

No non-compliance noted:

Mode	Power Density	Output	Antenna	MPE Distance	
	Limit	Power	Gain		
	(mW/cm^2)	(dBm)	(dBi)	(cm)	
802.11a	1.0	15.81	1.60	2.09	

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

Page 22 of 118

7.4. AVERAGE POWER

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

No non-compliance noted:

The cable assembly insertion loss of 11.4 dB (including 10 dB pad and 1.4 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

802.11a Mode

Channel	Frequency	Average Power	
	(MHz)	(dBm)	
Low	5180	11.20	
Middle	5260	16.30	
High	5320	16.20	

Page 23 of 118

7.5. PEAK POWER SPECTRAL DENSITY

<u>LIMIT</u>

§15.407 (a) (1) For the band 5.15-5.25 GHz, the peak transmit power over the frequency band of operation shall not exceed the lesser of 50 mW (17 dBm) or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 4 dBm in any 1-MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

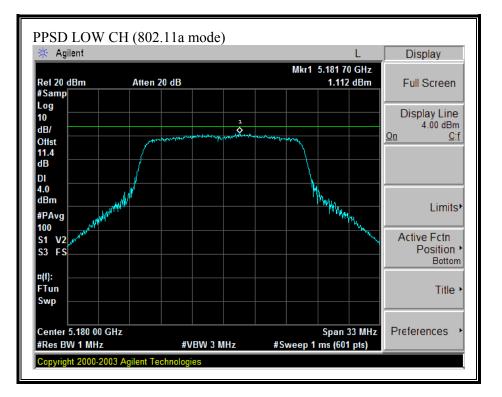
§15.407 (a) (1) For the band 5.25-5.35 GHz, the peak transmit power over the frequency band of operation shall not exceed the lesser of 250 mW (24 dBm) or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1-MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

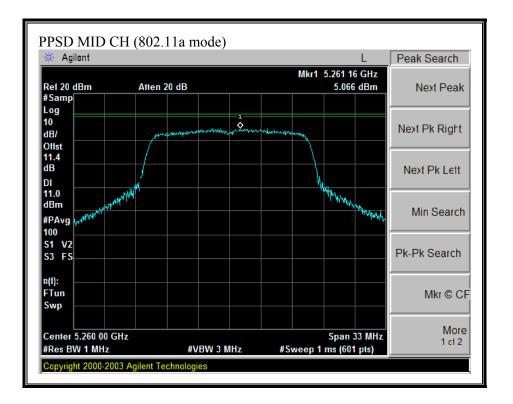
The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

Page 24 of 118

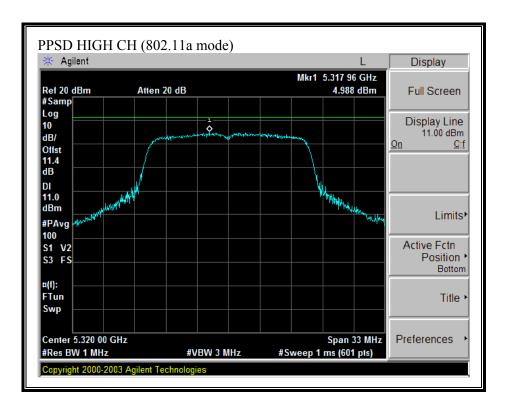
RESULTS


No non-compliance noted:

802.11a Mode


Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5180	1.11	4.00	-2.89
Middle	5260	5.07	11.00	-5.93
High	5320	4.99	11.00	-6.01

Page 25 of 118


PEAK POWER SPECTRAL DENSITY (802.11a MODE)

Page 26 of 118

Page 27 of 118

Page 28 of 118

7.6. PEAK EXCURSION

<u>LIMIT</u>

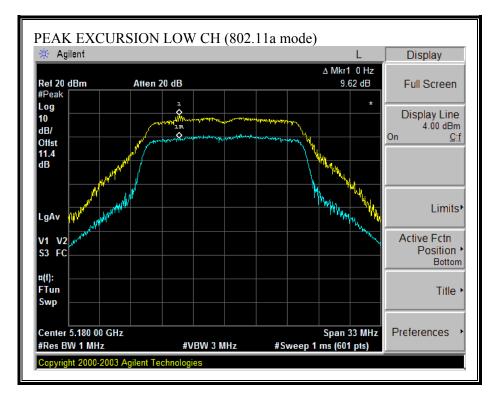
§15.407 (a) (6) The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE

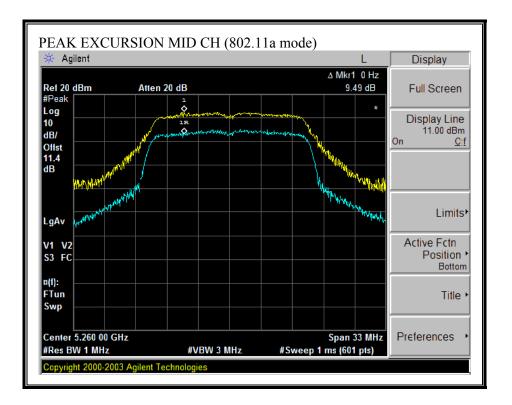
The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

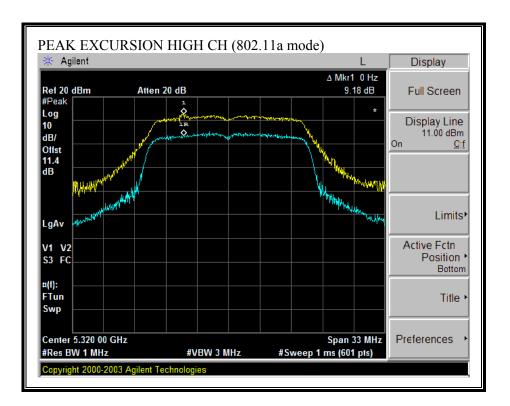
RESULTS


No non-compliance noted:

002.11d Wode							
Channel	Frequency	Peak Excursion	Limit	Margi			
	(MHz)	(dB)	(dB)	(dB)			
Low	5180	9.26	13	-3.74			
Middle	5260	9.49	13	-3.51			
High	5320	9.18	13	-3.82			


802.11a Mode

Page 29 of 118


PEAK EXCURSION (802.11a MODE)

Page 30 of 118

Page 31 of 118

Page 32 of 118

7.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

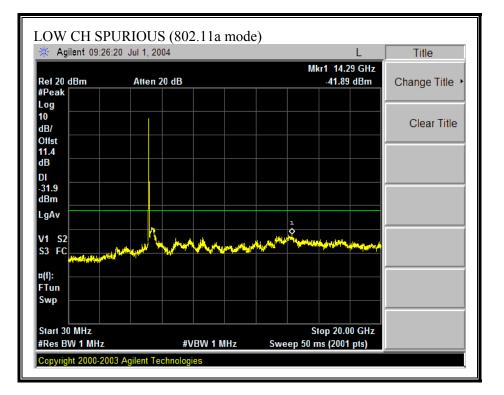
15.407 (b) (1 & 2) For transmitters operating in the 5.15-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27dBm / MHz.

TEST PROCEDURE

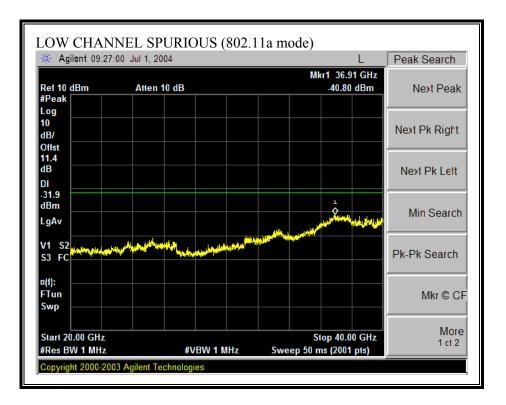
Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to the average EIRP limit, adjusted for the maximum antenna gain. If necessary, additional average detection measurements are made.

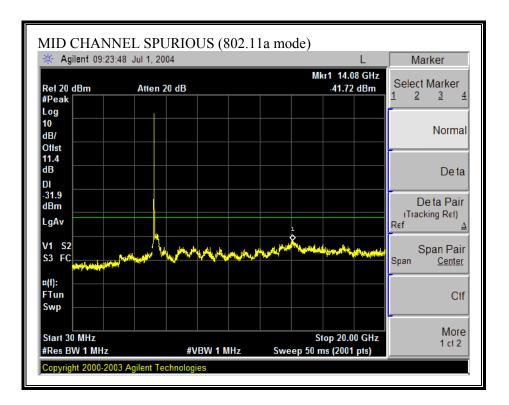
Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

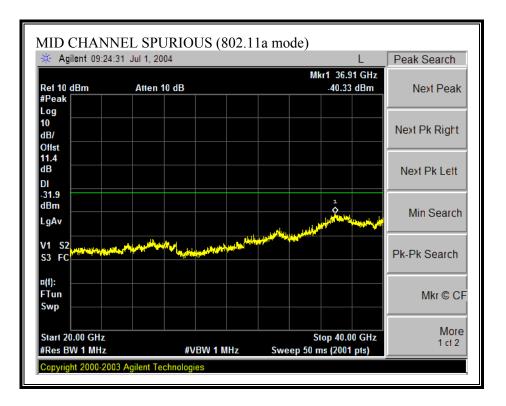

RESULTS

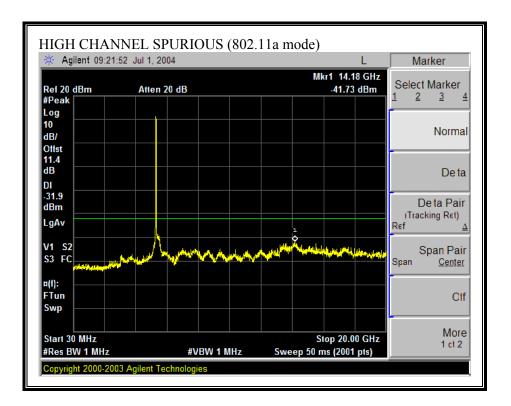
The maximum antenna gain without cable loss is used to evaluate the conducted spurious performance. The actual antenna assembly gain (with integral cable) is always less.

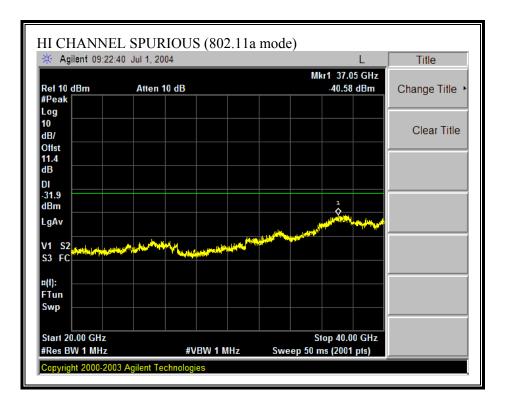

No non-compliance noted:

Page 33 of 118


SPURIOUS EMISSIONS (802.11a MODE)


Page 34 of 118


Page 35 of 118


Page 36 of 118

Page 37 of 118

Page 38 of 118

Page 39 of 118

7.8. RADIATED EMISSIONS

7.8.1. TRANSMITTER RADIATED SPURIOUS EMISSIONS

LIMITS

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Page 40 of 118

\$15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

Page 41 of 118

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

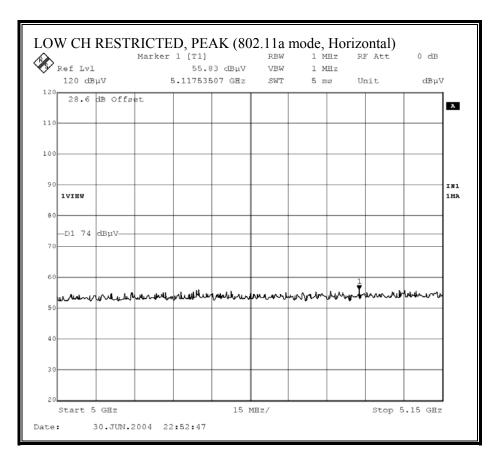
For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

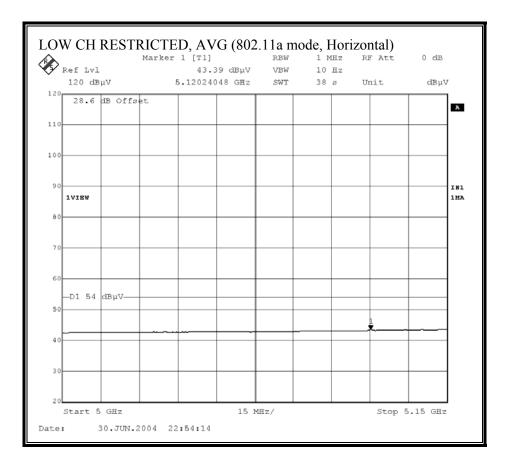
The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Preliminary measurements in the handheld portable configuration are made in three orthogonal orientations (X, Y, Z). Results in the worst-case orientation are reported.

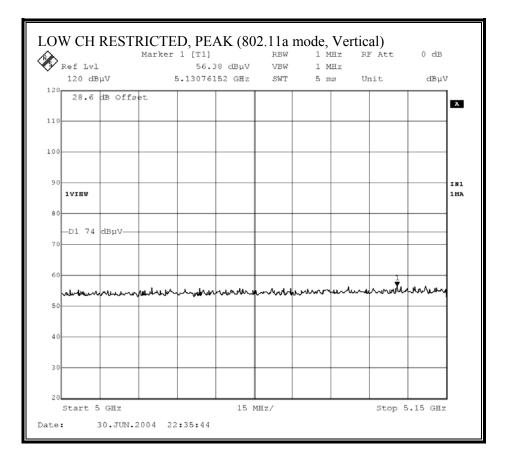

RESULTS

No non-compliance noted:

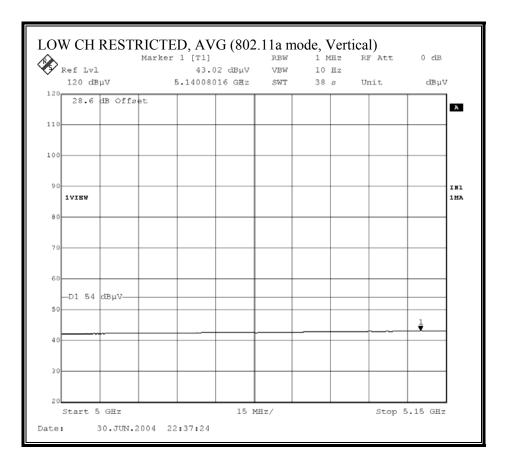

Page 42 of 118

7.8.2. TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHz, MOBILE LAPTOP CONFIGURATION, TIAN01 ANTENNA SET

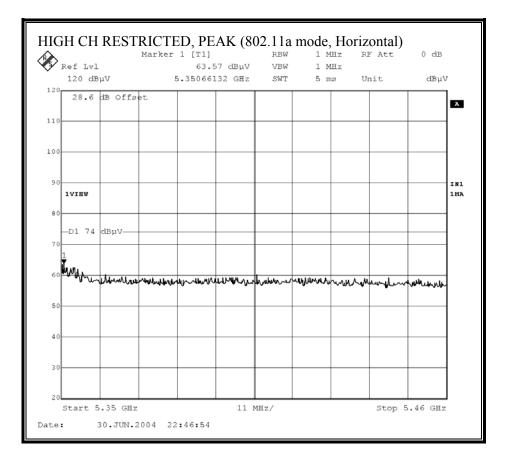
RESTRICTED BANDEDGE (802.11a MODE, LOW CHANNEL, HORIZONTAL)



Page 43 of 118


Page 44 of 118

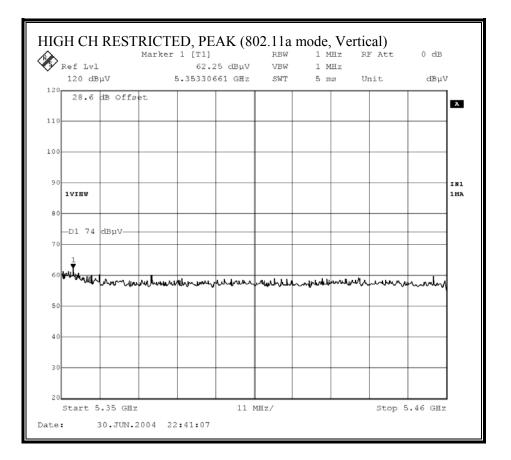
RESTRICTED BANDEDGE (802.11a MODE, LOW CHANNEL, VERTICAL)


Page 45 of 118

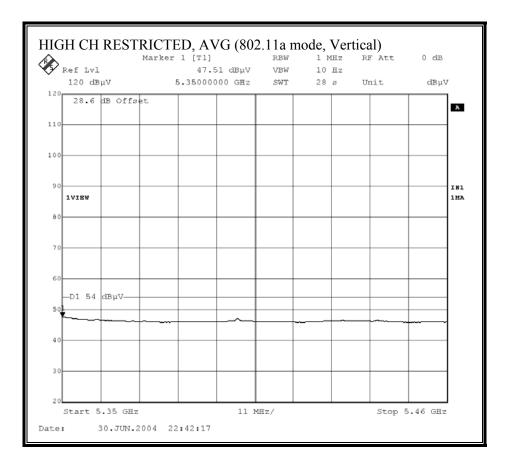
REPORT NO: 04U2843-2 EUT: 802.11 a/b/g MINI PCI TYPE 3B CARD

Page 46 of 118

RESTRICTED BANDEDGE (802.11a MODE, HIGH CHANNEL, HORIZONTAL)



Page 47 of 118

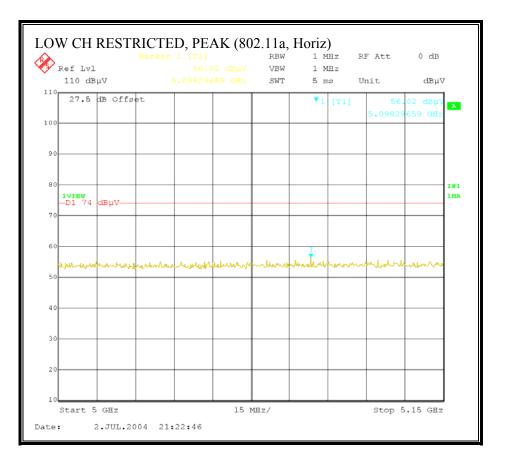


Page 48 of 118

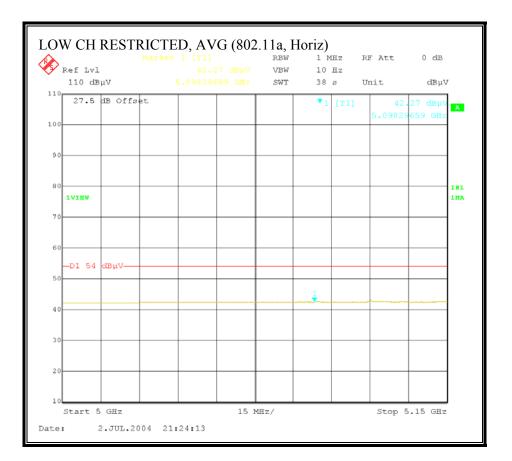
RESTRICTED BANDEDGE (802.11a MODE, HIGH CHANNEL, VERTICAL)

Page 49 of 118

Page 50 of 118

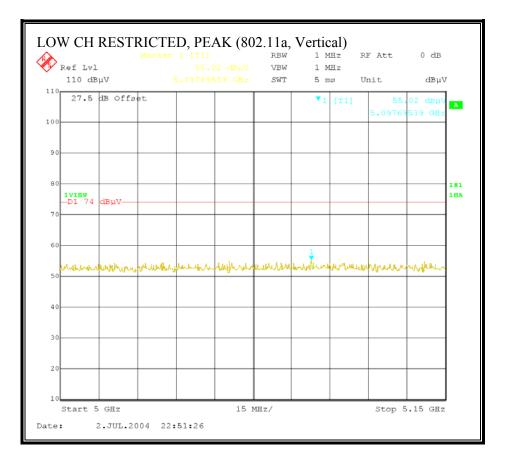

HARMONICS AND SPURIOUS EMISSIONS (802.11a MODE)

T119; S/N: 29301 @3m Agilent E4446A Analyzer T63 Miteq 646456 ✓				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	tes			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	v			
1.640 9.8 44.2 33.2 38.5 4.5 -33.5 0.0 1.0 54.8 43.8 74.0 54.0 -19.2 -10.2 V 9.960 9.8 43.6 32.1 40.8 5.9 -40.0 0.0 1.0 51.2 39.7 74.0 54.0 -19.2 -10.2 V 1.640 9.8 43.7 32.7 38.5 4.5 -33.5 0.0 1.0 51.2 39.7 74.0 54.0 -19.2 -10.2 V 1.640 9.8 43.7 32.7 38.5 4.5 -33.5 0.0 1.0 54.3 43.3 74.0 54.0 -19.7 -10.7 1.640 9.8 44.5 32.2 40.8 5.9 -40.0 0.0 1.0 52.1 39.8 74.0 54.0 -19.7 -10.7 1.960 9.8 44.5 32.2 40.8 5.9 -40.0 0.0 1.0 52.1 39.				
956 9.8 43.6 32.1 40.8 5.9 -40.0 0.0 1.0 51.2 39.7 74.0 54.0 -22.8 -14.3 VV 640 9.8 43.7 32.7 38.5 4.5 -33.5 0.0 1.0 54.3 43.3 74.0 54.0 -19.7 -10.7 H 960 9.8 44.5 32.2 40.8 5.9 -40.0 0.0 1.0 52.1 39.8 74.0 54.0 -19.7 -10.7 H 960 9.8 44.5 32.2 40.8 5.9 -40.0 0.0 1.0 52.1 39.8 74.0 54.0 -21.9 -14.2 H				
960 9.8 44.5 32.2 40.8 5.9 -40.0 0.0 1.0 52.1 39.8 74.0 54.0 -21.9 -14.2 H	V			
fMeasurement FrequencyAmpPreamp GainAvg LimAverage Field Strength LimitDistDistance to AntennaD CorrDistance Correct to 3 metersPk LimPeak Field Strength LimitReadAnalyzer ReadingAvgAverage Field Strength @ 3 mAvg MarMargin vs. Average LimitAFAntenna FactorPeakCalculated Peak Field StrengthPk MarMargin vs. Peak LimitCLCable LossHPFHigh Pass FilterHerHer	Margin vs. Average Limit			

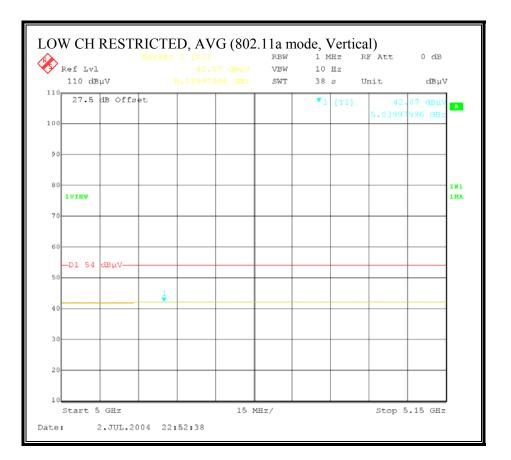

Page 51 of 118

7.8.3. TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHz, MOBILE LAPTOP CONFIGURATION, HTL017 ANTENNA SET

RESTRICTED BANDEDGE (802.11a, LOW CHANNEL, HORIZONTAL)

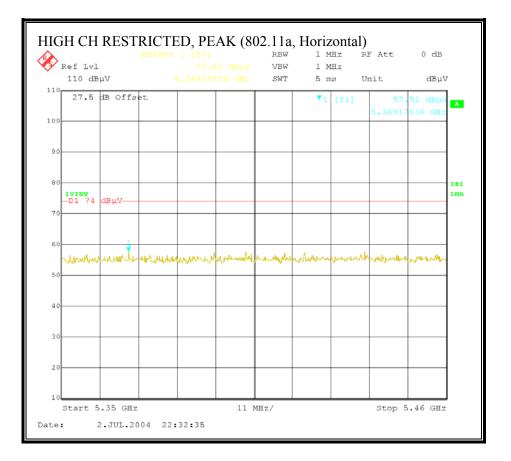


Page 52 of 118

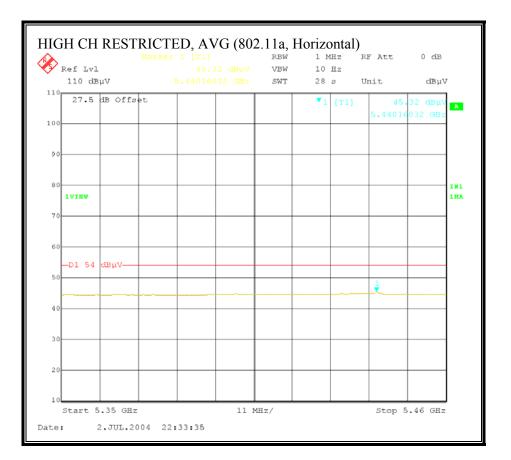


Page 53 of 118

RESTRICTED BANDEDGE (802.11a, LOW CHANNEL, VERTICAL)

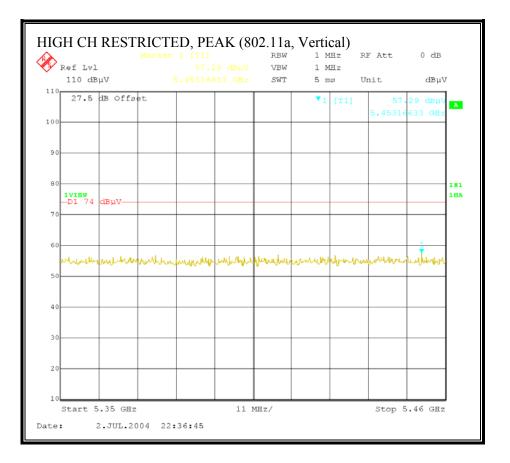


Page 54 of 118

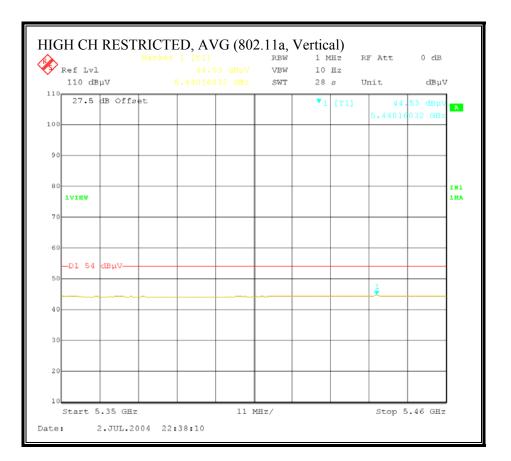


Page 55 of 118

RESTRICTED BANDEDGE (802.11a, HIGH CHANNEL, HORIZONTAL)



Page 56 of 118

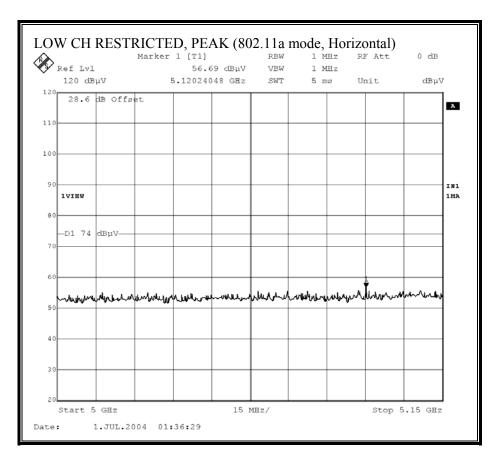


Page 57 of 118

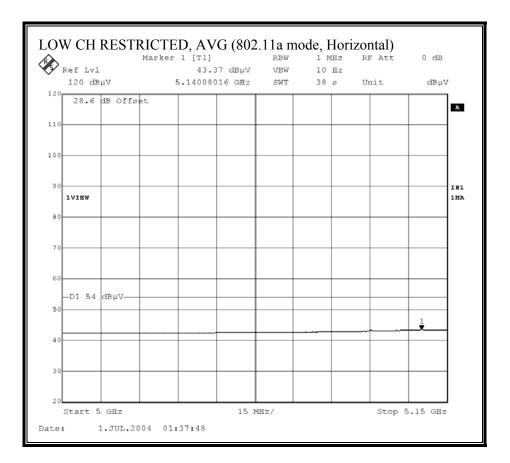
RESTRICTED BANDEDGE (802.11a, HIGH CHANNEL, VERTICAL)

Page 58 of 118

Page 59 of 118

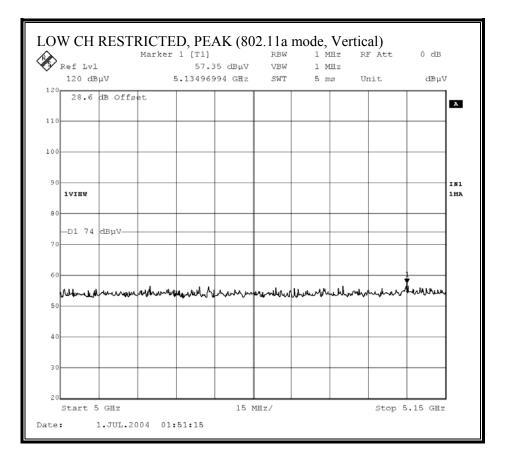

HARMONICS AND SPURIOUS EMISSIONS (802.11a)

F (2 ft) (2 0 ft) (3 ft) F (12 ft) f Dist Read Pk Read Avg. AF CL Amp D Corr HPF Peak Avg Pk Lim Avg Lim Pk Mar Avg Mar IMHz Resolution Bandwidth GHz feet dBuV dBuV dB/m dB dB Corr HPF Peak Avg Pk Lim Avg Lim Pk Mar Avg Mar dB 1380 Channet Avg Mar dB dB <	T .	GHz	Horn > 18					_		' Antenna	, HTL-017	Position	Company: INTEL 2UT Descrip.: 802.11 a/b/g Mini PCI type 3B Card EUT M/N: PA3375U-1MP Test Target: FCC 15.247 Mode Oper: TX 11a mode, 5.2GHz Band; Laptop Position Test Equipment: DECO Use 1 LECU						
Peak Measurements: Average Measurements: Image: High Frequency Cables Image: High Frequency Cables Image: High Frequency Cables Average Measurements: Average Measurements: Average Measurements: f Dist Read Pk Read Avg. AF CL Amp D Corr HPF Peak Avg Pk Lim Avg Lim Pk Mar Avg Mar GHz feet dBuV dBuV dB	•				Pre-amplifer 26-40GHz														
Fight Classifier Clas Classifier Classifier	nts•				-				T63 Miteq 646456			T73; S/N: 6717 @3m							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		width 1 MHz Resolution Bandwidth				1 MHz Reso							▼ (12 ft)	□ (3 ft)					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Notes	Not							HPF										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			dB	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m		dB	dB	dB	dB/m	dBuV	dBuV				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V															9.8	5.540		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Н	Н	-16.0	-24.1	54.0	74.0	38.0	49.9	1.0	0.0	-40.0	5.8	39.2	32.1	44.0				
120 Channel r <th< td=""><td>V</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>9.8</td><td>5.780</td></th<>	V															9.8	5.780		
640 9.8 43.9 33.1 38.3 4.5 -33.5 0.0 1.0 54.2 43.4 74.0 54.0 -19.8 -10.6 9.60 9.8 43.7 32.3 38.2 5.9 -40.0 0.0 1.0 54.2 43.4 74.0 54.0 -19.8 -10.6 9.8 43.7 32.3 38.2 5.9 -40.0 0.0 1.0 48.8 37.4 74.0 54.0 -25.2 -16.6 .640 9.8 43.8 32.8 38.3 4.5 -33.5 0.0 1.0 54.1 43.1 74.0 54.0 -19.9 -10.9	Н	Н	-15.5	-24.1	54.0	74.0	38.5	49.9	1.0	0.0	-40.0	5.8	38.6	33.1	44.5				
1.640 9.8 43.8 32.8 38.3 4.5 -33.5 0.0 1.0 54.1 43.1 74.0 54.0 -19.9 -10.9	V															9.8).640		
	V H																		
200 + 200 + 201	Н		-16.8	-24.5	54.0	74.0	37.2	49.5	1.0	0.0	-40.0	5.9	38.2	32.1	44.4	9.8	.960		
DistDistance to AntennaD CorrDistance Correct to 3 metersPk LimPeak Field Strength LimitReadAnalyzer ReadingAvgAverage Field Strength @ 3 mAvg MarMargin vs. Average LimitAFAntenna FactorPeakCalculated Peak Field StrengthPk MarMargin vs. Peak LimitCLCable LossHPFHigh Pass FilterPk MarMargin vs. Peak Limit	Margin vs. Average Limit			Pk Lim Avg Mar	Distance Correct to 3 meters Pk Lim Average Field Strength @ 3 m Avg Mar Calculated Peak Field Strength Pk Mar							ReadAnalyzer ReadingAnalyzerAFAntenna FactorH							

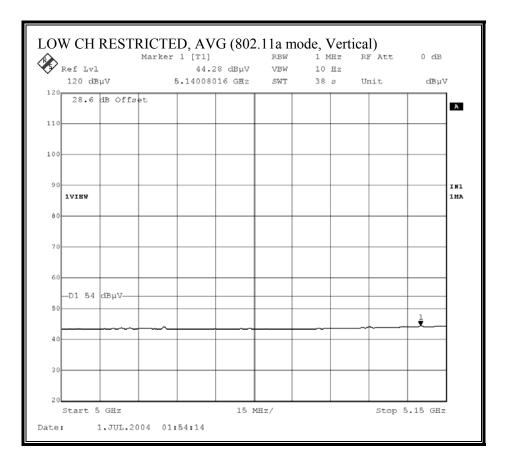

Page 60 of 118

7.8.4. TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ, PORTABLE TABLET CONFIGURATION, TIAN01 ANTENNA SET

RESTRICTED BANDEDGE (802.11a MODE, LOW CHANNEL, HORIZONTAL)

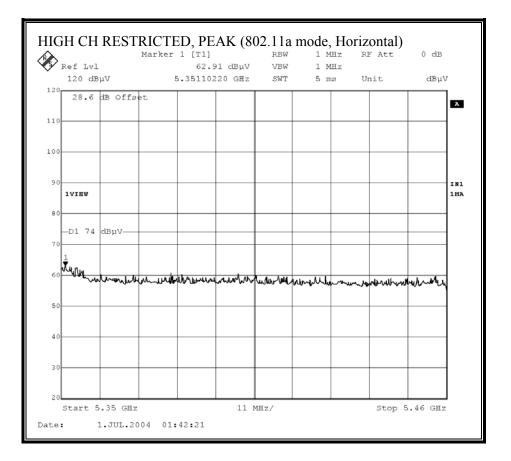


Page 61 of 118

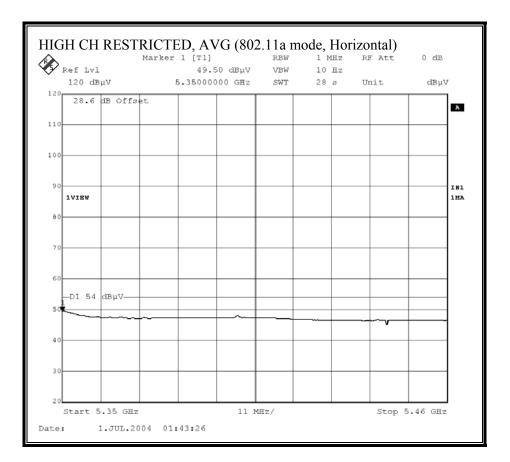


Page 62 of 118

RESTRICTED BANDEDGE (802.11a MODE, LOW CHANNEL, VERTICAL)

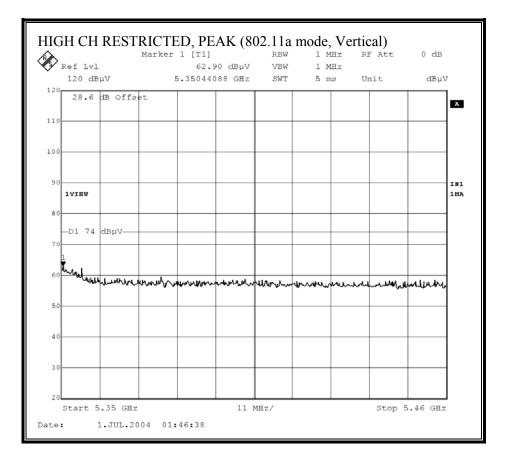


Page 63 of 118

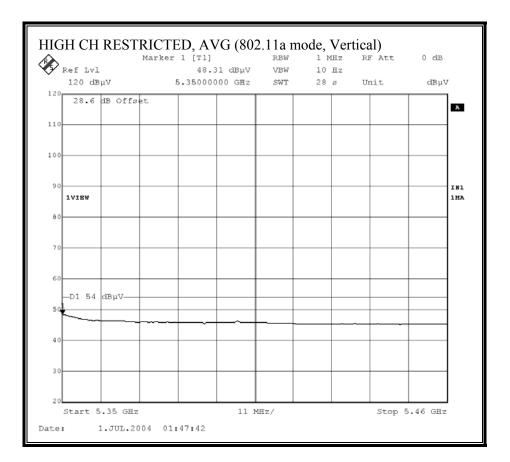


Page 64 of 118

RESTRICTED BANDEDGE (802.11a MODE, HIGH CHANNEL, HORIZONTAL)



Page 65 of 118

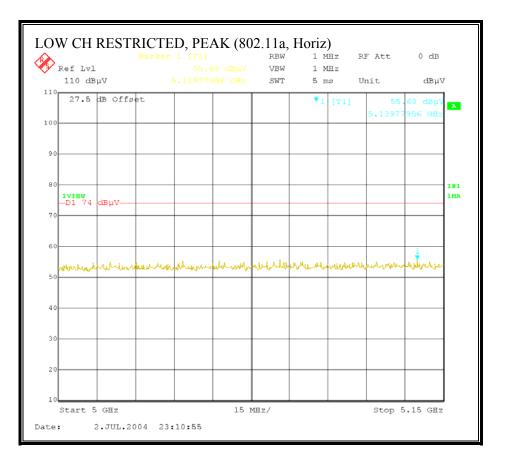


Page 66 of 118

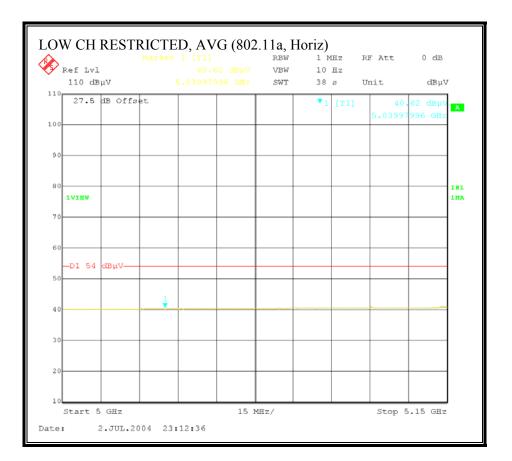
RESTRICTED BANDEDGE (802.11a MODE, HIGH CHANNEL, VERTICAL)

Page 67 of 118

Page 68 of 118

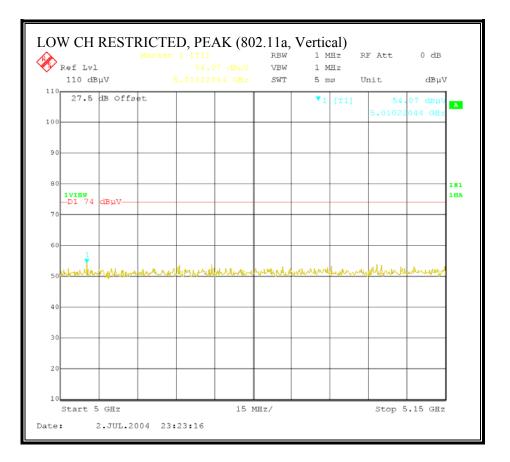

HARMONICS AND SPURIOUS EMISSIONS (802.11a MODE)

EMCO	Equipment: MCO Horn 1-18GHz Spectrum Analyzer 19; S/N: 29301 @3m - Agilent E4446A Analyzer -					Pre-amplifer 1-26GHz Pre-amplifer 26-40GHz T63 Miteq 646456						Horn > 18GHz			
	ency Cables	1 -	▼ (12 ft)	_	<u> </u>		cq 0404		<u> </u>	Peak Meas 1 MHz Reso 1 MHz Video	lution Bandw	/idth	asurements: tion Bandwidth andwidth		
f GHz	Dist Read P feet dBuV	k Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes	
80 Chan 5.540		32.0	40.6	5.8	-40.0	0.0	1.0	50.5	39.3	74.0	54.0	-23.5	-14.7	V	
5.540 260 Chan	9.8 43.0	31.8	40.6	5.8	-40.0	0.0	1.0	50.3	39.1	74.0	54.0	-23.7	-14.9	Н	
5.780	9.8 43.9	32.0	40.7	5.8	-40.0	0.0	1.0	51.4	39.5	74.0	54.0	-22.6	-14.5	V	
.780 20 Chan	9.8 44.0	33.2	40.7	5.8	-40.0	0.0	1.0	51.5	40.7	74.0	54.0	-22.5	-13.3	Н	
.640	9.8 43.7	33.1	38.5	4.5	-33.5	0.0	1.0	54.3	43.7	74.0	54.0	-19.7	-10.3	v	
.960 .640	9.8 43.6 9.8 44.0	32.0 32.4	40.8 38.5	5.9 4.5	-40.0 -33.5	0.0	1.0 1.0	51.2 54.6	39.6 43.0	74.0 74.0	54.0 54.0	-22.8 -19.4	-14.4 -11.0	V H	
.960	9.8 44.0 9.8 44.2 R SPURIOUS EM	32.2	40.8	5.9	-40.0	0.0	1.0	51.8	39.8	74.0	54.0	-19.4	-11.0	<u>н</u> Н	
DistDistance to AntennaD CorrReadAnalyzer ReadingAvgAFAntenna FactorPeakCLCable LossHPF						Distance Correct to 3 meters Pk Lim Average Field Strength @ 3 m Avg Mar Calculated Peak Field Strength Pk Mar High Pass Filter Pk Mar						Peak Field Strength Limit Margin vs. Average Limit Margin vs. Peak Limit			
									ength		Pk Mar	Margin vs	: Peak Limit		

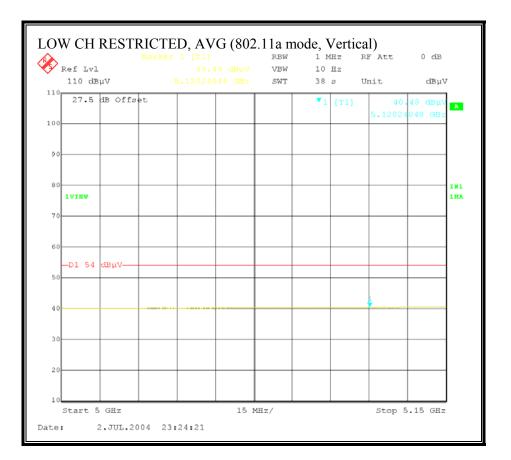

Page 69 of 118

7.8.5. TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ, PORTABLE TABLET CONFIGURATION, HTL017 ANTENNA SET

RESTRICTED BANDEDGE (802.11a, LOW CHANNEL, HORIZONTAL)



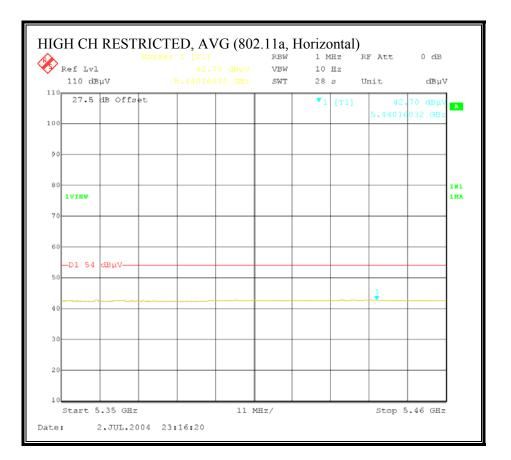
Page 70 of 118



Page 71 of 118

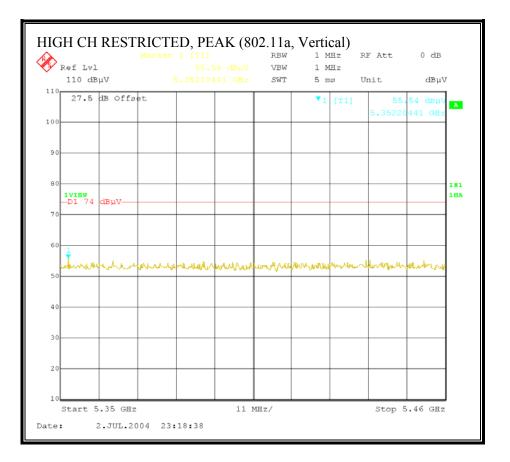
RESTRICTED BANDEDGE (802.11a, LOW CHANNEL, VERTICAL)

Page 72 of 118

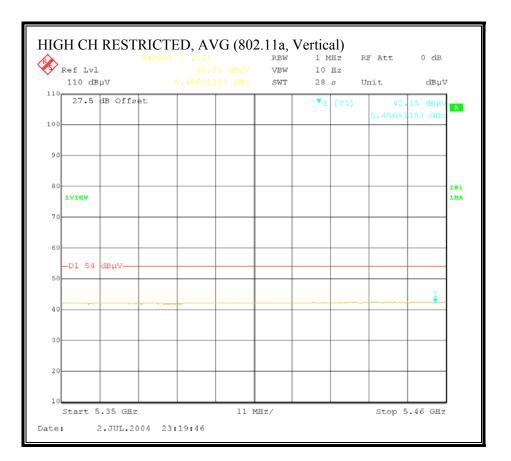


Page 73 of 118

RESTRICTED BANDEDGE (802.11a, HIGH CHANNEL, HORIZONTAL)



Page 74 of 118



Page 75 of 118

RESTRICTED BANDEDGE (802.11a, HIGH CHANNEL, VERTICAL)

Page 76 of 118

Page 77 of 118

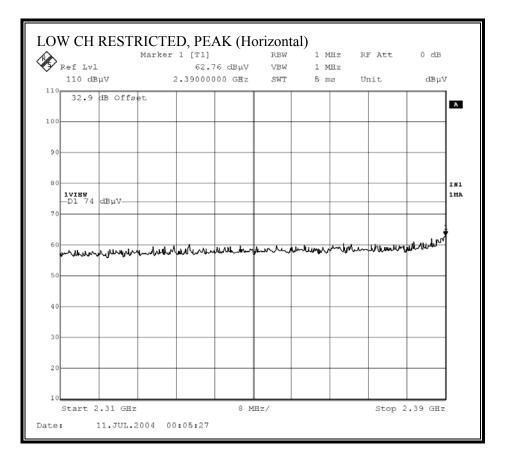
HARMONICS AND SPURIOUS EMISSIONS (802.11a)

UT Des UT M/ est Tar lode Oj	N: get:	PA3375U-1N FCC 15.247 TX 11a mode	Mini PCI type 3 IP ., 5.2GHz Band		Case x,y	z Position,	, HTL-017	Antenna							
EMCO	O Horn 1		Spect Agilent E	trum Ana 24446A A			Pre-am T63 Mit			Pre-amj	difer 26-40G	Hz		Horn >18	GHz ▼
	quency Cat	oles		▼ (12 ft)]				<u> </u>	Peak Meas 1 MHz Reso 1 MHz Video	lution Bandw			asurements: ntion Bandwidth
f GHz	Dist feet	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m		Avg Mar dB	Notes
80 Cha .540	nnel 9.8	43.0	32.1	40.6	5.8	-40.0	0.0	1.0	50.3	39.4	74.0	54.0	-23.7	-14.6	v
.540	9.8	43.0	31.7	40.6	5.8	-40.0	0.0	1.0	50.4	39.0	74.0	54.0	-23.6	-14.0	Н
60 Cha	nnel 9.8	43.6	31.8	40.7	5.8	-40.0	0.0	1.0	51.1	39.3	74.0	54.0	-22.9	-14.7	v
5.780	9.8	43.8	32.0	40.7	5.8	-40.0	0.0	1.0	51.3	39.5	74.0	54.0	-22.7	-14.5	Н
20 Cha 0.640					<u> </u>								1		
	9.8	43.9	33.0	38.5	4.5	-33.5	0.0	1.0	54.5	43.6	74.0	54.0	-19.5	-10.4	V
.960	9.8 9.8	43.9 43.2	33.0 32.1	38.5 40.8	4.5 5.9	-33.5 -40.0	0.0 0.0	1.0 1.0	54.5 50.8	43.6 39.7	74.0 74.0	54.0 54.0	-19.5 -23.2	-10.4 -14.3	V
.960 .640 .960	9.8 9.8 9.8 ER SPUE f Dist Read AF	43.2 43.5 44.0 RIOUS EMIS Measureme Distance to Analyzer R Antenna Fa	32.1 32.8 31.9 SIONS DETECT Antenna eading uctor	40.8 38.5 40.8 CTED AI	5.9 4.5 5.9	-40.0 -33.5 -40.0 FHE SYST Amp D Corr Avg Peak	0.0 0.0 FEM NOIS Preamp 0 Distance Average Calculate	1.0 1.0 E IN TI Gain Correct Field S ed Peal	50.8 54.1 51.6 HE RESTRI ct to 3 mete Strength @ c Field Stree	39.7 43.4 39.5 CTED BAN	74.0 74.0 74.0 DS.	54.0 54.0 54.0 Avg Lim Avg Mar	-23.2 -19.9 -22.4 Average I Peak Field Margin vs		V H H h Limit imit imit
5.960 0.640 5.960	9.8 9.8 9.8 ER SPUE f Dist Read	43.2 43.5 44.0 RIOUS EMIS Measureme Distance to Analyzer R	32.1 32.8 31.9 SIONS DETECT Antenna eading uctor	40.8 38.5 40.8 CTED AI	5.9 4.5 5.9	-40.0 -33.5 -40.0 THE SYST Amp D Corr Avg	0.0 0.0 0.0 TEM NOIS Preamp 0 Distance Average	1.0 1.0 E IN TI Gain Correct Field S ed Peal	50.8 54.1 51.6 HE RESTRI ct to 3 mete Strength @ c Field Stree	39.7 43.4 39.5 CTED BAN	74.0 74.0 74.0 DS.	54.0 54.0 54.0 Avg Lim Avg Mar	-23.2 -19.9 -22.4 Average I Peak Field Margin vs	-14.3 -10.6 -14.5 Field Strength d Strength L s. Average L	V H H h Limit imit imit

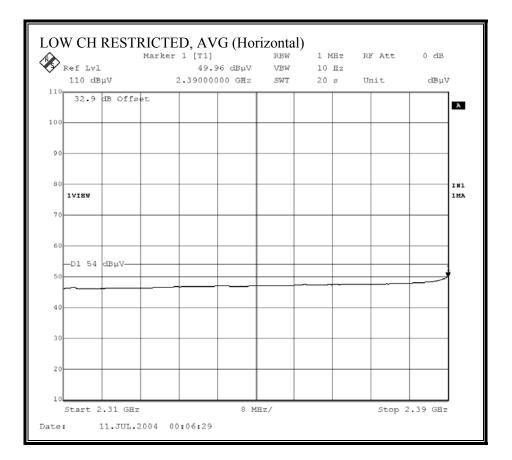
Page 78 of 118

7.8.6. CO-LOCATED TRANSMITTER RADIATED EMISSIONS WITH TIAN01 ANTENNA SET

SUPPLEMENTAL TEST PROCEDURE

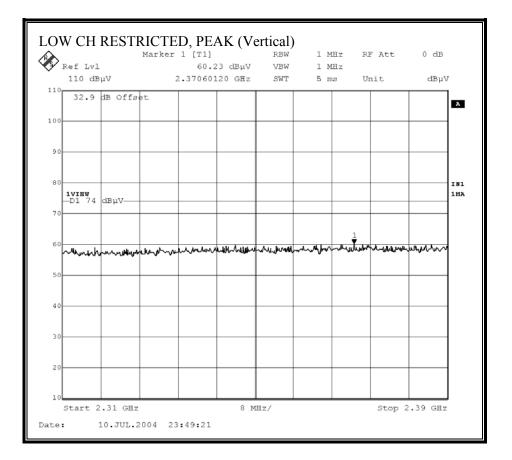

The EUT is placed on a non-conducting table 80 cm above the ground plane. The dominant transmitter is set to the worst case channel. The spurious emissions performance of the dominant transmitter is investigated as the settings of the non-dominant transmitter are varied. Worst case results are reported.

RESULTS


No non-compliance noted:

The WLAN is the dominant transmitter, and the dominant band is the 2.4 GHz band.

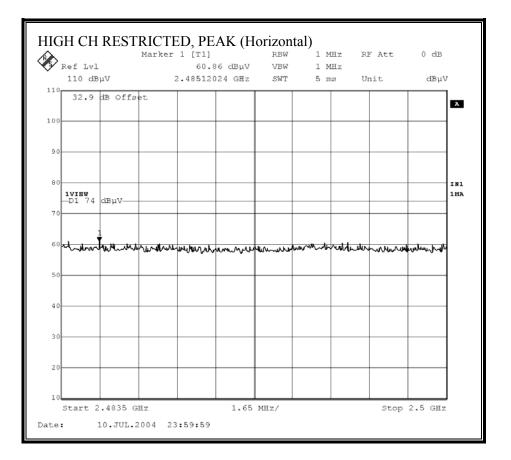
WORST-CASE RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)



Page 79 of 118

Page 80 of 118

WORST-CASE RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

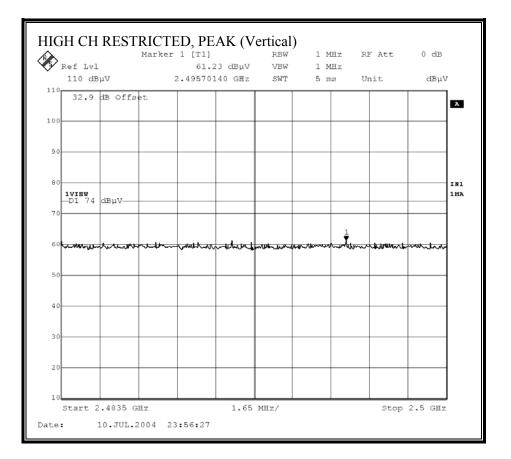

Page 81 of 118

REPORT NO: 04U2843-2 EUT: 802.11 a/b/g MINI PCI TYPE 3B CARD

Narl Ref Lvl	ter 1 [T1] 47.55 dBµV		RF Att	0 dB
110 dBuV	2.39000000 GHz		Unit	dBuV
32.9 dB Offset				
32.9 dB OIISet				2
0		 		
0		 		
30		 		
IVIEW				11
70		 		
50		 		
_D1 54 dBuV		 		
50				
10		 		
30		 		
20		 		
Start 2.31 GHz	8 MB			.39 GHz

Page 82 of 118

WORST-CASE RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

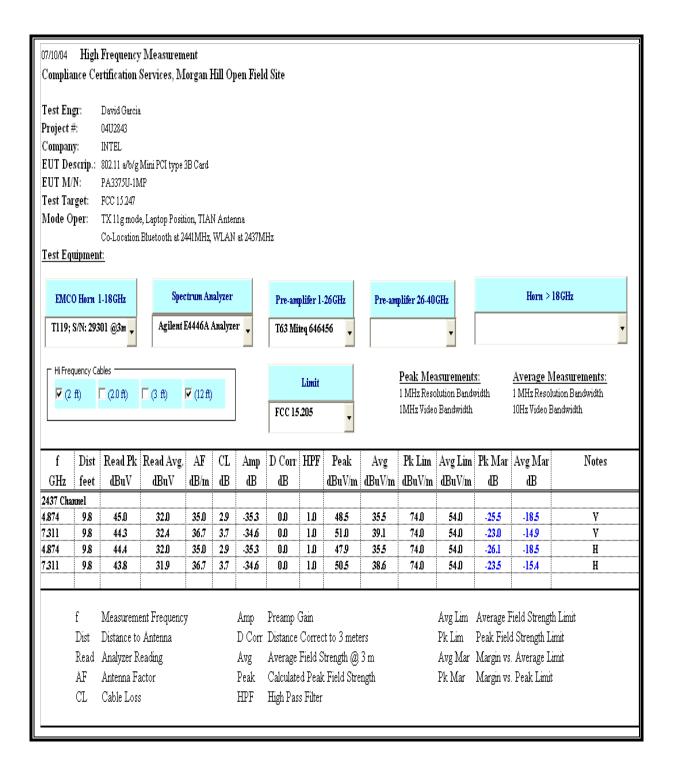


Page 83 of 118

	ter 1 [T1]	RBW		RF Att	0 dB
Ref Lvl	47.95 dBµV				
110 dBµV	2.48670741 GHz	SWT	4.2 s	Unit.	dBµV
32.9 dB Offset					
1VIEW					1
-D1 54 dBuV					
¶				_	
Start 2.4835 GHz	1.65 1	MTT == /		Ctor	2.5 GHz

Page 84 of 118

WORST-CASE RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)


Page 85 of 118

REPORT NO: 04U2843-2 EUT: 802.11 a/b/g MINI PCI TYPE 3B CARD

Mar Ref Lvl	ker 1 [T1] 47.36 dBuV		RF Att	U CLB
110 dBµV	2.48674048 GHz		Unit	dBµV
32.9 dB Offset				
		 		I'
0				
1VIEW				1
-D1 54 dBµV				
,				
0				

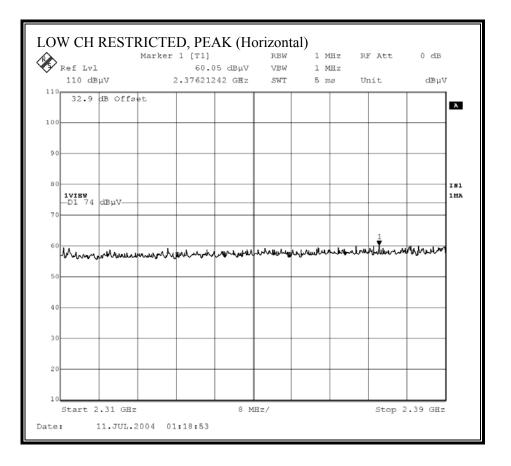
Page 86 of 118

WORST-CASE HARMONICS AND SPURIOUS EMISSIONS

Page 87 of 118

7.8.7. CO-LOCATED TRANSMITTER RADIATED EMISSIONS WITH HTL017 ANTENNA SET

SUPPLEMENTAL TEST PROCEDURE

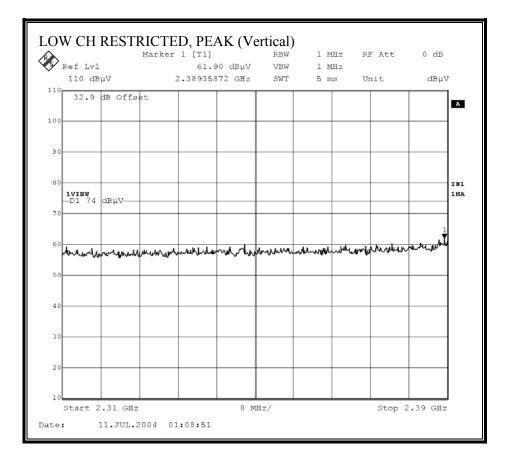

The EUT is placed on a non-conducting table 80 cm above the ground plane. The dominant transmitter is set to the worst case channel. The spurious emissions performance of the dominant transmitter is investigated as the settings of the non-dominant transmitter are varied. Worst case results are reported.

RESULTS

No non-compliance noted:

The WLAN is the dominant transmitter, and the dominant band is the 2.4 GHz band.

WORST-CASE RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

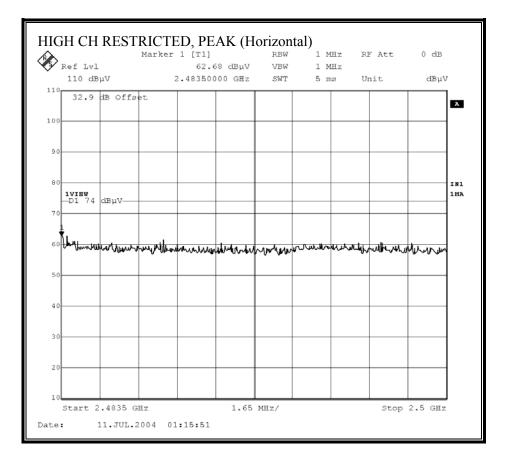


Page 88 of 118

LO	W CH I	RESTI	RICTE	D, AV	G (Ho	rizonta	l)			
	Ref Lvl		Marker	1 [T1]		RBW	1 M	F Att	0 dB	
₹.≯	Ref LvL 110 dBu	υV			0 dBµV			nit	dBul	7
110		dB Offs								1
	52.5	ab orre								λ
100										
90										
80										IN1
00	1VIEW									1MA
70										
60										
	_D1 54	dBµV—								
50										
	\sim									
40										
30										
50										
20										
10										ļ
	Start 2				8 M	Hz/		Stop 2	2.39 GHz	
Date	: 1	1.JUL.2	2004 01	:19:53						

Page 89 of 118

WORST-CASE RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

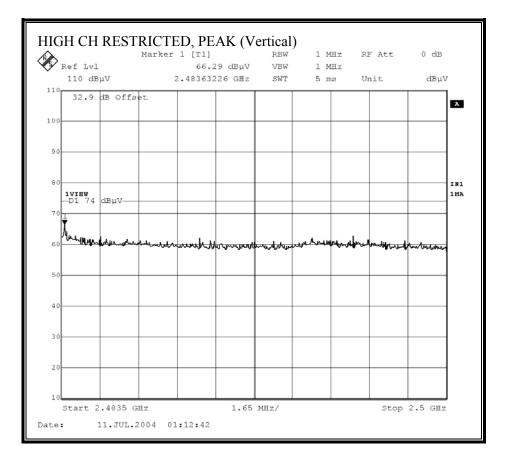

Page 90 of 118

REPORT NO: 04U2843-2 EUT: 802.11 a/b/g MINI PCI TYPE 3B CARD

Marl	ter 1 [T1]			RF Att	0 dB
Ref Lvl	49.21 dBµV 2.39000000 GHz			Unit	danu
	2.33000000 GHz	381	20 3	onic	ubµ v
32.9 dB Offset					
1VIEW					
-D1 54 dBµV					
					 †
Start 2.31 GHz	8 MB				.39 GHz

Page 91 of 118

WORST-CASE RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

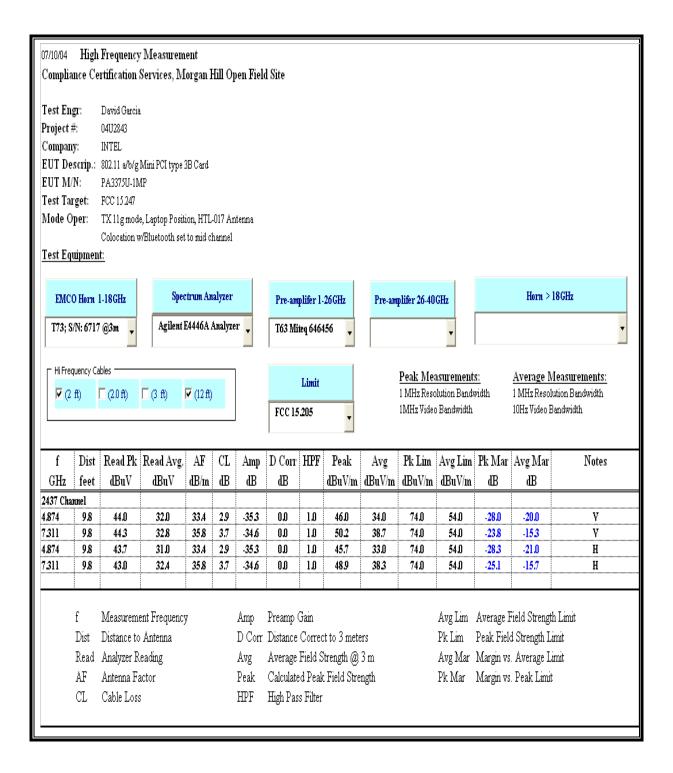

Page 92 of 118

REPORT NO: 04U2843-2 EUT: 802.11 a/b/g MINI PCI TYPE 3B CARD

	ter 1 [T1]	RBW	RF Att	0 dB
110 dBuV	48.76 dBµV 2.48353307 GHz		Unit.	dBuV
-			 	
32.9 dB Offset				
IVIEW				
-D1 54 dBuV-				
<u> </u>			 	
Start 2.4835 GHz	1.65 1	MHZ/	Stop	2.5 GHz

Page 93 of 118

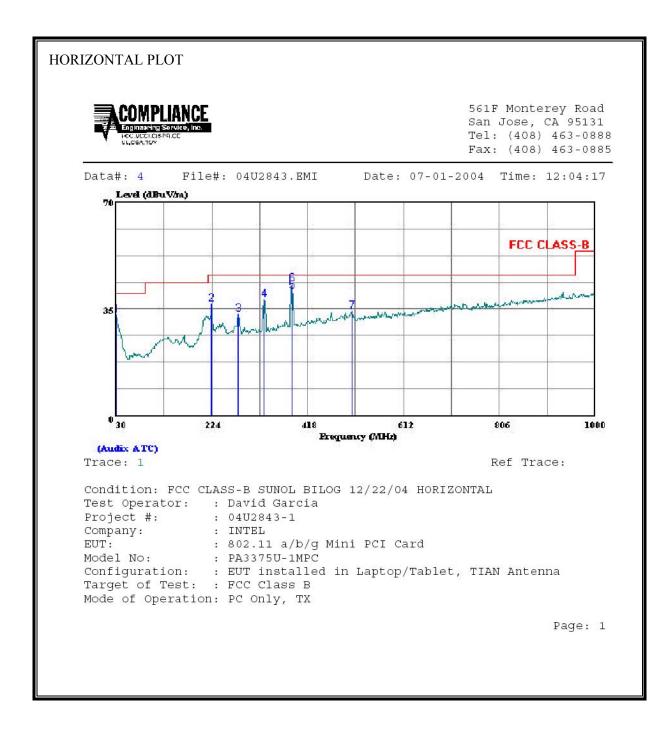
WORST-CASE RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)


Page 94 of 118

REPORT NO: 04U2843-2 EUT: 802.11 a/b/g MINI PCI TYPE 3B CARD

Ref Lvl	ter 1 [T1] 49.32 dBµV		RF Att	UGB
110 dBuV	2.48356613 GHz		Unit.	dBuV
32.9 dB Offset				
32.9 dB OIISet				∎
0				
0		 		
1VIEW				1
IAIRM				
0				
D1 54 dBµV				
	~	 		
0				
0		 		
0				

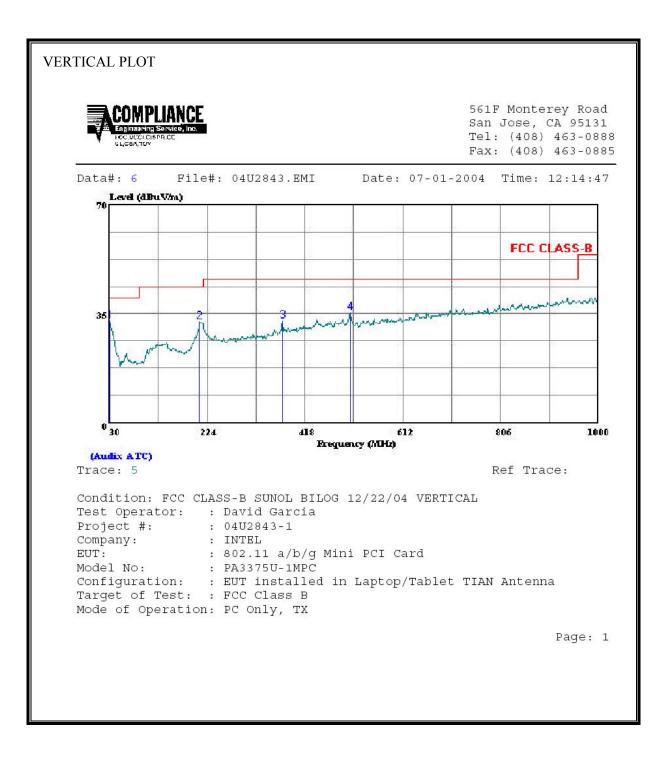
Page 95 of 118


WORST-CASE HARMONICS AND SPURIOUS EMISSIONS

Page 96 of 118

7.8.8. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz, TIAN01 ANTENNA SET

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)


Page 97 of 118

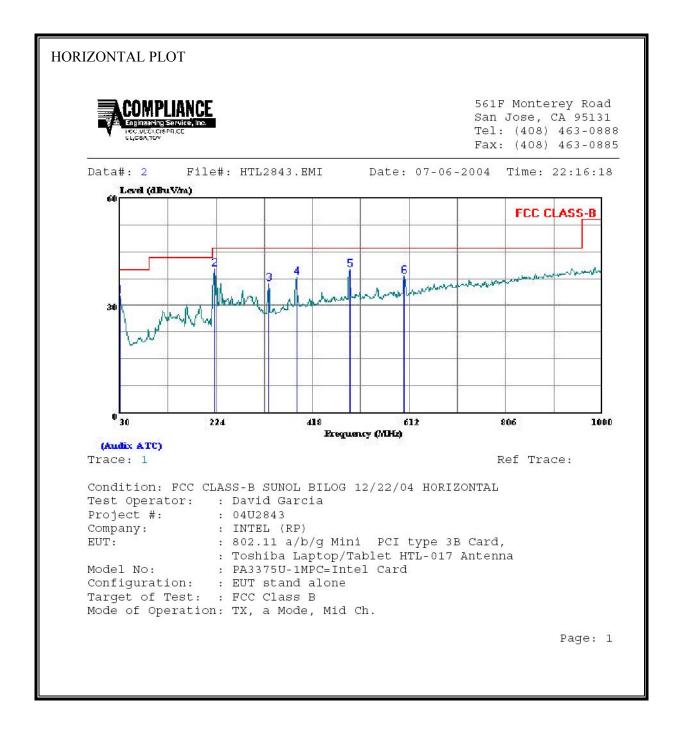
HORIZONTAL DATA

	Freq	Remark	Read Level F	actor	Level	Limit Line	Over Limit
	MHz		dBuV	dB	dBuV/m	dBuV/m	dB
1 2 3 4 5 6	30.000 223.030 276.380 329.730 385.990 385.990	Peak Peak Peak QP	10.03 23.63 17.93 21.74 23.00 25.40	22.95 13.03 15.37 16.44 17.85 17.87	36.66 33.30 38.18 40.85	46.00 46.00 46.00 46.00	-7.02 -9.34 -12.71 -7.82 -5.15 -2.73
7	507.240		13.64	20.70			-11.66

Page 98 of 118

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Page 99 of 118

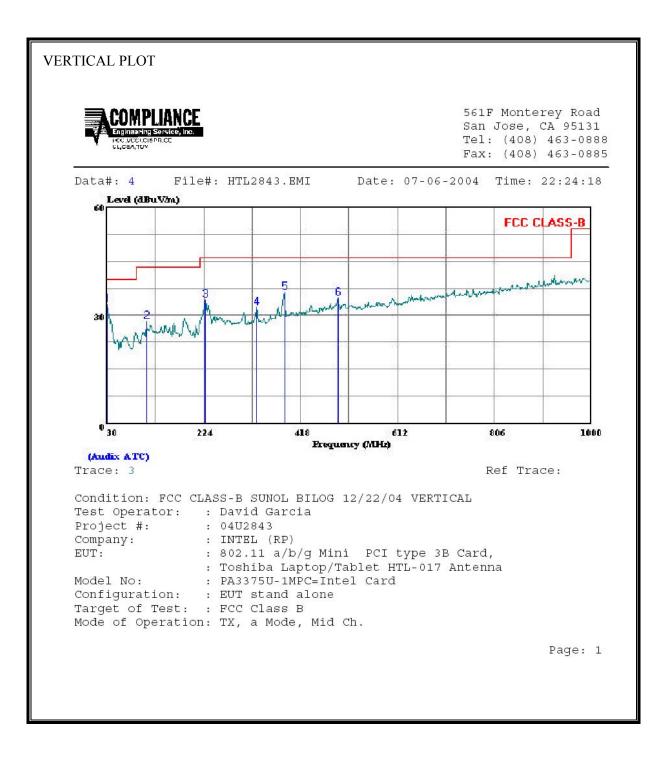

REPORT NO: 04U2843-2 EUT: 802.11 a/b/g MINI PCI TYPE 3B CARD

VERTICAL I	DATA						
	Freq	Remark	Read Level H	actor	Level	Limit Line	
-	MHz		dBuV	dB (dBuV/m d	dBuV/m	dB
1 2 3 4	30.000 208.480 373.380 507.240	Peak Peak	9.68 19.44 15.03 14.85	13.01 17.55	32.63 32.45 32.58 35.55	43.50 46.00	-11.05 -13.42

Page 100 of 118

7.8.9. WORST-CASE RADIATED EMISSIONS BELOW 1 GHz, HTL017 ANTENNA SET

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)


Page 101 of 118

REPORT NO: 04U2843-2 EUT: 802.11 a/b/g MINI PCI TYPE 3B CARD

HORIZONTAI	DATA						
	Freq	Remark	Read Level F	actor	Level	Limit Line	
-	MHz		dBuV	dB (dBuV/m d	dBuV/m	dB
1 2 3 4 5 6	30.000 221.090 329.730 385.990 492.690 601.330	Peak Peak Peak Peak	9.79 27.32 19.57 20.06 19.48 16.35	13.00 16.44 17.87 20.46	32.74 40.32 36.01 37.93 39.94 38.31	46.00 46.00 46.00 46.00	-5.68 -9.99 -8.07 -6.06

Page 102 of 118

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Page 103 of 118

REPORT NO: 04U2843-2 EUT: 802.11 a/b/g MINI PCI TYPE 3B CARD

VERTICAL DATA						
F	req Remark	Read Level F	actor	Level	Limit Line	
	 MHz	dBuV	dB d	dBuV/m d	dBuV/m	dB
2 109. 3 225. 4 329. 5 385.	000 Peak 540 Peak 940 Peak 730 Peak 990 Peak 690 Peak	14.89 21.08 15.86 18.42	13.29 13.11 16.44 17.87	32.93 28.18 34.19 32.30 36.29 34.74	43.50 46.00 46.00 46.00	-15.32 -11.81 -13.70 -9.71

Page 104 of 118

7.9. POWERLINE CONDUCTED EMISSIONS

<u>LIMIT</u>

\$15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted I	Conducted Limit (dBuV)		
	Quasi-peak	Average		
0.15-0.5	66 to 56 °	56 to 46 *		
0.5-5	56	46		
5-30	60	50		

Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

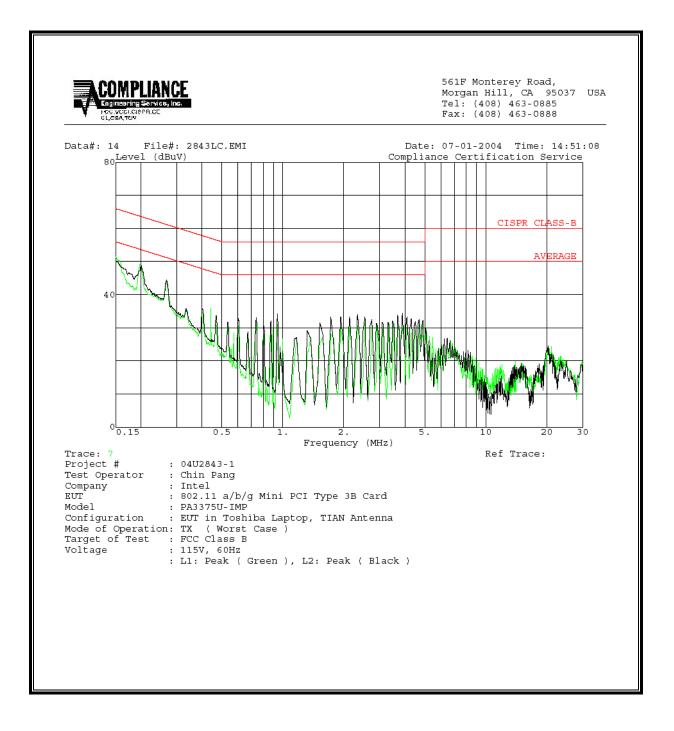
The resolution bandwidth is set to 9 kHz for both peak detection and quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

No non-compliance noted:

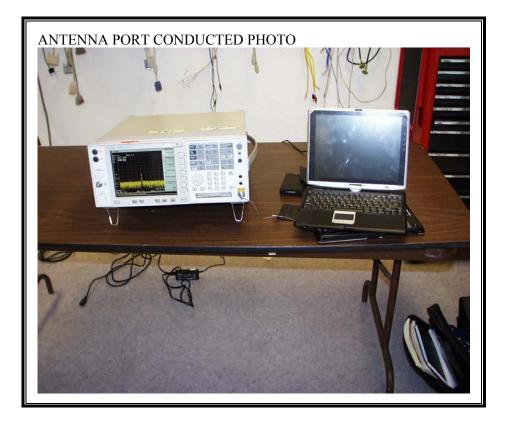
Page 105 of 118


RESULTS

<u>6 WORST EMISSIONS</u>

Freq.	Reading			Closs	Limit	EN_B	Margin		Remark
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV (dB)	L1 / L2
0.15	51.80			0.00	65.94	55.94	-14.14	-4.14	L1
0.20	49.16			0.00	64.63	54.63	-15.47	-5.47	L1
4.85	31.02			0.00	56.00	46.00	-24.98	-14.98	L1
0.15	50.66			0.00	66.00	56.00	-15.34	-5.34	L2
0.20	49.12			0.00	64.57	54.57	-15.45	-5.45	L2
3.88	34.30			0.00	56.00	46.00	-21.70	-11.70	L2
6 Worst	 Data								

Page 106 of 118


LINE 1 AND LINE 2 RESULTS

Page 107 of 118

8. SETUP PHOTOS

ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP

Page 108 of 118

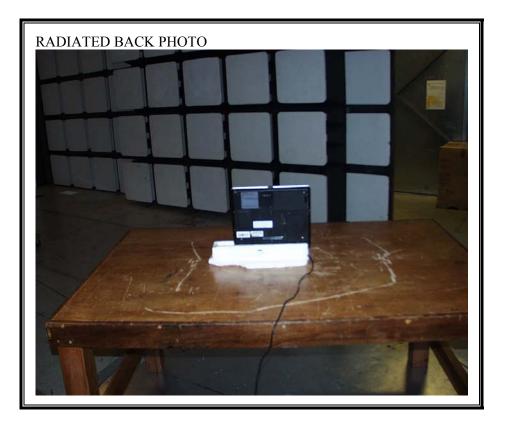
RADIATED RF MEASUREMENT SETUP (MOBILE LAPTOP CONFIGURATION)

Page 109 of 118

Page 110 of 118

RADIATED RF MEASUREMENT SETUP (PORTABLE TABLET CONFIGURATION, X ORIENTATION)

Page 111 of 118



Page 112 of 118

RADIATED RF MEASUREMENT SETUP (PORTABLE TABLET CONFIGURATION, Y ORIENTATION)

Page 113 of 118

Page 114 of 118

RADIATED RF MEASUREMENT SETUP (PORTABLE TABLET CONFIGURATION, Z ORIENTATION)

Page 115 of 118

Page 116 of 118

POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP

Page 117 of 118

END OF REPORT

Page 118 of 118