

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

	PART 15 SUBPART C TEST R	EPORT
	FCC PART 15.247	STING
Report Reference No FCC ID		CTATES
Compiled by (position+printed name+signa	ature): File administrators Joan Wu	Joan Wu
Supervised by (position+printed name+signa	- ature): Project Engineer Zoey Cao	CTAPE E
Approved by (position+printed name+signa	ature): RF Manager Eric Wang	3 Evit gyed
Date of issue	: Mar. 01, 2025	STIN
Testing Laboratory Name	Shenzhen CTA Testing Technolog	y Co., Ltd.
Address	Room 106, Building 1, Yibaolai Indus Fuhai Street, Baoʻan District, Shenzh	
Applicant's name	HuNan FuYao Electronic Technolo	ogy Co., Ltd
Address	Steel Market 1-20 # 113, TianXin Dis Province, China	strict, ChangSha City, HuNan
Test specification	TATES	ING
	· FCC Part 15.247	TESTIN
Standard		
Shenzhen CTA Testing Tech This publication may be reproo Shenzhen CTA Testing Techn material. Shenzhen CTA Testi	nnology Co., Ltd. All rights reserved. duced in whole or in part for non-commercial hology Co., Ltd. is acknowledged as copyrigh ing Technology Co., Ltd. takes no responsib from the reader's interpretation of the reprod	ht owner and source of the solity for and will not assume
Shenzhen CTA Testing Tech This publication may be repro- Shenzhen CTA Testing Techn material. Shenzhen CTA Testi liability for damages resulting to placement and context.	nnology Co., Ltd. All rights reserved. duced in whole or in part for non-commercial nology Co., Ltd. is acknowledged as copyrigh ing Technology Co., Ltd. takes no responsib	ht owner and source of the solity for and will not assume
Shenzhen CTA Testing Tech This publication may be repro- Shenzhen CTA Testing Techn material. Shenzhen CTA Testi liability for damages resulting to placement and context.	nology Co., Ltd. All rights reserved. duced in whole or in part for non-commercial hology Co., Ltd. is acknowledged as copyrigh ing Technology Co., Ltd. takes no responsib from the reader's interpretation of the reprod	ht owner and source of the solity for and will not assume
Shenzhen CTA Testing Tech This publication may be reprod Shenzhen CTA Testing Techn material. Shenzhen CTA Testi liability for damages resulting to placement and context. Equipment description Trade Mark	nology Co., Ltd. All rights reserved. duced in whole or in part for non-commercial hology Co., Ltd. is acknowledged as copyrigh ing Technology Co., Ltd. takes no responsib from the reader's interpretation of the reprod	ht owner and source of the bility for and will not assume uced material due to its
Shenzhen CTA Testing Tech This publication may be reprod Shenzhen CTA Testing Techn material. Shenzhen CTA Testi liability for damages resulting to placement and context. Equipment description Trade Mark	nnology Co., Ltd. All rights reserved. duced in whole or in part for non-commercial nology Co., Ltd. is acknowledged as copyrigh ing Technology Co., Ltd. takes no responsib from the reader's interpretation of the reprod : Wireless mechanical keyboard : Wireless mechanical keyboard 	ht owner and source of the bility for and will not assume uced material due to its
Shenzhen CTA Testing Tech This publication may be reprod Shenzhen CTA Testing Techn material. Shenzhen CTA Testi liability for damages resulting f placement and context. Equipment description Trade Mark	Anology Co., Ltd. All rights reserved. duced in whole or in part for non-commercial nology Co., Ltd. is acknowledged as copyrigh ing Technology Co., Ltd. takes no responsib from the reader's interpretation of the reprod : Wireless mechanical keyboard : Wireless mechanical keyboard : MMViCTY 	ht owner and source of the bility for and will not assume uced material due to its
Shenzhen CTA Testing Tech This publication may be reprod Shenzhen CTA Testing Techn material. Shenzhen CTA Testi liability for damages resulting f placement and context. Equipment description Trade Mark Manufacturer Model/Type reference	Impology Co., Ltd. All rights reserved. duced in whole or in part for non-commercial hology Co., Ltd. is acknowledged as copyrighting Technology Co., Ltd. takes no responsib from the reader's interpretation of the reprod : Wireless mechanical keyboard : MMViCTY HuNan FuYao Electronic Technology : MY-K79 : N/A	ht owner and source of the bility for and will not assume uced material due to its
Shenzhen CTA Testing Tech This publication may be reprod Shenzhen CTA Testing Techn material. Shenzhen CTA Testi liability for damages resulting to placement and context. Equipment description Trade Mark Manufacturer Model/Type reference Listed Models	Impology Co., Ltd. All rights reserved. duced in whole or in part for non-commercial hology Co., Ltd. is acknowledged as copyrighting Technology Co., Ltd. takes no responsib from the reader's interpretation of the reprod : Wireless mechanical keyboard : MMViCTY HuNan FuYao Electronic Technology : MY-K79 : N/A	ht owner and source of the bility for and will not assume uced material due to its
Shenzhen CTA Testing Tech This publication may be reprod Shenzhen CTA Testing Techn material. Shenzhen CTA Testi liability for damages resulting to placement and context. Equipment description Trade Mark Manufacturer Listed Models Modulation	Impology Co., Ltd. All rights reserved. duced in whole or in part for non-commercial hology Co., Ltd. is acknowledged as copyrighting Technology Co., Ltd. takes no responsib from the reader's interpretation of the reprod : Wireless mechanical keyboard : Wireless mechanical keyboard	ht owner and source of the bility for and will not assume uced material due to its y Co., Ltd

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

Report No.: CTA25022401501 Page 2 of 35 TEST REPORT Wireless mechanical keyboard Equipment under Test Model /Type **MY-K79** Listed Models N/A 5 HuNan FuYao Electronic Technology Co., Ltd Applicant Steel Market 1-20 # 113, TianXin District, ChangSha City, HuNan Address CTATESTING Province, China Manufacturer HuNan FuYao Electronic Technology Co., Ltd CTA TESTING Steel Market 1-20 # 113, TianXin District, ChangSha City, HuNan Province, China Test Result: PASS The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory. GTA CTATESTING

Contents

ALL DESCRIPTION OF THE PARTY OF	TEST STANDARDS	TING
<u>2</u>	<u>SUMMARY</u>	
		CTA V
2.1	General Remarks	5
2.2	Product Description*	UT) 5 5 5 5 5 5 5
2.3	Equipment Under Test	5
2.4	Short description of the Equipment under Test (El	UT) 5
2.5	EUT configuration	5
2.6	EUT operation mode	6
2.7	Block Diagram of Test Setup	6
2.8	Related Submittal(s) / Grant (s)	6
2.9	Modifications	G 6
		STING
3	TEST ENVIRONMENT	<u>6</u>
3.1	Address of the test laboratory	CTATES 7
3.2	Test Facility	7
3.3	Environmental conditions	
3.4	Summary of measurement results	8
3.5	Statement of the measurement uncertainty	8 8
B.6	Equipments Used during the Test	9
	ATES	-
	TEST CONDITIONS AND DESULTS	
<u>4</u>	TEST CONDITIONS AND RESULTS	1
		CTATESTING 22
4.1	AC Power Conducted Emission	-ES!"
4.2	Radiated Emissions and Band Edge	TAIL
4.3	Maximum Peak Output Power	2
4.4	Power Spectral Density	2
4.5	6dB Bandwidth	2
4.6	Out-of-band Emissions	2
4.7	Antenna Requirement	2
5	TEST SETUP PHOTOS OF THE EUT .	
	TEST	
2	PHOTOS OF THE EUT	-ING
<u>)</u>	PHOTOS OF THE EUT	
		CTATESTI
		STI
		TATES
	CTATESTING	
	CTATESTING	
	STIN	
		TATESTING
	C C V	

1 <u>TEST STANDARDS</u>

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices <u>KDB558074 D01 V05r02</u>: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

Systems (DTS) Operating Under §15.247

2 SUMMARY

2.1 **General Remarks**

CTATES		
2.1 General Remarks		
Date of receipt of test sample	Feb. 24, 2025	
Testing commenced on	Feb. 24, 2025	Contra a
Testing concluded on	 Mar. 01, 2025	

2.2 Product Description*

Testing commenced on	: Feb. 24, 2025
Testing concluded on	: Mar. 01, 2025
2.2 Product Descri	iption*
Product Description:	Wireless mechanical keyboard
Model/Type reference:	MY-K79
Power supply:	DC 3.7V From battery and DC 5.0V From external circuit
Hardware version:	V1.0
Software version:	V1.0
Testing sample ID:	CTA250224015-1# (Engineer sample) CTA250224015-2# (Normal sample)
Bluetooth BLE	
Supported type:	Bluetooth low Energy
Modulation:	GFSK
Operation frequency:	2402MHz to 2480MHz
Channel number:	40
Channel separation:	2 MHz
Antenna type:	PCB antenna
Antenna gain:	1.18 dBi

2.3 Equipment Under Test

Power supply system utilised

Power supply system utilis	sed				CTATES
Power supply voltage	:	0	230V / 50 Hz) 120V / 60Hz
		0	12 V DC	C	24 V DC
ING		lacksquare	Other (specified in bl	ank below	/)

2.4 Short description of the Equipment under Test (EUT)

This is a Wireless mechanical keyboard. For more details, refer to the user's manual of the EUT.

2.5 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- \bigcirc supplied by the lab

O Adapter	TESTING	Model: EP-TA20CBC Input: AC 100-240V 50/60Hz Output: DC 5V 2A
(cm)	CIL	TESTINC

2.6 EUT operation mode

The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing. There are 40 channels provided to the EUT and Channel 00/19/39 were selected to test.

	Operation Frequency:	
	Channel	Frequency (MHz)
	00	2402
	01	2404
	02	2406
	19	2440
		÷
, G V	37	2476
1	38	2478
	39	2480
	C.	TATES
	2.7 Block Diagram of Test Setup	CTA TESTING
		CTA '

Block Diagram of Test Setup 2.7

EUT		DC 5.0V From Adapter
	STING	

2.8 Related Submittal(s) / Grant (s)

CTATE This submittal(s) (test report) is intended for filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.9 Modifications

No modifications were implemented to meet testing criteria. CTATEST

3 TEST ENVIRONMENT

Address of the test laboratory 3.1

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

Temperature:	23 ° C
	TES
Humidity:	44 %
Atmospheric pressure:	950-1050mbar

AC Main Conducted testing.

Temperature:	24 ° C			
-1G				
Humidity:	47 %			
	C.			
Atmospheric pressure:	950-1050mbar			

	Aunospheric pressure.	930-1030mbai	
С	onducted testing:	TES	TING
	Temperature:	24 ° C	TESI
	Constant of the second second		(A)
	Humidity:	46 %	
	Atmospheric pressure:	950-1050mbar]

	Test Specification clause	Test case	Test Mode	Test Channel		ecorded Report	Test result
	§15.247(e)	Power spectral density	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	complies
	§15.247(a)(2)	Spectrum bandwidth – 6 dB bandwidth	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	Lowest	complies
	§15.247(b)(3)	Maximum output Peak power	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	complies
CTATE	§15.247(d)	Band edge compliance conducted	BLE 1Mpbs	⊠ Lowest ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Highest	complies
	§15.205	Band edge compliance radiated	BLE 1Mpbs	⊠ Lowest ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Highest	complies
	§15.247(d)	TX spurious emissions conducted	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	 ☑ Lowest ☑ Middle ☑ Highest 	complies
	§15.247(d)	TX spurious emissions radiated	BLE 1Mpbs	Lowest Middle	BLE 1Mpbs	Lowest Middle	complies
G	§15.209(a)	TX spurious Emissions radiated Below 1GHz	BLE 1Mpbs	-/-	BLE 1Mpbs	-/-	complies
	§15.107(a) §15.207	Conducted Emissions < 30 MHz	BLE 1Mpbs	ING -/-	BLE 1Mpbs	-/-	complies

3.4 Summary of measurement results

Remark:

1. The measurement uncertainty is not included in the test result.

We tested all test mode and recorded worst case in report 2.

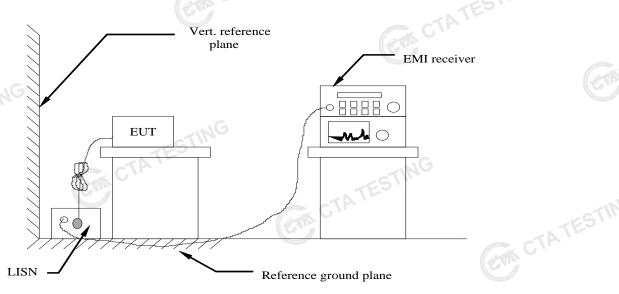
Statement of the measurement uncertainty 3.5

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. TESTING Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.

u	le best measurement capability for	Shenzhen CTA resung T	echnology Co., Li	.a
	Test	Range	Measurement Uncertainty	Notes
	Radiated Emission	9KHz~30MHz	3.02 dB	(1)
	Radiated Emission	30~1000MHz	4.06 dB	(1)
	Radiated Emission	1~18GHz	5.14 dB 🔪	(1)
	Radiated Emission	18-40GHz	5.38 dB	(1)
	Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
	Output Peak power	30MHz~18GHz	0.55 dB	(1)
	Power spectral density	SING	0.57 dB	(1)
	Spectrum bandwidth		1.1%	(1)
	Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
	Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
	Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test


					ING			
	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date		
	LISN	R&S	ENV216	CTA-308	2024/08/03	2025/08/02		
	LISN	R&S	ENV216	CTA-314	2024/08/03	2025/08/02		
	EMI Test Receiver	R&S	ESPI	CTA-307	2024/08/03	2025/08/02		
	EMI Test Receiver	R&S	ESCI	CTA-306	2024/08/03	2025/08/02		
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2024/08/03	2025/08/02		
	Spectrum Analyzer	R&S	FSU	CTA-337	2024/08/03	2025/08/02		
	Vector Signal generator	Agilent	N5182A	CTA-305	2024/08/03	2025/08/02		
G	Analog Signal Generator	R&S	SML03	CTA-304	2024/08/03	2025/08/02		
	WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2024/08/03	2025/08/02		
	Temperature and humidity meter	G Chigo	ZG-7020	CTA-326	2024/08/03	2025/08/02		
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2026/10/16		
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2026/10/12		
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2026/10/16		
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2023/10/17	2026/10/16		
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2024/08/03	2025/08/02		
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2024/08/03	2025/08/02		
CTATE	Directional coupler	NARDA	4226-10	CTA-303	2024/08/03	2025/08/02		
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2024/08/03	2025/08/02		
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2024/08/03	2025/08/02		
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2024/08/03	2025/08/02		
	Power Sensor	Agilent	U2021XA	CTA-405	2024/08/03	2025/08/02		
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2024/08/03	2025/08/02		
			CTP-			TES		

Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A
STA C.	GAN	TATESTIN	- cT	TESTING	

TEST CONDITIONS AND RESULTS 4

4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

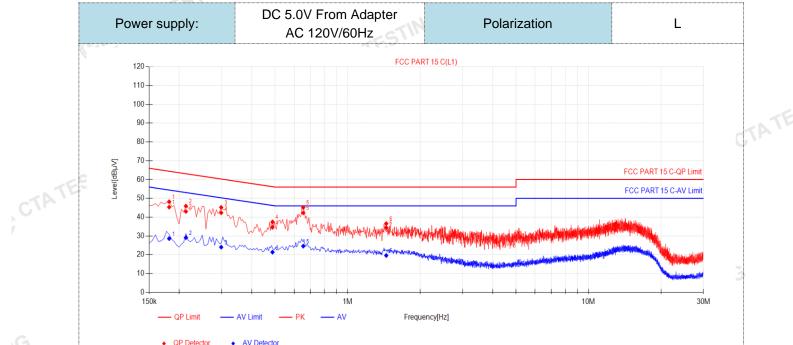
8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

Frequency range (MHz)	Limit (c	lBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
* De ser en suith the sile mentitiens of the street of		

Decreases with the logarithm of the frequency.

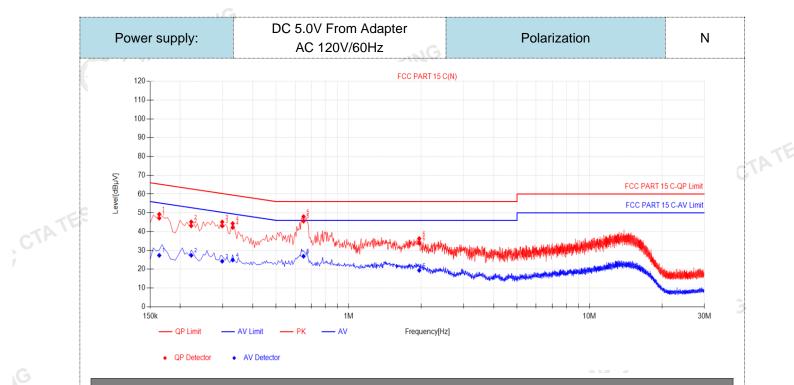

TEST RESULTS

Remark:

1. BLE 1Mpbs was tested at Low, Middle, and High channel; only the worst result of BLE 1Mpbs High channel

Page 11 of 35

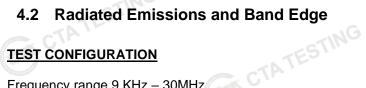
2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:



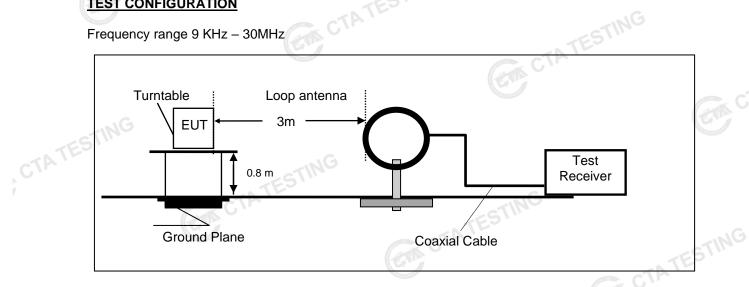
Final Data List

	тпа												
5	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	
	1	0.1815	10.01	35.32	45.33	64.42	19.09	18.60	28.61	54.42	25.81	PASS	
	2	0.213	10.06	32.96	43.02	63.09	20.07	19.04	29.10	53.09	23.99	PASS	
	3	0.2985	9.95	32.37	42.32	60.28	17.96	14.09	24.04	50.28	26.24	PASS	
	4	0.4875	10.00	24.62	34.62	56.21	21.59	11.37	21.37	46.21	24.84	PASS	
	5	0.654	9.97	32.31	42.28	56.00	13.72	14.62	24.59	46.00	21.41	PASS	
	6	1.446	9.90	24.51	34.41	56.00	21.59	9.71	19.61	46.00	26.39	PASS	- AN
N		.QP Value Factor (dE	· · /		•	• •	``	,				GIA	C M

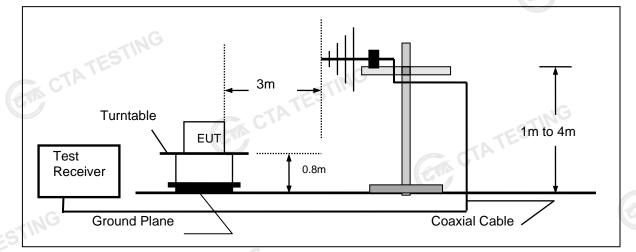
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
 - 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
 - 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V) CTA TESTING


Page 12 of 35

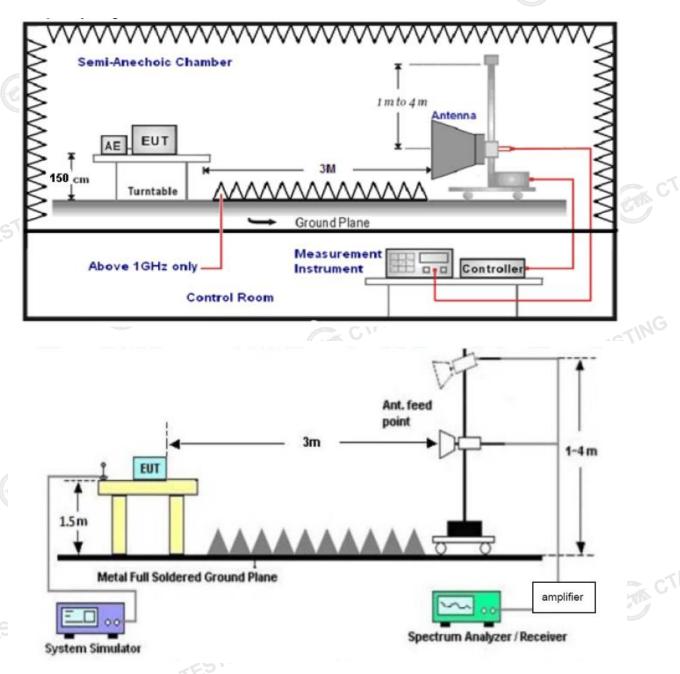
Final Data List


NO.Freq. [MH2]Factor [dB]QP Reading[dB $\mu V]$ QP Value [dB $\mu V]$ QP Limit [dB $\mu V]$ QP Margin [dBAV Reading [dB $\mu V]$ AV Value [dB $\mu V]$ AV Margin Limit [dB $\mu V]$ AV Margin [dBAV Margin Limit [dB $\mu V]$ AV Margin [dB $\mu V]$ AV Margin Limit [dB $\mu V]$ AV Margin Reading [dB $\mu V]$ AV Nalue Reading [dB $\mu V]$ AV Margin Reading [dB $\mu V]$ AV Margin Reading [dB $\mu V]$ AV Nalue Reading [dB $\mu V]$ AV Nalue Reading Reading [dB $\mu V]$ AV Nalue Reading Reading Reading Reading Reading Reading Reading Reading Reading Reading Reading Reading Reading Reading														
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	N	10.			Reading[dB	Value	Limit	Margin	Reading	Value	Limit	Margin	Verdict	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1	0.1635	10.05	37.10	47.15	65.28	18.13	17.33	27.38	55.28	27.90	PASS	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $:	2	0.222	9.98	33.08	43.06	62.74	19.68	17.39	27.37	52.74	25.37	PASS	
5 0.6495 10.11 35.46 45.57 56.00 10.43 16.80 26.91 46.00 19.09 PASS 6 1.9635 10.19 23.68 33.87 56.00 22.13 9.20 19.39 46.00 26.61 PASS Note:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB)		3	0.2985	9.86	33.17	43.03	60.28	17.25	14.41	24.27	50.28	26.01	PASS	
c c <thc< th=""> <thc< th=""> <thc< th=""> <thc< th=""></thc<></thc<></thc<></thc<>		4	0.33	9.86	32.35	42.21	59.45	17.24	15.04	24.90	49.45	24.55	PASS	
Note:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB)		5	0.6495	10.11	35.46	45.57	56.00	10.43	16.80	26.91	46.00	19.09	PASS	
		6	1.9635	10.19	23.68	33.87	56.00	22.13	9.20	19.39	46.00	26.61	PASS	
	Not			•••		•	• /							c XP
		4)	A)/N/a		1/1:00:4/		A)/)/al							1

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
 - 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V) CTATES



TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz – 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- Maximum procedure was performed by raising the receiving antenna from 1m to 4m and 2. rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed. 4.
- The EUT minimum operation frequency was 32.768KHz and maximum operation 5.
- frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz. The distance between test antenna and EUT as following table states: 6

υ.		ancina and Lor as following tab				
	Test Frequency range	Test Antenna Type	Test Distance			
	9KHz-30MHz	Active Loop Antenna	3 ING			
	30MHz-1GHz	Ultra-Broadband Antenna	3-5			
	1GHz-18GHz	Double Ridged Horn Antenna	3			
	18GHz-25GHz	Horn Anternna	1			
7.	Setting test receiver/spectrum as following table states:					
	Shanzhan C	TA Testing Technology Co. 1 td	G			

Page 15 of 35

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	
	Sweep time=Auto	Peak
10112-400112	Average Value: RBW=1MHz/VBW=10Hz,	Fean
	Sweep time=Auto	
	9KHz-150KHz 150KHz-30MHz	9KHz-150KHz RBW=200Hz/VBW=3KHz,Sweep time=Auto 150KHz-30MHz RBW=9KHz/VBW=100KHz,Sweep time=Auto 30MHz-1GHz RBW=120KHz/VBW=1000KHz,Sweep time=Auto Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto 1GHz-40GHz Average Value:

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

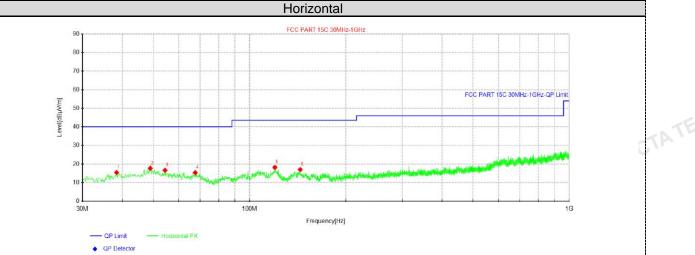
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)					
RA = Reading Amplitude	AG = Amplifier Gain					
AF = Antenna Factor		-ING				
ransd=AF +CL-AG		TESTIN				
DIATION LIMIT						

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.


Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3-100	43.5	150
216-960	- 3	46.0	200
Above 960	3	54.0	500

TEST RESULTS

Remark:

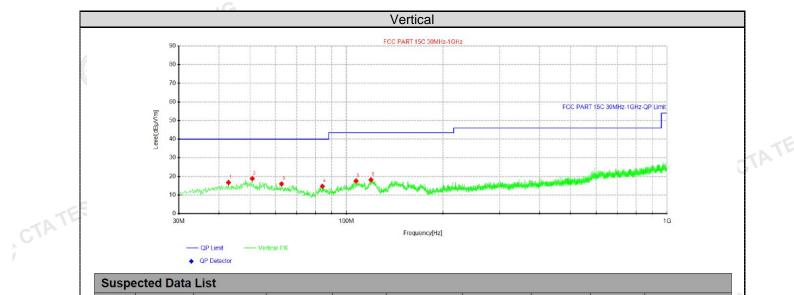
- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X 1. position.
- 2. BLE 1Mpbs were tested at Low, Middle, and High channel for all models and recorded worst mode at the High channel.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found 3. except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz

Suspected Data List

olea Dala								
Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity
[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Folanty
38.3662	27.93	15.40	-12.53	40.00	24.60	200	23	Horizontal
48.915	28.92	17.71	-11.21	40.00	22.29	100	185	Horizontal
54.3712	28.12	<mark>16.6</mark> 2	-11.50	40.00	23.38	100	290	Horizontal
67.5875	29.67	15.33	-14.34	40.00	24.67	200	197	Horizontal
119.967	32.03	18.17	-13.86	43.50	25.33	100	326	Horizontal
143.975	32.56	16.99	-15.57	43.50	26.51	100	349	Horizontal
	Freq. [MHz] 38.3662 48.915 54.3712 67.5875 119.967	Freq. Reading [MHz] [dBµV] 38.3662 27.93 48.915 28.92 54.3712 28.12 67.5875 29.67 119.967 32.03	Freq. Reading Level [MHz] [dBµV] [dBµV/m] 38.3662 27.93 15.40 48.915 28.92 17.71 54.3712 28.12 16.62 67.5875 29.67 15.33 119.967 32.03 18.17	Freq. Reading Level Factor [MHz] [dBµV] [dBµV/m] [dBm] 38.3662 27.93 15.40 -12.53 48.915 28.92 17.71 -11.21 54.3712 28.12 16.62 -11.50 67.5875 29.67 15.33 -14.34 119.967 32.03 18.17 -13.86	Freq. Reading Level Factor Limit [MHz] [dBμV] [dBμV/m] [dBμV/m] [dBμ/m] [dBμV/m] 38.3662 27.93 15.40 -12.53 40.00 48.915 28.92 17.71 -11.21 40.00 54.3712 28.12 16.62 -11.50 40.00 67.5875 29.67 15.33 -14.34 40.00 119.967 32.03 18.17 -13.86 43.50	Freq.ReadingLevelFactorLimitMargin[MHz][dBμV][dBμV/m][dBμV/m][dBμV/m][dBμV/m][dB]38.366227.9315.40-12.5340.0024.6048.91528.9217.71-11.2140.0022.2954.371228.1216.62-11.5040.0023.3867.587529.6715.33-14.3440.0024.67119.96732.0318.17-13.8643.5025.33	Freq. Reading Level Factor Limit Margin Height [MHz] [dBμV] [dBμV/m] [dB/m] [dBμV/m] [dB] [cm] 38.3662 27.93 15.40 -12.53 40.00 24.60 200 48.915 28.92 17.71 -11.21 40.00 22.29 100 54.3712 28.12 16.62 -11.50 40.00 23.38 100 67.5875 29.67 15.33 -14.34 40.00 24.67 200 119.967 32.03 18.17 -13.86 43.50 25.33 100	Freq. Reading Level Factor Limit Margin Height Angle [MHz] [dBμV] [dBμV/m] [dB/m] [dBμV/m] [dB] [cm] [°] 38.3662 27.93 15.40 -12.53 40.00 24.60 200 23 48.915 28.92 17.71 -11.21 40.00 22.29 100 185 54.3712 28.12 16.62 -11.50 40.00 23.38 100 290 67.5875 29.67 15.33 -14.34 40.00 24.67 200 197 119.967 32.03 18.17 -13.86 43.50 25.33 100 326

CTA CTA


Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

CTATE

Freq. Reading Level Factor Limit Margin Height Angle NO. Polarity [dB] [MHz] [dBµV] [dBµV/m] [dB/m] [dBµV/m] [cm] [°] 42.8525 28.37 16.71 -11.66 40.00 23.29 200 170 Vertical 1 2 50.855 30.05 18.83 -11.22 40.00 21.17 100 359 Vertical 15.98 40.00 24.02 3 62.7375 29.40 -13.42 100 3 Vertical 84.0775 30.71 14.69 -16.02 40.00 25.31 200 Vertical 4 65 43.50 5 30.75 17.58 25.92 107.115 -13.17 100 266 Vertical 6 119.24 31.99 18.16 -13.83 43.50 25.34 100 299 Vertical

CTATE

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

Page 18 of 35

For 1GHz to 25GHz

	T	N		GFSK (abo	ve 1GHz)					
Freque	ency(MHz)	:	24	02	Pola	arity:	ŀ	IORIZONT	AL .	
Frequency (MHz)	Emis Lev (dBu)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	61.31	PK	74	12.69	65.58	32.33	5.12	41.72	-4.27	
4804.00	45.46	AV	54	8.54	49.73	32.33	5.12	41.72	-4.27	
7206.00	53.56	PK	74	20.44	54.08	36.6	6.49	43.61	-0.52	
7206.00	42.09	AV	54	11.91	42.61	36.6	6.49	43.61	-0.52	
			•	•	•				Sec. C.	
Frequency(MHz):		24	2402		Polarity:		VERTICAL			

Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	59.91	PK	74	14.09	64.18	32.33	5.12	41.72	-4.27
4804.00	42.22	AV	54	11.78	46.49	32.33	5.12	41.72	-4.27
7206.00	50.80	PK	74	23.20	51.32	36.6	6.49	43.61	-0.52
7206.00	41.39	AV	54	12.61	41.91	36.6	6.49	43.61	-0.52

Freque	ncy(MHz)	:	24	40	Pola	arity:	н	IORIZONT	NL .
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	60.76	PK	74	13.24	64.64	32.6	5.34	41.82	-3.88
4880.00	44.51	AV	54	9.49	48.39	32.6	5.34	41.82	-3.88
7320.00	52.58	PK	74	21.42	52.69	36.8	6.81	43.72	-0.11
7320.00	43.20	AV	54	10.80	43.31	36.8	6.81	43.72	-0.11
The second second			to the				-IN	G	

Freque	Frequency(MHz):		2440		Polarity:		VERTICAL		
Frequency (MHz)	-	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	59.22	PK	74	14.78	63.10	32.6	5.34	41.82	-3.88
4880.00	42.57	AV	54	11.43	46.45	32.6	5.34	41.82	-3.88
7320.00	50.84	PK	74	23.16	50.95	36.8	6.81	43.72	-0.11
7320.00	40.82	AV	54	13.18	40.93	36.8	6.81	43.72	-0.11
			STIN						

Freque	Frequency(MHz):			2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Le ^v (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4960.00	60.23	PK	74	13.77	63.31	32.73	5.66	41.47	-3.08	
4960.00	45.00	AV	54	9.00	48.08	32.73	5.66	41.47	-3.08	
7440.00	54.01	PK	74	19.99	53.56	37.04	7.25	43.84	0.45	
7440.00	42.39	AV	54	11.61	41.94	37.04	7.25	43.84	0.45	

Freque	ncy(MHz)	:	24	80	Pola	arity:		VERTICAL	-
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	G Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	58.43	PK	74	15.57	61.51	32.73	5.66	41.47	-3.08
4960.00	42.06	AV	54	11.94	45.14	32.73	5.66	41.47	-3.08
7440.00	51.47	PK	74	22.53	51.02	37.04	7.25	43.84	0.45
7440.00	41.34	AV	54	12.66	40.89	37.04	7.25	43.84	0.45
REMARKS	:		· · · ·			Contraction of the second			CTA
			Shenzhen	CTA Testing	Technology	Co., Ltd.			

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Freque	ency(MHz)		24	GFS 02		arity:	HORIZONTAL		
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	61.95	PK	74	12.05	72.37	27.42	4.31	42.15	-10.42
2390.00	43.36	AV	54	10.64	53.78	27.42	4.31	42.15	-10.42
Freque	ency(MHz)	:	2402		Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	60.10	PK	74	13.90	70.52	27.42	4.31	42.15	-10.42
2390.00	40.86	AV	54	13.14	51.28	27.42	4.31	42.15	-10.42
Freque	ency(MHz)	:	24	30	Pola	arity:	н	ORIZONTA	L
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
()		ΡK	74	12.82	71.29	27.7	4.47	42.28	-10.11
2483.50	61.18	FIX				27.7	4.47	42.28	-10.11
, ,	61.18 43.49	AV	54	10.51	53.60	21.1	4.47		
2483.50 2483.50		AV	54 24			arity:		VERTICAL	•
2483.50 2483.50	43.49	AV : sion /el				1			•
2483.50 2483.50 Freque Frequency	43.49 ency(MHz) Emis Lev	AV : sion /el	24 Limit	30 Margin	Pola Raw Value	arity: Antenna Factor	Cable Factor	VERTICAL Pre- amplifier	Correction Factor

4. -- Mean the PK detector measured value is below average limit.

5. The other emission levels were very low against the limit.

Maximum Peak Output Power 4.3

Limit

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

est Results				ATESI
Туре	Channel	Output power (dBm)	Limit (dBm)	Result
	00	-2.27		
GFSK 1Mbps	19	-2.98	30.00	Pass
CTA	39	-3.51		
Note: 1.The test res	ults including the c	cable loss.	CTATESTING	

4.4 **Power Spectral Density**

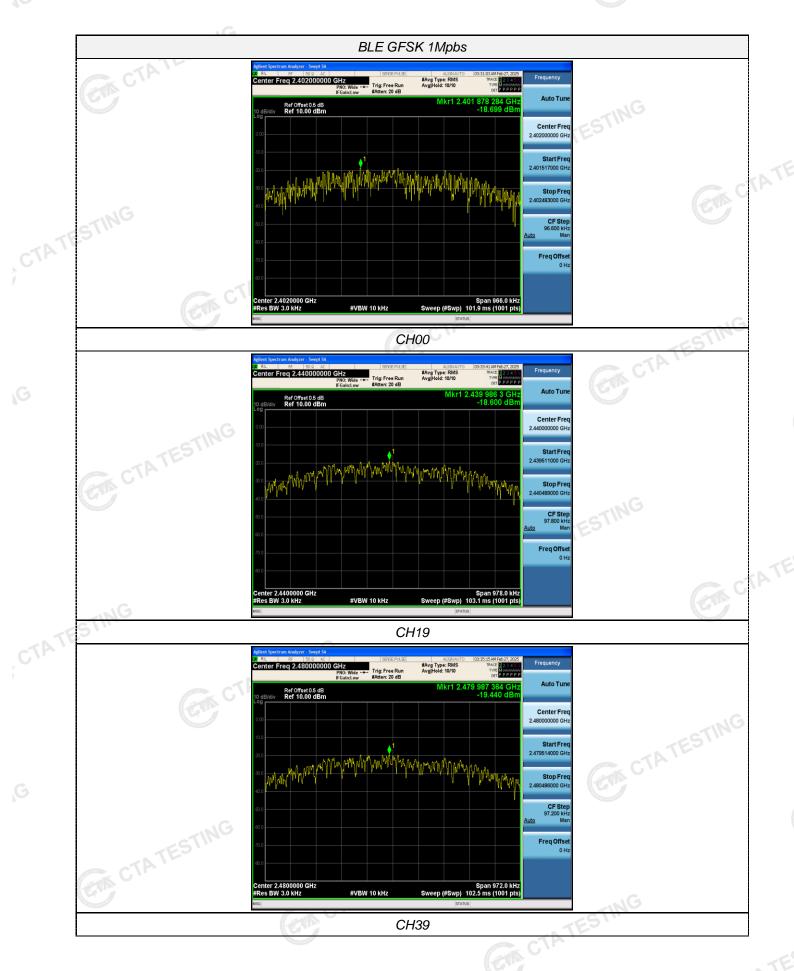
Limit C

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW \geq 3 kHz.
- 3. Set the VBW \geq 3× RBW.
- CTATESTING 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration



Test Results

Г	_		Power Spectral Density		
10	Туре	Channel	(dBm/3KHz)	Limit (dBm/3KHz)	Result
75		00	G -18.70		
	GFSK 1Mbps	19_51	-18.60	8.00	Pass
		39	-19.44	A G	
	Test plot as follows	G			

Page 22 of 35

4.5 6dB Bandwidth

Limit

ESTING For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

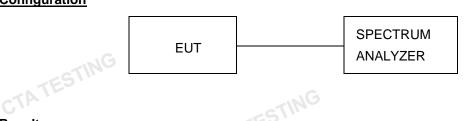
The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

Test Results		ANALYZ	FR	CTATESTING
Туре	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
GTINC	00	0.644		
GFSK 1Mbps	19	0.652	≥500	Pass
CIL	39	0.648		
Test plot as follows:	CAN C	TATES	CTATESTIN	G

Out-of-band Emissions 4.6

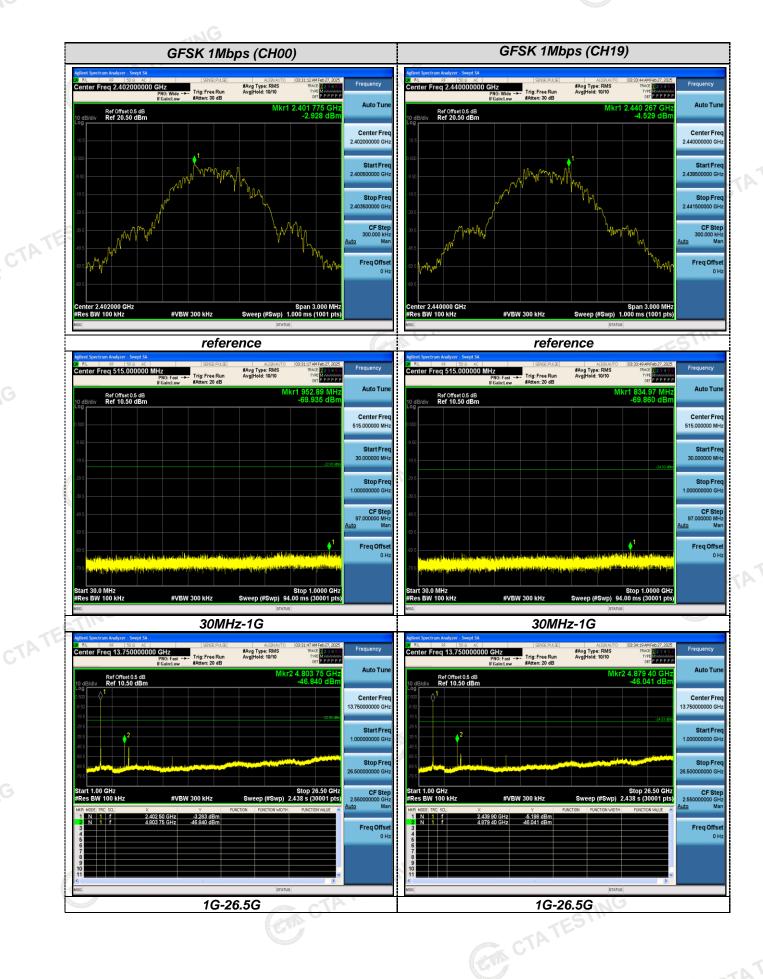

Limit

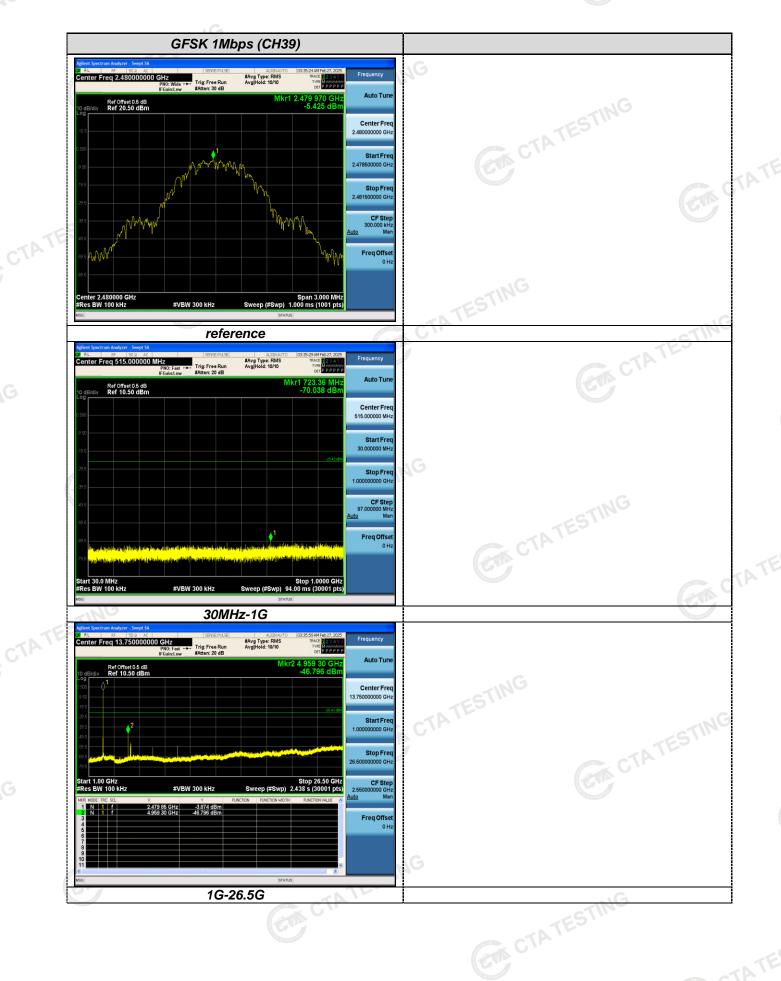
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector , and max hold. Measurements utilizing these setting are GTA CTATESTING made of the in-band reference level, bandedge and out-of-band emissions.

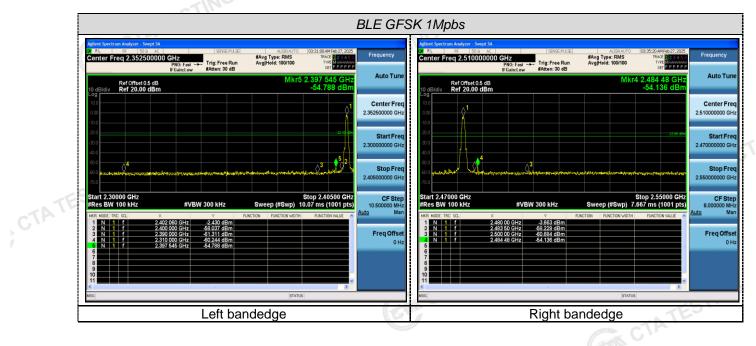
Test Configuration




Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage **GIA CTATE** measurement data.

Test plot as follows:


Page 26 of 35

Page 28 of 35

Band-edge Measurements for RF Conducted Emissions:

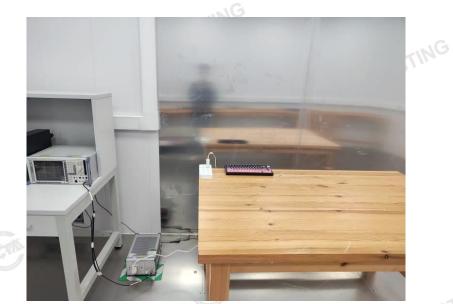
4.7 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):


(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

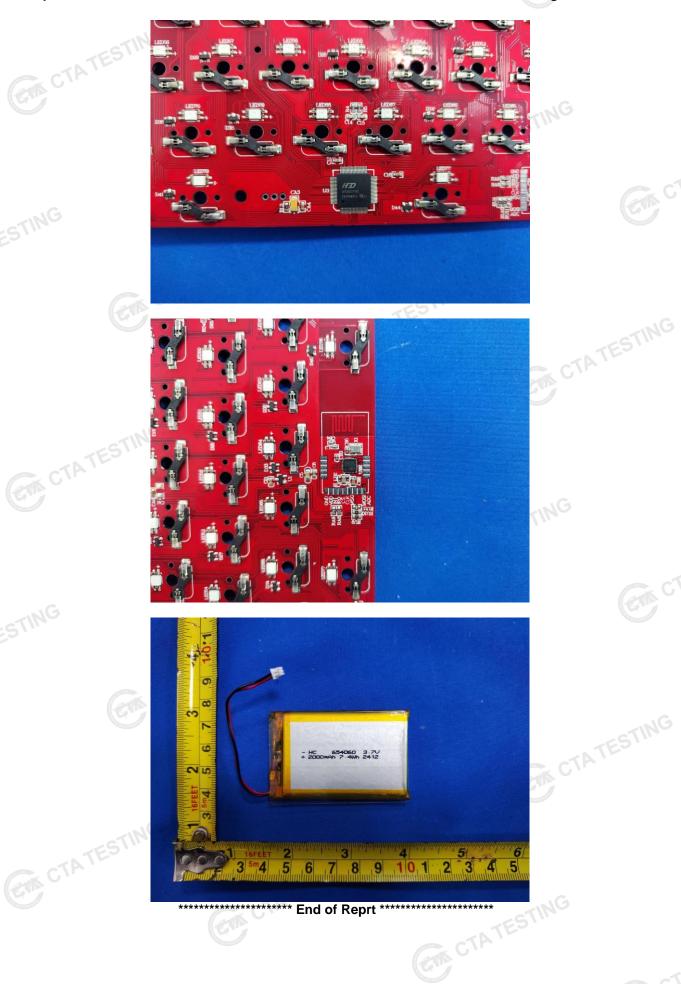
Antenna Connected Construction

The gain of antenna was 1.18 dBi.

Remark: The antenna gain is provided by the customer , if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility.

5 Test Setup Photos of the EUT

Photos of the EUT 6



Page 34 of 35

Page 35 of 35

