FCC 47 CFR Part 15.407 TEST REPORT For **Botslab Outdoor Pan/Tilt Camera Pro** **MODEL NUMBER: W312** REPORT NUMBER: E04A23060231F00102 **ISSUE DATE: Jul 24, 2023** FCC ID: 2A22Z-W312 Prepared for Botslab, Inc. 919 North Market Street, Suite 950, Wilmington, New Castle, Delaware, USA Prepared by **Guangdong Global Testing Technology Co., Ltd.** Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808 This report shall not be reproduced, except in full, without the written approval of Guangdong Global Testing Technology Co., Ltd. TRF No.: 04-E001-1A TRF Originator: GTG TRF Date: 2022-06-29 Web: www.gtggroup.com E-mail: info@gtggroup.com Tel.: 86-400 755 8988 REPORT NO.: E04A23060231F00102 Page 2 of 39 # Revision History | Rev. | Issue Date | Revisions | Revised By | |------|--------------|---------------|------------| | V0 | Jul 24, 2023 | Initial Issue | Win | REPORT NO.: E04A23060231F00102 Page 3 of 39 | Summary of Test Results | | | | | | |--|---|---|--------|--|--| | Test Item | Clause | Limit/Requirement | Result | | | | Antenna
Requirement | N/A | FCC Part 15.203, FCC Part 15.407(a)(1) (2) | Pass | | | | 6 dB AND 26 dB emission bandwidth | KDB 789033 D02 v02r01
Section C.1 | FCC Part 15.407 (a)(2)(5) | Pass | | | | Maximum conducted output power | KDB 789033 D02 v02r01
Section E.3.a (Method PM) | FCC Part 15.407 (a)(1)(2)(3) | Pass | | | | Peak Power
Spectral Density | KDB 789033 D02 v02r01
Section F | FCC Part 15.407 (a)(1)(2)(3) | Pass | | | | Radiated Emissions
and Band Edge
Measurement | KDB 789033 D02 v02r01
Section G.3, G.4, G.5, and
G.6 | FCC Part 15.407 (b)(1)(2)(3)(4)(6), FCC Part 15.209/205 | Pass | | | | FREQUENCY
STABILITY | | FCC 15.407 (g) | Pass | | | | Dynamic Frequency
Selection (Slave) | KDB 905462 D03 Client
Without DFS New Rules
v01r02 | FCC Part 15.407 (h) | Pass | | | | Dynamic Frequency
Selection (Master) | KDB 905462 D02 UNII DFS
Compliance Procedures
New Rules v02 | FCC Part 15.407 (h) | N/A | | | | AC Power Line
Conducted Emission | ANSI C63.10-2013, Clause 6.2. | FCC Part 15.407 (b)(6), FCC Part 15.207 | Pass | | | | Duty Cycle | ANSI C63.10-2013, Clause 12.2 | None; for reporting purposes only. | Pass | | | #### Note: ^{1.} N/A: In this whole report not applicable. ^{*}The measurement result for the sample received is <Pass> according to <FCC 47 CFR Part 15.407> when <Accuracy Method> decision rule is applied. # **CONTENTS** | 1. | ATTES | TATION OF TEST RESULTS | 5 | |------------|---------------------|--|----| | 2. | TEST M | IETHODOLOGY | 6 | | 3. | FACILI [*] | TIES AND ACCREDITATION | 6 | | 4. | CALIBE | RATION AND UNCERTAINTY | 7 | | | 4.1. | MEASURING INSTRUMENT CALIBRATION | 7 | | | 4.2. | MEASUREMENT UNCERTAINTY | 7 | | 5. | EQUIP | MENT UNDER TEST | 8 | | , | 5.1. | DESCRIPTION OF EUT | 8 | | , | 5.2. | CHANNEL LIST | 8 | | , | 5.3. | MAXIMUM AVERAGE EIRP | 9 | | , | 5.4. | THE WORSE CASE POWER SETTING PARAMETER | 10 | | , | 5.5. | DESCRIPTION OF AVAILABLE ANTENNAS | 12 | | , | 5.6. | SUPPORT UNITS FOR SYSTEM TEST | 12 | | , | 5.7. | SETUP DIAGRAM | 12 | | 6. | MEASU | IRING EQUIPMENT AND SOFTWARE USED | 14 | | 7. | ANTEN | NA PORT TEST RESULTS | 16 | | | 7.1. | 6dB AND 26dB EMISSION BANDWIDTH | 16 | | | 7.2. | Maximum conducted output power | 18 | | | 7.3. | Peak Power Spectral Density | 20 | | | 7.4. | Frequency Stability | 22 | | | 7.5. | Dynamic Frequency Selection (Slave) | 24 | | | 7.6. | Duty Cycle | 27 | | 8. | RADIA | TED TEST RESULTS | 28 | | 9. | ANTEN | NA REQUIREMENT | 34 | | 10 | | AC POWER LINE CONDUCTED EMISSION | 35 | | 11 | - | TEST DATA | 37 | | ΑF | PENDIX: | PHOTOGRAPHS OF TEST CONFIGURATION | 38 | | ^ E | DENIDIY. | DUOTOGDADUS OF THE FIIT | 20 | REPORT NO.: E04A23060231F00102 Page 5 of 39 ## 1. ATTESTATION OF TEST RESULTS **Applicant Information** Company Name: Botslab, Inc. Address: 919 North Market Street, Suite 950, Wilmington, New Castle, Delaware, USA **Manufacturer Information** Company Name: Botslab, Inc. Address: 919 North Market Street, Suite 950, Wilmington, New Castle, Delaware, USA **EUT Information** EUT Name: Botslab Outdoor Pan/Tilt Camera Pro Model: W312 Brand: N/A Sample Received Date: Jun 08, 2023 Sample Status: Normal Sample ID: A23060231 001 Date of Tested: Jun 08, 2023 to Jul 24, 2023 | APPLICABLE STANDARDS | | | | |------------------------|------|--|--| | STANDARD TEST RESULTS | | | | | FCC 47 CFR Part 15.407 | Pass | | | Prepared By: Checked By: San I Ce Win Huang Project Engineer General Manager Alan He Manager REPORT NO.: E04A23060231F00102 Page 6 of 39 # 2. TEST METHODOLOGY All tests were performed in accordance with the standard FCC 47 CFR Part 15.407, DD # 3. FACILITIES AND ACCREDITATION | | A2LA (Certificate No.: 6947.01) | |---------------------------|---| | | Guangdong Global Testing Technology Co., Ltd. | | | has been assessed and proved to be in compliance with A2LA. | | | FCC (FCC Designation No.: CN1343) Guangdong Global Testing Technology Co., Ltd. has been recognized to perform compliance testing on equipment subject to | | | Guangdong Global Testing Technology Co., Ltd. | | Accreditation Certificate | has been recognized to perform compliance testing on equipment subject to | | Accreditation Certificate | Supplier's Declaration of Conformity (SDoC) and Certification rules | | | ISED (Company No.: 30714) | | | Guangdong Global Testing Technology Co., Ltd. | | | has been registered and fully described in a report filed with ISED. The | | | Company Number is 30714 and the test lab Conformity Assessment Body | | | Identifier (CABID) is CN0148. | Note: All tests measurement facilities use to collect the measurement data are located at Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808 REPORT NO.: E04A23060231F00102 Page 7 of 39 # 4. CALIBRATION AND UNCERTAINTY #### 4.1. MEASURING INSTRUMENT CALIBRATION The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards. #### 4.2. MEASUREMENT UNCERTAINTY Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus: | Description | Limit | Uncertainties | |--|-----------|---------------| | Carrier Frequencies | ±1.0E-05 | ±2.2E-10 | | Occupied Channel Bandwidth | - | ±1.71 % | | Power | ±1.5 dB | ±1.15 dB | | Power Density | ±1.5 dB | ±1.21 dB | | Transmitter unwanted emissions outside the 5 GHz R | LAN bands | | | 30 MHz to 1 GHz | ±3 dB | ±0.80 dB | | 1 GHz to 26GHz | ±3 dB | ±2.42 dB | | Transmitter unwanted emissions inside the 5 GHz RL | AN bands | | | 5 150 MHz to 5 350 MHz and 5 470 MHz to 5 725 MHz | ±3 dB | ±1.69 dB | | Receiver Spurious emission | | | | 30 MHz to 1 GHz | ±3 dB | ±0.80 dB | | 1 GHz to 26GHz | ±3 dB | ±2.42 dB | | Test Item | Uncertainty | | |---|---|--| | 5 " " 5 | 4.62 dB (30 MHz ~ 1 GHz) | | | Radiation Emission | 3.50 dB (1 GHz ~ 18 GHz) | | | | 4.24 dB (18 GHz ~ 26 GHz) | | | Note: This uncertainty represents an approximately the 95 % confidence le | • | | REPORT NO.: E04A23060231F00102 Page 8 of 39 # **5. EQUIPMENT UNDER TEST** # 5.1. DESCRIPTION OF EUT | EUT Name | | Botslab Outdoor Pan/Tilt Camera Pro | | |------------------|----|--|--| | Model | | W312 | | | Hardware Version | | K6PRO_PVT_V1.0 | | | Software Version | | K6PRO_MP_v1.0.58.1539 | | | Ratings | | ADAPTER:
MODEL: TEKA-TB120100US
INPUT: 100-240V~ 50/60Hz 0.35A Max
OUTPUT: 12.0V 1.0A | | | Davisa Comple | AC | 120V 60Hz | | | Power Supply | DC | 12.0V 1.0A | | | Frequency Band: | 5150 MHz to 5250 MHz (U-NII-1)
5250 MHz to 5350 MHz (U-NII-2A)
5470 MHz to 5725 MHz (U-NII-2C)
5 725 MHz to 5 850 MHz (U-NII-3) | |---------------------------------|--| | Frequency Range: | 5180 MHz to 5240 MHz
5260 MHz to 5320 MHz
5500 MHz to 5700 MHz
5745 MHz to 5 825 MHz | | Support Standards: | IEEE 802.11a/n | | TPC Function: | Not Support | | DFS Operational mode: | Slave without radar Interference detection function | | Type of Modulation: | IEEE 802.11a: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n: OFDM(64QAM, 16QAM, QPSK, BPSK) | | Channel Spacing: | IEEE 802.11a/n-HT20: 20 MHz
IEEE 802.11n-HT40: 40 MHz | | Data Rate: | IEEE 802.11a: Up to 54 Mbps
IEEE 802.11n-HT20: Up to MCS 0
IEEE 802.11n-HT40: Up to MCS 0 | | Maximum conducted output power: | 5180 MHz to 5240 MHz: 11.48dBm
5260 MHz to 5320 MHz: 11.02dBm
5500 MHz to 5700 MHz: 11.41dBm
5745 MHz to 5825 MHz: 11.25dBm | | Antenna Type: | External Antenna | | Antenna Gain: | 4.94dBi | | Normal Test Voltage: | 12 Vdc | | EUT Test software: | CMD | # 5.2. CHANNEL LIST | UNII-1 | | UNII-1 | | UNII-1 | | |-----------------------|--------------------|-----------------------|--------------------|-----------------------|--------------------| | (For Bandwidth=20MHz) | | (For Bandwidth=40MHz) | | (For Bandwidth=80MHz) | | | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | | 36 |
5180 | 38 | 5190 | 42 | 5210 | REPORT NO.: E04A23060231F00102 Page 9 of 39 | 40 | 5200 | 46 | 5230 | | |----|------|----|------|--| | 44 | 5220 | | | | | 48 | 5240 | | | | | UNII-2A | | UNII-2A | | UNII-2A | | | |--------------|-----------------------|---------|-----------------------|---------|-----------------------|--| | (For Bandwid | (For Bandwidth=20MHz) | | (For Bandwidth=40MHz) | | (For Bandwidth=80MHz) | | | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | | | 52 | 5260 | 54 | 5270 | 58 | 5290 | | | 56 | 5280 | 62 | 5310 | | | | | 60 | 5300 | | | | | | | 64 | 5320 | | | | | | | UNII
(For Bandwid | _ | UNII-2C
(For Bandwidth=40MHz) | | | | UNI
(For Bandwi | I-2C
dth=80MHz) | |----------------------|--------------------|----------------------------------|--------------------|---------|--------------------|--------------------|--------------------| | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | | | | 100 | 5500 | 102 | 5510 | 106 | 5530 | | | | 104 | 5520 | 110 | 5550 | 122 | 5610 | | | | 108 | 5540 | 118 | 5590 | 138 | 5690 | | | | 112 | 5560 | 126 | 5630 | | | | | | 116 | 5580 | 134 | 5670 | | | | | | 120 | 5600 | 142 | 5710 | | | | | | 124 | 5620 | | | | | | | | 128 | 5640 | | | | | | | | 132 | 5660 | | | | | | | | 136 | 5680 | | | | | | | | 140 | 5700 | | | | | | | | 144 | 5720 | | | | | | | | UNI | I-3 | UNII-3 | | UNII-3 UNII-3 | | | |--------------|--------------------|-----------------------|--------------------|--|--------------------|------------| | (For Bandwid | th=20MHz) | (For Bandwidth=40MHz) | | (For Bandwidth=40MHz) (For Bandwidth | | dth=80MHz) | | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | | | 149 | 5745 | 151 | 5755 | 155 | 5775 | | | 153 | 5765 | 159 | 5795 | | | | | 157 | 5785 | | | | | | | 161 | 5805 | | | | | | | 165 | 5825 | | | | | | # 5.3. MAXIMUM AVERAGE EIRP # UNII-1 BAND(FCC&ISED) | IEEE Std. 802.11 | Frequency
(MHz) | Maximum Average Conducted Power (dBm) | Max Average EIRP (dBm) | |------------------|--------------------|---------------------------------------|------------------------| | а | | 9.88 | 1 | | n HT20 | 5150 ~ 5250 | 11.19 | 1 | | n HT40 | | 11.48 | 1 | # UNII-2A BAND(FCC&ISED) TRF No.: 04-E001-1A Global Testing , Great Quality. REPORT NO.: E04A23060231F00102 Page 10 of 39 | IEEE Std.
802.11 | Frequency
(MHz) | Maximum Average
Conducted Power
(dBm) | Max Average EIRP (dBm) | |---------------------|--------------------|---|------------------------| | а | | 10.81 | / | | n HT20 | 5250 ~ 5350 | 10.59 | / | | n HT40 | | 11.02 | / | ## UNII-2C BAND(FCC&ISED) | IEEE Std.
802.11 | Frequency
(MHz) | Maximum Average
Conducted Power
(dBm) | Max Average EIRP (dBm) | |---------------------|--------------------|---|------------------------| | а | | 11.41 | 1 | | n HT20 | 5470 ~ 5725 | 10.03 | / | | n HT40 | | 9.47 | 1 | ## **UNII-3 BAND(FCC&ISED)** | IEEE Std.
802.11 | Frequency
(MHz) | Maximum Average
Conducted Power
(dBm) | Max Average EIRP (dBm) | |---------------------|--------------------|---|------------------------| | а | | 11.25 | / | | n HT20 | 5725 ~ 5850 | 9.88 | / | | n HT40 | | 9.67 | / | # 5.4. THE WORSE CASE POWER SETTING PARAMETER | The Worse Case Power Setting Parameter | | | | | |--|-----|--|--|--| | Test Software | CMD | | | | # UNII-1 | Mode | Rate | Channel | Soft set value | |----------|------|------------|----------------| | Wiode | Nate | Gilaililei | ANT 1 | | | | 36 | 51515151 | | 11a | 6M | 40 | 51515151 | | | | 48 | 51515151 | | | MCS0 | 36 | 61616161 | | 11n HT20 | | 40 | 61616161 | | | | 48 | 61616161 | | 11n HT40 | MCS0 | 38 | 51515151 | | | | 46 | 51515151 | REPORT NO.: E04A23060231F00102 Page 11 of 39 # UNII-2A | Mode | Rate | Channel | Soft set value | |-----------|-------|---------|----------------| | Mode | Itale | Charmer | ANT 1 | | | | 52 | 61616161 | | 11a | 6M | 56 | 61616161 | | | | 64 | 51515151 | | | MCS0 | 52 | 61616161 | | 11n HT20 | | 56 | 61616161 | | | | 64 | 51515151 | | 11n HT40 | MCS0 | 54 | 51515151 | | 111111140 | | 62 | 51515151 | # UNII-2C | Mode | Rate | Channel | Soft set value | |----------|------|---------|----------------| | iviode | Rate | Charmer | ANT 1 | | | | 100 | 81818181 | | 11a | 6M | 116 | 61616161 | | | | 140 | 61616161 | | | | 100 | 61616161 | | 11n HT20 | MCS0 | 116 | 51515151 | | | | 140 | 51515151 | | | | 102 | 51515151 | | 11n HT40 | MCS0 | 118 | 51515151 | | | | 134 | 51515151 | # UNII-3 | Mode | Rate | Channel | Soft set value | |----------|--------|---------|----------------| | Wiode | Nate | Charmer | ANT 1 | | | | 149 | 61616161 | | 11a | 6M | 157 | 61616161 | | | | 165 | 61616161 | | 11n HT20 | | 149 | 51515151 | | | MCS0 | 157 | 51515151 | | | | 165 | 51515151 | | 11n HT40 | MCS0 | 151 | 41414141 | | | IVICSU | 159 | 51515151 | REPORT NO.: E04A23060231F00102 Page 12 of 39 ## THE WORSE CASE CONFIGURATIONS The EUT was tested in the following configuration(s): Controlled in test mode using a software application on the EUT supplied by customer. The application was used to enable a continuous transmission and to select the mode, test channels, bandwidth, data rates as required. Test channels referring to section 5.4. Maximum power setting referring to section 5.6. Worst case Data Rates declared by the customer: 802.11a 20 mode: 6 Mbps 802.11n HT20 mode: MCS0 802.11n HT40 mode: MCS0 # 5.5. DESCRIPTION OF AVAILABLE ANTENNAS | Antenna No. | Frequency Band | Antenna Type | Max Antenna Gain (dBi) | |-------------|----------------|------------------|------------------------| | 1 | 5150-5850 | External Antenna | 4.94 | | IEE Std. 802.11 | Transmit and Receive Mode | Description | |-----------------|---------------------------|--| | 802.11a | ⊠1TX, 1RX | ANT 1 can be used as transmitting/receiving antenna. | | 802.11n HT20 | ⊠1TX, 1RX | ANT 1 can be used as transmitting/receiving antenna. | | 802.11n HT40 | ⊠1TX, 1RX | ANT 1 can be used as transmitting/receiving antenna. | #### Note: 1.BT&WLAN 2.4G, BT & WLAN 5G, WLAN 2.4G & WLAN 5G can't transmit simultaneously. (declared by client) #### 5.6. SUPPORT UNITS FOR SYSTEM TEST The EUT has been tested as an independent unit | Equipment | Manufacturer | Model No. | |--------------------------|---------------|-----------| | Botslab Outdoor Pan/Tilt | Botslab, Inc. | W312 | | Camera Pro | | | | PC | Lenovo | T14 | #### 5.7. SETUP DIAGRAM AC Power Line Conducted Emission: REPORT NO.: E04A23060231F00102 Page 13 of 39 ## Conducted: #### Radiated Emissions: REPORT NO.: E04A23060231F00102 Page 14 of 39 # 6. MEASURING EQUIPMENT AND SOFTWARE USED | Test Equipment of Conducted RF | | | | | | |---|---------------------------------------|--------------------------------|--------------------|------------|------------| | Equipment | Manufacturer | Model No. | Serial No. | Last Cal. | Due Date | | Spectrum Analyzer | Rohde &
Schwarz | FSV40 | 102257 | 2022/10/08 | 2023/10/07 | | EXG Analog Signal
Generator | KEYSIGHT | N5173B | MY61253075 | 2022/10/08 | 2023/10/07 | | Vector Signal
Generator | Rohde &
Schwarz | SMM100A | 101899 | 2023/03/16 | 2024/03/15 | | RF Control box | MWRF-test | MW100-RFCB | MW220926GTG | 2022/10/08 | 2023/10/07 | | Wideband Radio
Communication
Tester | Rohde &
Schwarz | CMW270 | 102792 | 2023/03/16 | 2024/03/15 | | Wideband Radio
Communication
Tester | Rohde &
Schwarz | CMW500 | 103235 | 2022/10/08 | 2023/10/07 | | temperature humidity chamber | Espec | SH-241 | SH-241-2014 | 2022/10/08 | 2023/10/07 | | RF Test Software | MWRF-test | MTS8310E
(Ver. V2/0) | N/A | N/A | N/A | | | Test Equipn | nent of Radiated | emissions below 10 | GHz | | | Equipment | Manufacturer | Model No. | Serial No. | Last Cal. | Due Date | | 3m Semi-anechoic
Chamber | ETS | 9m*6m*6m | Q2146 | 2022/08/30 | 2025/08/29 | | EMI Test Receiver | Rohde &
Schwarz | ESCI3 | 101409 | 2022/10/08 | 2023/10/07 | | Pre-Amplifier | HzEMC | HPA-9K0130 | HYPA21001 | 2022/10/29 | 2023/10/28 | | Biconilog Antenna | Schwarzbeck | VULB 9168 | 01315 | 2022/10/10 | 2025/10/09 | | Biconilog Antenna | ETS | 3142E | 00243646 | 2022/03/23 | 2025/03/22 | | Loop Antenna | ETS | 6502 | 243668 | 2022/03/30 | 2025/03/29 | | Test Software | Farad | EZ-EMC
(Ver.FA-03A2
RE) | N/A | N/A | N/A | | | Test Equipm | nent of Radiated | emissions above 10 | GHz | | | Equipment | Manufacturer | Model No. | Serial No. | Last Cal. | Due Date | | 3m Semi-anechoic
Chamber | ETS | 9m*6m*6m | Q2149 | 2022/08/30 | 2025/08/29 | | Spectrum Analyzer | Rohde &
Schwarz | FSV40 | 101413 | 2022/10/08 | 2023/10/07 | | Pre-Amplifier | A-INFO | HPA-1G1850 | HYPA21003 | 2022/10/29 | 2023/10/28 | | Horn antenna | A-INFO | 3117 | 246069 | 2022/03/11 | 2023/03/10 | | Pre-Amplifier | ZKJC | HPA-184057 | HYPA21004 | 2022/10/29 | 2023/10/28 | | Horn antenna | ZKJC | 3116C | 246265 | 2022/03/29 | 2023/03/28 | | Test Software | Farad | EZ-EMC
(Ver.FA-03A2
RE+) | N/A | N/A | N/A | | | Test Equipment of Conducted emissions | | | | | | Equipment | Manufacturer | Model No. | Serial No. | Last Cal. | Due Date | TRF No.: 04-E001-1A Global Testing , Great Quality. REPORT NO.: E04A23060231F00102 Page 15 of 39 | Shielded Room | CHENG YU | 8m*5m*4m | N/A | 2022/10/29 | 2025/10/28 | |-------------------|--------------------|------------------------------------|--------|------------|------------| | EMI Test Receiver | Rohde &
Schwarz | ESR3 | 102647 | 2022/12/03 | 2023/12/02 | | LISN/AMN | Rohde &
Schwarz | ENV216 | 102843 | 2022/10/08 | 2023/10/07 | | NNLK 8129 RC | Schwarzbeck | NNLK 8129 RC | 5046 | 2023/03/30
| 2024/03/29 | | Test Software | Farad | EZ-EMC (Ver.
EMC-con-3A1
1+) | N/A | N/A | N/A | REPORT NO.: E04A23060231F00102 Page 16 of 39 ## 7. ANTENNA PORT TEST RESULTS #### 7.1. 6DB AND 26DB EMISSION BANDWIDTH #### **LIMITS** | CFR 47 FCC Part15, Subpart E | | | | |------------------------------|---|--------------------------|--| | Test Item | Limit | Frequency Range
(MHz) | | | 26 dB Emission Bandwidth | For reporting purposes only. | 5150 ~ 5250 | | | 26 dB Emission Bandwidth | For reporting purposes only. | 5250 ~ 5350 | | | 26 dB Emission Bandwidth | For reporting purposes only. | 5470 ~ 5725 | | | 6 dB Emission Bandwidth | The minimum 6 dB emission bandwidth shall be 500 kHz. | 5725 ~ 5850 | | #### **TEST PROCEDURE** Refer to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.C1. for 26 dB Emission Bandwidth. Connect the EUT to the spectrum analyser and use the following settings: | Center Frequency | The center frequency of the channel under test | |------------------|---| | Detector | Peak | | RBW | For 6 dB Emission Bandwidth: RBW=100 kHz For 26 dB Emission bandwidth: approximately 1 % of the EBW | | VBW | For 6 dB Bandwidth: ≥ 3*RBW For 26 dB Bandwidth: >3*RBW | | Trace | Max hold | | Sweep | Auto couple | a) Use the 99 % power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth. #### Calculation for 26 dB Bandwidth of UNII-2C Straddle Channel: For Example: Fundamental frequency: 5720 MHz 26 dB BW: 20.00 MHz FL: 5710.16 MHz FH: 5730.16 MHz Turning Frequency: 5725 MHz 26 dB Bandwidth of UNII-2C Band Portion = 5725-5710.16=14.84 MHz #### Calculation for 6dB Bandwidth of UNII-3 Straddle Channel: For Example: Fundamental frequency: 5720 MHz 6 dB BW: 16.44 MHz FL: 5711.76 MHz TRF No.: 04-E001-1A Global Testing, Great Quality. b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6/26 dB relative to the maximum level measured in the fundamental emission. REPORT NO.: E04A23060231F00102 Page 17 of 39 FH: 5728.2 MHz Turning Frequency: 5725 MHz 6 dB Bandwidth of UNII-3 band Portion = 5728.2-5725=3.2 MHz ## **TEST ENVIRONMENT** | Temperature | 22 ℃ | Relative Humidity | 51% | |---------------------|-------------|-------------------|-----| | Atmosphere Pressure | 101kPa | | | # **TEST RESULTS** Please refer to section "Test Data" - Appendix A REPORT NO.: E04A23060231F00102 Page 18 of 39 #### 7.2. MAXIMUM CONDUCTED OUTPUT POWER #### **LIMITS** | | CFR 47 FCC Part15, Subpart E | | | |-----------------|---|----------------------------|--| | Test Item | Limit | Frequency Range
(MHz) | | | Conducted | ☐ Outdoor Access Point: 1 W (30 dBm) ☐ Indoor Access Point: 1 W (30 dBm) ☐ Fixed Point-To-Point Access Points: 1 W (30 dBm) ☐ Client Devices: 250 mW (24 dBm) | 5150 ~ 5250 | | | Output
Power | Shall not exceed the lesser of 250 mW (24dBm) or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. | 5250 ~ 5350
5470 ~ 5725 | | | | Shall not exceed 1 Watt (30 dBm). | 5725 ~ 5850 | | #### Note: The above limits are based upon the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. #### TEST PROCEDURE Refer to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.E. # Method SA-1 (trace averaging with the EUT transmitting at full power throughout each sweep): - (i) Set span to encompass the entire emission bandwidth (EBW) (or, alternatively, the entire 99% occupied bandwidth) of the signal. - (ii) Set RBW = 1 MHz. - (iii) Set VBW ≥ 3 MHz. - (iv) Number of points in sweep \geq 2 × span / RBW. (This ensures that bin-to-bin spacing is \leq RBW/2, so that narrowband signals are not lost between frequency bins.) - (v) Sweep time = auto. - (vi) Detector = power averaging (rms), if available. Otherwise, use sample detector mode. - (vii) If transmit duty cycle < 98 %, use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle \geq 98 %, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run." - (viii) Trace average at least 100 traces in power averaging (rms) mode. - (ix) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at 1 MHz intervals extending across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the spectrum. #### Method PM (Measurement using an RF average power meter): - (i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the following conditions are satisfied: - a. The EUT is configured to transmit continuously or to transmit with a constant duty cycle. TRF No.: 04-E001-1A Global Testing, Great Quality. REPORT NO.: E04A23060231F00102 Page 19 of 39 - b. At all times when the EUT is transmitting, it must be transmitting at its maximum power control level. - c. The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five. - (ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in II.B. - (iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter. - (iv) Adjust the measurement in dBm by adding $10 \log (1/x)$ where x is the duty cycle (e.g., $10 \log (1/0.25)$) if the duty cycle is 25 %). #### Method PM-G (Measurement using a gated RF average power meter): Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required. Straddle channel power was measured using spectrum analyzer. #### **TEST ENVIRONMENT** | Temperature | 22 ℃ | Relative Humidity | 51% | |---------------------|-------------|-------------------|-----| | Atmosphere Pressure | 101kPa | | | #### **TEST RESULTS** Please refer to section "Test Data" - Appendix A REPORT NO.: E04A23060231F00102 Page 20 of 39 # 7.3. PEAK POWER SPECTRAL DENSITY #### **LIMITS** | CFR 47 FCC Part15, Subpart E | | | | |------------------------------|--|----------------------------|--| | Test Item | Limit | Frequency Range
(MHz) | | | Power Spectral
Density | ☐ Outdoor Access Point: 17 dBm/MHz ☐ Indoor Access Point: 17 dBm/MHz ☐ Fixed Point-To-Point Access Points: 17 dBm/MHz ☐ Client Devices: 11 dBm/MHz | 5150 ~ 5250 | | | Density | 11 dBm/MHz | 5250 ~ 5350
5470 ~ 5725 | | | | 30 dBm/500kHz | 5725 ~ 5850 | | #### Note: The above limits are based upon the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. #### **TEST PROCEDURE** Refer to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.F. Connect the EUT to the spectrum analyser and use the following settings: For U-NII-1, U-NII-2A and U-NII-2C band: | Center Frequency | The center frequency of the channel under test | |------------------|--| | Detector | RMS | | RBW | 1 MHz | | VBW | ≥3 × RBW | | Span | Encompass the entire emissions bandwidth (EBW) of the signal | | Trace | Max hold | | Sweep time | Auto | #### For U-NII-3: | Center Frequency | The center frequency of the channel under test | |------------------|--| | Detector | RMS | | RBW | 500 kHz | | VBW | ≥3 × RBW | | Span | Encompass the entire emissions bandwidth (EBW) of the signal | | Trace | Max hold | | Sweep time | Auto | Allow trace to fully stabilize and Use the peak search function on the instrument to find the peak of the spectrum and record its value. TRF No.: 04-E001-1A Global Testing, Great Quality. REPORT NO.: E04A23060231F00102 Page 21 of 39 Add 10 log (1/x), where x is the duty cycle, to the peak of the spectrum, the result is the Maximum PSD over 1 MHz / 500 kHz reference bandwidth. ## **TEST ENVIRONMENT** | Temperature | 22 ℃ | Relative Humidity | 51% | |---------------------|-------------|-------------------|-----| | Atmosphere Pressure | 101kPa | | | ## **TEST RESULTS** Please refer to section "Test Data" - Appendix A REPORT NO.: E04A23060231F00102 Page 22 of 39 # 7.4. Frequency Stability #### **LIMITS** The frequency of the carrier signal shall be maintained within band of operation. #### **TEST PROCEDURE** - 1. The EUT was placed inside an
environmental chamber as the temperature in the chamber was varied between 0 $^{\circ}$ C \sim 40 $^{\circ}$ C (declared by customer). - 2. The temperature was incremented by 10 °C intervals and the unit allowed to stabilize at each temperature before each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded. - 3. The primary supply voltage is varied from 85 % to 115 % of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer. Connect the EUT to the spectrum analyser and use the following settings: | Center Frequency | The center frequency of the channel under test | |------------------|--| | Detector | Peak | | RBW | 10 kHz | | VBW | ≥3 × RBW | | Span | Encompass the entire emissions bandwidth (EBW) of the signal | | Trace | Max hold | | Sweep time | Auto | - 4. While maintaining a constant temperature inside the environmental chamber, turn the EUT on and record the operating frequency at startup, and at 2 minutes, 5minutes, and 10 minutes after the EUT is energized. - 5. Allow the trace to stabilize, find the peak value of the power envelope and record the frequency, then calculated the frequency drift. #### **TEST ENVIRONMENT** | | Normal Test Conditions | Extreme Test Conditions | | |---|---|--|--| | Relative Humidity | 20 % - 75 % | 1 | | | Atmospheric Pressure | 100 kPa ∼102 kPa | 1 | | | Temperature | T _N (Normal Temperature): | T _∟ (Low Temperature): 0 °C | | | remperature | 25.1 °C | T _H (High Temperature): 40 °C | | | Cumply Voltage V (Normal Voltage), DC 12V | | V _∟ (Low Voltage): DC 10.2 V | | | Supply Voltage | V _N (Normal Voltage): DC 12V | V _н (High Voltage): DC 13.8 V | | REPORT NO.: E04A23060231F00102 Page 23 of 39 # **TEST ENVIRONMENT** | Temperature | 22 ℃ | Relative Humidity | 51% | |---------------------|-------------|-------------------|-----| | Atmosphere Pressure | 101kPa | | | # **TEST RESULTS** Please refer to section "Test Data" - Appendix A REPORT NO.: E04A23060231F00102 Page 24 of 39 # 7.5. DYNAMIC FREQUENCY SELECTION (SLAVE) #### **LIMITS** #### (1) DFS Detection Thresholds Table 3: DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection | Maximum Transmit Power | Value (See Notes 1, 2, and 3) | |--|-------------------------------| | EIRP ≥ 200 milliwatt | -64 dBm | | EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz | -62 dBm | | EIRP < 200 milliwatt that do not meet the power spectral density requirement | -64 dBm | Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna. Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response. Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01. ## (2) DFS Response Requirements Table 4: DFS Response Requirement Values | Parameter | Value | |-----------------------------------|--| | Non-occupancy period | Minimum 30 minutes | | Channel Availability Check Time | 60 seconds | | Channel Move Time | 10 seconds | | Charmer wove Time | See Note 1. | | | 200 milliseconds + an aggregate of 60 | | Channel Closing Transmission Time | milliseconds over | | Charmer Closing Transmission Time | remaining 10 second period. | | | See Notes 1 and 2. | | U-NII Detection Bandwidth | Minimum 100% of the U-NII 99% transmission | | U-INIT Detection bandwidth | power bandwidth. See Note 3. | Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst. Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required facilitating a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions. Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic. REPORT NO.: E04A23060231F00102 Page 25 of 39 #### <u>APPLICABILITY OF DFS REQUIREMENTS</u> A U-NII network will employ a DFS function to detect signals from radar systems and to avoid cochannel operation with these systems. This applies to the 5250-5350 MHz and/or 5470-5725 MHz bands. Within the context of the operation of the DFS function, a U-NII device will operate in either Master Mode or Client Mode. U-NII devices operating in Client Mode can only operate in a network controlled by a U-NII device operating in Master Mode. Table 1: Applicability of DFS Requirements Prior to Use of a Channel | | Operational Mode | | | | |---------------------------------|------------------|-----------------|---------------------|--| | Requirement | ☐ Master | | ☐ Client With Radar | | | | | Radar Detection | Detection | | | Non-Occupancy Period | Yes | Not required | Yes | | | DFS Detection Threshold | Yes | Not required | Yes | | | Channel Availability Check Time | Yes | Not required | Not required | | | U-NII Detection Bandwidth | Yes | Not required | Yes | | Table 2: Applicability of DFS requirements during normal operation | Table 2. Applicability of bit of requirements during normal operation | | | | | |---|--|-------------------------------------|--|--| | | Operational Mode | | | | | Requirement | Master Device or Client with Radar Detection | ⊠ Client Without Radar
Detection | | | | DFS Detection Threshold | Yes | Not required | | | | Channel Closing Transmission Time | Yes | Yes | | | | Channel Move Time | Yes | Yes | | | | U-NII Detection Bandwidth | Yes | Not required | | | | Additional requirements for devices with multiple bandwidth modes | ☐ Master Device or Client with Radar Detection | ⊠ Client Without Radar
Detection | |---|--|--| | U-NII Detection Bandwidth and
Statistical Performance Check | All BW modes must be tested | Not required | | Channel Move Time and
Channel Closing Transmission Time | Test using widest BW
mode
available | Test using the widest BW mode available for the link | | All other tests | Any single BW mode | Not required | Note: Frequencies selected for statistical performance check should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency. REPORT NO.: E04A23060231F00102 Page 26 of 39 #### PARAMETERS OF RADAR TEST WAVEFORMS This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms. Table 5 Short Pulse Radar Test Waveforms | Radar Type | Pulse Width
(µsec) | PRI
(µsec) | Number of Pulses | Minimum Percentage
of Successful
Detection | Minimum
Number of
Trials | |--------------|-----------------------|---------------|---|--|--------------------------------| | 0 | 1 | 1428 | 18 | See Note 1 | See Note 1 | | | | Test A | $\left[\left(\begin{array}{c}1\end{array}\right)\right]$ | | | | 1 | 1 | Test B | Roundup $ \left\{ \frac{360}{9 \cdot 10^6} \right\} $ $ \left\{ \frac{19 \cdot 10^6}{9 \cdot RI_{\mu sec}} \right\} $ | 60% | 30 | | 2 | 1-5 | 150-230 | 23-29 | 60% | 30 | | 3 | 6-10 | 200-500 | 16-18 | 60% | 30 | | 4 | 11-20 | 200-500 | 12-16 | 60% | 30 | | Aggregate (F | adar Types 1- | 4) | | 80% | 120 | Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests. Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 μsec, with a minimum increment of 1 μsec, excluding PRI values selected in Test A A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B. Test aggregate is average of the percentage of successful detections of short pulse radar types 1-4. ####
TEST ENVIRONMENT | Temperature | 22 ℃ | Relative Humidity | 51% | |---------------------|-------------|-------------------|-----| | Atmosphere Pressure | 101kPa | | | #### **TEST RESULTS** Please refer to section "Test Data" - Appendix A REPORT NO.: E04A23060231F00102 Page 27 of 39 #### 7.6. DUTY CYCLE #### **LIMITS** None; for reporting purposes only. #### **TEST PROCEDURE** Refer to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.B. The zero-span mode on a spectrum analyzer or EMI receiver, if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq EBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in II.B.1.a), and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.) #### **TEST ENVIRONMENT** | Temperature | 22 ℃ | Relative Humidity | 51% | |---------------------|-------------|-------------------|-----| | Atmosphere Pressure | 101kPa | | | #### **TEST RESULTS** Please refer to section "Test Data" - Appendix A REPORT NO.: E04A23060231F00102 Page 28 of 39 # 8. RADIATED TEST RESULTS ## **LIMITS** Refer to CFR 47 FCC §15.205, §15.209 and §15.407 (b). Radiation Disturbance Test Limit for FCC (Class B) (9 kHz ~ 1 GHz) | Emissions radiated outside of the specified frequency bands above 30 MHz | | | | |--|----------------------|----------------------|---------| | Frequency Range | Field Strength Limit | Field Strength Limit | | | (MHz) | (uV/m) at 3 m | (dBuV/m) | at 3 m | | | | Quasi-l | Peak | | 30 - 88 | 100 | 40 | | | 88 - 216 | 150 | 43.5 | | | 216 - 960 | 200 | 46 | | | Above 960 | 500 | 54 | | | Above 1000 | 500 | Peak Average 74 54 | Average | | Above 1000 | 300 | | 54 | | FCC Emissions radiated outside of the specified frequency bands below 30 MHz | | | | |---|--------------|-----|--| | Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters) | | | | | 0.009-0.490 | 2400/F(kHz) | 300 | | | 0.490-1.705 | 24000/F(kHz) | 30 | | | 1.705-30.0 | 30 | 30 | | FCC Restricted bands of operation refer to FCC §15.205 (a): | MHz | MHz | MHz | GHz | |--------------------------|---------------------|---------------|------------------| | 0.090-0.110 | 16.42-16.423 | 399.9-410 | 4.5-5.15 | | ¹ 0.495-0.505 | 16.69475-16.69525 | 608-614 | 5.35-5.46 | | 2.1735-2.1905 | 16.80425-16.80475 | 960-1240 | 7.25-7.75 | | 4.125-4.128 | 25.5-25.67 | 1300-1427 | 8.025-8.5 | | 4.17725-4.17775 | 37.5-38.25 | 1435-1626.5 | 9.0-9.2 | | 4.20725-4.20775 | 73-74.6 | 1645.5-1646.5 | 9.3-9.5 | | 6.215-6.218 | 74.8-75.2 | 1660-1710 | 10.6-12.7 | | 6.26775-6.26825 | 108-121.94 | 1718.8-1722.2 | 13.25-13.4 | | 6.31175-6.31225 | 123-138 | 2200-2300 | 14.47-14.5 | | 8.291-8.294 | 149.9-150.05 | 2310-2390 | 15.35-16.2 | | 8.362-8.366 | 156.52475-156.52525 | 2483.5-2500 | 17.7-21.4 | | 8.37625-8.38675 | 156.7-156.9 | 2690-2900 | 22.01-23.12 | | 8.41425-8.41475 | 162.0125-167.17 | 3260-3267 | 23.6-24.0 | | 12.29-12.293 | 167.72-173.2 | 3332-3339 | 31.2-31.8 | | 12.51975-12.52025 | 240-285 | 3345.8-3358 | 36.43-36.5 | | 12.57675-12.57725 | 322-335.4 | 3600-4400 | (²) | | 13.36-13.41 | | | | Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. TRF No.: 04-E001-1A Global Testing, Great Quality. REPORT NO.: E04A23060231F00102 Page 29 of 39 ²Above 38.6c Limits of unwanted/undesirable emission out of the restricted bands refer to CFR 47 FCC §15.407 (b) and ISED RSS-247 6.2. | LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1GHz) | | | | |--|-----------------------|-----------------------|--| | Frequency Range | FIDD Limit | Field Strength Limit | | | (MHz) | EIRP Limit | (dBuV/m) at 3 m | | | 5150~5250 MHz | | | | | 5250~5350 MHz | PK: -27 (dBm/MHz) | PK:68.2(dBµV/m) | | | 5470~5725 MHz | | | | | | PK: -27 (dBm/MHz) *1 | PK: 68.2(dBµV/m) *1 | | | 5725~5850 MHz | PK: 10 (dBm/MHz) *2 | PK: 105.2 (dBµV/m) *2 | | | | PK: 15.6 (dBm/MHz) *3 | PK: 110.8(dBµV/m) *3 | | | | PK: 27 (dBm/MHz) *4 | PK: 122.2 (dBµV/m) *4 | | #### Note: #### **TEST PROCEDURE** Below 30 MHz The setting of the spectrum analyser | RBW | 200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz) | |-------|--| | VBW | 200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz) | | Sweep | Auto | - 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4. - 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement. - 3. The EUT was placed on a turntable with 80 cm above ground. - 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower. - 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector. - 6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported. TRF No.: 04-E001-1A Global Testing, Great Quality. ^{*1} beyond 75 MHz or more above of the band edge. ^{*2} below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above. ^{*3} below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above. ^{*4} from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. REPORT NO.: E04A23060231F00102 Page 30 of 39 7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788. 8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit. Below 1 GHz and above 30 MHz The setting of the spectrum analyser | RBW | 120 kHz | |----------|----------| | VBW | 300 kHz | | Sweep | Auto | | Detector | Peak/QP | | Trace | Max hold | - 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5. - 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - 3. The EUT was placed on a turntable with 80 cm above ground. - 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower. - 5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. #### Above 1 GHz The setting of the spectrum analyser | RBW | 1 MHz | |----------|--------------------------------| | 1\/R\/\/ | PEAK: 3 MHz
AVG: see note 6 | | Sweep | Auto | | Detector | Peak | | Trace | Max hold | - 1. The testing follows the guidelines in KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.G.3 ~ II.G.6. - 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - 3. The EUT was placed on a turntable with 1.5 m above ground. - 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower. - 5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once
corrected, must comply with the limit specified in Section 15.209. - 6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE. X axis, Y axis, Z axis positions: Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report. REPORT NO.: E04A23060231F00102 Page 32 of 39 #### **TEST SETUP** REPORT NO.: E04A23060231F00102 Page 33 of 39 # **TEST ENVIRONMENT** | Temperature | 22 ℃ | Relative Humidity | 51% | |---------------------|-------------|-------------------|-----| | Atmosphere Pressure | 101kPa | | | # **TEST RESULTS** Please refer to section "Test Data" - Appendix A REPORT NO.: E04A23060231F00102 Page 34 of 39 # 9. ANTENNA REQUIREMENT #### **REQUIREMENT** | Standard | Requirement | |---------------------|--| | FCC CRF Part 15.203 | An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna Sunshine or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded. | For intentional device, according to FCC 47 CFR Section 15.203, RSS-Gen issue 5 6.8. an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.407 (a), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. #### **DESCRIPTION** **Pass** REPORT NO.: E04A23060231F00102 Page 35 of 39 ## 10. AC POWER LINE CONDUCTED EMISSION #### **LIMITS** Please refer to CFR 47 FCC §15.207 (a) and ISED RSS-Gen Clause 8.8 | FREQUENCY (MHz) | Quasi-peak | Average | |-----------------|------------|-----------| | 0.15 -0.5 | 66 - 56 * | 56 - 46 * | | 0.50 -5.0 | 56.00 | 46.00 | | 5.0 -30.0 | 60.00 | 50.00 | #### **TEST PROCEDURE** Refer to ANSI C63.10-2013 clause 6.2. The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz. The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application. #### **TEST SETUP** TRF No.: 04-E001-1A Global Testing, Great Quality. REPORT NO.: E04A23060231F00102 Page 36 of 39 # **TEST ENVIRONMENT** | Temperature | 26 ℃ | Relative Humidity | 54% | |---------------------|-------------|-------------------|-----| | Atmosphere Pressure | 101kPa | | | # **TEST RESULTS** Please refer to section "Test Data" - Appendix A REPORT NO.: E04A23060231F00102 Page 37 of 39 # 11. TEST DATA Please refer to section "Test Data" - Appendix A REPORT NO.: E04A23060231F00102 Page 38 of 39 # **APPENDIX: PHOTOGRAPHS OF TEST CONFIGURATION** Please refer to test report: E04A23060231F00101 REPORT NO.: E04A23060231F00102 Page 39 of 39 # **APPENDIX: PHOTOGRAPHS OF THE EUT** Please refer to test report: E04A23060231F00101 # **END OF REPORT**