

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

Shenzhen, Guangdong, China 518057			
Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594 Email: ee.shenzhen@sgs.com	Report No.: SZEM180600485004 Page: 1 of 47		
I	FCC TEST REPORT		
Application No:	SZEM180600485RG		
Applicant:	Fibocom Wireless Inc.		
Address of Applicant	/F, Tower A, Technology Building II, 1057 Nanhai Avenue, Shenzhen, China ibocom Wireless Inc. /F, Tower A, Technology Building II, 1057 Nanhai Avenue, Shenzhen, China		
Manufacturer:	Fibocom Wireless Inc.		
Address of Manufacturer	5/F, Tower A, Technology Building II, 1057 Nanhai Avenue, Shenzhen, China		
Factory:	Shenzhen Eternity Technology Co.,Ltd		
Address of Factory	1F,2F,4F Building A2, Yingzhan Industrial Zone, Longtian Community, Longtian Road, Pingshan District, Shenzhen, Guangdong Province, P.R. China		
Product Name:	LTE Module		
Model No.(EUT):	SC806-AM		
Trade Mark:	Fibocom		
FCC ID:	ZMOSC806AM		
Standards:	47 CFR Part 15, Subpart C		
Test MethodKDB 558074 D01 DTS Meas Guidance v04ANSI C63.10 (2013)			
Date of Receipt:	2018-07-08		
Date of Test:	2018-07-10 to 2018-07-29		
Date of Issue:	2018-08-13		
Test Result:	PASS *		

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Derele yang

Derek Yang Wireless Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

Report No.: SZEM180600485004 Page: 2 of 47

1 Version

Revision Record								
Version Chapter Date Modifier Remark								
01		2018-08-13		Original				

Authorized for issue by:		
Tested By	Mike Mu	2018-08-13
	(Mike Hu) /Project Engineer	Date
Checked By	David Chen	2018-08-13
	(David Chen) /Reviewer	Date

Report No.: SZEM180600485004 Page: 3 of 47

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	a Requirement 47 CFR Part 15, Subpart C Section 15.203/15.247 (c)		PASS
AC Power Line Conducted Emission	Conducted 47 CFR Part 15, Subpart C Section 15.207		PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10 2013	PASS
6dB Occupied Bandwidth			PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
RF Conducted Spurious Emissions			PASS
Radiated Spurious Emissions			PASS
Restricted bands around fundamental frequency (Radiated Emission)	fundamental frequency 47 CFR Part 15, Subpart C Section		PASS

Report No.: SZEM180600485004 Page: 4 of 47

3 Contents

1	VE	RSION	2
2	TE	ST SUMMARY	
3		DNTENTS	
4		ENERAL INFORMATION	
4	.1	CLIENT INFORMATION	5
4	.2	GENERAL DESCRIPTION OF EUT	5
4	.3	TEST ENVIRONMENT	7
4	.4	DESCRIPTION OF SUPPORT UNITS	7
4	.5	TEST LOCATION	7
4	.6	TEST FACILITY	
4	.7	DEVIATION FROM STANDARDS	
4	.8	ABNORMALITIES FROM STANDARD CONDITIONS	
4	.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
4	.10	MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	
5.	.11	EQUIPMENT LIST	9
5	TE	ST RESULTS AND MEASUREMENT DATA	
5	.1	ANTENNA REQUIREMENT	
5.	.2	CONDUCTED EMISSIONS	
5.	.3	CONDUCTED PEAK OUTPUT POWER	
5.	.4	6DB OCCUPY BANDWIDTH	19
5	.5	POWER SPECTRAL DENSITY	
5	.6	BAND-EDGE FOR RF CONDUCTED EMISSIONS	
5.	.7	SPURIOUS RF CONDUCTED EMISSIONS	
5.	.8	RADIATED SPURIOUS EMISSION	
5.	.9	RADIATED EMISSION BELOW 1GHZ	
5	.10	TRANSMITTER EMISSION ABOVE 1GHZ	
5.	.11	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	
6	PH	IOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	

Report No.: SZEM180600485004 Page: 5 of 47

4 General Information

4.1 Client Information

Applicant:	Fibocom Wireless Inc.
Address of Applicant:	5/F, Tower A, Technology Building II, 1057 Nanhai Avenue, Shenzhen, China
Manufacturer:	Fibocom Wireless Inc.
Address of Manufacturer:	5/F, Tower A, Technology Building II, 1057 Nanhai Avenue, Shenzhen, China
Factory:	Shenzhen Eternity Technology Co.,Ltd
Address of Factory:	1F,2F,4F Building A2, Yingzhan Industrial Zone, Longtian Community, Longtian Road, Pingshan District, Shenzhen, Guangdong Province, P.R. China

4.2 General Description of EUT

Product Name:	LTE Module
Model No.:	SC806-AM
Trade Mark:	Fibocom
Hardware Version:	V1.0.1
Software Version:	19060.1000.00.12.20.06
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	V4.1
Modulation Type:	GFSK
Number of Channel:	40
Sample Type:	LTE Module
Antenna Type:	Monopole Antenna
Antenna Gain:	2.5dBi
Power Supply	DC3.85V

Report No.: SZEM180600485004 Page: 6 of 47

	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

Report No.: SZEM180600485004 Page: 7 of 47

4.3 Test Environment

Operating Environment			
Temperature: 25.0 °C			
Humidity:	50 % RH		
Atmospheric Pressure:	101.32 KPa		

4.4 Description of Support Units

The EUT has been tested independent unit.

4.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594 No tests were sub-contracted.

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC

Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

• VCCI

The 3m Fully-anechoic chamber for above 1GHz, 10m Semi-anechoic chamber for below 1GHz, Shielded Room for Mains Port Conducted Interference Measurement and Telecommunication Port Conducted Interference Measurement of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-20026, R-14188, C-12383 and T-11153 respectively.

• FCC – Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

4.7 Deviation from Standards

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-

Report No.: SZEM180600485004 Page: 8 of 47

None.

4.8 Abnormalities from Standard Conditions

None.

4.9 Other Information Requested by the Customer

None.

4.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Total RF power, conducted	\pm 0.75dB	
2	RF power density, conducted	±2.84dB	
3	Spurious emissions, conducted	±0.75dB	
		\pm 4.5dB (30MHz-1GHz)	
4	Radiated Spurious emission test	\pm 4.8dB (1GHz-25GHz)	
5	Conduct emission test	\pm 3.12 dB(9KHz- 30MHz)	
6	Temperature test	±1°C	
7	Humidity test	$\pm 3\%$	
8	DC and low frequency voltages	±0.5%	

Report No.: SZEM180600485004 Page: 9 of 47

5.11 Equipment List

	Conducted Emission						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Duedate (yyyy-mm-dd)	
1	Shielding Room	ZhongYu Electron	GB-88	SEM001-06	2018/3/10	2019/3/9	
2	LISN	Rohde & Schwarz	ENV216	SEM007-01	2017/10/9	2018/10/9	
3	LISN	ETS-LINDGREN	3816/2	SEM007-02	2018/2/14	2019/2/13	
4	8 Line ISN	Fischer Custom Communications Inc.	FCC- TLISN-T8- 02	EMC0120	2017/9/28	2018/9/28	
5	4 Line ISN	Fischer Custom Communications Inc.	FCC- TLISN-T4- 02	EMC0121	2017/9/28	2018/9/28	
6	2 Line ISN	Fischer Custom Communications Inc.	FCC- TLISN-T2- 02	EMC0122	2017/9/28	2018/9/28	
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEM004-02	2018/2/14	2019/2/13	
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2017/10/9	2018/10/9	

	RF connected test									
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Duedate (yyyy-mm-dd)				
1	DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017/10/9	2018/10/9				
2	Signal Analyzer	Rohde &Schwarz	FSV	W005-02	2018/3/13	2019/3/12				
3	Signal Generator	Rohde &Schwarz	SML03	SEM006-02	2018/2/14	2019/2/13				
4	Power Meter	Rohde &Schwarz	NRVS	SEM014-02	2017/10/9	2018/10/9				
5	Power Sensor	Agilent Technologies	U2021XA	SEM009-01	2017/10/9	2018/10/9				

Report No.: SZEM180600485004 Page: 10 of 47

			RE in Chamb	er		
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2018/3/10	2019/3/9
2	EMI Test Receiver	Agilent Technologies	N9038A	SEM004-05	2017/10/9	2018/10/9
3	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2017/11/1	2020/11/1
4	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEM003-11	2015/10/17	2018/10/17
5	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEM003-12	2017/11/24	2020/11/24
6	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2018/2/14	2019/2/13
7	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2017/10/9	2018/10/9
9	Loop Antenna	Beijing Daze	ZN30401	SEM003-09	2018/3/10	2019/3/9

	RE in Chamber									
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)				
1	10m Semi-Anechoic Chamber	SAEMC	FSAC1018	SEM001-03	2018/3/10	2019/3/9				
2	EMI Test Receiver (9k-7GHz)	Rohde & Schwarz	ESR	SEM004-03	2018/2/14	2019/2/13				
3	Trilog-Broadband Antenna(30M-1GHz)	Schwarzbeck	VULB9168	SEM003-18	2016/6/29	2019/6/29				
4	Pre-amplifier	Sonoma Instrument Co	310N	SEM005-03	2018/4/28	2019/4/28				
5	.Loop Antenna	ETS-Lindgren	6502	SEM003-08	2018/7/14	2021/7/13				

Report No.: SZEM180600485004 Page: 11 of 47

		F	RE in Chamb	per		
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2018/3/10	2019/3/9
2	EXA Spectrum Analyzer	Agilent Technologies Inc	N9010A	SEM004-09	2018/6/18	2019/6/17
3	BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-02	2017/11/15	2020/11/15
4	Amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2017/10/9	2018/10/9
5	Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2018/5/14	2020/5/13
6	Horn Antenna (18-26GHz)	ETS-Lindgren	3160	SEM003-12	2017/11/24	2020/11/24
7	HornAntenna (26GHz-40GHz)	A.H.Systems, inc.	SAS-573	SEM003-13	2017/10/17	2020/10/16
8	Low Noise Amplifier	Black Diamond Series	BDLNA- 0118- 352810	SEM005-05	2017/10/9	2018/10/9
9	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A

Report No.: SZEM180600485004 Page: 12 of 47

5 Test results and Measurement Data

5.1 Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

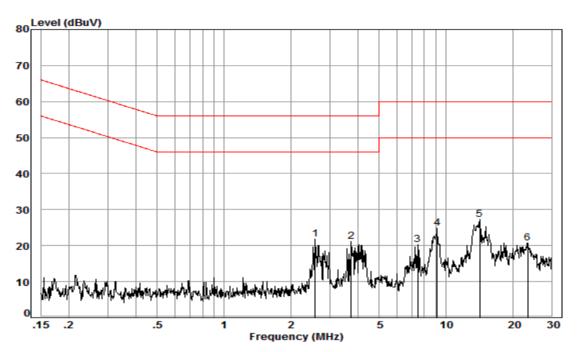
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2.5dBi.

Report No.: SZEM180600485004 Page: 13 of 47

Test Requirement:	47 CFR Part 15C Section 15	5.207	
Test Method:	ANSI C63.10: 2013		
Test Frequency Range:	150kHz to 30MHz		
		Limit (dBuV)	
	Frequency range (MHz)	Quasi-peak	Average
Lingite	0.15-0.5	66 to 56*	56 to 46*
Limit:	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarith	nm of the frequency.	
Test Procedure:	 2) The EUT was connected Stabilization Network) w power cables of all othe which was bonded to the for the unit being measu multiple power cables to exceeded. 3) The tabletop EUT was p reference plane. And for horizontal ground referer 4) The test was performed EUT shall be 0.4 m from reference plane was bon was placed 0.8 m from ground reference plane for This distance was betwe units of the EUT and ass 5) In order to find the maxin 	with a vertical ground reference in the vertical ground reference ided to the horizontal ground the boundary of the unit unit for LISNs mounted on top of en the closest points of the LI pociated equipment was at lear mum emission, the relative po- nust be changed according to	a LISN 1 (Line Impedance 5Ω linear impedance. The nected to a second LISN 2, he same way as the LISN 1 t strip was used to connect rating of the LISN was not able 0.8m above the ground the EUT was placed on the ence plane. The rear of the e plane. The vertical ground reference plane. The LISN 1 nder test and bonded to a the ground reference plane. ISN 1 and the EUT. All other st 0.8 m from the LISN 2.
Test Setup:	Functional State S	Test Received and the second s	
Test Mode:	Charge +Transmitting mode		
Instrumente Lleadu	Refer to section 5.10 for deta		
Instruments Used:			

5.2 Conducted Emissions

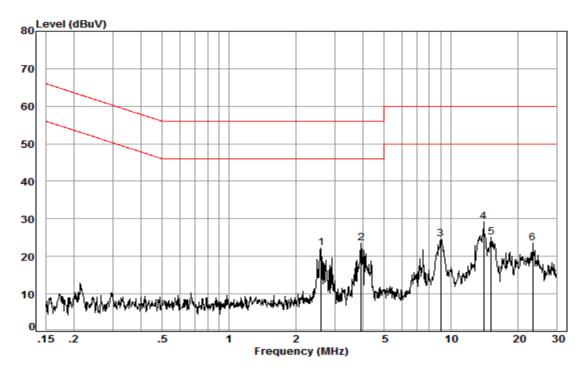

Report No.: SZEM180600485004 Page: 14 of 47

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:


Site : Shielding Room Condition: Line Job No. : 04850RG Test mode: j

	Freq		LISN Factor					Remark	
	MHz	dB	dB	dBuV	dBuV	dBuV	dB		
1	2.58	0.17	9.53	12.01	21.71	46.00	-24.29	Peak	
2	3.74	0.19	9.54	11.40	21.13	46.00	-24.87	Peak	
3	7.45	0.18	9.60	10.56	20.34	50.00	-29.66	Peak	
4	9.16	0.19	9.62	15.00	24.81	50.00	-25.19	Peak	
5	14.21	0.24	9.70	17.31	27.25	50.00	-22.75	Peak	
6	23.39	0.27	9.84	10.66	20.77	50.00	-29.23	Peak	

Report No.: SZEM180600485004 Page: 15 of 47

Neutral line:

Site :	Shielding	Room
Condition:	Neutral	
Job No. :	04850RG	
Test mode:	j	

		Cable	LISN	Read		Limit	0ver	
	Freq	Loss	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	2.61	0.17	9.64	12.32	22.13	46.00	-23.87	Peak
2	3.94	0.19	9.67	13.78	23.64	46.00	-22.36	Peak
3	9.01	0.19	9.76	14.72	24.67	50.00	-25.33	Peak
4	14.06	0.24	9.91	18.98	29.13	50.00	-20.87	Peak
5	15.23	0.25	9.94	14.87	25.06	50.00	-24.94	Peak
6	23.39	0.27	10.17	13.01	23.45	50.00	-26.55	Peak

Notes:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

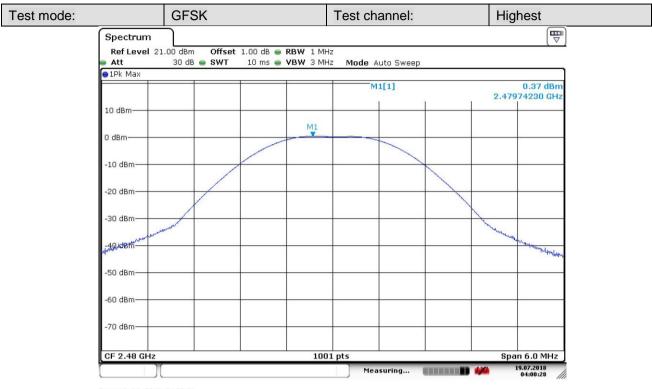
Report No.: SZEM180600485004 Page: 16 of 47

5.3 Conducted Peak Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)
Test Method:	ANSI C63.10 :2013 Section 11.9.1.1
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Limit:	30dBm
Test Mode:	Transmitting with GFSK modulation.
Instruments Used:	Refer to section 5.10 for details.
Test Results:	Pass

Measurement Data

	GFSK mod	e	
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
Lowest	0.69	30.00	Pass
Middle	1.76	30.00	Pass
Highest	0.37	30.00	Pass


Report No.: SZEM180600485004 Page: 17 of 47

Test plot as fo	110w5.							
Test mode:		GFSK		Test ch	nannel:		Lowest	
	Spectrum	<u></u>						
	Ref Level 21	L.00 dBm Offset	: 1.00 dB 😑 RBW	1 MHz			(>)	
	Att 1Pk Max	30 dB 🕳 SWT	10 ms 🖷 VBW	3 MHz Mode /	Auto Sweep			
				N	11[1]		0.69 dBm	
	10 10-				1 1	2	2.40224580 GHz	
	10 dBm			M1				
	0 dBm			M1				
	-10 dBm	/	<					
	-20 dBm							
		X						
	-30 dBm					~		
	-49 dBtt						all charges they wanted	
							0.00	
	-50 dBm							
	-60 dBm		-					
	-70 dBm							
	CF 2.402 GHz			1001 pts			Span 6.0 MHz	
					asuring 🚺		19.07.2018 03:57:18	
	Date: 19.JUL.2018	03:57:18						
		0.001						
Test mode:		GFSK		Test ch	annel:		Middle	
Test mode:	Spectrum	GFSK		Test ch	annel:		Middle	
Test mode:	Ref Level 21	L.00 dBm Offset	: 1.00 dB • RBW	1 MHz				
Test mode:	Same server and server and		: 1.00 dB • RBW 10 ms • VBW	1 MHz 3 MHz Mode /	Auto Sweep			
Test mode:	Ref Level 21 Att	L.00 dBm Offset		1 MHz 3 MHz Mode /				
Test mode:	Ref Level 21 Att	L.00 dBm Offset		1 MHz 3 MHz Mode /	Auto Sweep			
Test mode:	Ref Level 21 Att 1Pk Max	L.00 dBm Offset		1 MHz 3 MHz Mode /	Auto Sweep			
Test mode:	Ref Level 21 Att 1Pk Max	L.00 dBm Offset		1 MHz 3 MHz Mode /	Auto Sweep			
Test mode:	Ref Level 21 Att 1Pk Max	L.00 dBm Offset		1 MHz 3 MHz Mode /	Auto Sweep			
Test mode:	Ref Level 21 Att IPk Max 10 dBm 0 dBm -10 dBm	L.00 dBm Offset		1 MHz 3 MHz Mode /	Auto Sweep			
Test mode:	Ref Level 21 Att IPk Max 0 dBm 0 dBm	L.00 dBm Offset		1 MHz 3 MHz Mode /	Auto Sweep			
Test mode:	Ref Level 21 Att IPk Max 10 dBm 0 dBm -10 dBm	L.00 dBm Offset		1 MHz 3 MHz Mode /	Auto Sweep			
Test mode:	Ref Level 21 Att IPk Max 10 dBm -10 dBm -20 dBm -30 dBm	L.00 dBm Offset		1 MHz 3 MHz Mode /	Auto Sweep		1.76 dBm 2.44022780 GHz	
Test mode:	Ref Level 21 Att IPk Max 10 dBm -10 dBm -20 dBm	L.00 dBm Offset		1 MHz 3 MHz Mode /	Auto Sweep			
Test mode:	Ref Level 21 Att IPk Max 10 dBm -10 dBm -20 dBm -30 dBm	L.00 dBm Offset		1 MHz 3 MHz Mode /	Auto Sweep		1.76 dBm 2.44022780 GHz	
Test mode:	Ref Level 21 Att IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	L.00 dBm Offset		1 MHz 3 MHz Mode /	Auto Sweep		1.76 dBm 2.44022780 GHz	
Test mode:	Ref Level 21 Att IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm	L.00 dBm Offset		1 MHz 3 MHz Mode /	Auto Sweep		1.76 dBm 2.44022780 GHz	
Test mode:	Ref Level 21 Att IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	L.00 dBm Offset		1 MHz 3 MHz Mode /	Auto Sweep		1.76 dBm 2.44022780 GHz	
Test mode:	Ref Level 21 Att IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	L.00 dBm Offset		1 MHz 3 MHz Mode /	Auto Sweep		1.76 dBm 2.44022780 GHz	
Test mode:	Ref Level 21 Att IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	L.00 dBm Offset		1 MHz 3 MHz Mode /	Auto Sweep		1.76 dBm 2.44022780 GHz	

Date: 19.JUL.2018 03:59:45

Report No.: SZEM180600485004 Page: 18 of 47

Date: 19.JUL.2018 04:00:28

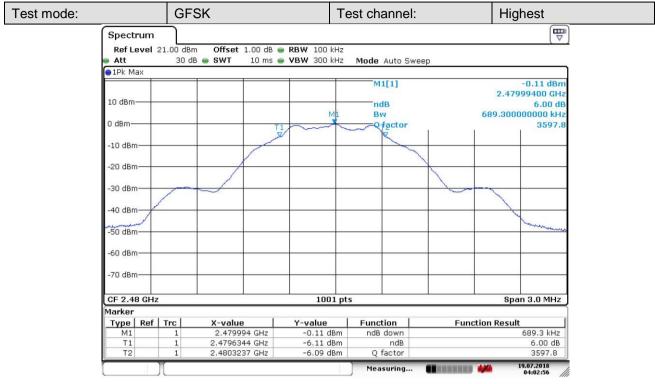
Report No.: SZEM180600485004 Page: 19 of 47

5.4 6dB Occupy Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Test Method:	ANSI C63.10: 2013 Section 11.8 Option 2
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Limit:	≥ 500 kHz
Test Mode:	Transmitting with GFSK modulation.
Instruments Used:	Refer to section 5.10 for details.
Test Results:	Pass

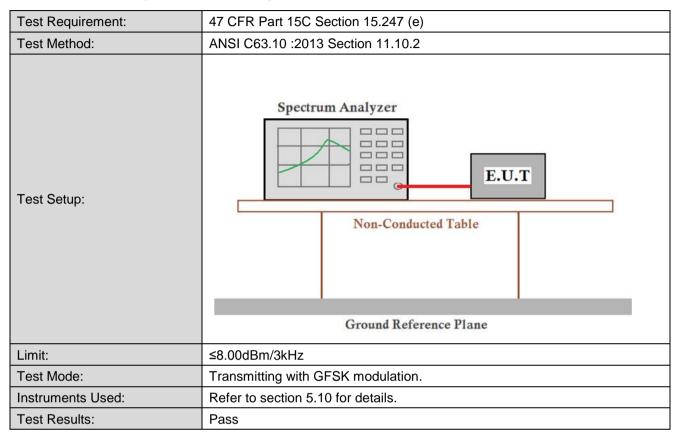
Measurement Data

	GFSK mode		
Test channel	6dB Occupy Bandwidth (kHz)	Limit (kHz)	Result
Lowest	686.3	≥500	Pass
Middle	677.3	≥500	Pass
Highest	689.3	≥500	Pass


Report No.: SZEM180600485004 Page: 20 of 47

Date: 19.JUL.2018 04:03:37

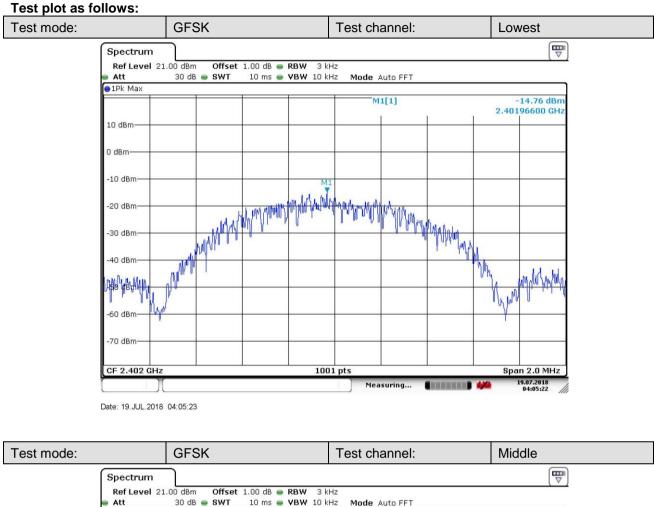
Report No.: SZEM180600485004 Page: 21 of 47

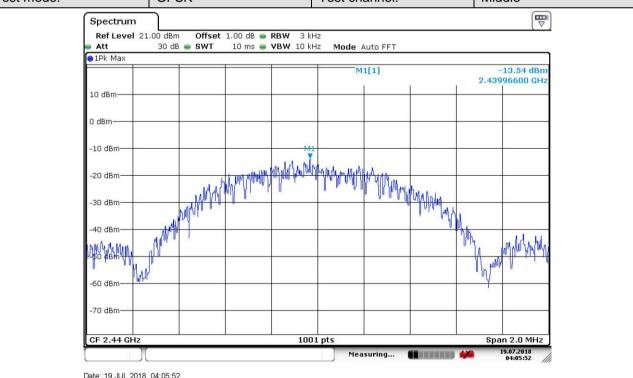


Date: 19.JUL.2018 04:02:57

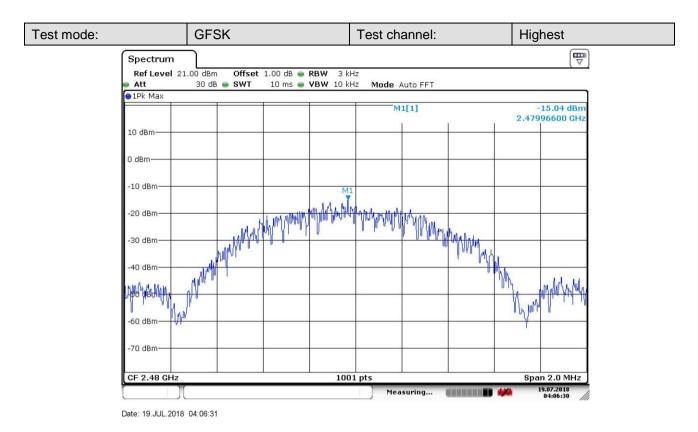
Report No.: SZEM180600485004 Page: 22 of 47

5.5 Power Spectral Density

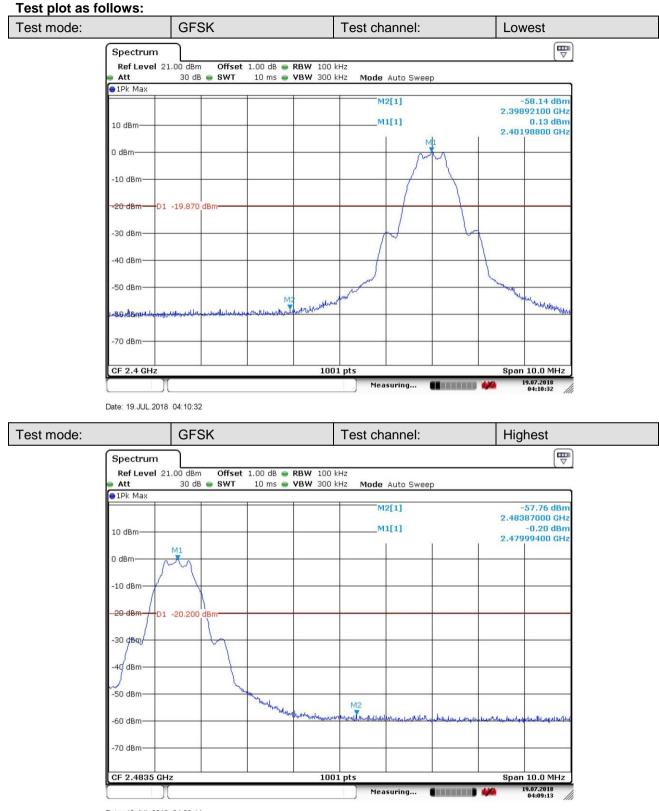



Measurement Data

	GFSK mode		
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Lowest	-14.76	≤8.00	Pass
Middle	-13.54	≤8.00	Pass
Highest	-15.04	≤8.00	Pass


Report No.: SZEM180600485004 Page: 23 of 47

Report No.: SZEM180600485004 Page: 24 of 47

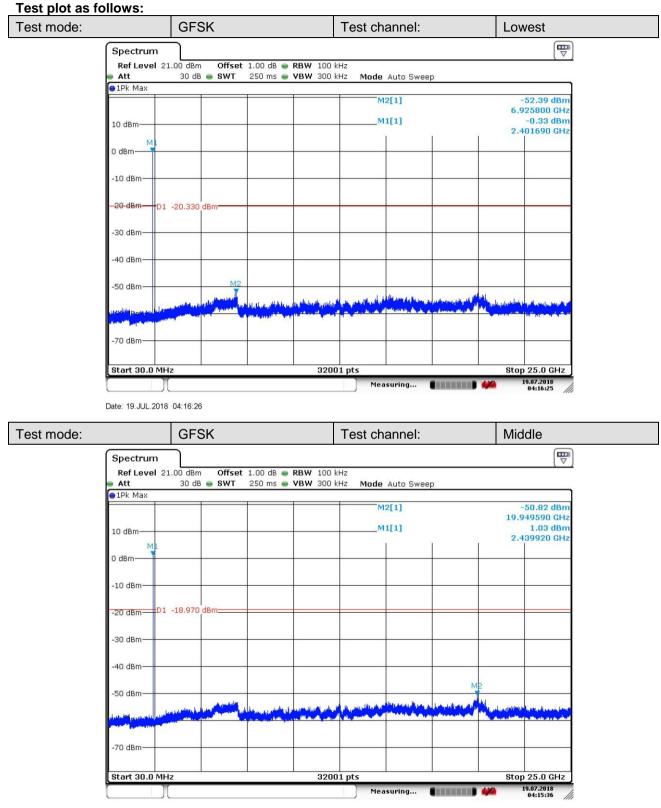

Report No.: SZEM180600485004 Page: 25 of 47

5.6 Band-edge for RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)			
Test Method:	ANSI C63.10: 2013 Section 11.13			
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table			
	Ground Reference Plane			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test Mode:	Transmitting with GFSK modulation.			
Instruments Used:	Refer to section 5.10 for details.			
Test Results:	Pass			

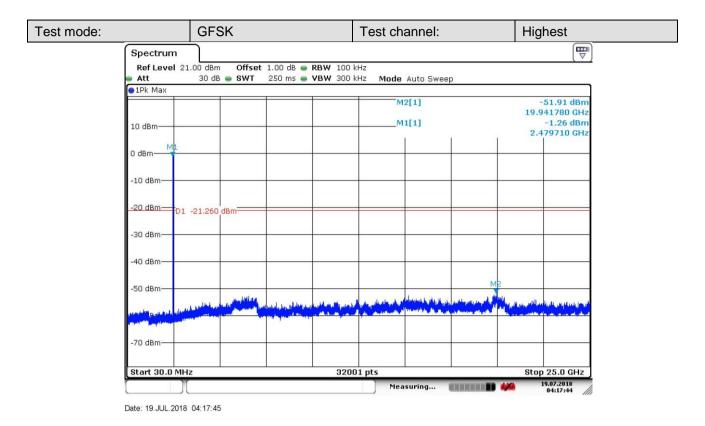
Report No.: SZEM180600485004 Page: 26 of 47

Date: 19.JUL.2018 04:09:14


Report No.: SZEM180600485004 Page: 27 of 47

5.7 Spurious RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10: 2013 Section 11.11
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Mode:	Transmitting with GFSK modulation.
Instruments Used:	Refer to section 5.10 for details.
Test Results:	Pass

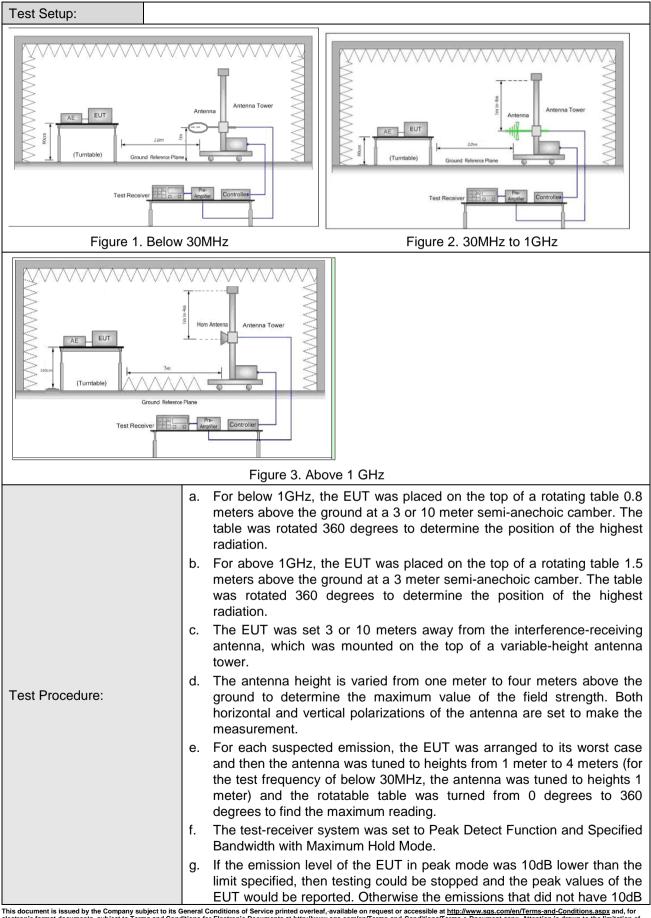

Report No.: SZEM180600485004 Page: 28 of 47

Date: 19.JUL.2018 04:15:36

Report No.: SZEM180600485004 Page: 29 of 47

Remark:

Scan from 9kHz to 25GHz, the disturbance between 9KHz to 30MHz and 18GHz to 25GHz was very low, and the above harmonics were the highest point could be found when testing, The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.


Report No.: SZEM180600485004 Page: 30 of 47

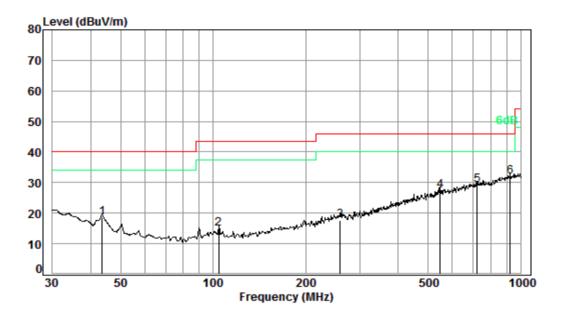
5.8 Radiated Spurious Emission

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205							
Test Method:	ANSI C63.10 :2013 Section 11.12							
Test Site:	Measurement Distance: 3m or 10m (Semi-Anechoic Chamber)							
	Frequency		Detector	RBW	VBW		Remark	
	0.009MHz-0.090MH	z	Peak	10kHz	30kHz		Peak	
	0.009MHz-0.090MH	z	Average	10kHz	30kHz		Average	
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	30kHz		Quasi-peak	
Receiver Setup:	0.110MHz-0.490MH	z	Peak	10kHz	30kHz		Peak	
Receiver Setup.	0.110MHz-0.490MH	z	Average	10kHz	30kHz		Average	
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz		Quasi-peak	
	30MHz-1GHz		Quasi-peak	100 kHz	300kHz		Quasi-peak	
	Above 1GHz		Peak	1MHz	3MHz		Peak	
			Peak	1MHz	10Hz		Average	
	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	(Measurement distance (m)	
	0.009MHz-0.490MHz	2400/F(kHz)		-	-		300	
	0.490MHz-1.705MHz	24	4000/F(kHz)	-	-		30	
	1.705MHz-30MHz		30	-	-		30	
	30MHz-88MHz		100	40.0	Quasi-pe	eak	3	
Limit:	88MHz-216MHz		150	43.5	Quasi-peak		3	
	216MHz-960MHz		200	46.0	Quasi-peak		3	
	960MHz-1GHz		500	54.0	Quasi-pe	eak	3	
	Above 1GHz		500	54.0	Average	9	3	
	Note: 15.35(b), U emissions is 20dB above to the equipment under radiated by the device.	ve th	ie maximum pe	ermitted ave	erage emis	sion	limit applicable	

Report No.: SZEM180600485004 Page: 31 of 47

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Document is at http://www.sgs.com/en/Terms-and-Conditions at a the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document is a valued that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document is cancer exercising all their rights and obligations under the transaction document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) are retained for 30 days only.

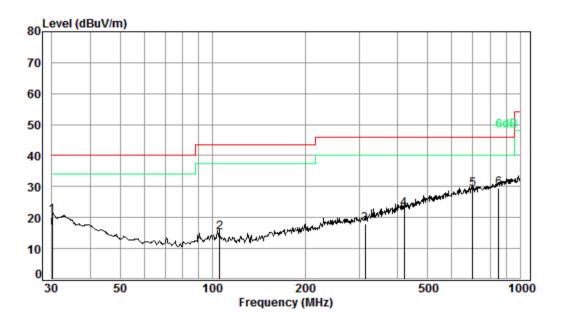
Report No.: SZEM180600485004 Page: 32 of 47


	margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.h. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)		
	i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.		
	j. Repeat above procedures until all frequencies measured was complete.		
Exploratory Test Made:	Transmitting with GFSK modulation.		
Exploratory Test Mode:	Charge + Transmitting mode.		
	Transmitting with GFSK modulation.		
Final Test Mode:	Pretest the EUT at Charge + Transmitting mode,		
T mai rest wode.	For below 1GHz part, through pre-scan, the worst case is the lowest channel.Only the worst case is recorded in the report.		
Instruments Used:	Refer to section 5.10 for details.		
Test Results:	Pass		

Report No.: SZEM180600485004 Page: 33 of 47

5.9 Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Charge + Transmitting	Vertical

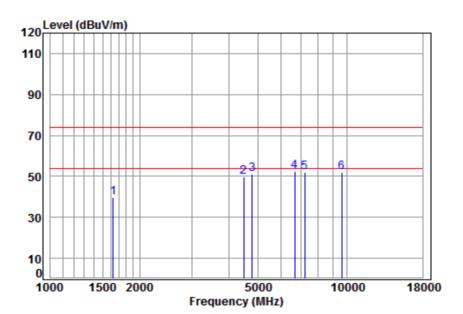

Condition: 3m VERTICAL Job No. : 04850RG Test mode: e

	Freq			Preamp Factor				Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
3 4 5	43.51 104.17 259.23 547.10 721.73 925.76	1.21 1.72 2.65 2.97	13.80 19.09 25.59 28.04	27.42 27.32 26.73 27.78 27.75 26.91	27.28 23.66 27.06 26.05	14.97 17.74 27.52 29.31	43.50 46.00 46.00 46.00	-28.53 -28.26 -18.48 -16.69

Report No.: SZEM180600485004 Page: 34 of 47

Test mode:	Charge + Transmitting	Horizontal
------------	-----------------------	------------


```
Condition: 3m HORIZONTAL
Job No. : 04850RG
Test mode: e
```

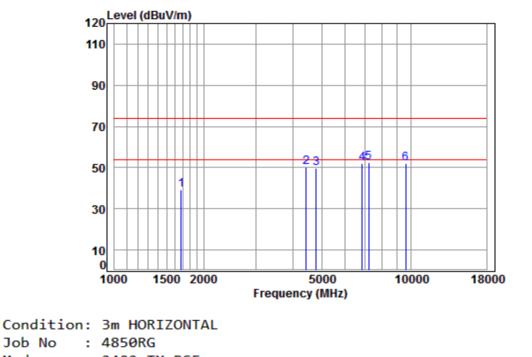

	Freq			Preamp Factor				Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	30.11	0.60	22.44	27.45	25.18	20.77	40.00	-19.23
2	105.27	1.22	13.75	27.32	27.54	15.19	43.50	-28.31
3	313.28	1.94	20.02	26.72	22.85	18.09	46.00	-27.91
4	420.58	2.29	22.89	27.28	24.89	22.79	46.00	-23.21
5	701.76	2.91	27.91	27.78	26.27	29.31	46.00	-16.69
6 pp	851.04	3.41	29.18	27.33	24.20	29.46	46.00	-16.54

Report No.: SZEM180600485004 Page: 35 of 47

5.10 **Transmitter Emission above 1GHz**

	Test mode:	GFSK	Test channel:	Lowest	Remark:	Peak	Vertical
--	------------	------	---------------	--------	---------	------	----------

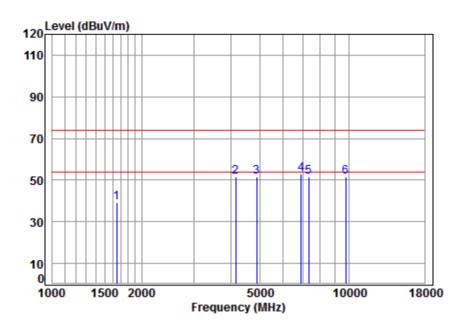
Condition:	3m VERTICAL
Job No :	4850RG
Mode :	2402 TX RSE


nouc		2102 17 1	
Note	:	BLE	
		Cable	An

		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq			Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1629.825	5.31	26.38	38.03	46.22	39.88	74.00	-34.12	peak
2	4482.150	7.54	33.60	38.26	47.08	49.96	74.00	-24.04	peak
3	4804.000	7.89	34.16	38.41	47.47	51.11	74.00	-22.89	peak
4 pp	6659.763	11.08	35.56	37.62	43.22	52.24	74.00	-21.76	peak
5	7206.000	10.08	36.42	37.10	42.47	51.87	74.00	-22.13	peak
6	9608.000	10.75	37.52	35.09	38.64	51.82	74.00	-22.18	peak
3 4 pp 5	4804.000 6659.763 7206.000	7.89 11.08 10.08	34.16 35.56 36.42	38.41 37.62 37.10	47.47 43.22 42.47	51.11 52.24 51.87	74.00 74.00 74.00)	-22.89 -21.76 -22.13

Report No.: SZEM180600485004 Page: 36 of 47

Test mode: GFSK Test channel: Lowest Remark: Peak Horizontal
--

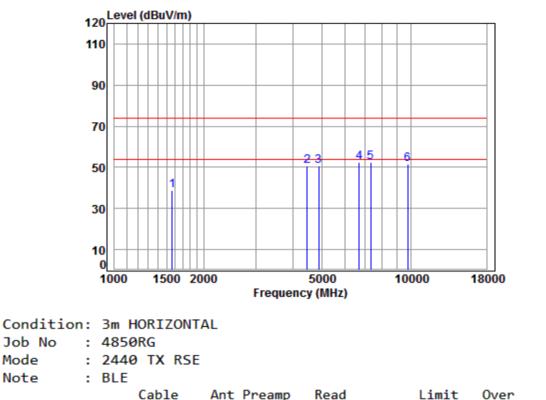


Mode	: 240	2 TX R	SE						
Note	: BLE								
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1682.477	5.25	26.60	38.02	45.58	39.41	74.00	-34.59	peak
2	4430.628	7.48	33.60	38.23	47.15	50.00	74.00	-24.00	peak
3	4804.000	7.89	34.16	38.41	46.12	49.76	74.00	-24.24	peak
4	6855.063	10.53	36.10	37.44	42.95	52.14	74.00	-21.86	peak
5 pp	7206.000	10.08	36.42	37.10	43.27	52.67	74.00	-21.33	peak
6	9608.000	10.75	37.52	35.09	38.79	51.97	74.00	-22.03	peak

Report No.: SZEM180600485004 Page: 37 of 47

Test mode: GFSK Test channel: Middle Remark: Peak V	Vertical
---	----------

Job No	tion: 3m 5 : 4850 : 2440 : BLE	ØRG							
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1648.778	5.29	26.46	38.03	45.63	39.35	74.00	-34.65	peak
2	4157.664	7.17	33.60	38.09	48.78	51.46	74.00	-22.54	peak
3	4880.000	7.97	34.29	38.45	47.88	51.69	74.00	-22.31	peak
4 pp	6894.806	10.42	36.21	37.40	43.52	52.75	74.00	-21.25	peak
5	7320.000	10.05	36.37	37.00	42.11	51.53	74.00	-22.47	peak
6	9760.000	10.82	37.55	35.02	38.25	51.60	74.00	-22.40	peak

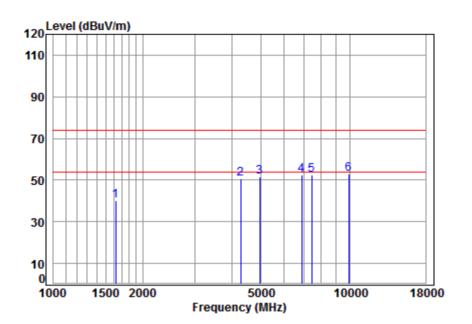


Mode

SGS-CSTC Standards Technical Services Co., Ltd. **Shenzhen Branch**

Report No.: SZEM180600485004 Page: 38 of 47

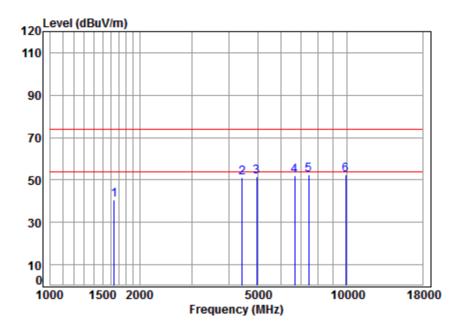
Test mode: GFSK Test channel: Middle Remark: Peak	Horizontal
---	------------



	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1565.191	5.39	26.10	38.04	45.11	38.56	74.00	-35.44	peak
2	4469.214	7.53	33.60	38.25	47.63	50.51	74.00	-23.49	peak
3	4880.000	7.97	34.29	38.45	46.68	50.49	74.00	-23.51	peak
4 pp	6698.373	10.97	35.67	37.59	43.54	52.59	74.00	-21.41	peak
5	7320.000	10.05	36.37	37.00	42.87	52.29	74.00	-21.71	peak
6	9760.000	10.82	37.55	35.02	38.34	51.69	74.00	-22.31	peak

Report No.: SZEM180600485004 Page: 39 of 47

Test mode: GFSK Test channel: Highest Remark: Peak Vertical



Condi Job No Mode Note									
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
-									
1	1620.431	5.32	26.34	38.03	46.62	40.25	74.00	-33.75	peak
2	4291.977	7.33	33.60	38.16	47.90	50.67	74.00	-23.33	peak
3	4960.000	8.05	34.43	38.48	47.65	51.65	74.00	-22.35	peak
4	6874.906	10.47	36.16	37.42	43.17	52.38	74.00	-21.62	peak
5	7440.000	10.02	36.32	36.89	43.23	52.68	74.00	-21.32	peak
6 pp	9920.000	10.90	37.58	34.94	39.18	52.72	74.00	-21.28	peak

Report No.: SZEM180600485004 Page: 40 of 47

rest mode. Fight rest channel. Fightest fremark. Field fremark	Test mode:	GFSK	Test channel:	Highest	Remark:	Peak	Horizontal
--	------------	------	---------------	---------	---------	------	------------

Job No	tion: 3m 5 : 4850 : 2480 : BLE	ØRG Ø TX R							
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1639.274	5.30	26.42	38.03	46.94	40.63	74.00	-33.37	peak
2	4443.453	7.50	33.60	38.24	48.34	51.20	74.00	-22.80	peak
3	4960.000	8.05	34.43	38.48	47.68	51.68	74.00	-22.32	peak
4	6679.040	11.02	35.61	37.60	43.17	52.20	74.00	-21.80	peak
5	7440.000	10.02	36.32	36.89	42.91	52.36	74.00	-21.64	peak
6 pp	9920.000	10.90	37.58	34.94	39.07	52.61	74.00	-21.39	peak

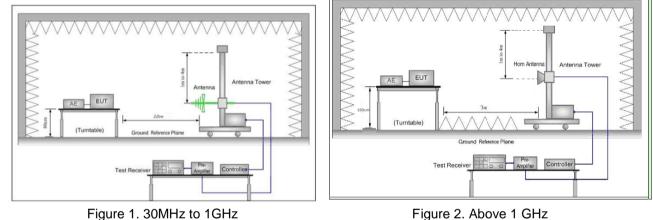
Report No.: SZEM180600485004 Page: 41 of 47

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

- 2) Scan from 9kHz to 25GHz, the disturbance between 9KHz to 30MHz and 18GHz to 25GHz was very low, and the above harmonics were the highest point could be found when testing, The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.


Report No.: SZEM180600485004 Page: 42 of 47

5.11 Restricted bands around fundamental frequency

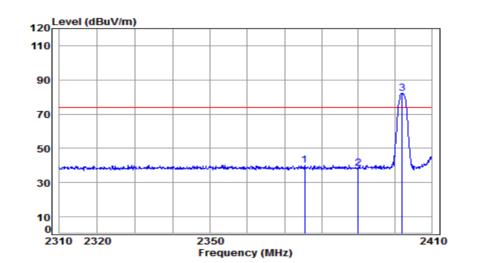
Test Requirement:	47 CFR Part 15C Section 1	5.209 and 15.205					
Test Method:	ANSI C63.10: 2013 Section	ANSI C63.10: 2013 Section 11.12					
Test Site:	Measurement Distance: 3m	Measurement Distance: 3m (Semi-Anechoic Chamber)					
	Frequency	Limit (dBuV/m @3m)	Remark				
	30MHz-88MHz	40.0	Quasi-peak Value				
	88MHz-216MHz	43.5	Quasi-peak Value				
Limit:	216MHz-960MHz	46.0	Quasi-peak Value				
	960MHz-1GHz	54.0	Quasi-peak Value				
	Alterna 4011-	54.0	Average Value				
	Above 1GHz	74.0	Peak Value				
Test Setup:							

Test Setup:

Test Procedure:

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
 - f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
 - g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
 - h. Test the EUT in the lowest channel, the Highest channel
 - i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

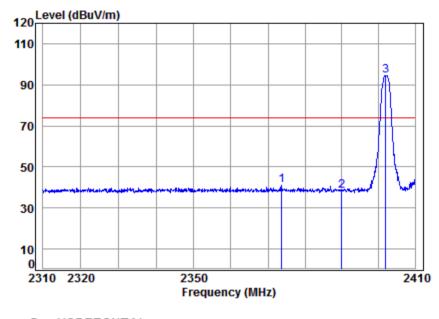


Report No.: SZEM180600485004 Page: 43 of 47

	j. Repeat above procedures until all frequencies measured was complete.
Evaloratory Teat Made	Transmitting with GFSK modulation.
Exploratory Test Mode:	Charge + Transmitting mode.
	Transmitting with GFSK modulation.
Final Test Mode:	Pretest the EUT at Charge + Transmitting mode.
	Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details.
Test Results:	Pass

Test plot as follows:

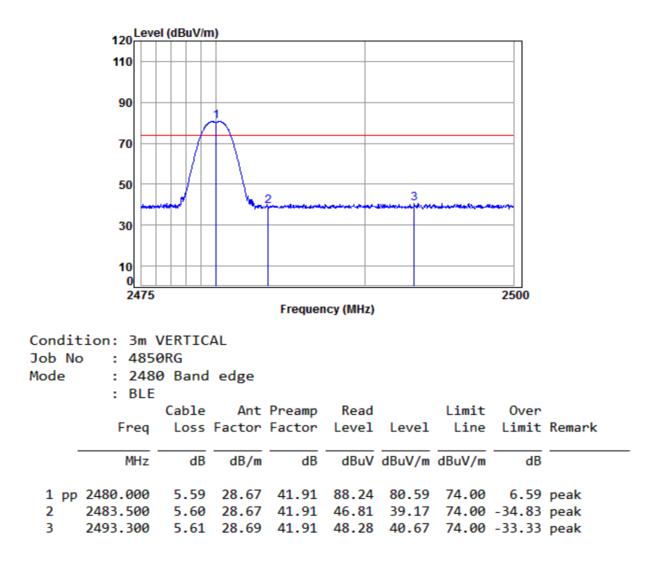
Worse case mode: GFSK Test channel	el: Lowest	Remark:	Peak	Vertical
------------------------------------	------------	---------	------	----------



Condit	tion: 3m \	VERTIC	AL						
Job No	b : 4850	ØRG							
Mode	: 2402	2 Band	edge						
	: BLE								
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
									-
1	2375.423	5.46	28.49	41.87	48.17	40.25	74.00	-33.75	peak
2	2390.000	5.47	28.52	41.87	46.40	38.52	74.00	-35.48	peak
3 рр	2402.000	5.49	28.54	41.88	89.80	81.95	74.00	7.95	peak

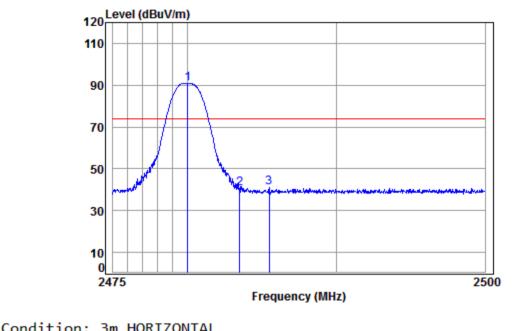
Report No.: SZEM180600485004 Page: 44 of 47

Worse case mode:	GFSK	Test channel:	Lowest	Remark:	Peak	Horizontal
------------------	------	---------------	--------	---------	------	------------



Job No	ion: 3m H 5 : 4850 : 2402 : BLE	ØRG							
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
-									
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2373.712	5.45	28.49	41.87	48.98	41.05	74.00	-32.95	peak
2	2390.000	5.47	28.52	41.87	46.09	38.21	74.00	-35.79	peak
3 рр	2402.000	5.49	28.54	41.88	102.32	94.47	74.00	20.47	peak
									-

Report No.: SZEM180600485004 Page: 45 of 47


Worse case mode: GFSK Te	est channel: Highest	Remark:	Peak	Vertical
--------------------------	----------------------	---------	------	----------

Report No.: SZEM180600485004 Page: 46 of 47

Worse case mode: GFSK	Test channel:	Highest	Remark:	Peak	Horizontal
-----------------------	---------------	---------	---------	------	------------

Job No) : 485		NTAL						
Mode	: 248	0 Band	edge						
	: BLE								
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
-									
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
						-			
1 pp	MHz 2480.000			dB 41.91		-			peak
1 pp 2		5.59	28.67		98.62	90.97	74.00	16.97	•
	2480.000	5.59	28.67	41.91	98.62 48.32	90.97 40.68	74.00 74.00	16.97 -33.32	peak

Report No.: SZEM180600485004 Page: 47 of 47

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

6 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1806004850RG.

The End