

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr

Report Number: F690501-RF-RTL005232

Page:

1 of 28

TEST REPORT

of

FCC Part 15 Subpart C §15.247

FCC ID: 2BG62-PABLOXF40

Equipment Under Test : Drone

Model Name : PabloX F40

Variant Model Name(s) : -

Applicant : PABLO AIR Co., Ltd.

Manufacturer : PABLO AIR Co., Ltd.

Date of Receipt : 2024.06.14

Date of Test(s) : 2024.06.18 ~ 2024.07.04

Date of Issue : 2024.07.04

In the configuration tested, the EUT complied with the standards specified above. This test report does not assure KOLAS accreditation.

- 1) The results of this test report are effective only to the items tested.
- 2) The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received.
- 3) This test report cannot be reproduced, except in full, without prior written permission of the Company.
- 4) The data marked \times in this report was provided by the customer and may affect the validity of the test results. We are responsible for all the information of this test report except for the data(\times) provided by the customer

Tested by:

Es

Demian Kim

Technical Manager:

Jinhyoung Cho

SGS Korea Co., Ltd. Gunpo Laboratory

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr

Report Number: F690501-RF-RTL005232 Page: 2 of 28

INDEX

Table of contents

1. General Information	3
2. Transmitter Radiated Spurious Emissions	9
3. Maximum Peak Conducted Output Power	25
4. Antenna Requirement	28

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr

Report Number: F690501-RF-RTL005232 Page: 3 of 28

1. General Information

1.1. Testing Laboratory

SGS Korea Co., Ltd. (Gunpo Laboratory)

10-2, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807

- Designation number: KR0150

All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.

Phone No. : +82 31 688 0901 Fax No. : +82 31 688 0921

1.2. Details of Applicant

Applicant : PABLO AIR Co., Ltd.

Address : 5F, 82, Venture-ro, Yeonsu-gu, Incheon, Republic of Korea, 22013

Contact Person : Yoon, Jun-han Phone No. : +82 70 5222 6968

1.3. Details of Manufacturer

Company : PABLO AIR Co., Ltd.

Address : 5F, 82, Venture-ro, Yeonsu-gu, Incheon, Republic of Korea, 22013

1.4. Description of EUT

Kind of Product	Drone
Model Name	PabloX F40
Approved Module	FCC ID: XPYANNAB4
Variant Model Names	-
Serial Number	001
Power Supply	DC 14.8 V
Frequency Range	2 402 Mb ~ 2 480 Mb (Bluetooth Low Energy)
Modulation Technique	GFSK
Number of Channels	40 channels (Bluetooth Low Energy)
Antenna Type	Wire Antenna
Antenna Gain*	3.50 dB i
H/W Version	4.0.1
S/W Version	1.0.1
FVIN	N/A

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr

Report Number: F690501-RF-RTL005232 Page: 4 of 28

1.5. Test Equipment List

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Interval	Cal. Due
Signal Generator	R&S	SMA100B	106887	Oct. 06, 2023	Annual	Oct. 06, 2024
Spectrum Analyzer	R&S	FSW8	101659	May 28, 2024	Annual	May 28, 2025
Spectrum Analyzer	Agilent	N9020A	MY53421758	Sep. 01, 2023	Annual	Sep. 01, 2024
Attenuator	AEROFLEX / INMET	40AH2W-6	3	Mar. 18, 2024	Annual	Mar. 18, 2025
High Pass Filter	Wainwright Instrument GmbH	WHKX3.0/18G-10SS	21	Jun. 07, 2024	Annual	Jun. 07, 2025
High Pass Filter	Wainwright Instrument GmbH	WHNX7.5/26.5G-6SS	15	Jun. 07, 2024	Annual	Jun. 07, 2025
Low Pass Filter	Mini-Circuits	NLP-1200+	V 8979400903-1	May 17, 2024	Annual	May 17, 2025
Power Sensor	R&S	NRP-Z81	100669	May 17, 2024	Annual	May 17, 2025
DC Power Supply	R&S	HMP2020	022802107	Oct. 31, 2023	Annual	Oct. 31, 2024
Preamplifier	H.P.	8447F	2944A03909	Aug. 04, 2023	Annual	Aug. 04, 2024
Signal Conditioning Unit	R&S	SCU-18F	101058	Dec. 07, 2023	Annual	Dec. 07, 2024
Pre Amplifier	MITEQ Inc.	JS44-18004000-35-8P	1546891	Oct. 06, 2023	Annual	Oct. 06, 2024
Loop Antenna	Schwarzbeck Mess- Elektronik	FMZB 1519	1519-039	Aug. 21, 2023	Biennial	Aug. 21, 2025
Bilog Antenna	Schwarzbeck Mess- Elektronik	VULB 9163	9163-396	Apr. 02, 2024	Biennial	Apr. 02, 2026
Horn Antenna	R&S	HF906	100326	Feb. 19, 2024	Annual	Feb. 19, 2025
Horn Antenna	Schwarzbeck Mess- Elektronik	BBHA 9170	BBHA9170223	Oct. 10, 2023	Annual	Oct. 10, 2024
EMI Test Receiver	R&S	ESU26	100109	Jan. 16, 2024	Annual	Jan. 16, 2025
Turn Table	Innco systems GmbH	DS 1200 S	N/A	N.C.R.	N/A	N.C.R.
Controller	Innco systems GmbH	CONTROLLER CO3000- 4P	CO3000/963/383 30516/L	N.C.R.	N/A	N.C.R.
Antenna Mast	Innco systems GmbH	MA4640-XP-ET	MA4640/536/383 30516/L	N.C.R.	N/A	N.C.R.
Anechoic Chamber	SY Corporation	L × W × H (9.6 m × 6.4 m × 6.6 m)	N/A	N.C.R.	N/A	N.C.R.
Coaxial Cable	SENSORVIEW	NMST-13A26-NMST-5 m	TPC2402190004	Apr. 03, 2024	Semi- Annual	Oct. 03, 2024
Coaxial Cable	SENSORVIEW	NMST-13A26-NMST-10 m	TPC2402190001	Apr. 03, 2024	Semi- Annual	Oct. 03, 2024
Coaxial Cable	RFONE	PL360P-292M292M-1.5M- A	20200324002	Apr. 12, 2024	Semi- Annual	Oct. 12, 2024

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr

Report Number: F690501-RF-RTL005232 Page: 5 of 28

1.6. Summary of Test Results

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 15 Subpart C						
Section in FCC	Section in FCC Test Item(s)					
15.205(a) 15.209 15.247(d)	Transmitter Radiated Spurious Emissions and Conducted Spurious Emission	Complied ¹⁾				
15.247(a)(2)	6 dB Bandwidth	Complied ¹⁾				
15.247(b)(3)	Maximum Peak Conducted Output Power	Complied				
15.247(e)	Power Spectral Density	Complied ¹⁾				
15.207	AC Power Line Conducted Emission	N/A ¹⁾				

Note;

- 1) The EUT uses the approved module. Other test items were complied with module test report.
- Module FCC ID: XPYANNAB4
- Test Laboratory: Attestaion of Global Compliance (Shenzhen) Co., Ltd
- Test report number: AGC00174211202FE02
- 2) The AC power line test was not performed because the EUT use battery power for operation and which do not operate from the AC power lines.

1.7. Test Procedure(s)

The measurement procedures described in the American National Standard of Procedure for Compliance Testing of unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 558074 D01 15.247 Meas Guidance v05r02 were used in the measurement of the DUT.

1.8. Sample Calculation

Where relevant, the following sample calculation is provided:

1.8.1. Conducted Test

Offset value (dB) = Attenuator (dB) + Cable loss (dB)

1.8.2. Radiation Test

Field strength level ($dB\mu V/m$) = Measured level ($dB\mu V$) + Antenna factor (dB/m) + Cable loss (dB) - Amplifier gain (dB) + Duty factor (dB)

1.9. Information of software for test

- Using the software of nRF Connect for Desktop 3.10.0 to test for the BLE.

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr

Report Number: F690501-RF-RTL005232 Page: 6 of 28

1.10. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Unce	rtainty
Maximum Peak Conducted Output Power	0.3	4 dB
Dedicted Engineers O.W. to 20 MI	Н	3.60 dB
Radiated Emission, 9 klb to 30 Mb	V	3.60 dB
Dedicted Essission haloud Ol	Н	4.60 dB
Radiated Emission, below 1 Hz	V	4.90 dB
Dedicted Facinies above 4 (VI	Н	3.90 dB
Radiated Emission, above 1 @b	V	3.80 dB

All measurement uncertainty values are shown with a coverage factor of k=2 to indicate a 95 % level of confidence.

1.11. Test Report Revision

Revision	Report number	Date of Issue	Description		
0	F690501-RF-RTL005232	2024.07.04	Initial		

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr

Report Number: F690501-RF-RTL005232 Page: 7 of 28

1.12. Worst-Case Configuration and Test Mode (Bluetooth 5.1)

Modulation	Mode	Frequency (∰z)	Packet length (Byte)	RF Output Power (dBm)
	PHY 1M	2 440	37	6.67
05014	FIII IIVI	2 440	255	<u>6.72</u>
GFSK	PHY 2M	PHY 2M 2 440	37	6.71
			255	<u>6.72</u>

Remark;

The EUT supported PHY 1M, PHY 2M.

All modes were investigated.

PHY 1M and PHY 2M are tested with 255 bytes as worst condition.

Radiated emission above 1 @ was performed with the EUT set to transmit Low/Middle/High Channels as worst-case scenario.

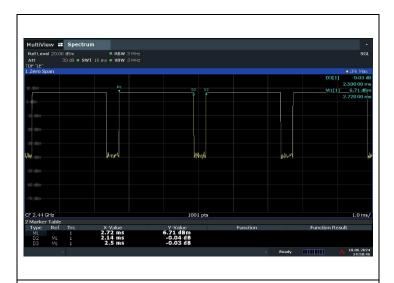
4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr

Report Number: F690501-RF-RTL005232 Page: 8 of 28

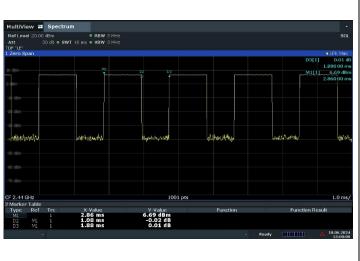
1.13. Duty Cycle of EUT

Regarding to KDB 558074 D01 15.247 Meas Guidance v05r02, 6, the maximum duty cycles of all modes were investigated and set the spectrum analyzer as below;

Set RBW ≥ OBW if possible; otherwise, set RBW to the largest available value. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100.


Test Mode PHY 1M		PHY 2M
Duty Cycle (%)	85.60	57.45
Correction Factor (dB)	0.68	2.41

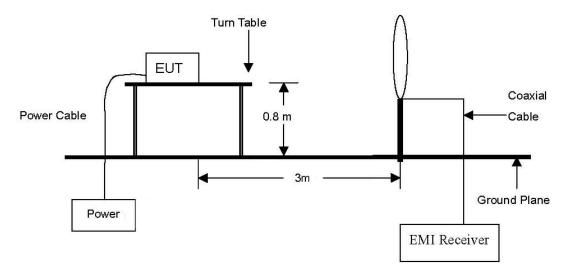
Remark;


- 1. Duty Cycle (%) = (Tx on time / Tx on + off time) x 100
- 2. Correction Factor (dB) = 10 log (1 / Duty Cycle)

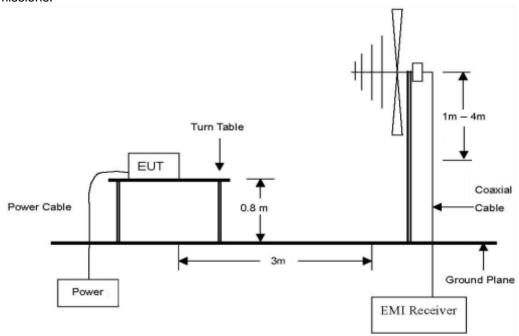
- Test plots

PHY 1M

PHY 2M


4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr

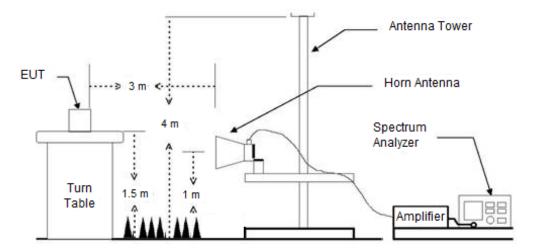
Report Number: F690501-RF-RTL005232 Page: 9 of 28


2. Transmitter Radiated Spurious Emissions

2.1. Test Setup

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kllz to 30 kllz emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 \pm to 1 \pm Emissions.



4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr

Report Number: F690501-RF-RTL005232 Page: 10 of 28

The diagram below shows the test setup that is utilized to make the measurements for emission. The spurious emissions were investigated from 1 \mbox{GHz} to the 10th harmonic of the highest fundamental frequency or 40 \mbox{GHz} , whichever is lower.

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr

Report Number: F690501-RF-RTL005232 Page: 11 of 28

2.2. Limit

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emission which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

According to §15.209(a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (雕)	Field Strength $(\mu\!\!N/\!$	Measurement Distance (Meters)
0.009-0.490	2 400/F(klb)	300
0.490-1.705	24 000/F(kllz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 Mb, 76-88 Mb, 174-216 Mb or 470-806 Mb. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr

Report Number: F690501-RF-RTL005232 Page: 12 of 28

2.3. Test Procedures

Radiated emissions from the EUT were measured according to the dictates in section 11.11 & 11.12 of ANSI C63.10-2013.

2.3.1. Test Procedures for emission below 30 №

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- 3. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum Hold Mode.

2.3.2. Test Procedures for emission from above 30 Mb

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site below 1 @ and 1.5 meters above the ground at a 3 meter anechoic chamber test site above 1 @ The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 %, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 %, the EUT was set 3 meter away from the interference-receiving antenna.
- 3. The antenna is a bi-log antenna, a horn antenna and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 6. For measurements Above 1 @ resolution bandwidth is set to 1 \ b, the video bandwidth is set to 3 \ b for peak measurements and as applicable for average measurements.

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr

Report Number: F690501-RF-RTL005232 Page: 13 of 28

- 1. Unwanted Emissions into Non-Restricted Frequency Bands
- The Reference Level Measurement refer to section 11.11.2

 Set analyzer center frequency to DTS channel center frequency, SPAN ≥ 1.5 times the DTS bandwidth, the RBW = 100 kHz and VBW ≥ 3 x RBW, Detector = Peak, Sweep time = Auto couple, Trace = Max hold.
- Unwanted Emissions Level Measurement refer to section 11.11.3 Set the center frequency and span to encompass frequency range to be measured, the RBW = 100 \pm and VBW \geq 3 x RBW, Detector = Peak, Sweep time = Auto couple, Trace = Max hold.
- 2. Unwanted Emissions into Restricted Frequency Bands
- Peak Power measurement procedure refer to section 11.12.2.4 Set RBW = as specified in Table 9, VBW ≥ 3 x RBW, Detector = Peak, Sweep time = auto, Trace = Max hold.

Table 9 – RBW as a function of frequency

Frequency	RBW				
9 kHz to 150 kHz	200 Hz to 300 Hz				
0.15 MHz to 30 MHz	9 kHz to 10 kHz				
30 Mtz to 1 000 Mtz	100 kHz to 120 kHz				
> 1 000 MHz	1 MHz				

If the peak – detected amplitude can be shown to comply with the average limit, then it is not necessary to perform a separate average measurement.

- Average Power measurements procedure refer to section 11.12.2.5.2 The EUT shall be configured to operate at the maximum achievable duty cycle. Measure the duty cycle D of the transmitter output signal as described in section 11.6. Set RBW = 1 Mb, VBW \geq 3 x RBW, Detector = RMS, if span / (# of points in sweep) \leq (RBW/2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied then the detector mode shall be set to peak.

Averaging type = power (i.e., RMS).

As an alternative the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used. Sweep time = auto, Perform a trace average of at least 100 traces.

A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:

- 1) If power averaging (rms) mode was used in step f), then the applicable correction factor is [10 log (1 / D)], where D is the duty cycle.
- 2) If a specific emission is demonstrated to be continuous (D ≥ 98%) rather than turning ON and OFF with the transmit cycle, then no duty cycled correction is required for that emission.
- 3. Definition of DUT Axis.

The radiation test of the EUT was investigated in three orthogonal orientations X, Y, and Z described in the test setup photo. All radiated testing of EUT was performed with worst case axis.

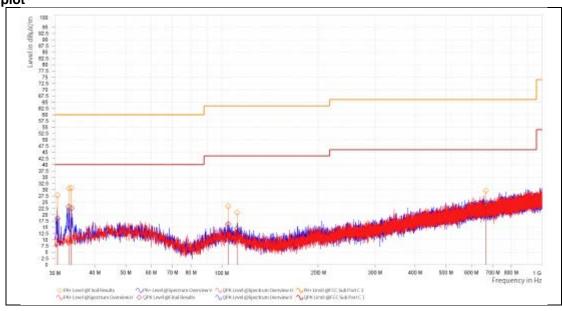
4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr

Report Number: F690501-RF-RTL005232 Page: 14 of 28

2.4. Test Results

Ambient temperature : (23 ± 1) °C Relative humidity : 47 % R.H.

2.4.1. Radiated Spurious Emissions below 1 000 版


The frequency spectrum from 9 kllz to 1 000 Mlz was investigated. All reading values are peak values.

Radiated Emiss		ions	Ant	Correction	Total	Limit	
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	(dB/m)	Actual (dBμV/m)	Limit (dBµV/m)	Margin (dB)
33.17	34.76	Quasi Peak	V	-11.63	<u>23.13</u>	40.00	16.87
33.78	33.93	Quasi Peak	V	-11.32	22.61	40.00	17.39
Above 100.00	Not detected	-	-	-	-	-	-

Remark;

- 2. Test from 30 Mz to 1 000 Mz was performed using the software of ELEKTRA(V5.02) from
- Rohde & Schwarz GmbH & Co. KG.
- 3. Reported spurious emissions are in PHY 1M / 255 bytes / High channel as worst case among other channels.
- Radiated spurious emission measurement as below.
 (Actual = Reading + Correction)
 (Correction = Antenna Factor + AMP Factor + Cable Loss)
- 5. According to §15.31(o), emission levels are not report much lower than the limits by over 20 dB.

- Test plot

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr

Report Number: F690501-RF-RTL005232 Page: 15 of 28

2.4.2. Radiated Spurious Emissions above 1 000 胚

The frequency spectrum above 1 000 Mb was investigated. All reading values are peak and average values.

Test mode: PHY 1M

Low Channel (2 402 Mb)

Radiated Emissions			Ant.	Correction Factors		Total	Lim	t	
Frequency (账)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	DF (dB)	Actual (dBµV/m)	Limit (dΒμV/m)	Margin (dB)
*2 310.00	19.88	Peak	V	27.96	6.01	-	53.85	74.00	20.15
*2 310.00	5.58	Average	٧	27.96	6.01	0.68	40.23	54.00	13.77
*2 345.34	22.30	Peak	V	28.17	6.06	-	56.53	74.00	17.47
*2 386.01	7.15	Average	V	28.13	6.11	0.68	42.07	54.00	11.93
*2 390.00	20.61	Peak	٧	28.12	6.12	-	54.85	74.00	19.15
*2 390.00	5.98	Average	V	28.12	6.12	0.68	40.90	54.00	13.10

Radi	Radiated Emissions			Corr	ection Fact	ors	Total	Limit	
Frequency (脈)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµV/m)	Limit (dB <i>µ</i> V/m)	Margin (dB)
*4 804.26	45.07	Peak	Н	32.72	-30.82	-	46.97	74.00	27.03
7 206.70	49.70	Peak	V	35.91	-29.17	-	56.44	74.00	17.56
Above 7 300.00	Not detected	-	-	-	-	-	-	-	-

Middle Channel (2 440 Mb)

Radi	Radiated Emissions			Corr	ection Fact	tors	Total	Limit	
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµV/m)	Limit (dΒμV/m)	Margin (dB)
*4 879.30	45.03	Peak	Н	33.02	-30.75	-	47.30	74.00	26.70
*7 319.62	47.04	Peak	V	36.14	-29.13	-	54.05	74.00	19.95
*7 320.56	41.11	Average	V	36.14	-29.13	0.68	48.80	54.00	5.20
Above 7 400.00	Not detected	-	-	-	-	-	-	-	-

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr

Report Number: F690501-RF-RTL005232 Page: 16 of 28

High Channel (2 480 Mb)

Radi	ated Emissio	ons	Ant.	Corr	ection Fact	tors	Total	Limi	it
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	DF (dB)	Actual (dBµV/m)	Limit (dB <i>µ</i> V/m)	Margin (dB)
*2 483.50	17.54	Peak	V	28.33	6.24	-	52.11	74.00	21.89
*2 483.50	7.66	Average	V	28.33	6.24	0.68	42.91	54.00	11.09
*2 488.52	21.21	Peak	V	28.35	6.24	-	55.80	74.00	18.20
*2 487.86	13.45	Average	V	28.35	6.24	0.68	48.72	54.00	5.28
*2 500.00	14.60	Peak	V	28.40	6.26	-	49.26	74.00	24.74
*2 500.00	5.91	Average	V	28.40	6.26	0.68	41.25	54.00	12.75

Radi	ated Emissio	ns	Ant.	Corr	ection Fact	ors	Total	Limi	it
Frequency (Mb)	Reading (dBμV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*4 960.44	46.59	Peak	Н	33.32	-30.67	-	49.24	74.00	24.76
*7 439.22	53.01	Peak	V	36.22	-28.95	-	60.28	74.00	13.72
*7 439.52	44.96	Average	V	36.22	-28.95	0.68	<u>52.91</u>	54.00	1.09
Above 7 500.00	Not detected	-	-	-	-	-	-	-	-

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr

Report Number: F690501-RF-RTL005232 Page: 17 of 28

Test mode: PHY 2M

Low Channel (2 402 Mb)

Radi	ated Emissio	ns	Ant.	Corr	ection Fact	ors	Total	Limi	it
Frequency (脈)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	DF (dB)	Actual (dBµV/m)	Limit (dB <i>µ</i> V/m)	Margin (dB)
*2 310.00	15.20	Peak	V	27.96	6.01	-	49.17	74.00	24.83
*2 310.00	5.35	Average	V	27.96	6.01	2.41	41.73	54.00	12.27
*2 386.63	17.68	Peak	V	28.13	6.11	-	51.92	74.00	22.08
*2 385.70	6.82	Average	V	28.13	6.11	2.41	43.47	54.00	10.53
*2 390.00	16.00	Peak	V	28.12	6.12	-	50.24	74.00	23.76
*2 390.00	6.40	Average	V	28.12	6.12	2.41	43.05	54.00	10.95

Radi	ated Emissio	ns	Ant.	Corr	ection Fact	ors	Total	Limit	
Frequency (雕)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBμV/m)	Limit (dBµV/m)	Margin (dB)
*4 802.90	44.81	Peak	Н	32.71	-30.82	-	46.70	74.00	27.30
7 204.60	50.52	Peak	V	35.91	-29.16	-	57.27	74.00	16.73
Above 7 300.00	Not detected	-	-	-	-	-	-	-	-

Middle Channel (2 440 Mb)

Radi	Radiated Emissions			Corr	ection Fact	ors	Total	Limit	
Frequency (脈)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*4 880.92	45.44	Peak	Н	33.02	-30.74	-	47.72	74.00	26.28
*7 321.56	46.65	Peak	V	36.14	-29.12	-	53.67	74.00	20.33
Above 7 400.00	Not detected	-	-	-	-	-	-	-	-

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr

Report Number: F690501-RF-RTL005232 Page: 18 of 28

High Channel (2 480 Mb)

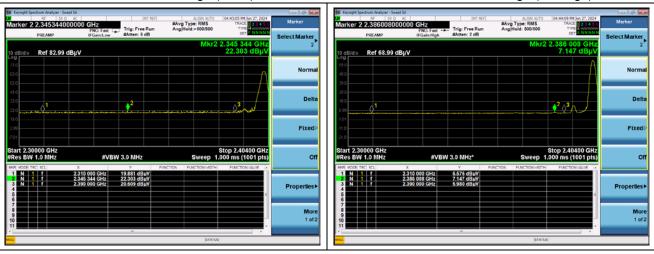
Radi	ated Emissio	ons	Ant.	Corr	ection Fact	tors	Total	Limi	it
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	DF (dB)	Actual (dBµV/m)	Limit (dB <i>µ</i> V/m)	Margin (dB)
*2 483.50	21.75	Peak	V	28.33	6.24	-	56.32	74.00	17.68
*2 483.50	10.05	Average	V	28.33	6.24	2.41	47.03	54.00	6.97
*2 483.57	22.33	Peak	V	28.33	6.24	-	56.90	74.00	17.10
*2 488.06	11.90	Average	V	28.35	6.24	2.41	48.90	54.00	5.10
*2 500.00	16.18	Peak	V	28.40	6.26	-	50.84	74.00	23.16
*2 500.00	6.01	Average	V	28.40	6.26	2.41	43.08	54.00	10.92

Radi	ated Emissio	ns	Ant.	Corr	ection Fact	ors	Total	Limit	
Frequency (账)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*4 960.98	46.85	Peak	Н	33.32	-30.67	-	49.50	74.00	24.50
*7 441.38	53.29	Peak	٧	36.22	-28.95	-	60.56	74.00	13.44
*7 441.02	42.96	Average	V	36.22	-28.95	2.41	<u>52.64</u>	54.00	1.36
Above 7 500.00	Not detected	-	-	-	-	-	-	-	-

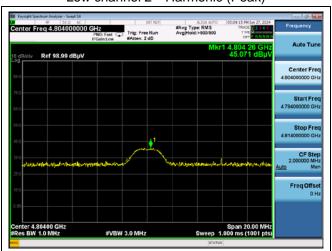
Remarks;

- 1. "*" means the restricted band.
- 2. Measuring frequencies from 1 $\mbox{ }$ $\mbox{ }$ to the 10th harmonic of highest fundamental frequency.
- 3. Radiated emissions measured in frequency above 1 000 Mb were made with an instrument using peak/average detector mode.
- 4. Actual = Reading + AF + CL + (DF) or Reading + AF + AMP + CL + (DF).
- 5. According to § 15.31(o), emission levels are not reported much lower than the limits by over 20 dB.
- 6. The maximized peak measured value complies with the average limit, to perform an average measurement is unnecessary.
- 7. AF = Antenna Factor, CL = Cable Loss, DF = Duty Correction Factor.

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr


Report Number: F690501-RF-RTL005232 Page: 19 of 28

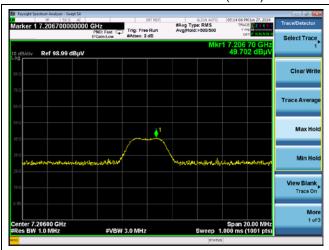
- Test plots

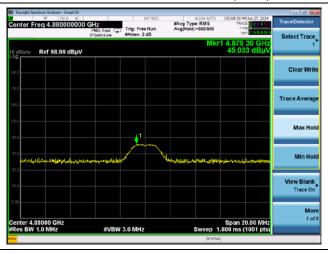

Test mode: PHY 1M

Low channel band edge (Peak)

Low channel band edge (Average)

Low channel 2nd Harmonic (Peak)




4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr

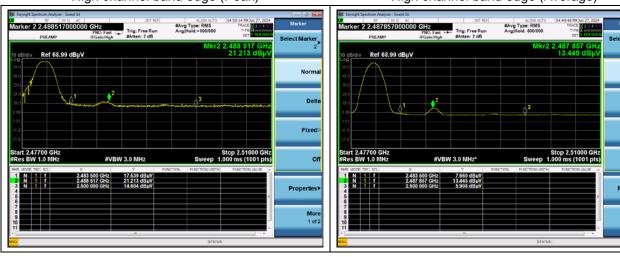
Report Number: F690501-RF-RTL005232 Page: 20 of 28

Low channel 3rd Harmonic (Peak)

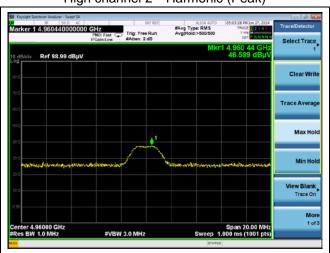
Middle channel 2nd Harmonic (Peak)

Middle channel 3rd Harmonic (Peak)

Middle channel 3rd Harmonic (Average)


4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr

Report Number: F690501-RF-RTL005232 Page: 21 of 28


High channel band edge (Peak)

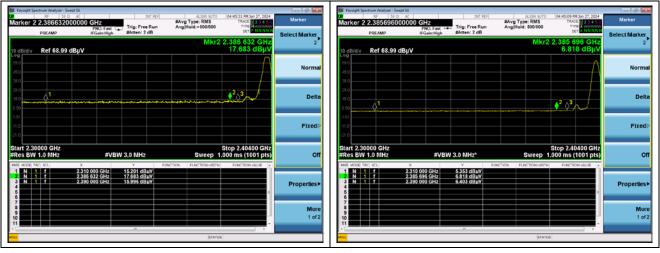
High channel band edge (Average)

Fixed

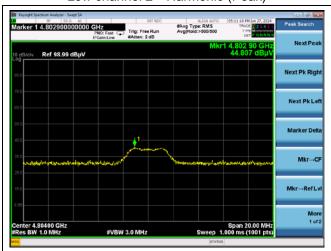
High channel 2nd Harmonic (Peak)

High channel 3rd Harmonic (Peak)

High channel 3rd Harmonic (Average)


4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr

Report Number: F690501-RF-RTL005232 Page: 22 of 28


Test mode: PHY 2M

Low channel band edge (Peak)

Low channel band edge (Average)

Low channel 2nd Harmonic (Peak)

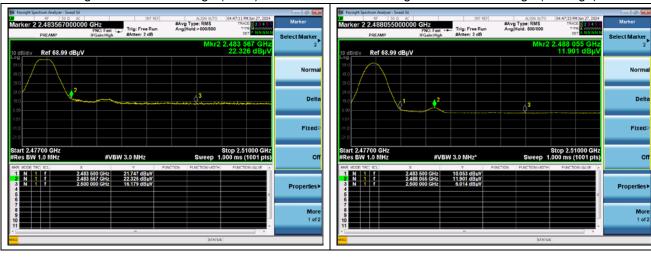
4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr

Report Number: F690501-RF-RTL005232 Page: 23 of 28

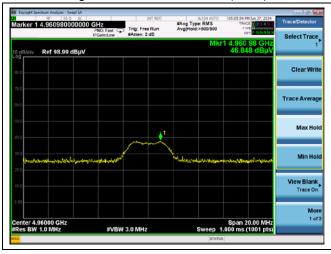
Low channel 3rd Harmonic (Peak)

Middle channel 2nd Harmonic (Peak)

Middle channel 3rd Harmonic (Peak)



4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr


Report Number: F690501-RF-RTL005232 Page: 24 of 28

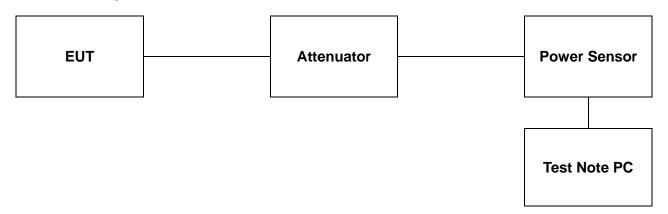
High channel band edge (Peak)

High channel band edge (Average)

High channel 2nd Harmonic (Peak)

High channel 3rd Harmonic (Peak)

High channel 3rd Harmonic (Average)



4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr

Report Number: F690501-RF-RTL005232 Page: 25 of 28

3. Maximum Peak Conducted Output Power

3.1. Test Setup

3.2. **Limit**

According to §15.247(b)(3), for systems using digital modulation in the 902-928 Mb, 2 400-2 483.5 Mb, and 5 725-5 850 Mb bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

According to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dB i. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dB i are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraph (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dB i.

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr

Report Number: F690501-RF-RTL005232 Page: 26 of 28

3.3. Test Procedure

The test follows section 11.9.1.3 of ANSI C63.10-2013.

PKPM1 Peak-reading power meter method

- The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

The test follows section 11.9.2.3.2 of ANSI C63.10-2013.

Method AVGPM-G (Measurement using a gated RF average-reading power meter)

- Alternatively, measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since this measurement is made only during the ON time of the transmitter, no duty cycle correction is required.

Test program: (S/W name: R&S Power Viewer, Version: 3.2.0)

- 1. Initially overall offset for attenuator and cable loss is measured per frequency.
- 2. Measured offset is inserted in test program in advance of measurement for output power.
- 3. Power for each frequency (channel) of device is investigated as final result.
- 4. Final result reported on this section from R&S power viewer program includes with several factors and test program shows only final result.

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr

Report Number: F690501-RF-RTL005232 Page: 27 of 28

3.4. Test Results

Ambient temperature : (23 ± 1) °C Relative humidity : 47 % R.H.

Test mode: PHY 1M

Mode	Channel	Frequency (Mb)	Average Power Result (dB m)	Peak Power Result (dB m)	Limit (dB m)
	Low	2 402	6.63	6.73	
GFSK	Middle	2 440	6.60	6.72	30
	High	2 480	<u>6.64</u>	<u>6.75</u>	

Test mode: PHY 2M

Mode	Channel	Frequency (Mb)	Average Power Result (dB m)	Peak Power Result (dB m)	Limit (dB m)
	Low	2 402	6.51	6.71	
GFSK	Middle	2 440	6.61	6.72	30
	High	2 480	<u>6.65</u>	<u>6.77</u>	

4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 Tel. +82 31 428 5700 / Fax. +82 31 427 2370 http://www.sgsgroup.kr

Report Number: F690501-RF-RTL005232 Page: 28 of 28

4. Antenna Requirement

4.1. Standard Applicable

For intentional device, according to FCC 47 CFR Section §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. And according to FCC 47 CFR Section §15.247(b) if transmitting antennas of directional gain greater than 6 dB i are used, the conducted output power shall be reduced appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dB i.

4.2. Antenna Connected Construction

Antenna used in this product is Wire Antenna with gain of 3.50 dB i.

- End of the Test Report -