

TEST REPORT

N°: 171326-762045-A (FILE#1045110)

Version : 03

Electromagnetic compatibility tests according to the standards: FCC CFR 47 Part 15, Subpart B. ANSI C63.4 (2014) ICES-003 (2020)

Issued to

Subject

SYCLOPE ELECTRONIQUE

Rue du Bruscos 64230 - SAUVAGNON France

Apparatus under test

♥ Product

- Strade mark
- Schule Manufacturer
- ♦ Family range
- Solution Model under test
- Serial number
- ♥ FCCID

Conclusion

Test date Test location FCC Test site **IC Test site** Sample receipt date **Composition of document**

Document issued on Written by : Majid MOURZAGH **Tests operator**

Electrode free chlorine sensor SYCLOPE SYCLOPE Type CAA320X Co/Gold version and Type CAA330X **Co/Platinum version** CAA3206 204500534 2AS3B-PROBE-CUPT

See Test Program chapter

February 8, 2021 MOIRANS FR0008 - 197516 FR0008-6500A February 5, 2021 15 pages

April 4, 2022

Approved by :

Anthony MERLIN Technica

ABO A SIRE CENTRAL DES

This document shall not be reproduced, except in full, without the written approval of the LCIE. This document contains results related only to the items tested. It does not imply the conformity of the whole production to the items tested. Unless otherwise specified or rule defined by the test method, the decision of conformity doesn't take into account the uncertainty of measures. This document doesn't anticipate any certification decision.

LCIE

Laboratoire Central des Industries Electriques Une société de Bureau Veritas

ZI Centr'alp 170 rue de Chatagnon 38430 Moirans FRANCE

Tél: +33 4 76 07 36 36 contact@lcie.fr www.lcie.fr

PUBLICATION HISTORY

Version	Date	Author	Modification
01	February 19, 2021	Majid MOURZAGH	Creation of the document
02	March 28, 2022	Majid MOURZAGH	Adding FCC ID on page 1
03	April 4, 2022	Majid MOURZAGH	Add pictures on test setup RADIATED EMISSION

Each new edition of this test report replaces and cancels the previous edition. The control of the old editions of report is under responsibility of client.

	SUMMARY	
1.	TEST PROGRAM	4
2.	EQUIPMENT UNDER TEST: CONFIGURATION (DECLARED BY PROVIDER)	5
3.	MEASUREMENT OF RADIATED EMISSION (30MHZ-1GHZ)	8
4.	UNCERTAINTIES CHART	15

1. TEST PROGRAM

1.1. FCC PART15B / ICES-003

Standard:

- **FCC** Part 15, Subpart B (Digital Devices)
- ✓ ANSI C63.4 (2014)
- ✓ ICES-003 (2020)

1.1.1. Requirements for disturbance emissions – Class B

EMISSION TEST		LIMITS							
Limits for conducted disturbance	Frequency	Quasi-peak	Average						
150kHz-30MHz	150-500kHz	66 to 56 dBµV	56 to 46 dBµV	NA					
FCC §15.107	0.5-5MHz	56 dBµV	46 dBµV						
	5-30MHz	60 dBµV	50 dBµV						
	Access: Encl	Access: Enclosure port of ancillary equipment							
Radiated emissions	Frequency	Quasi-pe	eak @10m						
30MHz-1GHz	30MHz-88MHz	40.0 c	40.0 dBµV/m						
FCC §15.109	88MHz-216MHz	43.5 c	43.5 dBµV/m						
100 313.103	216MHz-960MHz	46.0 c	dBμV/m						
	Above 960MHz	54.0 c	dBμV/m						
Dedicted emissions	Access: Encl	Access: Enclosure port of ancillary equipment							
Radiated emissions	Frequency	Peak @3m	Average @3m	NA					
1GHz- Highest FrequencyGHz* FCC §15.109	1- Highest FrequencyGHz	74.0 dBµV/m	54.0 dBµV/m	NA					

NA: Not Applicable / NP: Not Performed, not requested by the customer (It cannot be taken into account for the declaration of conformity)

^D: Divergence, the last version is used to make it possible to test the product with the standard which describes the current state of the art and thus to answer as well as possible his environment of final use.

***§15.33:** The highest internal source of a testing device is defined like more the highest frequency generated or used in the testing device or on which the testing device works or agrees.

- If the highest frequency of the internal sources of the testing device is lower than 108 MHz, measurement must be only performed until 1GHz.

- If the highest frequency of the internal sources of the testing device ranges between 108 MHz and 500 MHz, measurement must be only performed until 2GHz.

- If the highest frequency of the internal sources of the testing device ranges between 500 MHz and 1 GHz, measurement must be only performed until 5GHz.

If the highest frequency of the internal sources of the testing device is above 1 GHz, measurement must be only performed until 5 times the highest frequency or 40 GHz, while taking smallest of both.

Special condition for intentional radiator:

- For a composite system comprised of a digital device using a clock frequency of 1 GHz as the highest frequency for the digital logic and an intentional radiator operating at 2.4 GHz, the composite is required to be investigated to the upper frequency of 24 GHz (in this case, 10 times the intentional radiator frequency is the higher frequency).
- For a composite system comprised of a digital device using a clock frequency of 2 GHz as the highest frequency for the digital logic and an intentional radiator operating at 913 MHz, the composite is required to be investigated to the upper frequency of 10 GHz (in this case, 5 times the unintentional radiator clock frequency is the higher frequency).



2. EQUIPMENT UNDER TEST: CONFIGURATION (DECLARED BY PROVIDER)

2.1. HARDWARE IDENTIFICATION (EUT AND AUXILIARIES):

Equipment under test (EUT): CAA3206

Serial Number: 204500534

Power supply:

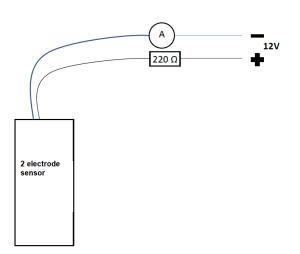
During all the tests, EUT is supplied by V_{nom} : **12VDC** For measurement with different voltage, it will be presented in test method.

Name	Туре	Rating	Reference / Sn	Comments		
Supply	🗆 AC 🗹 DC 🗆 Battery	10-25VDC 25mA	/	/		

Inputs/outputs - Cable:

Access	Туре	Length used (m)	Declared <3m	Shielded		Comments
Supply	2 wires	9			M	Supply1 and Access1 are the same cable
Access1	4-20mA output	9			M	Supply1 and Access1 are the same cable

Auxiliary equipment used during test:


Туре	Reference	Sn	Comments		
Multimeter	FLUKE 289	/	/		
DC power supply	METRIX AX503	/	/		

2.2. EUT CONFIGURATION – RUNNING MODE

Hardware information									
Highest internal frequency (PLL, Quartz, Clock, Microprocessor):	FHighest:	NC <108MHz	MHz						
Firmware (if applicable):	V. :	N	I/A						
Software (if applicable):	V. :	N	I/A						

Configuration n°1:

Setup:

Resistor simulates chlorinated water and allows mesure value on 4-20mA output.

Control: Mesure of 4-20mA ouput by amperemeter.

2.3. EQUIPMENT MODIFICATIONS

 \square None \square Modification:

2.4. SPECIAL ACCESSORIES

None

2.5. FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follow:

FS = RA + AF + CF - AG

Where FS = Field Strength

RA = Receiver Amplitude

AF = Antenna FactorCF = Cable Factor

AG = Amplifier Gain

Assume a receiver reading of 52.5dBµV is obtained. The antenna factor of 7.4 and a cable factor of 1.1 is added. The amplifier gain of 29dB is subtracted, giving field strength of 32 dBµV/m. FS = 52.5 + 7.4 + 1.1 - 29 = 32 dBµV/m The 32 dBµV/m value can be mathematically converted to its corresponding level in µV/m. Level in µV/m = Common Antilogarithm [(32dBµV/m)/20] = 39.8 µV/m.

2.6. CALIBRATION DATE

The calibration intervals are extended at 12+2 months. This extended interval is based on the fact that there is sufficient calibration data to statistically establish a trend or based on experience of use of the test equipment to assure good measurement results for a longer period.

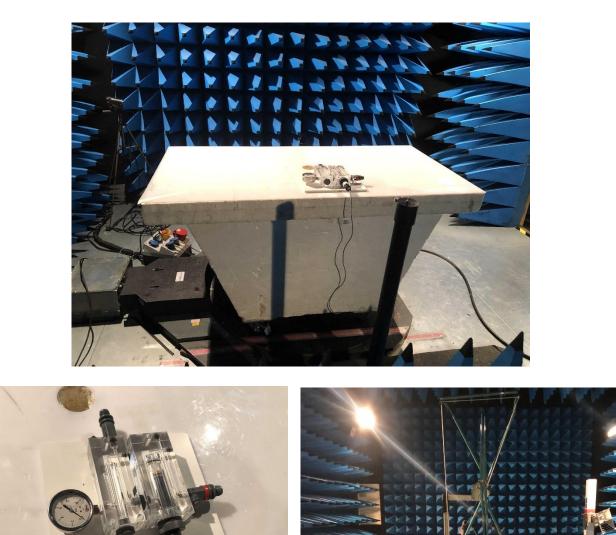
3. MEASUREMENT OF RADIATED EMISSION (30MHz-1GHz)

3.1. ENVIRONMENTAL CONDITIONS

Date of test	:	February 8, 2021
Test performed by	:	Jonathan SARTO
Atmospheric pressure (hPa)	:	985
Relative humidity (%)	:	35
Ambient temperature (°C)	:	20

3.2. TEST SETUP

The installation of EUT is identical for pre-characterization measures in a 3 meters semi- anechoic chamber and for measures on the 10 meters Open site.


The EUT and auxiliaries are set:

☑ 80cm above the ground on the non-conducting table (Table-top equipment)

□ 10cm above the ground on isolating support (Floor standing equipment)

The EUT is powered by V_{nom} .

Test photo setup in anechoic chamber

Test photo setup on OATS

Test method The product has been tested according to ANSI C63.4, FCC part 15 subpart B.

Pre-characterisation measurement: (30MHz -1GHz)

A pre-scan of all the setup has been performed in a 3 meters semi-anechoic chamber for frequency from 30MHz to 1GHz. Test is performed in horizontal (H) and vertical (V) polarization during the test for maximized the emission measurement. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on all axis of EUT used in normal configuration.

Characterization on 10 meters open site from 30MHz to 1GHz:

Radiated Emissions were measured on an open area test site. A description of the facility is on file with the FCC. The product has been tested at a distance of **10 meters** from the antenna and compared to the FCC part 15 subpart B limits. Measurement bandwidth was 120kHz from 30 MHz to 1GHz. Test is performed in horizontal (H) and vertical (V) polarization, during the test for maximized the emission measurement. The height antenna is varied from 1m to 4m. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on all axis of EUT used in normal configuration. A summary of the worst case emissions found in all test configurations and modes is shown. Frequency list has been created with anechoic chamber pre-scan results.

3.3. TEST EQUIPMENT LIST

	TEST E	QUIPMENT USED			
Description	Manufacturer	Model	Identifier	Cal_Date	Cal_Due
Amplifier 100kHz - 18GHz	LCIE SUD EST	_	A7085027	11/20	11/21
Antenna Bi-Log XWing	TESEQ	CBL6144	C2040146	03/17	03/22
BAT EMC	NEXIO	v3.19.1.23	L1000115		
Cable 0.75m	SUCOFLEX	18GHz	A5329919	11/20	11/21
Cable 2.2m N	SUCOFLEX	SF118A/2x11N/2.2M	A5329990	11/20	11/21
Cable 5m	SUCOFLEX	18GHz	A5329918	11/20	11/21
CALCUL_FACTEURS	LCIE SUD EST	V4	L2000035		
Diameter 1.2m / Height 2.25m	LCIE	VSWR 1GHz - 18GHz	D3044015_VSWR	06/19	06/22
Radiated emission comb generator	BARDET	_	A3169050		
Semi-Anechoic chamber #2	SIEPEL	_	D3044015	06/19	06/22
Spectrum Analyzer 9kHz - 6GHz	ROHDE & SCHWARZ	FSL6	A4060049	04/20	04/22
Table C2/OATS	LCIE	_	F2000438		
Turntable chamber (Cage#2)	ETS Lingren	Model 2165	F2000404		
Turntable controller (Cage#2)	ETS Lingren	Model 2066	F2000393		
Antenna Biconic	EMCO	3104C	C2040175	03/20	03/22
Antenna Mat (OATS)	ETS Lingren	2071-2	F2000392		
Cable (OATS)	_	1GHz	A5329623	05/20	05/21
Emission Cable	MICRO-COAX	1GHz	A5329656	08/20	08/21
Emission Cable	SUCOFLEX	6GHz	A5329061	06/20	06/21
OATS	_	_	F2000409	04/20	04/21
Receiver 20-1000MHz	ROHDE & SCHWARZ	ESVS30	A2642006	03/20	03/22
Table C1/OATS	LCIE	_	F2000445		
Turntable (OATS)	ETS Lingren	Model 2187	F2000403		
Turntable / Mast controller (OATS)	ETS Lingren	Model 2066	F2000372		

3.4. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

☑ None	Divergence:
--------	-------------

3.5. TEST RESULTS

Pre-characterisation measurement (30MHz-1GHz): pre-scan measurement at 3m (PEAK detection, graph examples)

See graphs:

Graph identifier	Polarization	EUT position	Comments				
Emr# 1	Horizontal & Vertical	Axis XY	See b	below			

							R	ADIATED EM	ISSION	S							
Graph na	me:		E	mr#′	1				Test o	confi	gurati	on:					
Limit:	FCC CFR47 Part15B						Configuration 1										
Class:			В						Config	gurat	ion 1						
						Fre	aue	ency range: [3	OMHz -	- 1Gł	-Iz1						
Antenna	polarizat	ion:	Н	lorizo					RBW		100kH	z					
Azimuth:				° - 36					VBW		300kH						
														Mo	s.Peak	(Horiz	ontale
															s.Peak	1000	
														WIG.	o.r oun	(vorac	alo)
100																	
dBµV/m																	
												11					
													-				
							-										
												FC	C/FCC CFR	47 Part15B	- Classe	B - QCré	ite/3.0m
						-											
	-											<i>v</i>		5			
	-																10
								render state of the							1. des harder be	an sales wer	withinstalla
												1 kaik	a binner and the	and and the state of	And Abreach an		
		al des	and a	1.0						is to also	nand additional testing h	wayayayayayayayayayayayayayayayayayayay	and the second se				
	were the stand of the stand of	wasannam leihais	and the second	refored a public	State Street and	Harldense	Note March	and all and a served so that has the	de la délaitere bland	philes the second	Markey, disa 1987 - 1						
					21.1	-Winder		and the real of the second									
	30MHz							F-4	01100000								1GHz
								Fre	quence								
								Coursiana area	laalara								
								Spurious em	ssions								

Frequency (MHz)	Peak Level (dBµV/m)	Polarization	Correction (dB)
149.697	12.5	Horizontal	-17.4
496.120	28.2	Horizontal	-6.4
653.480	24.4	Horizontal	-4.9
42.886	14.8	Vertical	-16.9
61.603	14.3	Vertical	-15.8
925.200	27.7	Vertical	-1.7

<u>QUALIFICATION (30MHz-1GHz)</u>: 10 meters measurement on the Open Area Test Site. Frequency list has been created with semi-anechoic chamber pre-scan results. Measurements are performed using a QUASI-PEAK detection.

Test Frequency (MHz)	Meter Reading dB(μV)	Detector (Pk/QP/Av)	Polarity (V/H)	Azimuth (Degrees)	Antenna Height (cm)	Gain/Loss Factor (dB)	Transducer Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)
No significative frequency observed										

Note: Measure have been done at 10m distance and corrected according to requirements of 15.209.e) (M@3m = M@10m+10.5dB)

3.6. CONCLUSION

The sample of the equipment **CAA3206**, Sn: **204500534**, tested in the configuration presented in this test report **satisfies** to requirements of class B limits of the standard FCC Part15B and ICES-003, for radiated emissions.

4. UNCERTAINTIES CHART

Type de mesure / Kind of measurement	Incertitude élargie laboratoire / Wide uncertainty laboratory (k=2) ±x	Incertitude limite du CISPR / CISPR uncertainty limit ±y
Mesure du champ électrique rayonné en cage de Faraday semi-anéchoïque de 30MHz à 1GHz Measurement of radiated electric field in half-anechoic Faraday room from 30MHz to 1GHz	5.06dB	5.3dB
Mesure du champ électrique rayonné sur le site en espace libre de Moirans 30MHz – 1GHz. Measurement of radiated electric field on the Moirans open area test site 30MHz – 1GHz.	5.2dB	6.3dB

Les valeurs d'incertitudes calculées du laboratoire étant inférieures aux valeurs d'incertitudes limites établies par le CISPR, la conformité de l'échantillon est établie directement par les niveaux limites applicables. Ce tableau regroupe l'ensemble des incertitudes maximales pour les essais réalisables dans le laboratoire, qu'ils aient été ou non réalisés dans le cadre du présent rapport / *The uncertainty values calculated by the laboratory are lower than limit uncertainty values defined by the CISPR. The conformity of the sample is directly established by the applicable limits values. This table includes all uncertainties maximum feasible for testing in the laboratory, whether or not made in this report*

Note - L'incertitude de mesure instrumentale est déterminée selon la CISPR 16-4-2. / The instrumentation measurement uncertainty is determined according to CISPR16-4-2