

FCC Test Report

Report No.: AGC01110230214FE03A

FCC ID : 2AOKB-A3947

APPLICATION PURPOSE: Class II Permissive Change

PRODUCT DESIGNATION: Wireless Headphone

BRAND NAME : soundcore

MODEL NAME : A3947

APPLICANT: Anker Innovations Limited

DATE OF ISSUE : Oct. 17, 2023

STANDARD(S) : FCC Part 15.247

REPORT VERSION: V1.0

Attestation of Global Congliance (Shenzhen) Co., Ltd

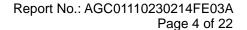
Page 2 of 22

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Oct. 17, 2023	Valid	Initial Release

Note: The original test report AGC01110230214FE03 (dated Mar. 17, 2023 and tested from Feb. 14, 2023 to Mar. 17, 2023) was modified on Oct. 17, 2023, including the following changes and additions:

-Replaced the battery from the model M1154A6 (3.85V, 53mAh, 0.204Wh) to M1154A7 (3.85V, 60mAh, 0.204Wh);


For the above described change(s) the following tests was considered to be necessary:

Clause	Testing
15.209	Radiated Emission

TABLE OF CONTENTS

1. VERIFICATION OF CONFORMITY	4
2. GENERAL INFORMATION	5
2.1. PRODUCT DESCRIPTION	5
2.2. TABLE OF CARRIER FREQUENCYS	5
2.3. RECEIVER INPUT BANDWIDTH	6
2.4. EXAMPLE OF A HOPPING SEQUENCY IN DATA MODE	6
2.5. EQUALLY AVERAGE USE OF FREQUENCIES AND BEHAVIOUR	6
2.6. RELATED SUBMITTAL(S) / GRANT (S)	7
2.7. TEST METHODOLOGY	7
2.8. SPECIAL ACCESSORIES	7
2.9. EQUIPMENT MODIFICATIONS	7
2.10. ANTENNA REQUIREMENT	7
3. MEASUREMENT UNCERTAINTY	8
4. DESCRIPTION OF TEST MODES	9
5. SYSTEM TEST CONFIGURATION	10
5.1. CONFIGURATION OF EUT SYSTEM	10
5.2. EQUIPMENT USED IN TESTED SYSTEM	10
5.3. SUMMARY OF TEST RESULTS	
6. TEST FACILITY	11
7. RADIATED EMISSION	12
7.1. MEASUREMENT PROCEDURE	12
7.2. TEST SETUP	14
7.3. LIMITS AND MEASUREMENT RESULT	15
7.4. TEST RESULT	15
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	21
APPENDIX R. PHOTOGRAPHS OF FUT	21

1. VERIFICATION OF CONFORMITY

Applicant	Anker Innovations Limited
Address	Room 1318-19, Hollywood Plaza, 610 Nathan Road, Mongkok, Kowloon, Hongkong
Manufacturer	Anker Innovations Limited
Address	Room 1318-19, Hollywood Plaza, 610 Nathan Road, Mongkok, Kowloon, Hongkong
Factory	Jiangxi Cosonic Electroacoustic Technologies Co., Ltd.
Address	Shangli Industrial Park, Jinshan Town, Shangli County, Pingxiang, Jiangxi Province, P.R.China
Product Designation	Wireless Headphone
Brand Name	soundcore
Test Model	A3947
Date of receipt of test item	Sep. 22, 2023
Date of test	Sep. 25, 2023 to Oct. 17, 2023
Deviation	No any deviation from the test method
Condition of Test Sample	Normal
Test Result	Pass
Report Template	AGCRT-US-BR/RF

Note: The test results of this report relate only to the tested sample identified in this report.

Cool Cheng
(Project Engineer)

Calvin Liu
(Reviewer)

Approved By

Max Zhang
(Authorized Officer)

Cool Cheng
(Project Engineer)

Oct. 17, 2023

Oct. 17, 2023

Page 5 of 22

2. GENERAL INFORMATION

2.1. PRODUCT DESCRIPTION

The EUT is designed as "Wireless Headphone". It is designed by way of utilizing the GFSK, Pi/4 DQPSK and 8DPSK technology to achieve the system operation.

A major technical description of EUT is described as following

Operation Frequency	2.402 GHz to 2.480 GHz
RF Output Power	Left: 11.385dBm (Max) Right: 11.340dBm (Max)
Bluetooth Version	V5.3
Modulation	BR ⊠GFSK, EDR ⊠π /4-DQPSK, ⊠8DPSK BLE □GFSK 1Mbps □GFSK 2Mbps
Number of channels	79
Hardware Version	D
Software Version	V6.0.7
Antenna Designation	FPC Antenna (Comply with requirements of the FCC part 15.203)
Antenna Gain	Left :-1.18dBi Right :-1.19dBi
Power Supply	DC 3.85V by battery

Note: The EUT comprises left and right channel headsets, both are the same except for the antenna gain. The RF output power of each headset has been tested and recorded in the report. For other test items, the left headset has been tested and recorded as the worst case in this report.

2.2. TABLE OF CARRIER FREQUENCYS

Frequency Band	Channel Number	Frequency
	0	2402 MHz
	1	2403 MHz
	:	:
	38	2440 MHz
2402~2480MHz	39	2441 MHz
	40	2442 MHz
	••	·
	77	2479 MHz
	78	2480 MHz

Report No.: AGC01110230214FE03A Page 6 of 22

2.3. RECEIVER INPUT BANDWIDTH

The input bandwidth of the receiver is 1.3MHz, in every connection one Bluetooth device is the master and the other one is slave. The master determines the hopping sequence. The slave follows this sequence. Both devices shift between RX and TX time slot according to the clock of the master. Additionally, the type of connection (e.g. single of multi slot packet) is set up at the beginning of the connection. The master adapts its hopping frequency and its TX/RX timing according to the packet type of the connection. Also, the slave of the connection will use these settings. Repeating of a packet has no influence on the hopping sequence. The hopping sequence generated by the master of the connection will be followed in any case. That means, a repeated packet will not be send on the same frequency, it is send on the next frequency of the hopping sequence.

2.4. EXAMPLE OF A HOPPING SEQUENCY IN DATA MODE

Example of a hopping sequence in data mode:

40, 21, 44, 23, 04, 15, 66, 56, 19, 78, 07, 28, 69, 55,

36, 45, 05, 13, 43, 74, 57, 35, 67, 76, 02, 34, 54, 63,

42, 11, 30, 06, 64, 25, 75, 48, 17, 33, 58, 01, 29, 14,

51, 72, 03, 31, 50, 61, 77, 18, 10, 47, 12, 68, 08, 49,

20, 00, 73, 09, 16, 60, 71, 41, 24, 53, 38, 26, 46, 37,

65, 32, 70, 52, 27, 59, 22, 62, 39

2.5. EQUALLY AVERAGE USE OF FREQUENCIES AND BEHAVIOUR

The generation of the hopping sequence in connection mode depends essentially on two input values:

- 1. LAP/UAP of the master of the connection.
- 2. Internal master clock.

The LAP (lower address part) are the 24 LSB's of the 48 BD_ADDRESS. The BD_ADDRESS is an unambiguous number of every Bluetooth unit. The UAP (upper address part) are the 24MSB's of the 48BD_ADDRESS

The internal clock of a Bluetooth unit is derived from a free running clock which is never adjusted and is never turned off. For behavior action with other units only offset is used. It has no relation to the time of the day. Its resolution is at least half the RX/TX slot length of 312.5us. The clock has a cycle of about one day(23h30). In most case it is implemented as 28 bits counter. For the deriving of the hopping sequence the entire. LAP (24 bits),4LSB's(4bits) (Input 1) and the 27MSB's of the clock (Input 2) are used. With this input values different mathematical procedures (permutations, additions, XOR-operations) are performed to generate the Sequence. This will be done at the beginning of every new transmission.

Regarding short transmissions the Bluetooth system has the following behavior:

The first connection between the two devices is established, a hopping sequence was generated. For Transmitting the wanted data the complete hopping sequence was not used. The connection ended.

Report No.: AGC01110230214FE03A Page 7 of 22

The second connection will be established. A new hopping sequence is generated. Due to the fact the Bluetooth clock has a different value, because the period between the two transmission is longer (and it Cannot be shorter) than the minimum resolution of the clock(312.5us). The hopping sequence will always differ from the first one.

2.6. RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for **FCC ID: 2AOKB-A3947** filing to comply with the FCC PART 15.247 requirements.

2.7. TEST METHODOLOGY

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10 (2013). Radiated testing was performed at an antenna to EUT distance 3 meters.

2.8. SPECIAL ACCESSORIES

Refer to section 5.2.

2.9. EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

2.10. ANTENNA REQUIREMENT

This intentional radiator is designed with a permanently attached antenna of an antenna to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

For more information of the antenna, please refer to the APPENDIX B: PHOTOGRAPHS OF EUT.

Page 8 of 22

3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Item	Measurement Uncertainty
Uncertainty of Conducted Emission for AC Port	$U_c = \pm 2.9 \text{ dB}$
Uncertainty of Radiated Emission below 1GHz	$U_c = \pm 3.9 \text{ dB}$
Uncertainty of Radiated Emission above 1GHz	$U_c = \pm 4.9 \text{ dB}$
Uncertainty of total RF power, conducted	$U_c = \pm 0.8 \text{ dB}$
Uncertainty of RF power density, conducted	$U_c = \pm 2.6 \text{ dB}$
Uncertainty of spurious emissions, conducted	U _c = ±2.7 %
Uncertainty of Occupied Channel Bandwidth	$U_c = \pm 2 \%$

4. DESCRIPTION OF TEST MODES

NO.	TEST MODE DESCRIPTION	
1	Low channel GFSK	
2	Middle channel GFSK	
3	High channel GFSK	
4	Low channel π/4-DQPSK	
5	Middle channel π/4-DQPSK	
6	High channel π/4-DQPSK	
7	Low channel 8DPSK	
8	Middle channel 8DPSK	
9	High channel 8DPSK	
10	Hopping mode GFSK	
11	Hopping mode π/4-DQPSK	
12	Hopping mode 8DPSK	

Note:

- 1. Only the result of the worst case was recorded in the report, if no other cases.
- 2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.
- 3. For Conducted Test method, a temporary antenna connector is provided by the manufacture.

Software Setting Non Signaling Test Tool(20220409) File Device SIGTEST MOSIGTEST VOO TEST BLE TX TEST BLE TX TEST V2 BLE TX TEST V3 BLE TX TEST V4 SETTING rt ID Address Name Address Tyj State COM11 0xEEEEEEEEEEE DUT Private IDLE Port ID Test scenario ▼ Power Level LT Address Edr Enabled OD-off ▼ Payload Pattern Packet Type 4:prbs9 ▼ Payload Size Extra Interval Package Humber Ox FFFFFFFF Send Local Device Traces --[12:54:16:413] DUT : CHD [RESET] -> --[12:54:16:526] DUT : CHD [CHE, EVT [RESET (SUCCESS)] -> --[12:54:16:526] DUT : CHD [CHE, EVT [RESET (SUCCESS)] -> --[12:54:16:474] DUT : CHD [CHE, EVT] [CHE, ✓ Filter Sco ☐ Show raw data Clear

Page 10 of 22

5. SYSTEM TEST CONFIGURATION

5.1. CONFIGURATION OF EUT SYSTEM

Radiated Emission Configure:

EUT	

5.2. EQUIPMENT USED IN TESTED SYSTEM

Item	Equipment	Model No.	ID or Specification	Remark
1	Wireless Headphone	A3947	2AOKB-A3947	EUT

5.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
15.209	Radiated Emission	Compliant

Page 11 of 22

6. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd
Location	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Designation Number	CN1259
FCC Test Firm Registration Number	975832
A2LA Cert. No.	5054.02
Description	Attestation of Global Compliance (Shenzhen) Co., Ltd is accredited by A2LA

TEST EQUIPMENT OF RADIATED EMISSION TEST

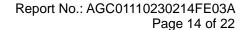
Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
Test Receiver	R&S	ESCI	10096	Feb. 18, 2023	Feb. 17, 2024
EXA Signal Analyzer	Agilent	N9010A	MY53470504	Jun. 01, 2023	May 31, 2024
Signal Analyzer	Aglient	N9020A	MY52090123	Jun. 03, 2023	Jun. 02, 2024
2.4GHz Filter	EM Electronics	N/A	N/A	Mar. 18, 2022	Mar. 19, 2024
Attenuator	ZHINAN	E-002	N/A	Aug. 04, 2022	Aug. 03, 2024
Horn Antenna	SCHWARZBEC	BBHA9170	768	Oct. 31, 2021	Oct. 30, 2023
Active Loop Antenna (9K-30Mhz)	ZHINAN	ZN30900C	18051	Mar. 12, 2022	Mar. 11, 2024
Double-Ridged Waveguide Horn	ETS	3117	00034609	Mar.23, 2023	Mar. 22, 2024
Preamplifier Assembly	ETS	3117PA	00225134	Sep. 01, 2022	Sep. 02, 2024
Wideband Antenna	SCHWARZBECK	VULB9168	VULB9168-49 4	Jan. 05, 2023	Jan. 04, 2025
Test software	FARA	Ver RA-03A	N/A	N/A	N/A

Page 12 of 22

7. RADIATED EMISSION

7.1. MEASUREMENT PROCEDURE

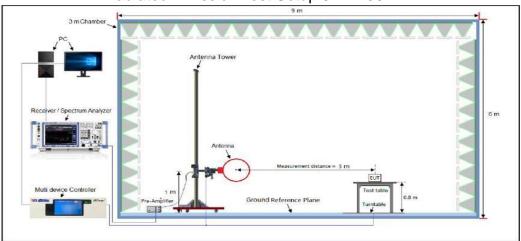
- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

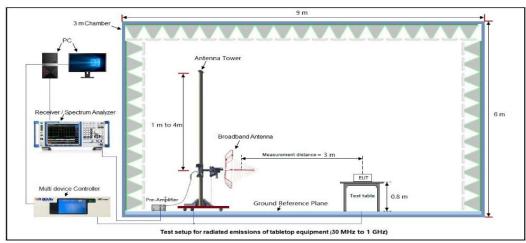


Page 13 of 22

The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting	
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP	
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP	
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP	
Start ~Stop Frequency	1GHz~26.5GHz	
Start ~Stop Frequency	1MHz/3MHz for Peak, 1MHz/3MHz for Average	


Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP



7.2. TEST SETUP


Radiated Emission Test Setup 9KHz-30MHz

Radiated Emission Test Setup 30MHz-1000MHz

Radiated Emission Test Setup Above 1000MHz

Page 15 of 22

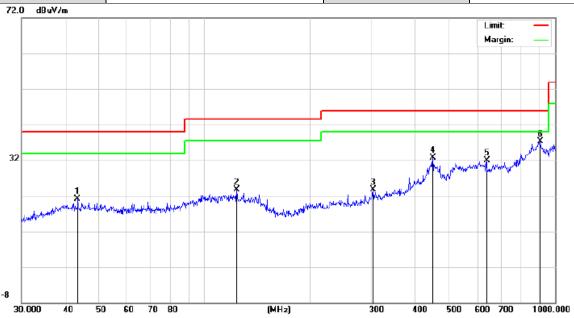
7.3. LIMITS AND MEASUREMENT RESULT

15.209 Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note: All modes were tested for restricted band radiated emission, the test records reported below are the worst result compared to other modes.

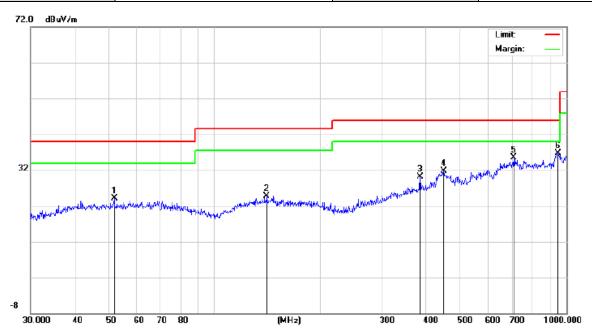
7.4. TEST RESULT


Radiated emission below 30MHz

The amplitude of spurious emissions from 9kHz to 30MHz which are attenuated more than 20 dB below the permissible value need not be reported.

Radiated emission from 30MHz to 1000MHz

EUT	Wireless Headphone	Model Name	A3947
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 2	Antenna	Horizontal



No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		43.3534	7.46	13.67	21.13	40.00	-18.87	peak
2		123.2655	7.60	16.20	23.80	43.50	-19.70	peak
3		302.4812	7.21	16.50	23.71	46.00	-22.29	peak
4		447.9822	7.94	24.82	32.76	46.00	-13.24	peak
5		638.3686	8.48	23.45	31.93	46.00	-14.07	peak
6	*	909.6667	6.90	30.45	37.35	46.00	-8.65	peak

RESULT: PASS

EUT	Wireless Headphone	Model Name	A3947
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 2	Antenna	Vertical

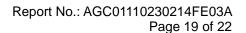
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		51.8430	7.08	17.02	24.10	40.00	-15.90	peak
2		140.8351	6.42	18.20	24.62	43.50	-18.88	peak
3		383.9318	8.56	21.56	30.12	46.00	-15.88	peak
4		447.9822	5.96	25.74	31.70	46.00	-14.30	peak
5		709.1823	7.01	28.42	35.43	46.00	-10.57	peak
6	*	948.7608	6.13	30.65	36.78	46.00	-9.22	peak

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Limit-Level.

2. All test modes had been pre-tested. The mode 2 is the worst case and recorded in the report.

Page 18 of 22


Radiated emission above 1GHz

EUT	Wireless Headphone	Model Name	A3947
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type		
4804.000	47.61	0.08	47.69	74	-26.31	peak		
4804.000	38.42	0.08	38.5	54	-15.5	AVG		
7206.000	41.05	2.21	43.26	74	-30.74	peak		
7206.000	31.53	2.21	33.74	54	-20.26	AVG		
temark:								
actor = Anter	nna Factor + Cable	e Loss – Pre-	amplifier.					

EUT	Wireless Headphone	Model Name	A3947
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4804.000	46.28	0.08	46.36	74	-27.64	peak
4804.000	37.54	0.08	37.62	54	-16.38	AVG
7206.000	42.05	2.21	44.26	74	-29.74	peak
7206.000	31.53	2.21	33.74	54	-20.26	AVG
Remark:						
kemark.						
actor = Anter	nna Factor + Cable	e Loss – Pre-	amplifier.			

EUT	Wireless Headphone	Model Name	A3947
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 2	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4882.000	47.64	0.14	47.78	74	-26.22	peak
4882.000	38.41	0.14	38.55	54	-15.45	AVG
7323.000	42.05	2.36	44.41	74	-29.59	peak
7323.000	31.25	2.36	33.61	54	-20.39	AVG

Remark

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

EUT	Wireless Headphone	Model Name	A3947
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 2	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Value Type
4882.000	47.64	0.14	47.78	74	-26.22	peak
4882.000	38.24	0.14	38.38	54	-15.62	AVG
7323.000	41.05	2.36	43.41	74	-30.59	peak
7323.000	32.44	2.36	34.8	54	-19.2	AVG

Remark:

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Page 20 of 22

EUT	Wireless Headphone	Model Name	A3947
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4960.000	47.64	0.22	47.86	74	-26.14	peak
4960.000	38.24	0.22	38.46	54	-15.54	AVG
7440.000	41.05	2.64	43.69	74	-30.31	peak
7440.000	32.54	2.64	35.18	54	-18.82	AVG

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

EUT	Wireless Headphone	Model Name	A3947
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	- Value Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type	
4960.000	47.64	0.22	47.86	74	-26.14	peak	
4960.000	38.54	0.22	38.76	54	-15.24	AVG	
7440.000	42.05	2.64	44.69	74	-29.31	peak	
7440.000	31.59	2.64	34.23	54	-19.77	AVG	
Remark:	Remark:						
Factor = Anter	na Factor + Cabl	e Loss – Pre-a	mplifier.				

RESULT: PASS

Note:

The amplitude of other spurious emissions from 1G to 25 GHz which are attenuated more than 20 dB below the permissible value need not be reported.

Factor = Antenna Factor + Cable loss - Amplifier gain, Over=Measure-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

All test modes had been tested. The GFSK modulation is the worst case and recorded in the report.

Page 21 of 22

APPENDIX A: PHOTOGRAPHS OF TEST SETUP

Refer to the Report No.: AGC01110230214AP02A

APPENDIX B: PHOTOGRAPHS OF EUT

Refer to the Report No.: AGC01110230214AP03A

----END OF REPORT----

Conditions of Issuance of Test Reports

- 1. All samples and goods are accepted by the Attestation of Global Compliance (Shenzhen) Co., Ltd (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The company provides its services on the basis that such terms and conditions constitute express agreement between the company and any person, firm or company requesting its services (the "Clients").
- 2. Any report issued by Company as a result of this application for testing services (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to its customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.
- 3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.
- 4. In the event of the improper use of the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.
- 5. Samples submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.
- 6. The Company will not be liable for or accept responsibility for any loss or damage however arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.
- 7.Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.
- 8. The Company is not responsible for recalling the electronic version of the original report when any revision is made to them. The Client assumes the responsibility to providing the revised version to any interested party who uses them.
- 9. Subject to the variable length of retention time for test data and report stored hereinto as otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of the test report for a period of six years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after retention period. Under no circumstances shall we be liable for damage of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.