

FCC Radio Test Report

FCC ID: ZMOSC228GL

This report concerns: Original Grant

Project No. Equipment Brand Name	::	2403G086 LTE Module Fibocom
Test Model	:	SC228-GL
Series Model	:	N/A
Applicant	:	Fibocom Wireless Inc.
Address	:	1101, Tower A, Building 6, Shenzhen International Innovation Valley, Dashi 1st Rd, Nanshan, Shenzhen, China
Manufacturer	:	Fibocom Wireless Inc.
Address	:	1101, Tower A, Building 6, Shenzhen International Innovation Valley, Dashi 1st Rd, Nanshan, Shenzhen, China
Factory	:	Fibocom Wireless Inc.
Address	:	1101, Tower A, Building 6, Shenzhen International Innovation Valley, Dashi 1st Rd, Nanshan, Shenzhen, China
Date of Receipt	:	Mar. 14, 2024
Date of Test	:	Mar. 21, 2024 ~ Jul. 09, 2024
Issued Date	:	Sep. 30, 2024
Report Version	:	R01
Test Sample	:	Engineering Sample No.: SSL20240314110
Standard(s)	:	FCC CFR Title 47, Part 15, Subpart C

The above equipment has been tested and found compliance with the requirement of the relative

standards by BTL Inc.

Prepared by

Antony Liang

Chay. , pi

Approved by

Chay Cai

Room 108, Building 2, No.1, Yile Road, Songshan Lake Zone, Dongguan City, Guangdong, People's Republic of China

Tel: +86-769-8318-3000 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. BTL assumes no responsibility for the data provided by the customer, any statements, inferences or generalizations drawn by the customer or others from the reports issued by BTL.

The report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025: 2017 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Table of Contents	Page
REPORT ISSUED HISTORY	6
1 . APPLICABLE STANDARDS	7
2 . SUMMARY OF TEST RESULTS	7
2.1 TEST FACILITY	8
2.2 MEASUREMENT UNCERTAINTY	8
2.3 TEST ENVIRONMENT CONDITIONS	9
3 . GENERAL INFORMATION	10
3.1 GENERAL DESCRIPTION OF EUT	10
3.2 DESCRIPTION OF TEST MODES	11
3.3 PARAMETERS OF TEST SOFTWARE	12
3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	13
3.5 SUPPORT UNITS	14
3.6 CUSTOMER INFORMATION DESCRIPTION	14
4 . AC POWER LINE CONDUCTED EMISSIONS	15
4.1 LIMIT	15
4.2 TEST PROCEDURE	15
4.3 DEVIATION FROM TEST STANDARD	15
4.4 TEST SETUP	16
4.5 EUT OPERATING CONDITIONS	16
4.6 TEST RESULTS	16
5 . RADIATED EMISSIONS	17
5.1 LIMIT	17
5.2 TEST PROCEDURE	18
5.3 DEVIATION FROM TEST STANDARD	19
5.4 TEST SETUP	19
5.5 EUT OPERATING CONDITIONS	21
5.6 TEST RESULTS - 9 KHZ TO 30 MHZ	21
5.7 TEST RESULTS - 30 MHZ TO 1000 MHZ	21
5.8 TEST RESULTS - ABOVE 1000 MHZ	21
6 . NUMBER OF HOPPING FREQUENCY	22
6.1 LIMIT	22
6.2 TEST PROCEDURE	22

Table of Contents	Page
6.3 DEVIATION FROM STANDARD	22
6.4 TEST SETUP	22
6.5 EUT OPERATION CONDITIONS	22
6.6 TEST RESULTS	22
7 . AVERAGE TIME OF OCCUPANCY	23
7.1 LIMIT	23
7.2 TEST PROCEDURE	23
7.3 DEVIATION FROM STANDARD	23
7.4 TEST SETUP	23
7.5 EUT OPERATION CONDITIONS	23
7.6 TEST RESULTS	23
8 . HOPPING CHANNEL SEPARATION	24
8.1 LIMIT	24
8.2 TEST PROCEDURE	24
8.3 DEVIATION FROM STANDARD	24
8.4 TEST SETUP	24
8.5 EUT OPERATION CONDITIONS	24
8.6 TEST RESULTS	24
9.BANDWIDTH	25
9.1 LIMIT	25
9.2 TEST PROCEDURE	25
9.3 DEVIATION FROM STANDARD	25
9.4 TEST SETUP	25
9.5 EUT OPERATION CONDITIONS	25
9.6 TEST RESULTS	25
10 . MAXIMUM OUTPUT POWER	26
10.1 LIMIT	26
10.2 TEST PROCEDURE	26
10.3 DEVIATION FROM STANDARD	26
10.4 TEST SETUP	26
10.5 EUT OPERATION CONDITIONS	26
10.6 TEST RESULTS	26
11 . CONDUCTED SPURIOUS EMISSION	27
11.1 LIMIT	27

Table of Contents	Page
11.2 TEST PROCEDURE	27
11.3 DEVIATION FROM STANDARD	27
11.4 TEST SETUP	27
11.5 EUT OPERATION CONDITIONS	27
11.6 TEST RESULTS	27
12 . MEASUREMENT INSTRUMENTS LIST	28
13 . EUT TEST PHOTO	30
APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS	37
APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ	40
APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ	45
APPENDIX D - RADIATED EMISSION - ABOVE 1000 MHZ	48
APPENDIX E - NUMBER OF HOPPING FREQUENCY	63
APPENDIX F - AVERAGE TIME OF OCCUPANCY	65
APPENDIX G - HOPPING CHANNEL SEPARATION	70
APPENDIX H - BANDWIDTH	72
APPENDIX I - MAXIMUM OUTPUT POWER	74
APPENDIX J - CONDUCTED SPURIOUS EMISSION	77
APPENDIX K - DECLARATION FOR BLUETOOTH DEVICE	82

REPORT ISSUED HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-6-2403G086	R00	Original Report.	Sep. 23, 2024	Invalid
BTL-FCCP-6-2403G086	R01	Modified the comments.	Sep. 30, 2024	Valid

1. APPLICABLE STANDARDS

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

ANSI C63.10-2013

The following reference test guidance is not within the scope of accreditation of A2LA: KDB 558074 D01 15.247 Meas Guidance v05r02

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

	FCC CFR Title 47, Part 15, Subpart C				
Standard(s) Section	Test Item	Test Result	Judgment	Remark	
15.207	AC Power Line Conducted Emissions	APPENDIX A	PASS		
15.247(d) 15.205(a) 15.209(a)	Radiated Emission	APPENDIX B APPENDIX C APPENDIX D	PASS		
15.247 (a)(1)(iii)	Number of Hopping Frequency	APPENDIX E	PASS		
15.247 (a)(1)(iii)	Average Time of Occupancy	APPENDIX F	PASS		
15.247(a)(1)	Hopping Channel Separation	APPENDIX G	PASS		
15.247(a)(1)	Bandwidth	APPENDIX H	PASS		
15.247(a)(1)	Maximum Output Power	APPENDIX I	PASS		
15.247(d)	Conducted Spurious Emission	APPENDIX J	PASS		
15.203	Antenna Requirement		PASS	Note(2)	

Note:

(1) "N/A" denotes test is not applicable in this test report

(2) The device what use a permanently attached antenna were considered sufficient to comply with the provisions of 15.203.

2.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No.3, Jinshagang 1st Road, Dalang Town, Dongguan City, Guangdong People's Republic of China. BTL's Registration Number for FCC: 747969 BTL's Designation Number for FCC: CN1377

2.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95.45% confidence level (based on a coverage factor (k=2)) The BTL measurement uncertainty as below table:

A. AC power line conducted emissions test:

-	Test Site	Method	Measurement Frequency Range	<i>U</i> ,(dB)
	DG-C02	CISPR	150kHz ~ 30MHz	2.88

B. Radiated emissions test:

Test Site	Method	Measurement Frequency Range	<i>U</i> ,(dB)
DG-CB02	CISPR	9kHz ~ 30MHz	2.36

Test Site	Method	Measurement Frequency Range	Ant. H / V	<i>U</i> ,(dB)
DG-CB03 (3m)	CISPR	30MHz ~ 200MHz	V	4.40
		30MHz ~ 200MHz	Н	3.62
		200MHz ~ 1,000MHz	V	4.58
		200MHz ~ 1,000MHz	Н	3.98

Test Site	Method	Measurement Frequency Range	<i>U</i> ,(dB)
DG-CB03		1GHz ~ 6GHz	4.08
(3m) CISPR		6GHz ~ 18GHz	4.62

Test Site	Method	Measurement Frequency Range	<i>U</i> ,(dB)
DG-CB03 (1m)	CISPR	18 ~ 26.5 GHz	3.36

C. Other Measurement:

Test Item	Uncertainty
Conducted Spurious Emission	1.9 dB
Maximum Output Power	1.3 dB
Bandwidth	0.90 %
Temperature	0.8 °C
Humidity	2.2 %

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

2.3 TEST ENVIRONMENT CONDITIONS

Toot Itom	Tomporatura	Humidity	Test Voltage	Tested Py	Tested Date
Test Item	Temperature	Humany	Test Voltage	Tested By	Tested Date
AC Power Line Conducted Emissions	25°C	66%	AC 120V/60Hz	Hayden Chen	Apr. 08, 2024
Radiated Emissions-9 kHz to 30 MHz	23°C	59%	DC 3.8V	Hayden Chen	Apr. 29, 2024
Radiated Emissions-30 MHz to 1000 MHz	25°C	51%	DC 3.8V	Chen Mo	Apr. 16, 2024
Radiated Emissions-Above 1000 MHz	23-25°C	51-56%	DC 3.8V	Allen Tong	Apr. 28, 2024 May 12, 2024
Number of Hopping Frequency	24°C	49%	DC 3.8V	Complex Qin	May 01, 2024
Average Time of Occupancy	24°C	49%	DC 3.8V	Complex Qin	May 01, 2024
Hopping Channel Separation	24°C	49%	DC 3.8V	Complex Qin	May 01, 2024
Bandwidth	24°C	49%	DC 3.8V	Complex Qin	May 01, 2024
Maximum Output Power	24°C	49%	DC 3.8V	Complex Qin	May 01, 2024
Conducted Spurious Emission	24°C	49%	DC 3.8V	Complex Qin	May 01, 2024

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	LTE Module
Brand Name	Fibocom
Test Model	SC228-GL
Series Model	N/A
Model Difference(s)	N/A
Hardware Version	V1.1
Software Version	SC228-GL-T16.12.034
Power Source	DC voltage supplied from external power supply.
Power Rating	DC 3.5V - 4.35V, Typical: 3.8V
Operation Frequency	2402 MHz ~ 2480 MHz
Modulation Type	GFSK, π/4-DQPSK, 8-DPSK
Bit Rate of Transmitter	1Mbps, 2Mbps, 3Mbps
Max. Output Power	3Mbps: 8.76 dBm (0.0075 W)

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

3. Table for Filed Antenna:

Ant.	Manufacturer	P/N	Antenna Type	Connector	Gain (dBi)
1	Shenzhen Bogesi Communication Technology Co., Ltd	GHT-019A	Dipole	SMA Male J	3.02

3.2 DESCRIPTION OF TEST MODES

The test system was pre-tested based on the consideration of all possible combinations of EUT operation mode.

Pretest Mode	Description		
Mode 1	TX Mode_1Mbps Channel 00/39/78		
Mode 2	TX Mode_2Mbps Channel 00/39/78		
Mode 3	TX Mode_3Mbps Channel 00/39/78		
Mode 4	TX Mode_3Mbps Channel 78		

Following mode(s) was (were) found to be the worst case(s) and selected for the final test.

AC power line conducted emissions test			
Final Test Mode Description			
Mode 4	TX Mode_3Mbps Channel 78		

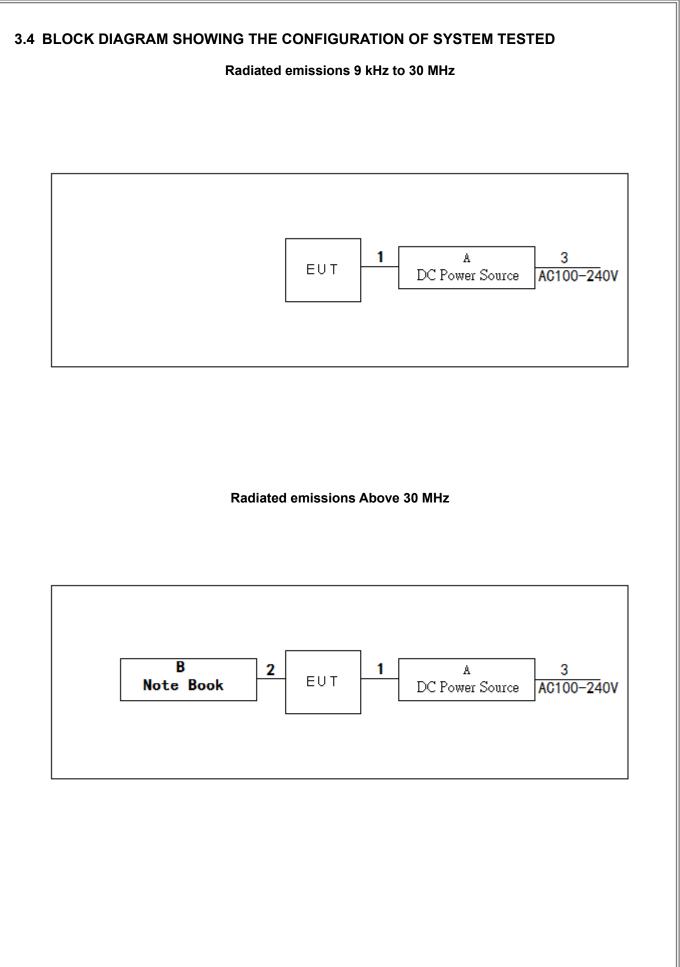
Radiated emissions test - Below 1GHz			
Final Test Mode Description			
Mode 4	TX Mode_3Mbps Channel 78		

Radiated emissions test - Above 1GHz			
Final Test Mode Description			
Mode 1	TX Mode_1Mbps Channel 00/39/78		
Mode 3 TX Mode_3Mbps Channel 00/39/78			

Maximum Output Power			
Final Test Mode	Description		
Mode 1	TX Mode_1Mbps Channel 00/39/78		
Mode 2	TX Mode_2Mbps Channel 00/39/78		
Mode 3	TX Mode_3Mbps Channel 00/39/78		

Other Conducted test			
Final Test Mode Description			
Mode 1	TX Mode_1Mbps Channel 00/39/78		
Mode 3	TX Mode_3Mbps Channel 00/39/78		

Note:


- (1) The measurements for Output Power were tested with DH1/3/5 during 1Mbps, 2Mbps and 3Mbps, the worst case were 1Mbps (DH5) and 3Mbps (3DH5), only worst case were documented for other test items except Average Time of Occupancy.
- (2) For radiated emission above 1 GHz test, the spurious points of 1GHz~26.5GHz have been pre-tested and in this report only recorded the worst case. The remaining spurious points are all below the limit value of 20dB.
- (3) This product has the mode of BT AFH, which was considered during testing. 800/20/X(X = 2 of DH1, X = 4 of DH3 or X = 6 of DH5) with 20, 10 or 6.67 hops per second in a channel, and then multiply 0.4*20 (20 # of hopping). But this mode is not the worst case mode as duration of the packet is same, and this report only shows the worst case mode.
- (4) For AC power line conducted emissions and radiated spurious emissions below 1 GHz test, the 3Mbps Channel 78 is found to be the worst case and recorded.
- (5) For radiated emission Harmonic 18-26.5GHz test, only tested the worst case and recorded.
- (6) For radiated emission above 1 GHz test, the polarization of Vertical and Horizontal are evaluated, the worst case is Vertical and recorded.

3.3 PARAMETERS OF TEST SOFTWARE

During testing, channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

Test Software Version	tware Version		
Frequency (MHz)	2402	2441	2480
1Mbps	8	8	8
2Mbps	8	8	8
3Mbps	8	8	8

3.5 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.
А	DC Power Source	UNI-T	UDP6721	AWP7224050031
В	Note Book	HW	KLVG-16	N/A

Item	Cable Type	Shielded Type	Ferrite Core	Length
1	DC Cable	NO	NO	1m
2	Data Cable	NO	NO	1m
3	AC Cable	NO	NO	1m

3.6 CUSTOMER INFORMATION DESCRIPTION

1) The antenna gain is provided by the manufacturer.

2) Except for AC power line conducted emissions and radiated emissions, the results of all test items include cable losses. All cable losses are provided by the testing laboratory.

4. AC POWER LINE CONDUCTED EMISSIONS

4.1 LIMIT

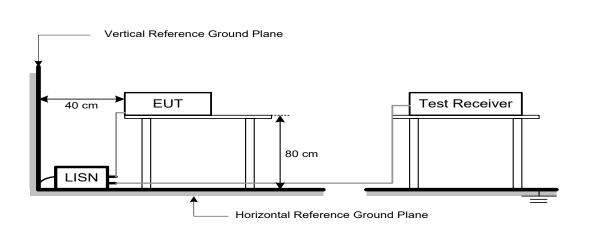
Frequency of Emission (MHz)	Limit (d	BμV)
Frequency of Emission (Minz)	Quasi-peak	Average
0.15 - 0.5	66 to 56*	56 to 46*
0.5 - 5.0	56	46
5.0 - 30.0	60	50

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

4.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.


The following table is the setting of the receiver:

Receiver Parameters	Setting
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

4.3 DEVIATION FROM TEST STANDARD No deviation.

4.4 TEST SETUP

4.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical function (as a customer would normally use it), EUT was programmed to be in continuously transmitting data or hopping on mode.

4.6 TEST RESULTS

Please refer to the APPENDIX A.

Remark:

- (1) All readings are QP Mode value unless otherwise stated AVG in column of [Note]. If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform in this case, a "*" marked in AVG Mode column of Interference Voltage Measured.
- (2) Measuring frequency range from 150 kHz to 30 MHz.

5. RADIATED EMISSIONS

5.1 LIMIT

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (9 kHz-1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000 MHz)

Frequency	Band edge/ Harmonic at 3m (dBµV/m)		Harmonic at 1m (dBµV/m)	
(MHz)	Peak	Average	Peak	Average
Above 1000	74	54	83.5 (Note 4)	63.5 (Note 4)

Note:

(1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.

1

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

(4)

$$FS_{\text{limit}} = FS_{\text{max}} - 20\log\left(\frac{d_{\text{limit}}}{d_{\text{measure}}}\right)$$

 $20\log (d_{limit}/d_{measure})=20\log (3/1)=9.5 \text{ dB}.$

FS_{limit}: Harmonic at 3m Peak and Average limit.

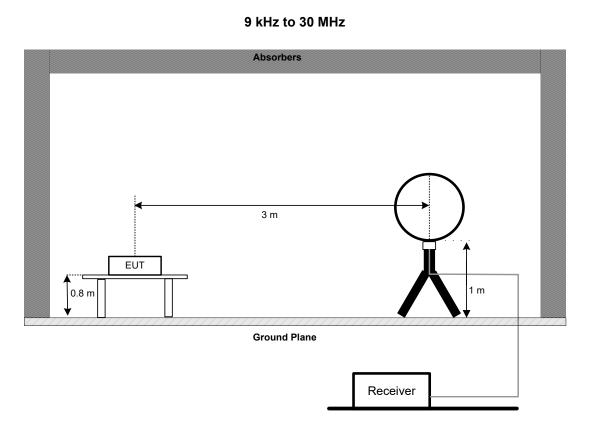
FS_{max}: Harmonic at 1m Peak and Average Maximum value.

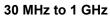
d_{limit}: Harmonic at 3m test distance.

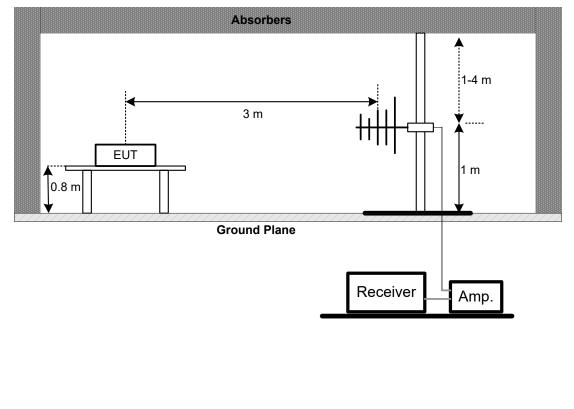
d_{measure}: Harmonic Actual test distance.

5.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz)
- b. The measuring distance of 3 m or 1m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
- i. For the actual test configuration, please refer to the related Item –EUT Test Photos.

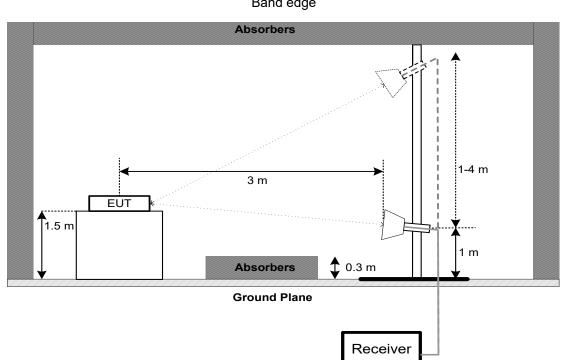

The following table is the setting of the receiver:

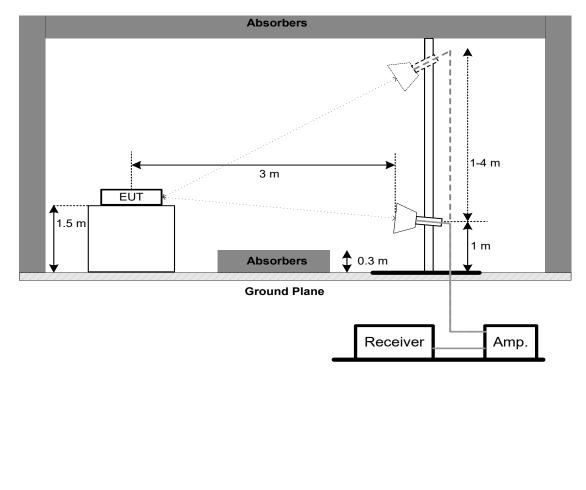

Spectrum Parameters	Setting
Start ~ Stop Frequency	9 kHz~150 kHz for RBW 200 Hz
Start ~ Stop Frequency	0.15 MHz~30 MHz for RBW 9 kHz
Start ~ Stop Frequency	30 MHz~1000 MHz for RBW 100 kHz
Spectrum Parameters	Setting
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1 MHz / 3 MHz for PK value
(Emission in restricted band)	1 MHz / 1/T Hz for AVG value
Spectrum Parameters	Setting
Start ~ Stop Frequency	9 kHz~90 kHz for PK/AVG detector
Start ~ Stop Frequency	90 kHz~110 kHz for QP detector
Start ~ Stop Frequency	110 kHz~490 kHz for PK/AVG detector
Start ~ Stop Frequency	490 kHz~30 MHz for QP detector
Start ~ Stop Frequency	30 MHz~1000 MHz for QP detector
Start ~ Stop Frequency	1 GHz~26.5 GHz for PK/AVG detector

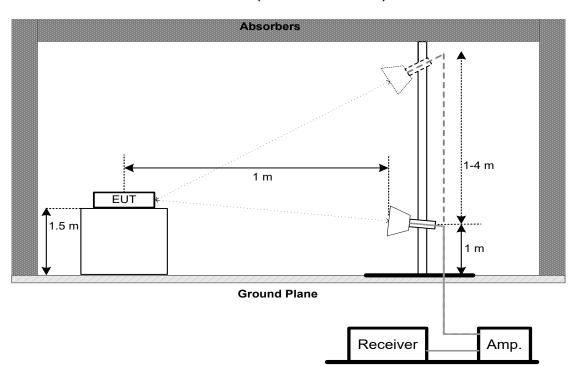


5.3 DEVIATION FROM TEST STANDARD No deviation.

5.4 TEST SETUP







Harmonic (1 GHz to 18 GHz)

Harmonic (18 GHz to 26.5 GHz)

5.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULTS - 9 kHz TO 30 MHz

Please refer to the APPENDIX B.

Remark:

- (1) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (2) Limit line = specific limits (dBuV) + distance extrapolation factor.

5.7 TEST RESULTS - 30 MHz TO 1000 MHz

Please refer to the APPENDIX C.

5.8 TEST RESULTS - ABOVE 1000 MHz

Please refer to the APPENDIX D.

Remark:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

6. NUMBER OF HOPPING FREQUENCY

6.1 LIMIT

Section	Test Item	Limit
FCC 15.247(a)(1)(iii)	Number of Hopping Frequency	15

6.2 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.

b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting
Span Frequency	> Operating Frequency Range
RBW	100 kHz
VBW	100 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.6 TEST RESULTS

Please refer to the APPENDIX E.

7. AVERAGE TIME OF OCCUPANCY

7.1 LIMIT

Section	Test Item	Limit
FCC 15.247(a)(1)(iii)	Average Time of Occupancy	0.4sec

7.2 TEST PROCEDURE

- a. Set the EUT for DH1, DH3 and DH5 packet transmitting.
- b. Measure the maximum time duration of one single pulse.
- c. DH1 Packet permit maximum 1600 / 79 /2 = 10.12 hops per second in each channel (1 time slot TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 10.12 x 31.6 = 320 within 31.6 seconds.
- d. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 5.06 x 31.6 = 160 within 31.6 seconds.
- e. DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 3.37 x 31.6 = 106.6 within 31.6 seconds.
- f. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- g. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting
Span Frequency	0 MHz
RBW	1 MHz
VBW	1 MHz
Detector	Peak
Trace	Max Hold
Sweep Time	As necessary to capture the entire dwell time per hopping channel

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.6 TEST RESULTS

Please refer to the APPENDIX F.

8. HOPPING CHANNEL SEPARATION

8.1 LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting
Span Frequency	Wide enough to capture the peaks of two adjacent channels
RBW	30 kHz
VBW	100 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.6 TEST RESULTS

Please refer to the APPENDIX G.

9. BANDWIDTH

9.1 LIMIT

Section	Test Item
FCC 15.247(a)(1)	Bandwidth

9.2 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.

b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting
Span Frequency	> Measurement Bandwidth
RBW	30 kHz
VBW	100 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

9.6 TEST RESULTS

Please refer to the APPENDIX H.

10. MAXIMUM OUTPUT POWER

10.1 LIMIT

Section	Test Item	Limit
FCC 15.247(a)(1)	Maximum Output Power	0.1250 Watt or 20.97 dBm

Note: Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

10.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting
Span Frequency	Approximately five times the 20 dB bandwidth, centered on a hopping channel.
RBW	3 MHz
VBW	3 MHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

10.3 DEVIATION FROM STANDARD

No deviation.

10.4 TEST SETUP

10.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

10.6 TEST RESULTS

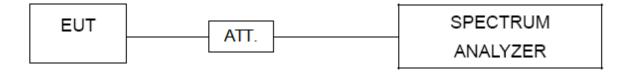
Please refer to the APPENDIX I.

11. CONDUCTED SPURIOUS EMISSION

11.1 LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak Output Power limits. If the transmitter complies with the Output Power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.

11.2 TEST PROCEDURE


- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting			
Start Frequency	30 MHz			
Stop Frequency	26.5 GHz			
RBW	100 kHz			
VBW	100 kHz			
Detector	Peak			
Trace	Max Hold			
Sweep Time	Auto			

11.3 DEVIATION FROM STANDARD

No deviation.

11.4 TEST SETUP

11.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

11.6 TEST RESULTS

Please refer to the APPENDIX J.

12. MEASUREMENT INSTRUMENTS LIST

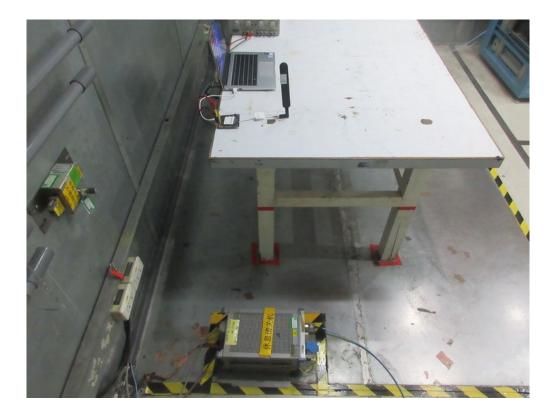
	AC Power Line Conducted Emissions						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	EMI Test Receiver	R&S	ESR3	103027	Jun. 16, 2024		
2	TWO-LINE V-NETWORK	R&S	ENV216	101447	Dec. 22, 2024		
3	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A		
4	Cable	N/A	SFT205-NMNM-9 M-001	9M	Nov. 27, 2024		
5	643 Shield Room	ETS	6*4*3	N/A	N/A		
6	DC power supply	UNI-T	UDP6721	AWP7224050031	Mar. 20, 2025		

	Radiated Emissions - 9 kHz to 30 MHz						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	Active Loop Antenna	Schwarzbeck	FMZB 1513-60B	1513-60 B-034	Mar. 30, 2025		
2	EMI Test Receiver	Keysight	N9038A	MY56400060	Dec. 22, 2024		
3	Cable	RW	LMR-400(30MHz-1 GHz)(10m+2.5m+0. 8M)	N/A	Jul. 04, 2024		
4	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A		
5	1266 Chamber room	ETS	12*6*6	N/A	May 21, 2024		
6	DC power supply	UNI-T	UDP6721	AWP7224050031	Mar. 20, 2025		

	Radiated Emissions - 30 MHz to 1 GHz						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	1462	Dec. 13, 2024		
2	Attenuator	EMC INSTRUMENT	EMCI-N-6-06	AT-06009	Dec. 13, 2024		
3	Preamplifier	EMC INSTRUMENT	EMC001330	980863	Apr. 07, 2025		
4	Cable	RegalWay	LMR400-NMNM-12 .5m	N/A	Jul. 04, 2024		
5	Cable	RegalWay	LMR400-NMNM-3 m	N/A	Jul. 04, 2024		
6	Cable	RegalWay	LMR400-NMNM-0. 5m	N/A	Jul. 04, 2024		
7	Receiver	Agilent	N9038A	MY52130039	Dec. 22, 2024		
8	Positioning Controller	MF	MF-7802	N/A	N/A		
9	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A		
10	966 Chamber room	CM	9*6*6	N/A	May 17, 2024		
11	DC power supply	UNI-T	UDP6721	AWP7224050031	Mar. 20, 2025		

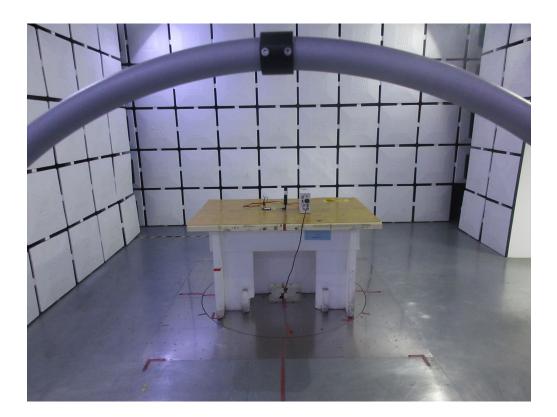
	Radiated Emissions - Above 1 GHz					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	Receiver	Agilent	N9038A	MY52130039	Dec. 22, 2024	
2	Preamplifier	EMC INSTRUMENT	EMC118A45SE	981001	Nov. 17, 2024	
3	MXA Signal Analyzer	KEYSIGHT	N9020B	MY63380204	Nov. 17, 2024	
4	Double Ridged Guide Antenna	ETS	3115	75789	May 31, 2024	
5	Cable	RegalWay	RWLP50-4.0A-SMS M-12.5M	N/A	Feb. 19, 2025	
6	Cable	RegalWay	RWLP50-4.0A-NM RASM-2.5M	N/A	Aug. 08, 2024	
7	Cable	RegalWay	RWLP50-4.0A-NM RASMRA-0.8M	N/A	Aug. 08, 2024	
8	Low Noise Amplifier	CONNPHY	CLN-18G40G-4330 -K	619413	Jul. 06, 2024	
9	Cable	RegalWay	RWLP50-2.6A-2.92 M2.92M-1.1M	N/A	Jul. 26, 2024	
10	Cable	Tonscend	HF160-KMKM-3M	N/A	Jul. 26, 2024	
11	Broad-Band Horn Antenna	Schwarzbeck	BBHA9170(3m)	9170-319	Jun. 20, 2024	
12	966 Chamber room	CM	9*6*6	N/A	May 17, 2024	
13	Attenuator	Talent Microwave	TA10A2-S-18	N/A	N/A	
14	Filter	STI	STI15-9912	N/A	Jun. 16, 2024	
15	Positioning Controller	MF	MF-7802	N/A	N/A	
16	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A	
17	DC power supply	UNI-T	UDP6721	AWP7224050031	Mar. 20, 2025	

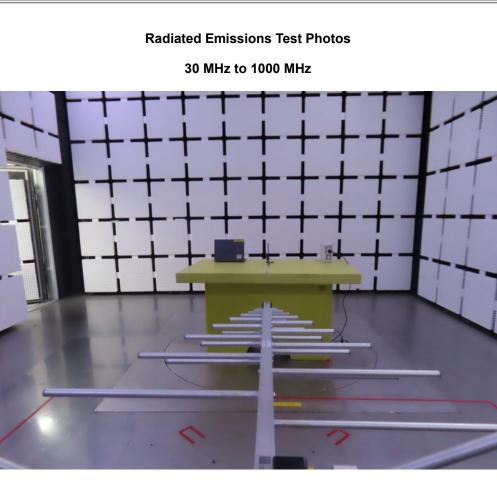
	Number of Hopping Frequency & Average Time of Occupancy & Hopping Channel Separation & Bandwidth & Maximum Output Power & Conducted Spurious Emission						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	Spectrum Analyzer	R&S	FSP40	100185	Jun. 16, 2024		
2	Attenuator	Talent Microwave	TA10A0-S-26.5	N/A	N/A		
3	3 DC Block N/A N/A N/A N/A						
4	4 Measurement BTL BTL Conducted N/A N/A						
5	Attenuator	Talent Microwave	TA10A0-S-26.5	N/A	N/A		
6	DC power supply	UNI-T	UDP6721	AWP7224050031	Mar. 20, 2025		
7	Spectrum Analyzer	R&S	FSP38	100852	Jun. 16, 2024		
8	Multimeter	FLUKE	15B+(TR13)	45123773WS	Jun. 16, 2024		
9	Cable	Woke	S02-181212-064	N/A	N/A		

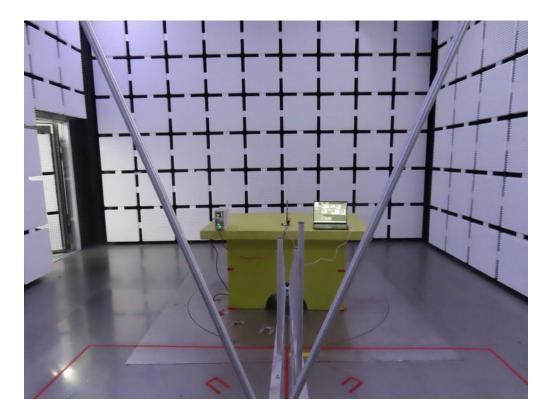

Remark "N/A" denotes no model name, serial no. or calibration specified. All calibration period of equipment list is one year.

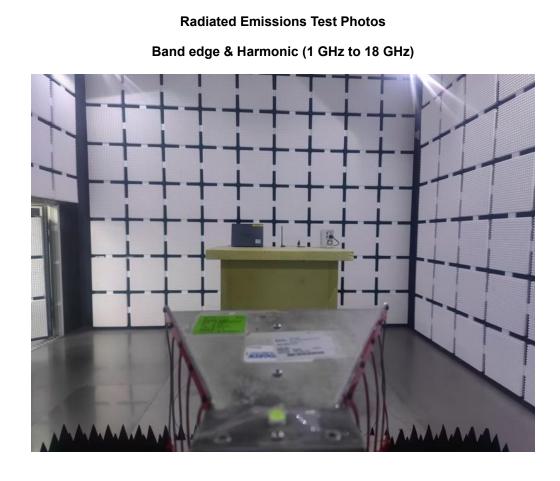
13. EUT TEST PHOTO

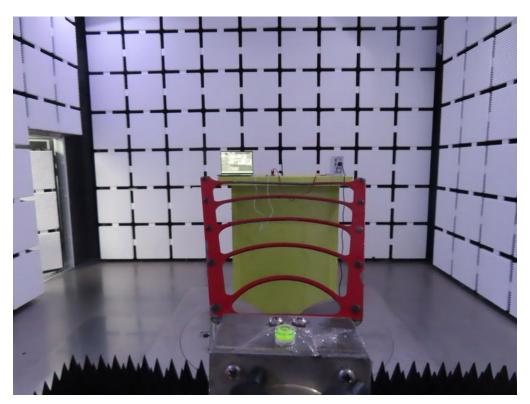
AC Power Line Conducted Emissions Test Photos

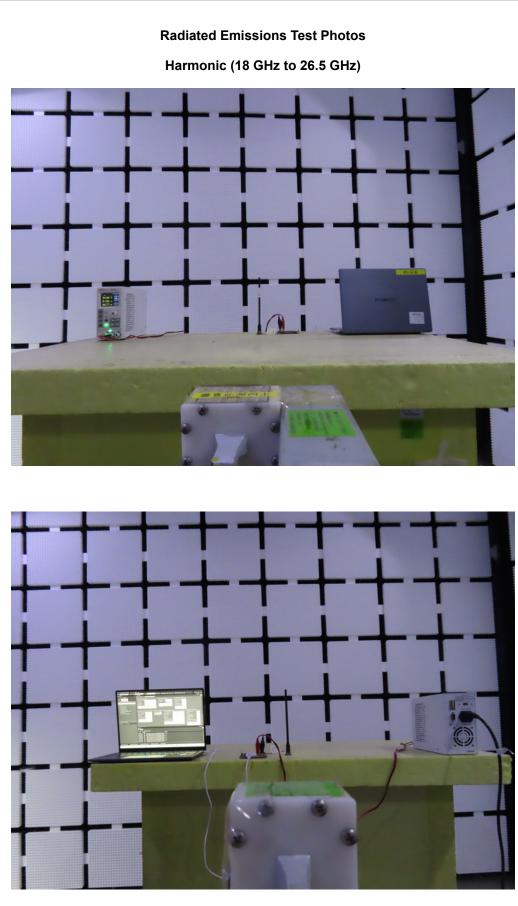


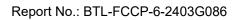

Radiated Emissions Test Photos

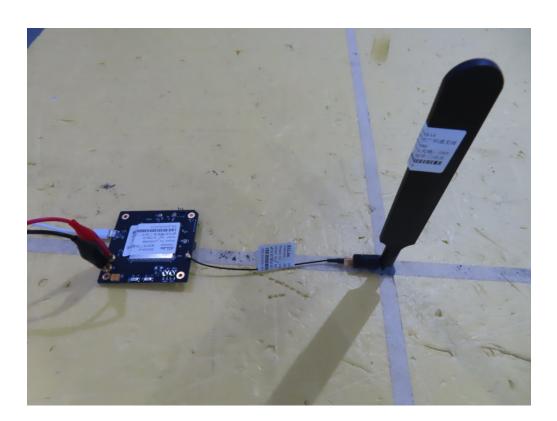

9 kHz to 30 MHz

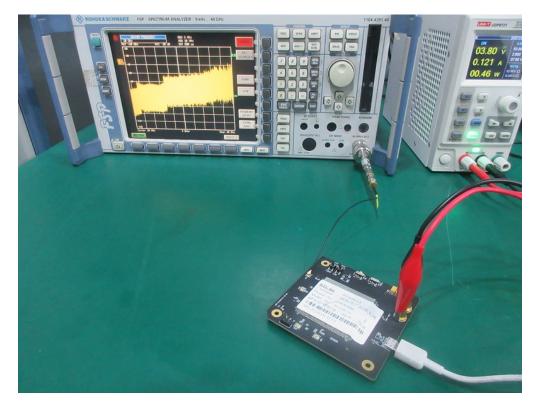


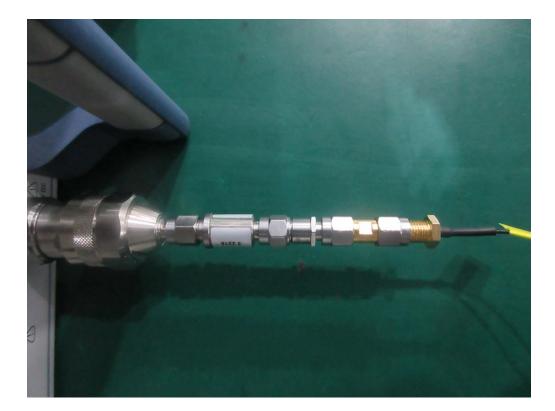




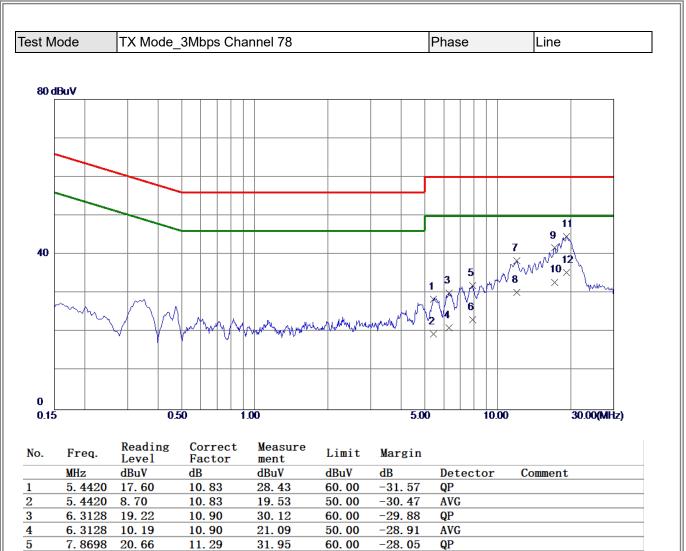








Conducted Test Photos



APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS

50.00

60.00

50.00

60.00

50.00

60.00

50.00

AVG

QP

AVG

QP

AVG

QP

AVG

-26.81

-21.54

-19.80

-18.32

-17.12

-15.31

-14.61

REMARKS:

7.8698

11.9445 26.06

11.9445 17.80

17.1353 28.10

17.1353 19.30

19.1783 30.40

19.1783 21.10

11.90

6

7

8

9

10

11

12 *

(1) Measurement Value = Reading Level + Correct Factor.

11.29

12.40

12.40

13.58

13.58

14.29

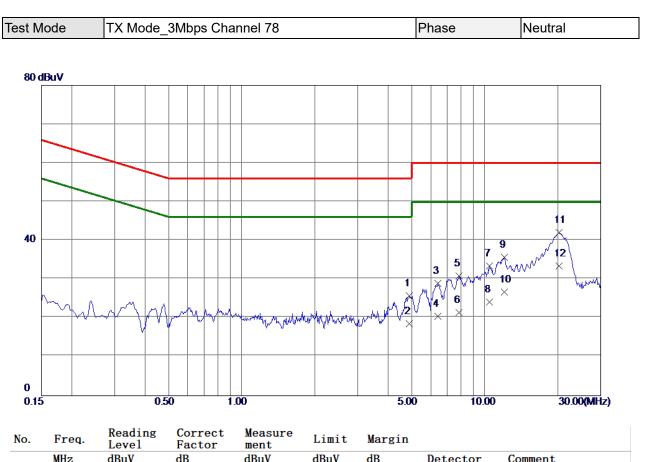
14.29

23.19

38.46

30.20

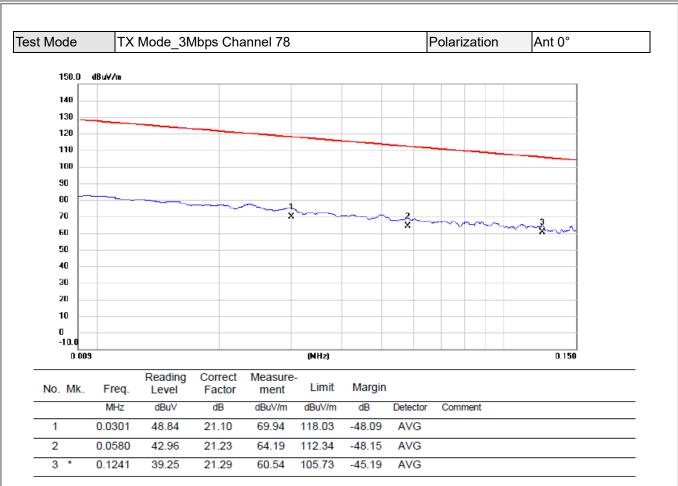
41.68


32.88

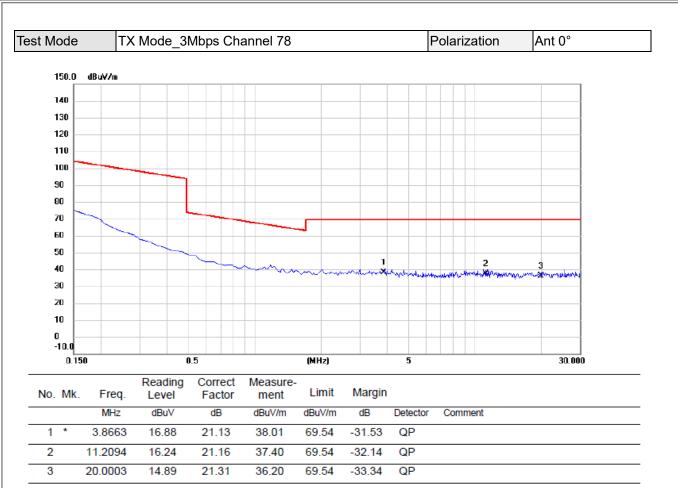
44.69

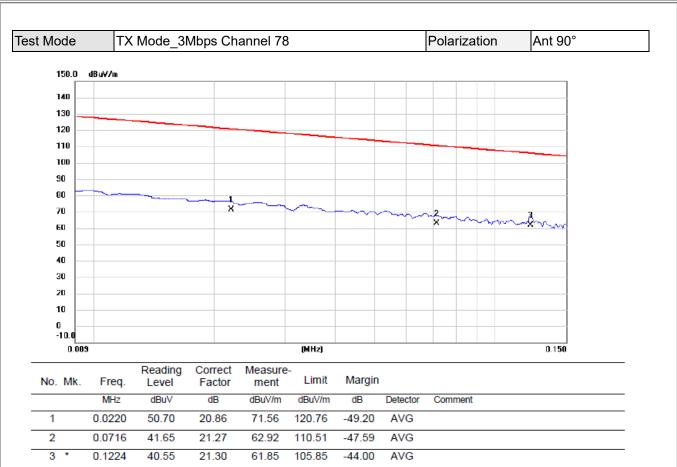
35.39

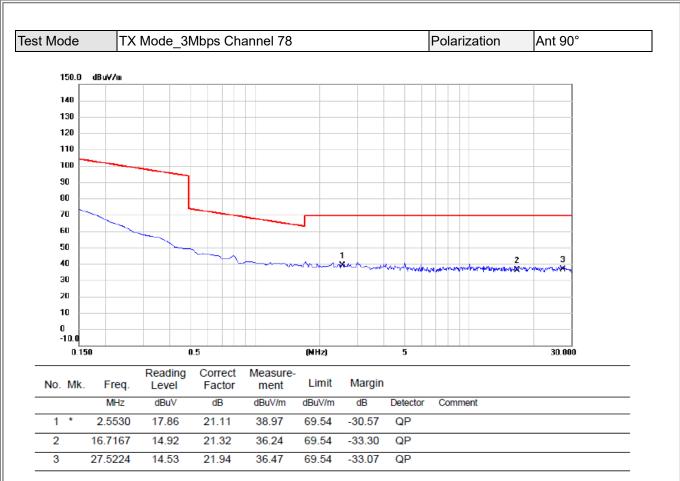
(2) Margin Level = Measurement Value - Limit Value.


No.	Freq.	Level	Factor	ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	4.8863	15.09	10.69	25.78	56.00	-30. 22	QP	
2	4.8863	7.80	10.69	18.49	46.00	-27. 51	AVG	
3	6. 4140	18.12	10.84	28. 96	60.00	-31.04	QP	
4	6. 4140	9.60	10.84	20.44	50.00	-29.56	AVG	
5	7.8428	19.69	11.22	30.91	60.00	-29.09	QP	
6	7.8428	10.20	11.22	21.42	50.00	-28.58	AVG	
7	10.4663	21.35	12.14	33. 49	60.00	-26. 51	QP	
8	10.4663	12.09	12.14	24.23	50.00	-25.77	AVG	
9	12.0300	23.36	12.37	35.73	60.00	-24. 27	QP	
10	12.0300	14.30	12.37	26.67	50.00	-23. 33	AVG	
11	20.2178	27.47	14. 54	42.01	60.00	-17. 99	QP	
12 *	20.2178	18. 90	14. 54	33. 44	50.00	-16. 56	AVG	

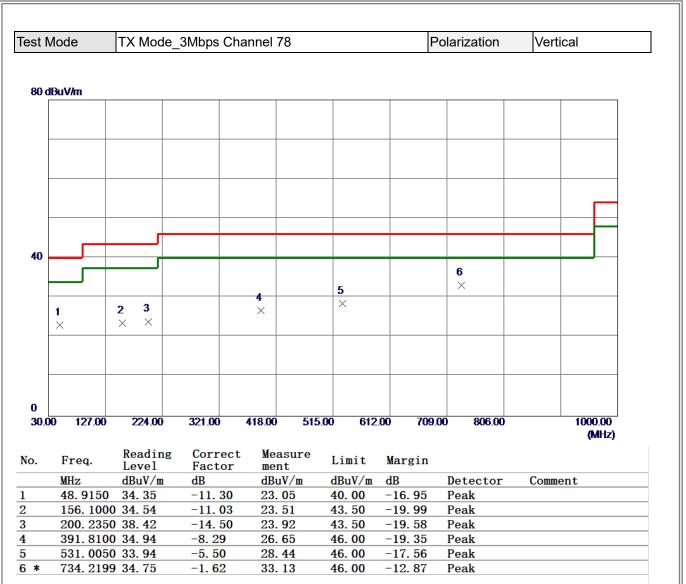
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ

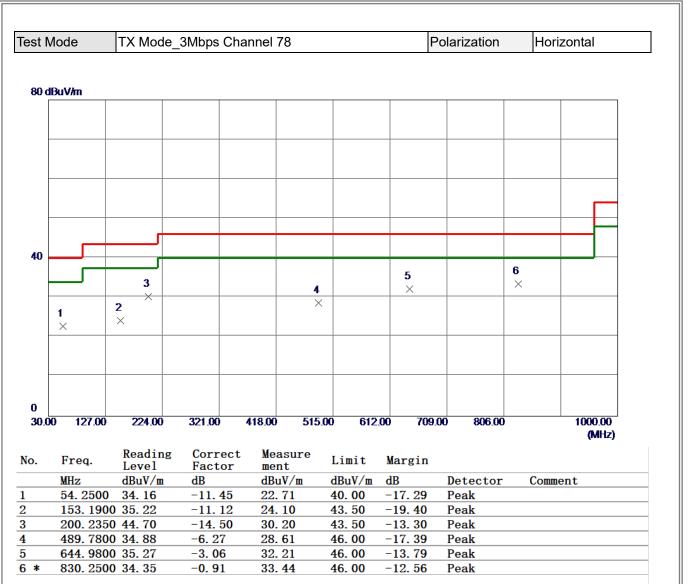

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

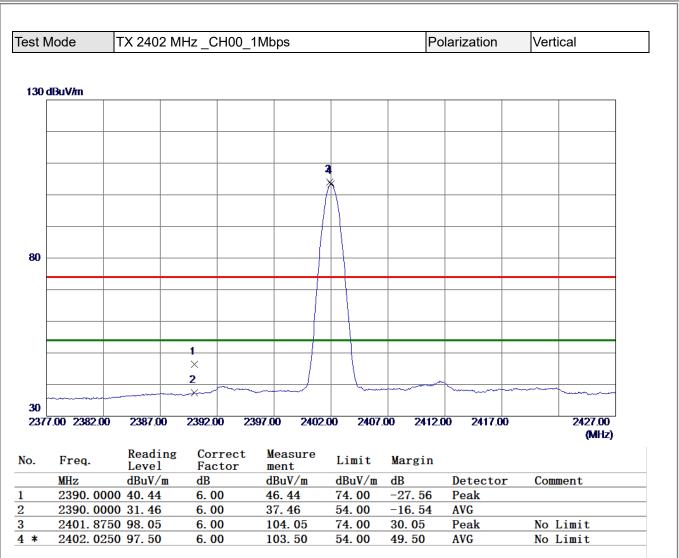
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

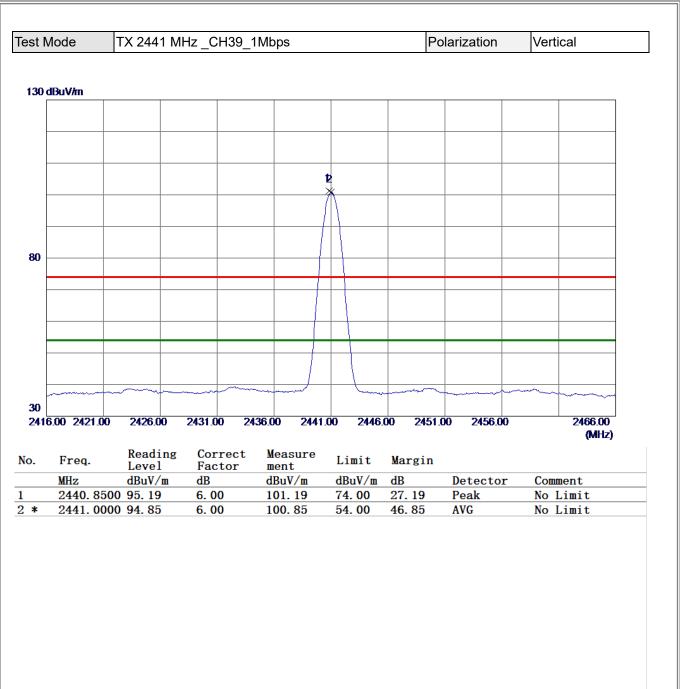

APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



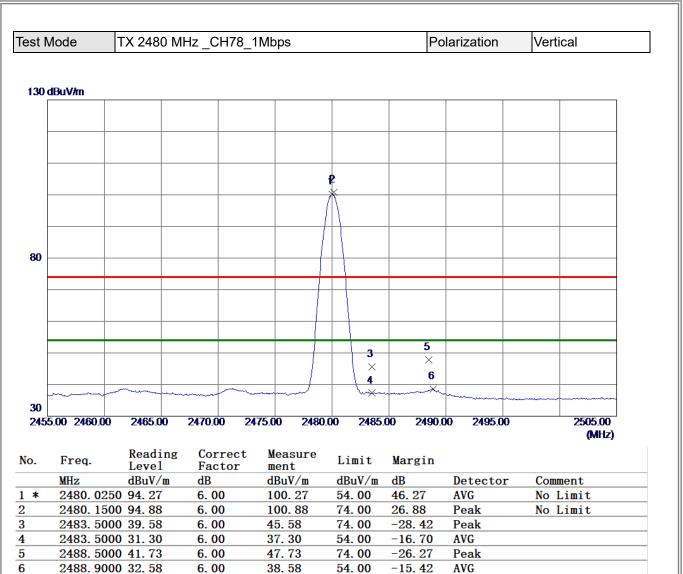
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX D - RADIATED EMISSION - ABOVE 1000 MHZ


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

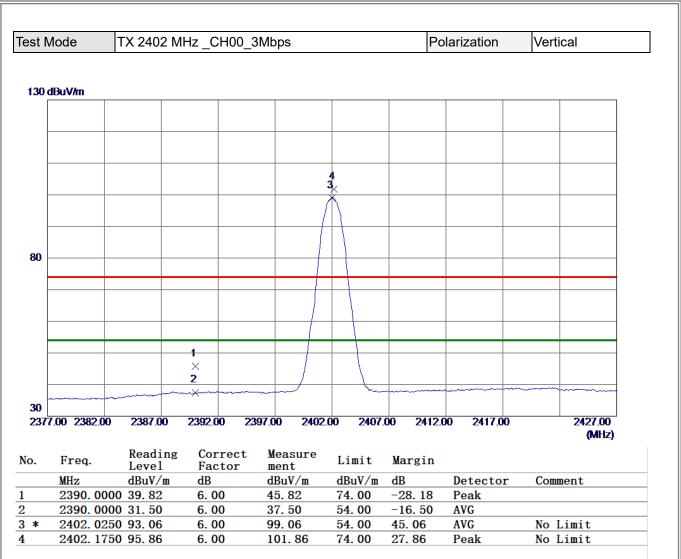
est N	Node	TX 2402 MI	Hz_CH00_	1Mbps		Ρ	olarization	Vertical
100	dBuV/m							
50		2 1		3				
				×				
				l X				
			· · · ·	×				
0								
100	0.00 2700.00	4400.00	6100.00 78	300.00 9500.	00 1120	0.00 1290	0.00 14600.00	18000.00 (MHz)
lo.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
*	4804. 029		0.66	45.06	54.00	-8. 94	AVG	
	4804.230		0.66	48.47	74.00	-25. 53	Peak	
3	7205.710		5.91	44.78	74.00	-29.22	Peak	
Ł	7206.070	0 31.58	5.91	37.49	54.00	-16. 51	AVG	

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.



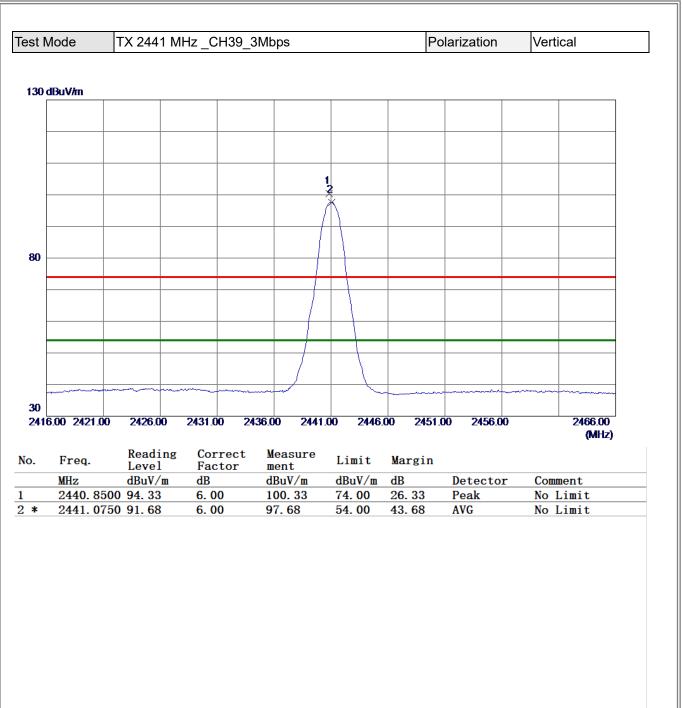
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

0 2 0 0 1 0	00 1	00 2 0 0 1 0		/lode	TX 2441 M	Hz _CH39_	1Mbps		Po	olarization	Vertical
2 2 <th2< th=""> <th2< th=""> <th2< th=""> <th2< th=""></th2<></th2<></th2<></th2<>	2 2	2 2 <th2< th=""> <th2< th=""> <th2< th=""> <th2< th=""></th2<></th2<></th2<></th2<>									
0 2 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0	0 2 0 1 0	0 2 0 0 1 0	00 (1BuV/m							
U I	No I X I	No I	Γ								
U I	0 1 X 1	0 1									
U I	0 1	0 1									
Image: Second state Image: Second state	Image: Second state Image: Second state	Image: Second state Image: Second state									
J L A	J L A	J L A									
U I	U I	U I	ŀ								
U L X I	U L X I	U I									
U I	0 1	0 1									
Image: Contract Measure Limit Margin MHz dBuV/m dB dBuV/m dB uV/m	Image: Contract Measure Limit Margin MHz dBuV/m dB dBuV/m dB uV/m	00.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 WHz MHz MBuV/m MB MBuV/m dBuV/m dBuV/m<	, [2 1/						
Freq. Reading Level Correct Measure Factor Limit Margin Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4882.0200 44.28 0.88 45.16 54.00 -8.84 AVG	Freq. Reading Level Correct Measure Factor Limit Margin Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4882.0200 44.28 0.88 45.16 54.00 -8.84 AVG	Freq. Reading Level Correct Measure Factor Limit Margin Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4882.0200 44.28 0.88 45.16 54.00 -8.84 AVG			Ŷ						
000.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.0 (MHz) Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4882.0200 44.28 0.88 45.16 54.00 -8.84 AVG	000.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.0 (MHz) Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBUV/m dB Detector Comment 4882.0200 44.28 0.88 45.16 54.00 -8.84 AVG	000.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.0 (MHz) Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBUV/m dB Detector Comment 4882.0200 44.28 0.88 45.16 54.00 -8.84 AVG	ŀ								
000.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.0 (MHz) Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4882.0200 44.28 0.88 45.16 54.00 -8.84 AVG	000.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 (MHz) Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4882.0200 44.28 0.88 45.16 54.00 -8.84 AVG	000.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 (MHz) Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4882.0200 44.28 0.88 45.16 54.00 -8.84 AVG									
000.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.0 (MHz) Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4882.0200 44.28 0.88 45.16 54.00 -8.84 AVG	000.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.0 (MHz) Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBUV/m dB Detector Comment ≰ 4882.0200 44.28 0.88 45.16 54.00 -8.84 AVG	000.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.0 (MHz) Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBUV/m dB Detector Comment ≰ 4882.0200 44.28 0.88 45.16 54.00 -8.84 AVG									
000.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.0 (MHz) Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4882.0200 44.28 0.88 45.16 54.00 -8.84 AVG	000.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 (MHz) Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4882.0200 44.28 0.88 45.16 54.00 -8.84 AVG	000.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 (MHz) Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4882.0200 44.28 0.88 45.16 54.00 -8.84 AVG	-								
D00.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 (MHz) Freq. Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4882.0200 44.28 0.88 45.16 54.00 -8.84 AVG	000.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 1800.00 (MHz) . Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBUV/m dB Detector Comment ★ 4882.0200 44.28 0.88 45.16 54.00 -8.84 AVG	000.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.0 (MHz) . Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBUV/m dB Detector Comment ★ 4882.0200 44.28 0.88 45.16 54.00 -8.84 AVG									
000.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.0 (MHz) Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4882.0200 44.28 0.88 45.16 54.00 -8.84 AVG	000.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.0 (MHz) Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBUV/m dB Detector Comment ≰ 4882.0200 44.28 0.88 45.16 54.00 -8.84 AVG	000.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.0 (MHz) Freq. Reading Correct Measure Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dBUV/m dB Detector Comment ≰ 4882.0200 44.28 0.88 45.16 54.00 -8.84 AVG	ŀ								
Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4882.0200 44.28 0.88 45.16 54.00 -8.84 AVG	Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4882.0200 44.28 0.88 45.16 54.00 -8.84 AVG	Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4882.0200 44.28 0.88 45.16 54.00 -8.84 AVG									
Freq.Reading LevelCorrect FactorMeasure mentLimitMarginMHzdBuV/mdBdBuV/mdBuV/mdBDetectorComment4882.020044.280.8845.1654.00-8.84AVG	Freq.Reading LevelCorrect FactorMeasure mentLimitMarginMHzdBuV/mdBdBuV/mdBuV/mdBDetectorComment4882.020044.280.8845.1654.00-8.84AVG	Freq.Reading LevelCorrect FactorMeasure mentLimitMarginMHzdBuV/mdBdBuV/mdBuV/mdBDetectorComment4882.020044.280.8845.1654.00-8.84AVG	DO	0.00 2700.00	0 4400.00	6100.00 7	800.00 9500	00 1120	0.00 12900	0.00 14600.0	
MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4882.0200 44.28 0.88 45.16 54.00 -8.84 AVG	MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4882.0200 44.28 0.88 45.16 54.00 -8.84 AVG	MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4882.0200 44.28 0.88 45.16 54.00 -8.84 AVG			Poading	Correct	Moasuro				(n
4882. 0200 44. 28 0. 88 45. 16 54. 00 -8. 84 AVG	★ 4882. 0200 44. 28 0. 88 45. 16 54. 00 -8. 84 AVG	★ 4882. 0200 44. 28 0. 88 45. 16 54. 00 -8. 84 AVG		Freq.	Level	Factor	ment				
			•				dBuV/m	dBuV/m	dB	Detector	Comment
1002. 0100 11.00 0.00 10.21 11.00 20.10 Teak	1002. 0100 11.00 0.00 10.21 11.00 20.10 104k				dBuV/m						
				4882.02	dBuV/m 00 44.28	0.88	45.16	54.00	-8.84	AVG	
				4882.02	dBuV/m 00 44.28	0.88	45.16	54.00	-8.84	AVG	
				4882.02	dBuV/m 00 44.28	0.88	45.16	54.00	-8.84	AVG	
				4882.02	dBuV/m 00 44.28	0.88	45.16	54.00	-8.84	AVG	
				4882.02	dBuV/m 00 44.28	0.88	45.16	54.00	-8.84	AVG	
				4882.02	dBuV/m 00 44.28	0.88	45.16	54.00	-8.84	AVG	
			*	4882.02	dBuV/m 00 44.28	0.88	45.16	54.00	-8.84	AVG	
				4882.02	dBuV/m 00 44.28	0.88	45.16	54.00	-8.84	AVG	
				4882.02	dBuV/m 00 44.28	0.88	45.16	54.00	-8.84	AVG	
				4882.02	dBuV/m 00 44.28	0.88	45.16	54.00	-8.84	AVG	
				4882.02	dBuV/m 00 44.28	0.88	45.16	54.00	-8.84	AVG	
				4882.02	dBuV/m 00 44.28	0.88	45.16	54.00	-8.84	AVG	
MARKS.	MARKS	MARKS	*	4882.02	dBuV/m 00 44.28	0.88	45.16	54.00	-8.84	AVG	
	MARKS: Measurement Value = Reading Level + Correct Factor		* M <i>P</i>	4882. 02 4882. 34	dBuV/m 00 44.28 00 47.36	0.88	45. 16 48. 24	54.00 74.00	-8.84	AVG	
Measurement Value = Reading Level + Correct Factor.	Measurement Value = Reading Level + Correct Factor.	Measurement Value = Reading Level + Correct Factor.		4882. 02 4882. 34	dBuV/m 00 44. 28 00 47. 36	0. 88 0. 88	45. 16 48. 24	54. 00 74. 00	-8.84	AVG	
	/leasurement Value = Reading Level + Correct Factor.	/leasurement Value = Reading Level + Correct Factor.	ЛА Ле	4882. 02 4882. 34	dBuV/m 00 44. 28 00 47. 36	0. 88 0. 88	45. 16 48. 24	54. 00 74. 00	-8.84	AVG	



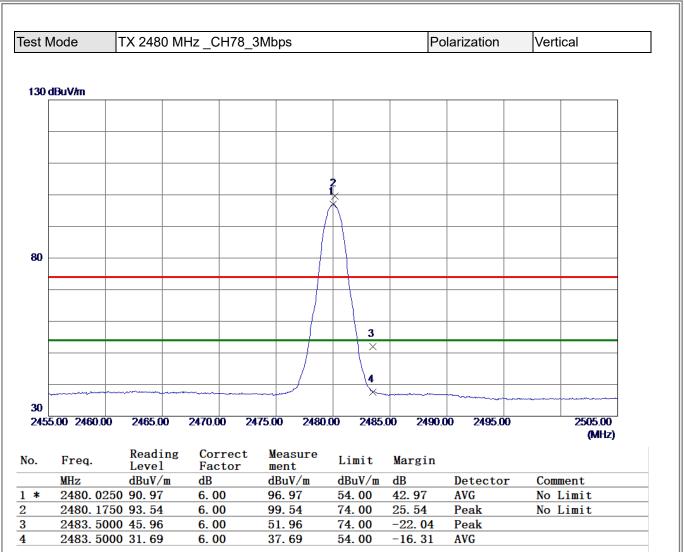
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

2 1 1 1 1 2 K 1 1 1 1 X 1 1 1 1 1 1 00.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 18000.00 WHz Reading Correct Measure Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment	K K X Image: Second state	
2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1	2	
2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1	2	
2 K	2 K Image: Contract Measure Limit Margin Freq. Reading Correct Measure Limit Margin	
2 K	2 i	
2 K	2 i	
2 K	2 K Image: Contract Measure Limit Margin	
2 K	2 i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i <td></td>	
2 K	2 K Image: Contract Measure Limit Margin	
2 K	2 *	
2 K	2 K Image: Contract Measure Limit Margin	
2 K	2 K Image: Contract Measure Limit Margin	
X X	X I	
Image: Second state of the second s	Image: Contract Measure Limit Margin	
Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4960.0400 37.70 1.11 38.81 54.00 -15.19 AVG	Freq. Reading Correct Measure Freq. Level Factor ment Limit Margin	
Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4960.0400 37.70 1.11 38.81 54.00 -15.19 AVG	Freq. Reading Correct Measure Freq. Level Factor ment Limit Margin	
Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4960.0400 37.70 1.11 38.81 54.00 -15.19 AVG	000.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 Freq. Reading Correct Measure Level Factor ment Limit Margin	
Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4960.0400 37.70 1.11 38.81 54.00 -15.19 AVG	00.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 Freq. Reading Correct Measure Level Factor ment Limit Margin	
Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4960.0400 37.70 1.11 38.81 54.00 -15.19 AVG	00.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 Freq. Reading Correct Measure Level Factor ment Limit Margin	
Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4960.0400 37.70 1.11 38.81 54.00 -15.19 AVG	000.00 2700.00 4400.00 6100.00 7800.00 9500.00 11200.00 12900.00 14600.00 Freq. Reading Correct Measure Level Factor ment Limit Margin	
Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4960.0400 37.70 1.11 38.81 54.00 -15.19 AVG	. Freq. Reading Correct Measure Limit Margin	
Freq.Reading LevelCorrect FactorMeasure mentLimitMarginMHzdBuV/mdBdBuV/mdBuV/mdBDetectorComment4960.040037.701.1138.8154.00-15.19AVG	Level Factor ment cluit margin	
MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4960.0400 37.70 1.11 38.81 54.00 -15.19 AVG	Level Factor ment Limit Margin	(MHz
MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment 4960.0400 37.70 1.11 38.81 54.00 -15.19 AVG		
4960. 0400 37. 70 1. 11 38. 81 54. 00 -15. 19 AVG		ient
4960. 1000 42. 77 1. 11 43. 88 74. 00 -30. 12 Peak		
	4960. 1000 42. 77 1. 11 43. 88 74. 00 -30. 12 Peak	


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

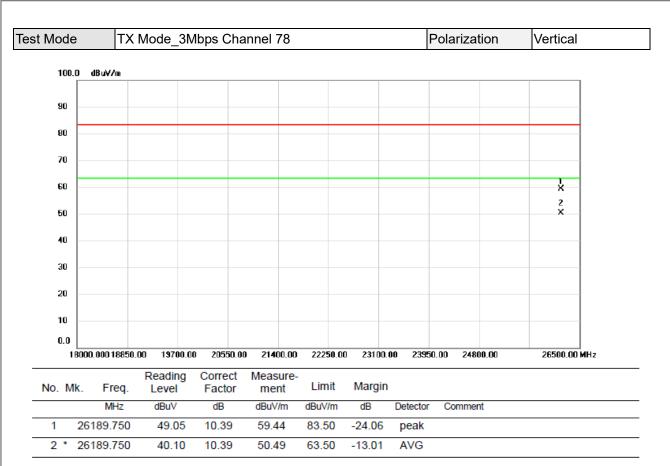
est Mod	le	TX 2402	2 MHz	_CH00	_3Mbps		Po	larization	١	/ertical
0 dBu	V/m							1 1		
			1							
			× 2							
			×							
	2700.00	4400.00	0 61	00.00	7800.00 9500	.00 1120	0.00 12900	0.00 14600	00	18000.0
	2100.00	1100.00		00.00	1000.00 0000		12000	1000		(MHz)
F	req.	Readi Level	ng	Correct Factor	t Measure ment	Limit	Margin			
M	Hz	dBuV/i		dB	dBuV/m	dBuV/m	dB	Detector	r (Comment
		0 42.97		0.66 0.66	43. 63 36. 63	74. 00 54. 00	-30. 37	Peak		
48	804. 040						-17.37	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

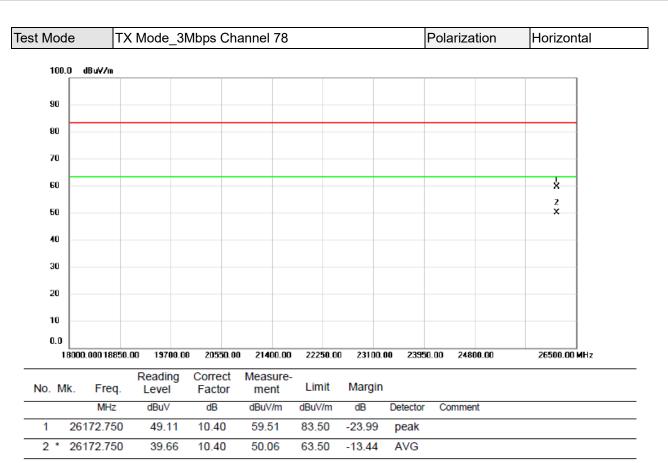

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

100 dE	ode	TX 244	1 MHz	_CH39_3	Mbps		Po	olarization	Vert	tical
100 dE										
	BuV/m									
50			2							
			X							
-			1 ×							
_										
0	00 2700.00	4400.0	0 61	00.00 78	00.00 9500.0	00 11200	0.00 12900	.00 14600.0	0	18000.0
000.	00 2100.00	4400.0	0 01	00.00 10	00.00 33003	00 HZ0	7.00 12.500	1.00 140000	Ň	(MHz
).	Freq.	Readi Level	ng	Correct	Measure	Limit	Margin			
	MHz	dBuV/		Factor BB	ment dBuV/m	dBuV/m		Detector	Com	ment
*	4881.9800	36.44	. (). 88	37. 32	54.00	-16. 68	AVG		
	4882. 2300	0 44. 20	(). 88	45.08	74.00	-28. 92	Peak		

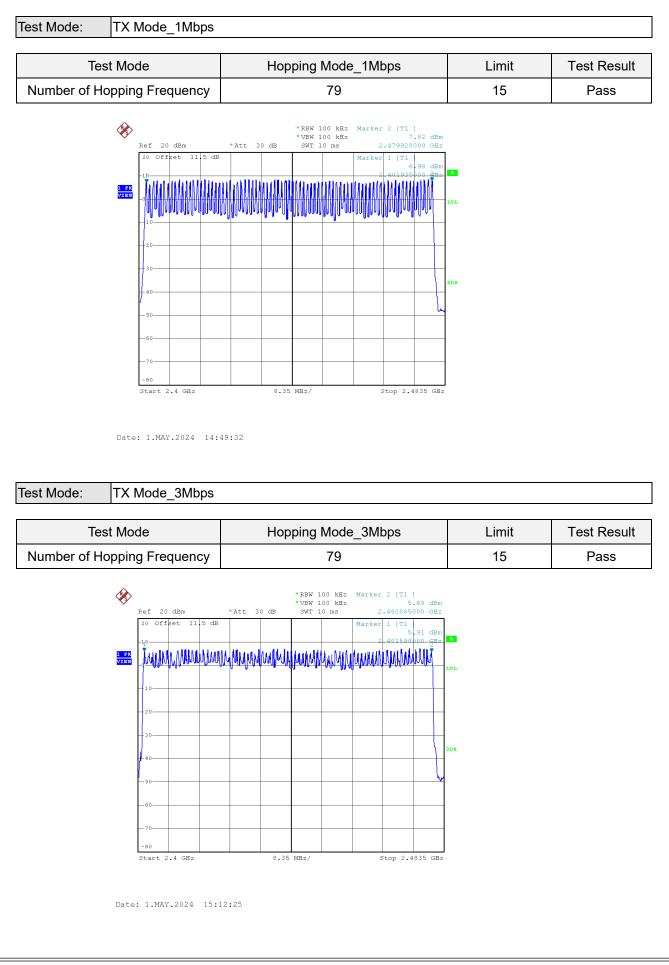
(2) Margin Level = Measurement Value - Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

	Mode	TX 2480	MHz_CI	H78_3M	bps		Po	olarization		Vertio	cal
0	dBuV/m										
50											
			2								
			<u>×</u> 1								
			×								
0											
	0.00 2700.0	0 4400.00	6100.00) 7800.	.00 9500.	00 1120	0.00 12900	0.00 14600	.00		18000.0
		Readin	a Com	rect 1	Measure						(MHz)
•	Freq.	Level	Fact	tor i	ment	Limit	Margin				
	MHz	dBuV/m	dD		dBuV/m	JD_1/-				Comm	ent
k	4960 00				авау/ш 32 36	dBuV/m 54 00		Detecto	r	Сошш	
*		000 31.25 000 38.59	1. 11 1. 11	L 3	32. 36 39. 70	680V/m 54.00 74.00	dB -21.64 -34.30	Detecto AVG Peak	or		
*		00 31.25	1.11	L 3	32. 36	54.00	-21.64	AVG			

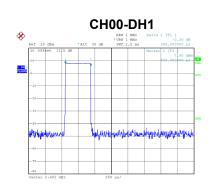


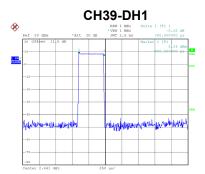
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

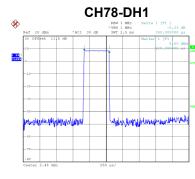
APPENDIX E - NUMBER OF HOPPING FREQUENCY

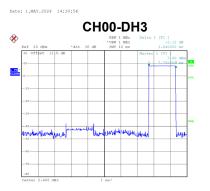


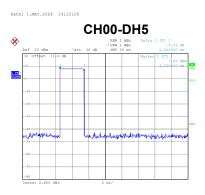


APPENDIX F - AVERAGE TIME OF OCCUPANCY

Test Mode	Hopping Mode_1Mbp)S			
Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limits (s)	Test Result
DH1	2402	0.3850	0.1232	0.4000	Pass
DH3	2402	1.6400	0.2624	0.4000	Pass
DH5	2402	2.9200	0.3115	0.4000	Pass
DH1	2441	0.3800	0.1216	0.4000	Pass
DH3	2441	1.6400	0.2624	0.4000	Pass
DH5	2441	2.8800	0.3072	0.4000	Pass
DH1	2480	0.3800	0.1216	0.4000	Pass
DH3	2480	1.6400	0.2624	0.4000	Pass
DH5	2480	2.9200	0.3115	0.4000	Pass







CH39-DH3

no

 Det:
 1.927.2021

 1.927.2021
 1.927.2021

 1.927.2021
 1.927.2021

 1.927.2021
 1.927.2021

 1.927.2021
 1.927.2021

 1.927.2021
 1.927.2021

 1.927.2021
 1.927.2021

 1.927.2021
 1.927.2021

 1.927.2021
 1.927.2021

 1.927.2021
 1.927.2021

 1.927.2021
 1.927.2021

 1.927.2021
 1.927.2021

 1.927.2021
 1.927.2021

 1.927.2021
 1.927.2021

 1.927.2021
 1.927.2021

 1.927.2021
 1.927.2021

 1.927.2021
 1.927.2021

 1.927.2021
 1.927.2021

 1.927.2021
 1.927.2021

 1.927.2021
 1.927.2021

 1.927.2021
 1.927.2021

 1.927.2021
 1.927.2021

 1.927.2021
 1.927.2021

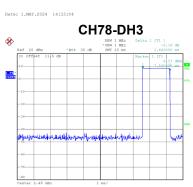
 1.927.2021
 1.927.2021

 1.927.2021
 1.927.2021

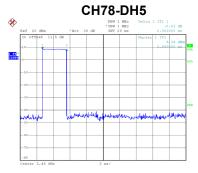
 1.927.2021
 1.927.2021

 1.927.2021
 1.927.2021

 1.927.2021
 1.927.2021


 1.927.2021
 1.927.2021

 1.927.2021
 1.927.2021


 1.927.2021
 1.927.2021

 1.927.2021
 1.927.2021

 1.927.2021

Date: 1.MAY.2024 14:35:56

Date: 1.MAY.2024 14:36:42

Date: 1.MAY.2024 14:32:40

up-ubd

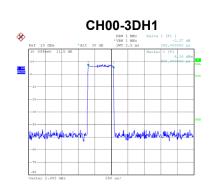
8

L PE CLEWE

Date: 1.MAY.2024 14:37:14

Te	st Mode	Hopping Mode_3Mbp	DS			
	Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limits (s)	Test Result
	3DH1	2402	0.3850	0.1232	0.4000	Pass
	3DH3	2402	1.6400	0.2624	0.4000	Pass
	3DH5	2402	2.8800	0.3072	0.4000	Pass
Ī	3DH1	2441	0.3900	0.1248	0.4000	Pass
	3DH3	2441	1.6400	0.2624	0.4000	Pass
	3DH5	2441	2.8800	0.3072	0.4000	Pass
Ī	3DH1	2480	0.3900	0.1248	0.4000	Pass
Ī	3DH3	2480	1.6400	0.2624	0.4000	Pass
	3DH5	2480	2.8800	0.3072	0.4000	Pass

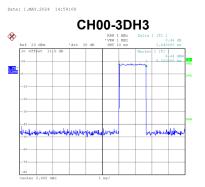
CH78-3DH1

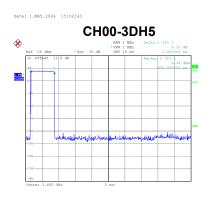

*BW 1 MEz VBW 1 MEz SWT 2.5 ms


hippones

8

1 PE





CH39-3DH3

. Interior

we we want we w

 Contex : 1.41 (00)
 1.10/

september of the strange the set of the section of

Date: 1.MAY.2024 15:05:19

Date: 1.MAY.2024 15:05:58

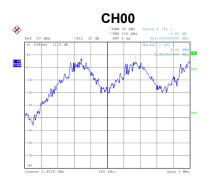
Date: 1.MAY.2024 15:01:31

8

L PE CLEVE

And a

Telepi


Date

APPENDIX G - HOPPING CHANNEL SEPARATION

Т	est Mode	Hopping Mode	_1Mbps		
	Channel	Frequency (MHz)	Channel Separation (MHz)	2/3 of 20 dB Bandwidth (MHz)	Test Result
	00	2402	0.989	0.632	Pass
	39	2441	1.043	0.617	Pass
	78	2480	1.002	0.613	Pass

Date: 1.MAY.2024 14:45:22

Test Mode

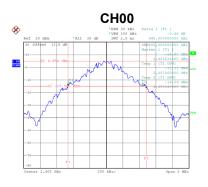
Hopping Mode_3Mbps

Channel	Frequency (MHz)	Channel Separation (MHz)	2/3 of 20 dB Bandwidth (MHz)	Test Result
00	2402	0.984	0.868	Pass
39	2441	1.002	0.883	Pass
78	2480	1.002	0.876	Pass

Date: 1.MAY.2024 15:16:29

Date: 1.MAY.2024 15:09:30

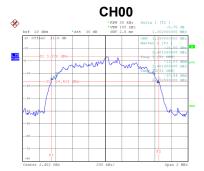
Date: 1.MAY.2024 15:10:35



APPENDIX H - BANDWIDTH

Test Mode		TX Mode _1Mbps		
	Channel	Frequency (MHz)	20 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)
	00	2402	0.948	0.880
ĺ	39	2441	0.926	0.860
ĺ	78	2480	0.919	0.844

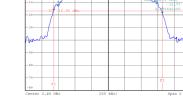
Date: 1.MAY.2024 14:40:08


Test Mode

Date: 1.MAY.2024 14:54:35

TX Mode _3Mbps

Channel	Frequency (MHz)	20 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)
00	2402	1.302	1.180
39	2441	1.324	1.200
78	2480	1.314	1.196


CH39

Date: 1.MAY.2024 14:57:03

8

1 PR VIEW

CH78

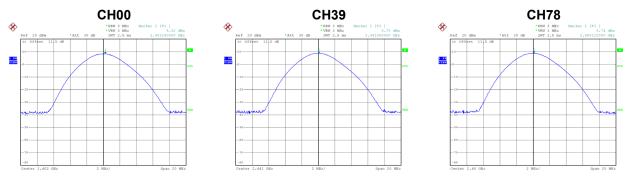
Ø

1 PE VIEW

Date: 1.MAY.2024 14:57:59

APPENDIX I - MAXIMUM OUTPUT POWER

Те	st Mode	TX Mode _1M	bps			
	Channel	Frequency (MHz)	Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Test Result
	00	2402	8.03	20.97	0.1250	Pass
	39	2441	8.42	20.97	0.1250	Pass
	78	2480	8.49	20.97	0.1250	Pass

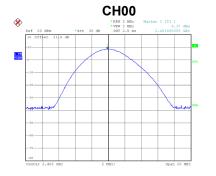

Note: Output power = Measure result + Cable loss

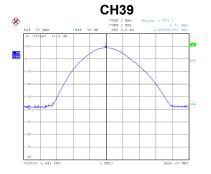
Test Mode TX Mode _2Mbps

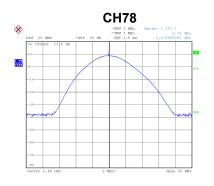
Channel	Frequency (MHz)	Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Test Result
00	2402	8.32	20.97	0.1250	Pass
39	2441	8.70	20.97	0.1250	Pass
78	2480	8.74	20.97	0.1250	Pass

Note: Output power = Measure result + Cable loss

Date: 1.MAY.2024 14:52:50


Date: 1.MAY.2024 14:53:09


Date: 1.MAY.2024 14:53:27



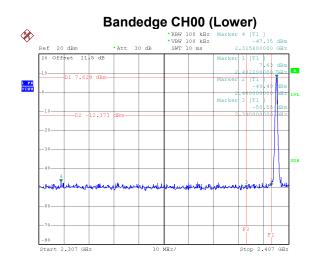
Те	st Mode	TX Mode _3M	bps			
	Channel	Frequency (MHz)	Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Test Result
	00	2402	8.37	20.97	0.1250	Pass
	39	2441	8.73	20.97	0.1250	Pass
	78	2480	8.76	20.97	0.1250	Pass

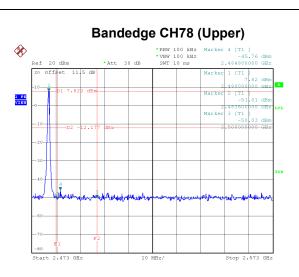
Note: Output power = Measure result + Cable loss

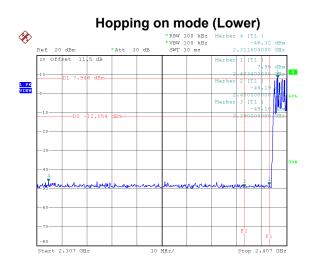
Date: 1.MAY.2024 14:55:12

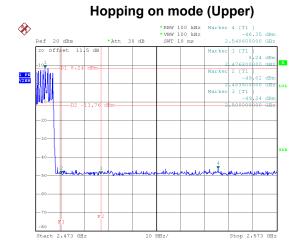
Date: 1.MAY.2024 14:57:09

Date: 1.MAY.2024 14:58:35

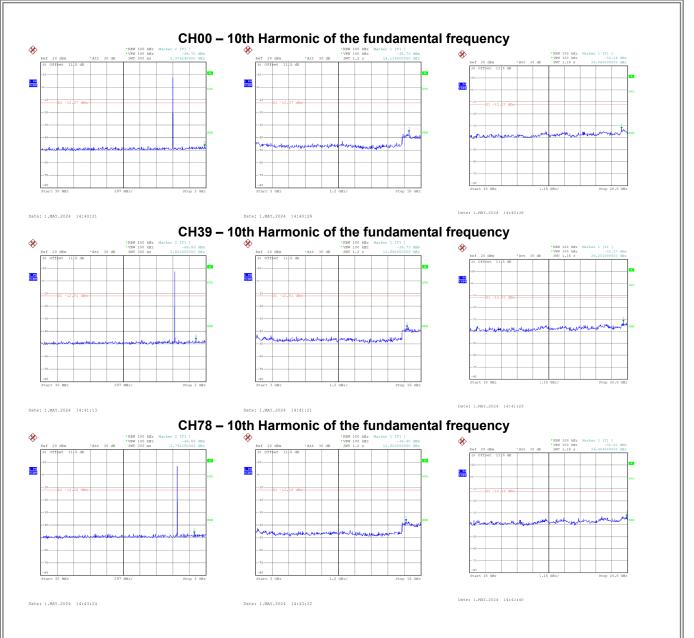

APPENDIX J - CONDUCTED SPURIOUS EMISSION




Test Mode


TX Mode _1Mbps

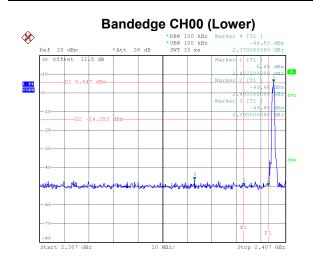
Date: 1.MAY.2024 14:39:30

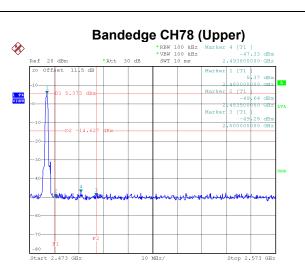


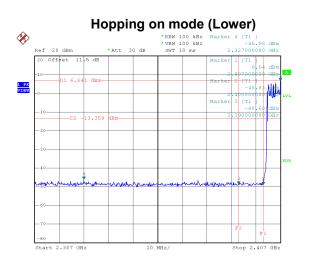
Date: 1.MAY.2024 14:50:07

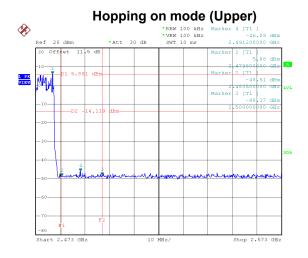
Date: 1.MAY.2024 14:50:41

Date: 1.MAY.2024 14:42:29

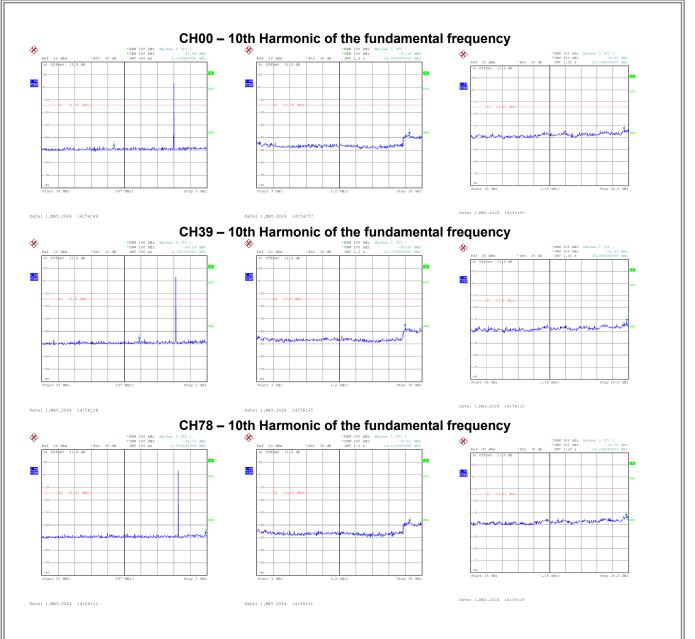

BL






Test Mode TX Mode _3Mbps

Date: 1.MAY.2024 14:54:07



Date: 1.MAY.2024 15:13:00

Date: 1.MAY.2024 15:13:34

Date: 1.MAY.2024 14:57:30

BL

APPENDIX K - DECLARATION FOR BLUETOOTH DEVICE

1. Output power and channel separation of a Bluetooth device in the different operating modes:

The different operating modes (data-mode, acquisition-mode) of a Bluetooth device has no influence on the output power and the channel spacing. There is only one transmitter which is driven by identical input parameters concerning these two parameters.

Only a different hopping sequence will be used. For this reason the check of these RF parameters in one op-mode is sufficient.

2. Frequency range of a Bluetooth device:

Hereby we declare that the maximum frequency of this device is: 2402 - 2480MHz. This is according to the Bluetooth Core Specification (+ critical errata) for devices which will be operated in the USA. This was checked during the Bluetooth Qualification tests (Test Case: TRM/CA/04-E). Other frequency ranges (e.g. for Spain, France, Japan) which are allowed according the Core Specification are not supported by this device.

3. Co-ordination of the hopping sequence in data mode to avoid simultaneous occupancy by multiple transmitters:

Bluetooth units which want to communicate with other units must be organised in a structure called piconet. This piconet consist of max. 8 Bluetooth units. One unit is the master the other seven are the slaves. The master co-ordinates frequency occupation in this piconet for all units. As the master hop sequence is derived from its BD address which is unique for each Bluetooth device, additional masters intending to establish new piconets will always use different hop sequences.

4. Example of a hopping sequence in data mode:

Example of a 79 hopping sequence in data mode: 40, 21, 44, 23, 42, 53, 46, 55, 48, 33, 52, 35, 50, 65, 54, 67, 56, 37, 60, 39, 58, 69, 62, 71, 64, 25, 68, 27, 66, 57, 70, 59, 72, 29, 76, 31, 74, 61, 78, 63, 01, 41, 05, 43, 03, 73, 07, 75, 09, 45, 13, 47, 11, 77, 15, 00, 64, 49, 66, 53, 68, 02, 70, 06, 01, 51, 03, 55, 05, 04

5. Equally average use of frequencies in data mode and behaviour for short transmissions:

The generation of the hopping sequence in connection mode depends essentially on two input values:

- a) LAP/UAP of the master of the connection.
- b) Internal master clock.

The LAP (lower address part) are the 24 LSB's of the 48 BD_ADDRESS. The BD_ADDRESS is an unambiguous number of every Bluetooth unit. The UAP (upper address part) are the 24 MSB's of the 48 BD_ADDRESS.

The internal clock of a Bluetooth unit is derived from a free running clock which is never adjusted and is never turned off. For synchronisation with other units only offset are used. It has no relation to the time of the day. Its resolution is at least half the RX/TX slot length of 312.5 μ s. The clock has a cycle of about one day (23h30). In most case it is implemented as 28 bit counter. For the deriving of the hopping sequence the entire.

LAP (24 bits), 4 LSB's (4 bits) (Input 1) and the 27 MSB's of the clock (Input 2) are used. With this input values different mathematical procedures (permutations, additions, XOR- operations) are performed to generate the sequence. This will be done at the beginning of every new transmission.

Regarding short transmissions the Bluetooth system has the following behaviour:

The first connection between the two devices is established, a hopping sequence was generated. For transmitting the wanted data the complete hopping sequence was not used. The connection ended. The second connection will be established. A new hopping sequence is generated. Due to the fact that the Bluetooth clock has a different value, because the period between the two transmission is longer (and it cannot be shorter) than the minimum resolution of the clock (312.5 μ s). The hopping sequence will always differ from the first one.

6. Receiver input bandwidth and behaviour for repeated single or multiple packets:

The input bandwidth of the receiver is 1 MHz. In every connection one Bluetooth device is the master and the other one is the slave. The master determines the hopping sequence (see chapter 5). The slave follows this sequence. Both devices shift between RX and TX time slot according to the clock of the master.

Additionally the type of connection (e.g. single or multislot packet) is set up at the beginning of the connection. The master adapts its hopping frequency and its TX/RX timing according to the packet type of the connection. Also the slave of the connection will use these settings.

Repeating of a packet has no influence on the hopping sequence. The hopping sequence generated by the master of the connection will be followed in any case. That means, a repeated packet will not be send on the same frequency, it is send on the next frequency of the hopping sequence.

End of Test Report