

Radio Test Report

ISR-1100 Series

C1111-4PWB, C1111-8PWB, C1111-8PLTEEAWB

FCC ID: LDKC11111696

5470-5725 MHz

Against the following Specifications:

CFR47 Part 15.407

Cisco Systems 170 West Tasman Drive San Jose, CA 95134

Author: Johanna Knudsen

Tested By: Johanna Knudsen

Approved By: Gerard Thorpe

Title: Manager, Engineering - EMC & Standards Operations

Revision: See EDCS

This report replaces any previously entered test report under EDCS – **11779336**. This test report has been electronically authorized and archived using the CISCO Engineering Document Control system. Test Report Template EDCS# 1526150.

This test report has been electronically authorized and archived using the CISCO Engineering Document Control system.

SECTION 1	: OVERVIEW		3
1.1 Test 3	UMMARY		3
SECTION 2	: ASSESSMENT I	NFORMATION	4
2.3 Date	OF TESTING (INITIAL	SAMPLE RECEIPT DATE TO LAST DATE OF TESTING)	6
2.5 TESTI	IG FACILITIES		6
		JT)	
SECTION 3	: RESULT SUMM	IARY	8
3.1 Resui	TS SUMMARY TABL	E	8
SECTION 4	: SAMPLE DETAI	LS	10
APPENDIX	A: EMISSION	N TEST RESULTS	10
A.2	9% and 26dB Bani	DWIDTH	18
A.4	OWER SPECTRAL D	red Output Power ensity us Emissions	28
		EDGE	
APPENDIX	B: EMISSION	N TEST RESULTS	53
B.2	RADIATED EMISSION	S EMISSIONSS 30MHz to 1GHzSSIONS	65
APPENDIX	C: LIST OF T	EST EQUIPMENT USED TO PERFORM THE TEST	71
APPENDIX	D: ABBREVIA	ATION KEY AND DEFINITIONS	78
APPENDIX	E: PHOTOGR	RAPHS OF TEST SETUPS	79
APPENDIX	F: SOFTWAR	RE USED TO PERFORM TESTING	80
APPENDIX		CEDURES	
APPENDIX		ACCREDITATION (A2LA CERTIFICATE NUMBER 1178-01)	
APPENDIX	I: TEST ASSI	ESSMENT PLAN	83
APPENDIX	J: WORST CASI	E JUSTIFICATION	83

Section 1: Overview

1.1 Test Summary

The samples were assessed against the tests detailed in section 3 under the requirements of the following specifications:

specifications		
CFR47 Part 15.407		

Measurements were made in accordance with

- ANSI C63.10:2013,
- KDB 789033 D02 General UNII Test Procedures New Rules v01r04
- KDB 662911 D01 Multiple Transmitter Output

Section 2: Assessment Information

2.1 General

This report contains an assessment of an apparatus against Radio Standards based upon tests carried out on the samples submitted. The testing was performed by and for the use of Cisco systems Inc:

With regard to this assessment, the following points should be noted:

- a) The results contained in this report relate only to the items tested and were obtained in the period between the date of the initial assessment and the date of issue of the report. Manufactured products will not necessarily give identical results due to production and measurement tolerances.
- b) The apparatus was set up and exercised using the configuration and modes of operation defined in this report only.
- c) Where relevant, the apparatus was only assessed using the susceptibility criteria defined in this report and the Test Assessment Plan (TAP).
- d) All testing was performed under the following environmental conditions:

Temperature 15°C to 35°C (54°F to 95°F)

Atmospheric Pressure 860mbar to 1060mbar (25.4" to 31.3")

Humidity 10% to 75*%

e) All AC testing was performed at one or more of the following supply voltages:

110V 60 Hz (+/-20%)

2.2 Units of Measurement

The units of measurements defined in the appendices are reported in specific terms, which are test dependent. Where radiated measurements are concerned these are defined at a particular distance. Basic voltage measurements are defined in units of [dBuV]

As an example, the basic calculation for all measurements is as follows:

Emission level [dBuV] = Indicated voltage level [dBuV] + Cable Loss [dB] + Other correction factors [dB]

The combinations of correction factors are dependent upon the exact test configurations [see test equipment lists for further details] and may include:-

Antenna Factors, Pre Amplifier Gain, LISN Loss, Pulse Limiter Loss and Filter Insertion Loss...

Note: to convert the results from dBuV/m to uV/m use the following formula:-

Level in uV/m = Common Antilogarithm [(X dBuV/m)/20] = Y uV/m

Measurement Uncertainty Values

voltage and power measurements	± 2 dB
conducted EIRP measurements	± 1.4 dB
radiated measurements	± 3.2 dB
frequency measurements	± 2.4 10-7
temperature measurements	± 0.54°.
humidity measurements	± 2.3%
DC and low frequency measurements	± 2.5%.

Where relevant measurement uncertainty levels have been estimated for tests performed on the apparatus. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Radiated emissions (expanded uncertainty, confidence interval 95%)

30 MHz - 300 MHz	+/- 3.8 dB
300 MHz - 1000 MHz	+/- 4.3 dB
1 GHz - 10 GHz	+/- 4.0 dB
10 GHz - 18GHz	+/- 8.2 dB
18GHz - 26.5GHz	+/- 4.1 dB
26.5GHz - 40GHz	+/- 3.9 dB

Conducted emissions (expanded uncertainty, confidence interval 95%)

A product is considered to comply with a requirement if the nominal measured value is below the limit line. The product is considered to not be in compliance in case the nominal measured value is above the limit line.

This report must not be reproduced except in full, without written approval of Cisco Systems.

2.3 Date of testing (initial sample receipt date to last date of testing)

27-JUN-2017 to 1-MAY-2018

2.4 Report Issue Date

Cisco uses an electronic system to issue, store and control the revision of test reports. This system is called the Engineering Document Control System (EDCS). The actual report issue date is embedded into the original file on EDCS. Any copies of this report, either electronic or paper, that are not on EDCS must be considered uncontrolled

2.5 Testing facilities

This assessment was performed by:

Testing Laboratory

Cisco Systems, Inc. 125 West Tasman Drive (Building P) San Jose, CA 95134 USA

Headquarters

Cisco Systems, Inc., 170 West Tasman Drive San Jose, CA 95134, USA

Registration Numbers for Industry Canada

Cisco System Site	Site Identifier
Building P, 10m Chamber	Company #: 2461N-2
Building P, 5m Chamber	Company #: 2461N-1
Building I, 5m Chamber	Company #: 2461M-1

Test Engineers

Johanna Knudsen, Marie Higa

2.6 Equipment Assessed (EUT)

C1111-4PW with ISR-AP1100AC-B

2.7 EUT Description

The Cisco ISR-AP1100AC Wi-Fi module supports the following modes of operation. The modes are further defined in the radio Theory of Operation. The modes included in this report represent the worst case data for all modes.

```
802.11a - Non HT20, One Antenna, 6 to 54 Mbps, 1ss
802.11a - Non HT20, Two Antennas, 6 to 54 Mbps, 1ss
802.11a - Non HT20 Beam Forming, Two Antennas, 6 to 54 Mbps, 1ss
802.11n/ac - HT/VHT20, One Antenna, M0 to M7, 1ss
802.11n/ac - HT/VHT20, Two Antennas, M0 to M7, 1ss
802.11n/ac - HT/VHT20, Two Antennas, M8 to M15, 2ss
802.11n/ac - HT/VHT20 Beam Forming, Two Antennas, M0 to M7, 1ss
802.11n/ac - HT/VHT20 Beam Forming, Two Antennas, M8 to M15, 2ss
802.11n/ac - HT/VHT20 STBC, Two Antennas, M0 to M7, 2ss
802.11a - Non HT40, One Antenna, 6 to 54 Mbps, 1ss
802.11a - Non HT40, Two Antennas, 6 to 54 Mbps, 1ss
802.11n/ac - HT/VHT40, One Antenna, M0 to M7, 1ss
802.11n/ac - HT/VHT40, Two Antennas, M0 to M7, 1ss
802.11n/ac - HT/VHT40, Two Antennas, M8 to M15, 2ss
802.11n/ac - HT/VHT40 Beam Forming, Two Antennas, M0 to M7, 1ss
802.11n/ac - HT/VHT40 Beam Forming, Two Antennas, M8 to M15, 2ss
802.11n/ac - HT/VHT40 STBC, Two Antennas, M0 to M7, 2ss
802.11a - Non HT80, One Antenna, 6 to 54 Mbps, 1ss
802.11a - Non HT80, Two Antennas, 6 to 54 Mbps, 1ss
802.11ac - VHT80, One Antenna, M0 to M9 1ss
802.11ac - VHT80, Two Antennas, M0 to M9 1ss
802.11ac - VHT80, Two Antennas, M0 to M9 2ss
802.11ac - VHT80 Beam Forming, Two Antennas, M0 to M9 1ss
802.11ac - VHT80 Beam Forming, Two Antennas, M0 to M9 2ss
802.11ac - VHT80 STBC, Two Antennas, M0 to M9 2ss
```

The following antennas are supported by this product series.

The data included in this report represent the worst case data for all antennas.

Frequency	Part Number	Antenna Type	Antenna Gain (dBi)
2.4 / 5 GHz	2x2 Internal	AP Omni	2/4

Page No: 7 of 83

Section 3: Result Summary

3.1 Results Summary Table

Conducted emissions

Basic Standard	Technical Requirements / Details	Result
FCC 15.407	99% & 26 dB Bandwidth: The 99% occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. There is no limit for 99% OBW.	Pass
	The 26 dB emission is the width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission.	
FCC 15.407	Output Power: 15.407 (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.	Pass
FCC 15.407	Power Spectral Density 15.407 (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bandsthe maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.	Pass
FCC 15.407	Conducted Spurious Emissions / Band-Edge: 15.407 (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz	Pass
FCC 15.407 FCC 15.205	Restricted band: Unwanted emissions falling within the restricted bands, as defined in FCC 15.205 (a) must also comply with the radiated emission limits specified in FCC 15.209 (a)	Pass

Radiated Emissions (General requirements)

Basic Standard	Technical Requirements / Details	Result	
----------------	----------------------------------	--------	--

Page No: 8 of 83

FCC 15.209	TX Spurious Emissions: Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the field strength limits table in this section.	Pass
FCC 15.207	AC conducted Emissions: Except when the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply, either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table in these sections. The more stringent limit applies at the frequency range boundaries.	Pass

Section 4: Sample Details

Note: Each sample was evaluated to ensure that its condition was suitable to be used as a test sample prior to the commencement of testing. Please also refer to the "Justification for worst Case test Configuration" section of this report for further details on the selection of EUT samples.

4.1 Sample Details

Sample No.	Equipment Details	Manufacturer	Hardware Rev.	Firmware Rev.	Software Rev.	Serial Number
S01	C1111-4PW (TSN-M-P2A)	Cisco Systems, Inc	74-114193-01 03	NA	NA	FGL211421YH (board: FOC21124R20)
S02	AC/DC Adapter ADP-66CR B	Delta Electronics, Inc	341-100346-01 A0	NA	NA	DAB2110G3CH
S03	C1111-4PW (TSN-M-P2A)	Cisco Systems, Inc	74-114193-01 03	NA	NA	FGL211522GR (board: FOC21136DF1)
S04	C1111-8PLTEW (TSN-H)	Cisco Systems, Inc	74-111526-01	NA	NA	FGL2123915E (board: FOC21193P24)
S05	C1111-8PLTEEAWB (TSN-H)	Cisco Systems, Inc	74-111526-01	NA	NA	FGL2123915D
S06	ADP-150BR B	Delta Electronics	341-100399-01	NA	NA	DAB2205X02C

4.2 System Details

System #	Description	Samples
1	Conducted Testing: EUT + Power Supply	S01, S02
2	Conducted Testing: EUT + Power Supply	S02, S03
3	RSE Testing: EUT + Power Supply	S02, S03
4	RSE Testing: EUT + Power Supply	S02, S04
5	AC Power Conducted Emissions: EUT + Power Supply	S05, S06

4.3 Mode of Operation Details

Mode#	Description	Comments
1	Conducted Testing	Continuous TX mode.
		Image version 8.4.100.1
2	Radiated Testing	Continuous TX mode.
		Image version 8.4.100.1
3	AC Conducted Emissions	Wi-Fi operating in TX mode

Appendix A: Emission Test Results

Page No: 10 of 83

A.1 Duty Cycle

Duty Cycle Test Requirement

From KDB 789033 D02 General UNII Test Procedures New Rules v01r04

B. Duty Cycle (x), Transmission Duration (T), and Maximum Power Control Level

1. All measurements are to be performed with the EUT transmitting at 100 percent duty cycle at its maximum power control level; however, if 100 percent duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, *T*, are required for each tested mode of operation.

Duty Cycle Test Method

From KDB 789033 D02 General UNII Test Procedures New Rules v01r04:

B. Duty Cycle (x), Transmission Duration (T), and Maximum Power Control Level

The zero-span mode on a spectrum analyzer or EMI receiver, if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq EBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in section II.B.1.a), and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

Duty Cycle Test Information

Tested By :	Date of testing:
Johanna Knudsen	July 7 th , 2017

Test Result: N/A

Test Equipment

See Appendix C for list of test equipment

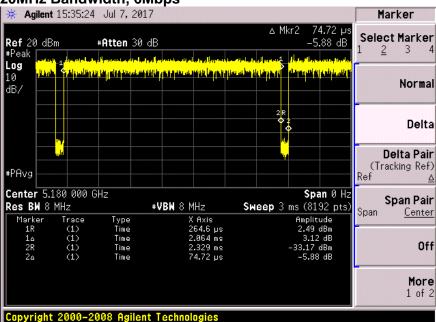
Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
1	Conducted testing: EUT + AC/DC Adapter	S01 and S02	\square	

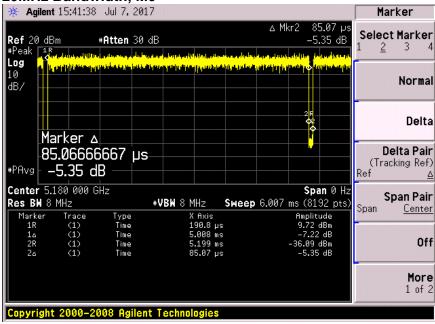
Page No: 11 of 83

Duty Cycle Data Table

Duty Cycle table and screen captures are shown below for power/psd modes.

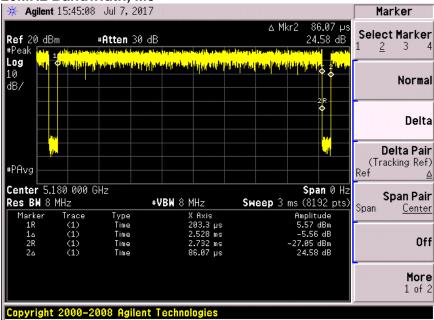

		On-time	Total Time	Duty Cycle	Correction Factor
Mode	Data Rate	(ms)	(ms)	(%)	(dB)
NonHT20	6Mbps	2.064	2.13872	96.5	0.2
HT20	M0	5.008	5.09307	98.3	0.1
VHT20	M8	2.528	2.61407	96.7	0.1
NonHT40	6Mbps	2.064	2.14238	96.3	0.2
HT40	M0	2.431	2.5222	96.4	0.2
VHT40	M8	3.628	3.7261	97.4	0.1
NonHT80	6Mbps	2.063	2.14406	96.2	0.2
VHT80	M0X1	3.352	4.0531	82.7	0.8
VHT80	M0X2	3.906	4.6093	84.7	0.7

Page No: 12 of 83

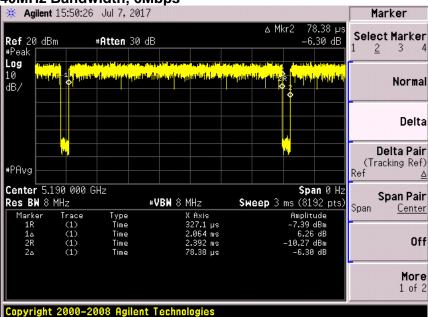


Duty Cycle Data Screenshots

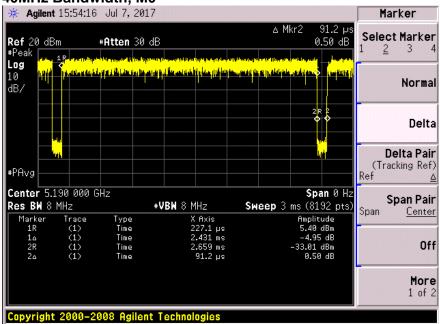
20MHz Bandwidth, 6Mbps



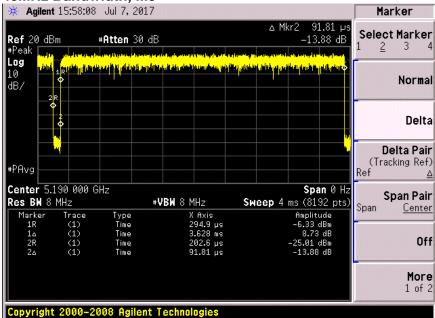
20MHz Bandwidth, M0



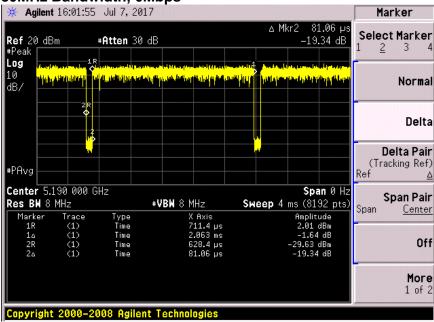
20MHz Bandwidth, M8



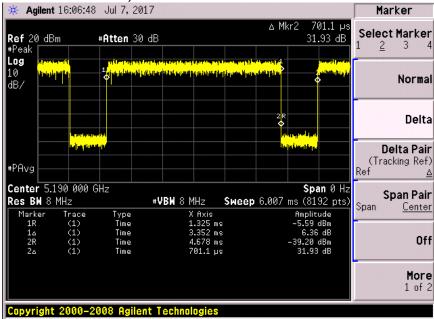
40MHz Bandwidth, 6Mbps

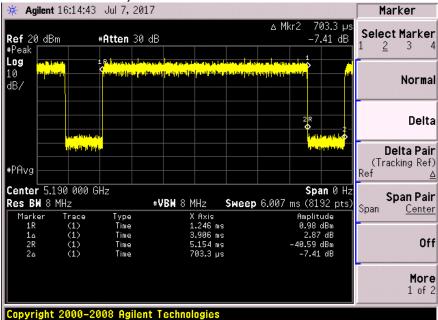


40MHz Bandwidth, M0



40MHz Bandwidth, M8





80MHz Bandwidth, M0X1

80MHz Bandwidth, M0X2

A.2 99% and 26dB Bandwidth

There is no requirement for the value of bandwidth.

However, the 26dB BW (EBW) is used to calculate the power limits in 15.407 (a) (2). Power measurements are made using the 99% Bandwidth as the integration bandwidth.

99% and 26dB Bandwidth Test Procedure

The 99-percent occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5 % of the total mean power of the given emission. Measurement of the 99-percent occupied bandwidth is required only as a condition for using the optional band-edge measurement techniques described in section II.G.3.d). Measurements of 99-percent occupied bandwidth may also optionally be used in lieu of the EBW to define the minimum frequency range over which the spectrum is integrated when measuring maximum conducted output power as described in section II.E. However, the EBW must be measured to determine bandwidth dependent limits on maximum conducted output power in accordance with 15.407(a).

Ref. KDB 789033 Section D. 99 Percent Occupied Bandwidth

99% BW

Test Parameters

- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. Set span = 1.5 times to 5.0 times the OBW.
- 3. Set RBW = 1 % to 5 % of the OBW
- 4. Set VBW ≥ 3 · RBW
- 5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- 6. Use the 99 % power bandwidth function of the instrument (if available).

Ref KDB 789033 in Section C. Measurement Bandwidth, Section 1

26 BW

Test parameters

X dB BW = -26dB (using the OBW function of the spectrum analyzer)

Emission Bandwidth (EBW)

- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

Samples, Systems, and Modes

	oterno, and modes			
System Number	Description	Samples	System under test	Support equipment
2	Conducted testing: EUT + AC/DC Adapter	S02 and S03	\square	

Page No: 18 of 83

Tested By: Date of testing:

Johanna Knudsen August 22, 2017 – August 25th, 2017

Test Result: PASS

Test Equipment

See Appendix C for list of test equipment

99% and 26dB Bandwidth Data Table

Frequency (MHz)	Mode	Data Rate (Mbps)	26dB BW (MHz)	99% BW (MHz)
5500	Non HT20, 6 to 54 Mbps	6	20.8	17.326
	HT/VHT20, M0 to M15	m0	21.6	18.298
5510	Non HT40, 6 to 54 Mbps	6	39.7	35.464
	HT/VHT40, M0 to M15	m0	40.4	36.038
5530	Non HT80, 6 to 54 Mbps	6	82.9	75.645
	VHT80, M0 to M9, M0 to M9 1-1ss	m0x1	83.5	75.723
5550	Non HT40, 6 to 54 Mbps	6	40	35.74
	HT/VHT40, M0 to M15	m0	55.4	36.359
5560	Non HT20, 6 to 54 Mbps	6	22	17.402
	HT/VHT20, M0 to M15	m0	23	18.358
5610	Non HT80, 6 to 54 Mbps	6	86.8	75.862
	VHT80, M0 to M9, M0 to M9 1-1ss	m0x1	93.1	76.05
5690	Non HT80, 6 to 54 Mbps	6	84.7	75.819
	VHT80, M0 to M9, M0 to M9 1-1ss	m0x1	93.1	76.081
5710	Non HT40, 6 to 54 Mbps	6	39.9	35.637

Page No: 19 of 83

	HT/VHT40, M0 to M15	m0	46.2	36.249
5720	Non HT20, 6 to 54 Mbps	6	21.4	17.391
	HT/VHT20, M0 to M15	m0	22.4	18.342

Page No: 20 of 83

26dB / 99% Bandwidth, 5500 MHz, Non HT/VHT20, 6 to 54 Mbps

A.3 Maximum Conducted Output Power

Maximum Conducted Output Power Test Requirement

15.407 (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. ... If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Maximum Conducted Output Power Test Procedure

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01r04 ANSI C63.10: 2013

Maximum Conducted Output Power

Test Procedure

- 1. Set the radio in the continuous transmitting mode at full power
- 2. Compute power by integrating the spectrum across the EBW (or alternatively entire 99% OBW) of the signal using the instrument's band power measurement function. The integration shall be performed using the spectrum analyzer band-power measurement function with band limits set equal to the EBW or the OBW band edges.
- 3. Capture graphs and record pertinent measurement data.

Ref. KDB 789033 D02 General UNII Test Procedures New Rules v01r04

2. Measurement using a Spectrum Analyzer or EMI Receiver (SA), (d) Method SA-2

Maximum Conducted Output Power

Test parameters

Method SA-2 (trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).

- (i) Measure the duty cycle, x, of the transmitter output signal as described in section II.B.
- (ii) Set span to encompass the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal.
- (iii) Set RBW = 1 MHz.
- (iv) Set $VBW \ge 3$ MHz.
- (v) Number of points in sweep \geq 2 Span / RBW. (This ensures that bin-to-bin spacing is \leq RBW/2, so that narrowband signals are not lost between frequency bins.)
- (vi) Sweep time = auto.
- (vii) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- (viii) Do not use sweep triggering. Allow the sweep to "free run".
- (ix) Trace average at least 100 traces in power averaging (i.e., RMS) mode; however, the number of traces to be averaged shall be increased above 100 as needed to ensure that the average accurately represents the true average over the on and off periods of the transmitter.
- (x) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth)

The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various

Page No: 22 of 83

antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. ANSI C63.10 section 14.3.2.2

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
2	Conducted testing: EUT + AC/DC Adapter	S02 and S03	\square	

Tested By: Date of testing:

Johanna Knudsen August 22, 2017 – August 25th, 2017

Test Result : PASS

Test Equipment

See Appendix C for list of test equipment

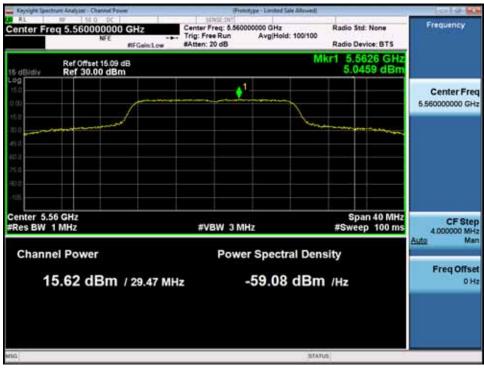
Page No: 23 of 83

Maximum Conducted Output Power Data Table

	Imum Conducted Output Power Data Tab						1	
Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 Max Power (dBm)	Tx 2 Max Power (dBm)	Total Tx Channel Power (dBm)	Limit (dBm)	Margin (dB)
5500	Non HT20, 6 to 54 Mbps	1	4	15.4		15.4	23.4	8.0
	Non HT20, 6 to 54 Mbps	2	4	15.4	15.3	18.4	23.4	5.0
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	14.6	14.5	17.6	22.4	4.8
	HT/VHT20, M0 to M7	1	4	15.5		15.5	23.6	8.1
	HT/VHT20, M0 to M7	2	4	15.5	15.3	18.4	23.6	5.2
	HT/VHT20, M8 to M15	2	4	15.5	15.3	18.4	23.6	5.2
	HT/VHT20 Beam Forming, M0 to M7	2	7	14.5	14.4	17.5	22.6	5.1
	HT/VHT20 Beam Forming, M8 to M15	2	4	15.5	15.3	18.4	23.6	5.2
	HT/VHT20 STBC, M0 to M7	2	4	15.5	15.3	18.4	23.6	5.2
5510	Non HT40, 6 to 54 Mbps	1	4	13.3		13.3	23.8	10.5
	Non HT40, 6 to 54 Mbps	2	4	12.4	12.2	15.3	23.8	8.5
	HT/VHT40, M0 to M7	1	4	13.8		13.8	23.8	10.0
	HT/VHT40, M0 to M7	2	4	12.8	12.7	15.8	23.8	8.0
	HT/VHT40, M8 to M15	2	4	12.8	12.7	15.8	23.8	8.0
	HT/VHT40 Beam Forming, M0 to M7	2	7	11.8	11.6	14.7	22.8	8.1
	HT/VHT40 Beam Forming, M8 to M15	2	4	12.8	12.7	15.8	23.8	8.0
	HT/VHT40 STBC, M0 to M7	2	4	12.8	12.7	15.8	23.8	8.0
5530	Non HT80, 6 to 54 Mbps	1	4	13.5		13.5	23.2	9.7
	Non HT80, 6 to 54 Mbps	2	4	12.4	12.6	15.5	23.2	7.7
	VHT80, M0 to M9 1ss	1	4	13.2		13.2	23.2	10.0
	VHT80, M0 to M9 1ss	2	4	12.2	12.3	15.3	23.2	7.9
	VHT80, M0 to M9 2ss	2	4	12.2	12.3	15.3	23.2	7.9
	VHT80 Beam Forming, M0 to M9 1ss	2	7	11.2	11.3	14.3	22.2	7.9
	VHT80 Beam Forming, M0 to M9 2ss	2	4	12.2	12.3	15.3	23.2	7.9
	VHT80 STBC, M0 to M9 1ss	2	4	12.2	12.3	15.3	23.2	7.9
5550	Non HT40, 6 to 54 Mbps	1	4	15.1		15.1	23.8	8.7
	Non HT40, 6 to 54 Mbps	2	4	15.1	15.4	18.3	23.8	5.5
	HT/VHT40, M0 to M7	1	4	15.5		15.5	23.8	8.3
	HT/VHT40, M0 to M7	2	4	15.5	15.8	18.7	23.8	5.1
	HT/VHT40, M8 to M15	2	4	15.5	15.8	18.7	23.8	5.1
	HT/VHT40 Beam Forming, M0 to M7	2	7	15.5	15.8	18.7	22.8	4.1

Page No: 24 of 83

	HT/VHT40 Beam Forming, M8 to M15	2	4	15.5	15.8	18.7	23.8	5.1
	HT/VHT40 STBC, M0 to M7	2	4	15.5	15.8	18.7	23.8	5.1
5560	Non HT20, 6 to 54 Mbps	1	4	15.4		15.4	23.4	8.0
	Non HT20, 6 to 54 Mbps	2	4	15.4	15.6	18.5	23.4	4.9
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	15.4	15.6	18.5	22.4	3.9
	HT/VHT20, M0 to M7	1	4	15.4		15.4	23.6	8.2
	HT/VHT20, M0 to M7	2	4	15.4	15.5	18.5	23.6	5.1
	HT/VHT20, M8 to M15	2	4	15.4	15.5	18.5	23.6	5.1
	HT/VHT20 Beam Forming, M0 to M7	2	7	15.4	15.5	18.5	22.6	4.1
	HT/VHT20 Beam Forming, M8 to M15	2	4	15.4	15.5	18.5	23.6	5.1
	HT/VHT20 STBC, M0 to M7	2	4	15.4	15.5	18.5	23.6	5.1
5610	Non HT80, 6 to 54 Mbps	1	4	15.0		15.0	23.8	8.8
	Non HT80, 6 to 54 Mbps	2	4	15.0	15.2	18.1	23.8	5.7
	VHT80, M0 to M9 1ss	1	4	14.7		14.7	23.8	9.1
	VHT80, M0 to M9 1ss	2	4	14.7	14.9	17.8	23.8	6.0
	VHT80, M0 to M9 2ss	2	4	14.7	14.9	17.8	23.8	6.0
	VHT80 Beam Forming, M0 to M9 1ss	2	7	14.7	14.9	17.8	22.8	5.0
	VHT80 Beam Forming, M0 to M9 2ss	2	4	14.7	14.9	17.8	23.8	6.0
	VHT80 STBC, M0 to M9 1ss	2	4	14.7	14.9	17.8	23.8	6.0
5690	Non HT80, 6 to 54 Mbps	1	4	14.6		14.6	23.8	9.2
	Non HT80, 6 to 54 Mbps	2	4	14.6	14.6	17.6	23.8	6.2
	VHT80, M0 to M9 1ss	1	4	14.6		14.6	23.8	9.2
	VHT80, M0 to M9 1ss	2	4	14.6	14.4	17.5	23.8	6.3
	VHT80, M0 to M9 2ss	2	4	14.6	14.4	17.5	23.8	6.3
	VHT80 Beam Forming, M0 to M9 1ss	2	7	14.6	14.4	17.5	22.8	5.3
	VHT80 Beam Forming, M0 to M9 2ss	2	4	14.6	14.4	17.5	23.8	6.3
	VHT80 STBC, M0 to M9 1ss	2	4	14.6	14.4	17.5	23.8	6.3
5710	Non HT40, 6 to 54 Mbps	1	4	14.4		14.4	23.8	9.4
	Non HT40, 6 to 54 Mbps	2	4	14.4	14.4	17.4	23.8	6.4
	HT/VHT40, M0 to M7	1	4	14.7		14.7	23.8	9.1
	HT/VHT40, M0 to M7	2	4	14.7	14.8	17.8	23.8	6.0
	HT/VHT40, M8 to M15	2	4	14.7	14.8	17.8	23.8	6.0
	HT/VHT40 Beam Forming, M0 to M7	2	7	14.7	14.8	17.8	22.8	5.0
	HT/VHT40 Beam Forming, M8 to M15	2	4	14.7	14.8	17.8	23.8	6.0
	HT/VHT40 STBC, M0 to M7	2	4	14.7	14.8	17.8	23.8	6.0


5720	Non HT20, 6 to 54 Mbps	1	4	14.7		14.7	23.4	8.7
	Non HT20, 6 to 54 Mbps	2	4	14.7	14.5	17.6	23.4	5.8
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	14.7	14.5	17.6	22.4	4.8
	HT/VHT20, M0 to M7	1	4	14.7		14.7	23.6	8.9
	HT/VHT20, M0 to M7	2	4	14.7	14.6	17.7	23.6	5.9
	HT/VHT20, M8 to M15	2	4	14.7	14.6	17.7	23.6	5.9
	HT/VHT20 Beam Forming, M0 to M7	2	7	14.7	14.6	17.7	22.6	4.9
	HT/VHT20 Beam Forming, M8 to M15	2	4	14.7	14.6	17.7	23.6	5.9
	HT/VHT20 STBC, M0 to M7	2	4	14.7	14.6	17.7	23.6	5.9

Peak Power, 5180 MHz, 6 Mbps, Non HT-20 BF

Antenna A

Antenna B

Page No: 27 of 83

A.4 Power Spectral Density

15.407 (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. (ANSI C63.10: 2013, section 14.3.2.2)

Test Procedure

Ref. 789033 D02 General UNII Test Procedures New Rules v01r04 ANSI C63.10: 2013

Output Power

Test Procedure

- 1. Set the radio in the continuous transmitting mode at full power
- 2. Compute power by integrating the spectrum across the EBW (or alternatively entire 99% OBW) of the signal using the instrument's band power measurement function. The integration shall be performed using the spectrum analyzer band-power measurement function with band limits set equal to the EBW or the OBW band edges.
- 3. Capture graphs and record pertinent measurement data.

Ref. 789033 D02 General UNII Test Procedures New Rules v01r04 ANSI C63.10: 2013 section 12.3.2.4 Method SA-2

Output Power

Test parameters

Span = >1.5 times the OBW

RBW = 1MHz

 $VBW \ge 3 \times RBW$

Sweep = Auto couple

Detector = Sample

Trace = Trace Average 100

Page No: 28 of 83

Radio Test Report No: EDCS - 11779336

Samples, Systems, and Modes

	, 0101110, 01110 1110 0100		-	
System Number	Description	Samples	System under test	Support equipment
2	Conducted testing: EUT + AC/DC Adapter	S02 and S03	\square	

Tested By: Date of testing:

Johanna Knudsen August 22, 2017 – August 25th, 2017

Test Result : PASS

Test Equipment

See Appendix C for list of test equipment

Power Spectral Density Data Table

P	ower Spectral Density Data Table							
Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Tx 1 PSD (dBm/MHz)	Tx 2 PSD (dBm/MHz)	Total PSD (dBm/MHz)	Limit (dBm/MHz)	Margin (dB)
5500	Non HT20, 6 to 54 Mbps	1	4	4.7		4.7	10.8	6.1
	Non HT20, 6 to 54 Mbps	2	7	4.7	4.5	7.6	9.8	2.2
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	3.8	3.9	6.9	9.8	2.9
	HT/VHT20, M0 to M7	1	4	4.6		4.6	10.8	6.2
	HT/VHT20, M0 to M7	2	7	4.6	4.2	7.4	9.8	2.4
	HT/VHT20, M8 to M15	2	4	4.6	4.2	7.4	10.8	3.4
	HT/VHT20 Beam Forming, M0 to M7	2	7	3.4	3.4	6.4	9.8	3.4
	HT/VHT20 Beam Forming, M8 to M15	2	4	4.6	4.2	7.4	10.8	3.4
	HT/VHT20 STBC, M0 to M7	2	4	4.6	4.2	7.4	10.8	3.4
5510	Non HT40, 6 to 54 Mbps	1	4	1.2		1.2	10.8	9.6
	Non HT40, 6 to 54 Mbps	2	7	-0.3	0.0	2.9	9.8	6.9
	HT/VHT40, M0 to M7	1	4	0.0		0.0	10.8	10.8
	HT/VHT40, M0 to M7	2	7	-0.8	-0.9	2.2	9.8	7.6
	HT/VHT40, M8 to M15	2	4	-0.8	-0.9	2.2	10.8	8.6
	HT/VHT40 Beam Forming, M0 to M7	2	7	-1.8	-2.0	1.1	9.8	8.7
	HT/VHT40 Beam Forming, M8 to M15	2	4	-0.8	-0.9	2.2	10.8	8.6
	HT/VHT40 STBC, M0 to M7	2	4	-0.8	-0.9	2.2	10.8	8.6
5530	Non HT80, 6 to 54 Mbps	1	4	-3.0		-3.0	10.2	13.2
	Non HT80, 6 to 54 Mbps	2	7	-3.9	-3.9	-0.9	9.2	10.1
	VHT80, M0 to M9 1ss	1	4	-3.9		-3.9	10.2	14.1
	VHT80, M0 to M9 1ss	2	7	-4.5	-4.2	-1.3	9.2	10.5
	VHT80, M0 to M9 2ss	2	4	-4.5	-4.2	-1.3	10.2	11.5
	VHT80 Beam Forming, M0 to M9 1ss	2	7	-5.3	-5.3	-2.3	9.2	11.5
	VHT80 Beam Forming, M0 to M9 2ss	2	4	-4.5	-4.2	-1.3	10.2	11.5
	VHT80 STBC, M0 to M9 1ss	2	4	-4.5	-4.2	-1.3	10.2	11.5
5550	Non HT40, 6 to 54 Mbps	1	4	2.2		2.2	10.8	8.6
	Non HT40, 6 to 54 Mbps	2	7	2.2	3.0	5.6	9.8	4.2
	HT/VHT40, M0 to M7	1	4	1.7		1.7	10.8	9.1
	HT/VHT40, M0 to M7	2	7	1.7	1.8	4.8	9.8	5.0
	HT/VHT40, M8 to M15	2	4	1.7	1.8	4.8	10.8	6.0
	HT/VHT40 Beam Forming, M0 to M7	2	7	1.7	1.8	4.8	9.8	5.0

Page No: 30 of 83

								•
	HT/VHT40 Beam Forming, M8 to M15	2	4	1.7	1.8	4.8	10.8	6.0
	HT/VHT40 STBC, M0 to M7	2	4	1.7	1.8	4.8	10.8	6.0
5560	Non HT20, 6 to 54 Mbps	1	4	4.8		4.8	10.8	6.0
	Non HT20, 6 to 54 Mbps	2	7	4.8	5.0	7.9	9.8	1.9
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	4.8	5.0	7.9	9.8	1.9
	HT/VHT20, M0 to M7	1	4	4.2		4.2	10.8	6.6
	HT/VHT20, M0 to M7	2	7	4.2	4.8	7.5	9.8	2.3
	HT/VHT20, M8 to M15	2	4	4.2	4.8	7.5	10.8	3.3
	HT/VHT20 Beam Forming, M0 to M7	2	7	4.2	4.8	7.5	9.8	2.3
	HT/VHT20 Beam Forming, M8 to M15	2	4	4.2	4.8	7.5	10.8	3.3
	HT/VHT20 STBC, M0 to M7	2	4	4.2	4.8	7.5	10.8	3.3
5610	Non HT80, 6 to 54 Mbps	1	4	-1.8		-1.8	10.8	12.6
	Non HT80, 6 to 54 Mbps	2	7	-1.8	-1.4	1.4	9.8	8.4
	VHT80, M0 to M9 1ss	1	4	-2.4		-2.4	10.8	13.2
	VHT80, M0 to M9 1ss	2	7	-2.4	-1.8	0.9	9.8	8.9
	VHT80, M0 to M9 2ss	2	4	-2.4	-1.8	0.9	10.8	9.9
	VHT80 Beam Forming, M0 to M9 1ss	2	7	-2.4	-1.8	0.9	9.8	8.9
	VHT80 Beam Forming, M0 to M9 2ss	2	4	-2.4	-1.8	0.9	10.8	9.9
	VHT80 STBC, M0 to M9 1ss	2	4	-2.4	-1.8	0.9	10.8	9.9
5690	Non HT80, 6 to 54 Mbps	1	4	-2.1		-2.1	10.8	12.9
	Non HT80, 6 to 54 Mbps	2	7	-2.1	-2.1	0.9	9.8	8.9
	VHT80, M0 to M9 1ss	1	4	-2.6		-2.6	10.8	13.4
	VHT80, M0 to M9 1ss	2	7	-2.6	-2.9	0.3	9.8	9.5
	VHT80, M0 to M9 2ss	2	4	-2.6	-2.9	0.3	10.8	10.5
	VHT80 Beam Forming, M0 to M9 1ss	2	7	-2.6	-2.9	0.3	9.8	9.5
	VHT80 Beam Forming, M0 to M9 2ss	2	4	-2.6	-2.9	0.3	10.8	10.5
	VHT80 STBC, M0 to M9 1ss	2	4	-2.6	-2.9	0.3	10.8	10.5
5710	Non HT40, 6 to 54 Mbps	1	4	1.7		1.7	10.8	9.1
	Non HT40, 6 to 54 Mbps	2	7	1.7	1.6	4.7	9.8	5.1
	HT/VHT40, M0 to M7	1	4	0.9		0.9	10.8	9.9
	HT/VHT40, M0 to M7	2	7	0.9	1.2	4.1	9.8	5.7
	HT/VHT40, M8 to M15	2	4	0.9	1.2	4.1	10.8	6.7
	HT/VHT40 Beam Forming, M0 to M7	2	7	0.9	1.2	4.1	9.8	5.7
	HT/VHT40 Beam Forming, M8 to M15	2	4	0.9	1.2	4.1	10.8	6.7
	HT/VHT40 STBC, M0 to M7	2	4	0.9	1.2	4.1	10.8	6.7

Page No: 31 of 83

5720	Non HT20, 6 to 54 Mbps	1	4	3.9		3.9	10.8	6.9
	Non HT20, 6 to 54 Mbps	2	7	3.9	4.0	7.0	9.8	2.8
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	3.9	4.0	7.0	9.8	2.8
	HT/VHT20, M0 to M7	1	4	3.8		3.8	10.8	7.0
	HT/VHT20, M0 to M7	2	7	3.8	3.9	6.9	9.8	2.9
	HT/VHT20, M8 to M15	2	4	3.8	3.9	6.9	10.8	3.9
	HT/VHT20 Beam Forming, M0 to M7	2	7	3.8	3.9	6.9	9.8	2.9
	HT/VHT20 Beam Forming, M8 to M15	2	4	3.8	3.9	6.9	10.8	3.9
	HT/VHT20 STBC, M0 to M7	2	4	3.8	3.9	6.9	10.8	3.9

Page No: 32 of 83

Power Spectral Density, 5560 MHz, 6 Mbps, Non HT-20

Antenna A

Antenna B

Page No: 33 of 83

A.5 Conducted Spurious Emissions

15.407(b) *Undesirable emission limits.* Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz..
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209.
- (7) The provisions of §15.205 apply to intentional radiators operating under this section.

Test Procedure

Ref. 789033 D02 General UNII Test Procedures New Rules v01r04 ANSI C63.10: 2013

Conducted Spurious Emissions

Test Procedure

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Place the radio in continuous transmit mode. Use the procedures in KDB 789033 D02 General UNII Test Procedures New Rules v01r04 to substitute conducted measurements in place of radiated measurements.
- 3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer).
- 4. Record the marker waveform peak to spur difference. Also measure any emissions in the restricted bands..
- 5. The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. The worst case output is recorded.
- 6. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands
- 7. Capture graphs and record pertinent measurement data.

Ref. 789033 D02 General UNII Test Procedures New Rules

ANSI C63.10: 2013 Section 12.7.6 (Peak), Section 12.7.7.2 (Method AD)

Conducted Spurious Emissions						
Test parameters						
Peak	Average					
Span = 30 MHz to 26.5 GHz / 26.5 GHz to 40 GHz	Span = 30MHz to 26.5GHz / 26.5GHz to 40GHz					
RBW = 1 MHz	RBW = 1 MHz					
$VBW \ge 3 MHz$	$VBW \ge 3 MHz$					
Sweep = Auto couple	Sweep = Auto couple					
Detector = Peak	Detector = RMS					
Trace = Max Hold.	Power Averaging					

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
1	Conducted testing: EUT + AC/DC Adapter	S01 and S02	\square	

Tested By: Date of testing:

Johanna Knudsen August 1, 2017 – August 1, 2017

Test Result : PASS

Test Equipment

See Appendix C for list of test equipment

Page No: 35 of 83

Conducted Spurious Emissions Data Table - Average

Frequency (MHz)	Моде	Tx Paths	Correlated Antenna Gain (dBi)	Conducted Spur TX path 1 (dBm/MHz)	Conducted Spur TX path 2 (dBm/MHz)	Total Conducted Spur (dBm/MHz)	Limit (dBm)	Margin (dB)
5500	Non HT20, 6 to 54 Mbps	1	4	-54.24		-50.24	-41.5	8.74
	Non HT20, 6 to 54 Mbps	2	4	-54.24	-54.48	-47.35	-41.5	5.85
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	-54.24	-54.48	-44.35	-41.5	2.85
	HT/VHT20, M0 to M7	1	4	-54.41		-50.41	-41.5	8.91
	HT/VHT20, M0 to M7	2	4	-54.41	-54.08	-47.23	-41.5	5.73
	HT/VHT20, M8 to M15	2	4	-54.31	-53.85	-47.06	-41.5	5.56
	HT/VHT20 Beam Forming, M0 to M7	2	7	-54.41	-54.08	-44.23	-41.5	2.73
	HT/VHT20 Beam Forming, M8 to M15	2	4	-54.31	-53.85	-47.06	-41.5	5.56
	HT/VHT20 STBC, M0 to M7	2	4	-54.41	-54.08	-47.23	-41.5	5.73
5510	Non HT40, 6 to 54 Mbps	1	4	-54.28		-50.28	-41.5	8.78
	Non HT40, 6 to 54 Mbps	2	4	-54.28	-54.2	-47.23	-41.5	5.73
	HT/VHT40, M0 to M7	1	4	-54.57		-50.57	-41.5	9.07
	HT/VHT40, M0 to M7	2	4	-54.57	-54.15	-47.34	-41.5	5.84
	HT/VHT40, M8 to M15	2	4	-53.64	-54.11	-46.86	-41.5	5.36
	HT/VHT40 Beam Forming, M0 to M7	2	7	-54.57	-54.15	-44.34	-41.5	2.84
	HT/VHT40 Beam Forming, M8 to M15	2	4	-53.64	-54.11	-46.86	-41.5	5.36
	HT/VHT40 STBC, M0 to M7	2	4	-54.57	-54.15	-47.34	-41.5	5.84
5500	N. 11700 04 5444	4					10.05	
5530	Non HT80, 6 to 54 Mbps	1	4	-54.24	5 2.0	-50.24	-42.25	7.99
	Non HT80, 6 to 54 Mbps	2	4	-54.24	-53.9	-47.06	-42.25	4.81
	VHT80, M0 to M9 1ss	1	4	-53.93	E 4 3 5	-49.93	-42.25	7.68
	VHT80, M0 to M9 1ss	2	4	-53.93	-54.25	-47.08	-42.25	4.83
	VHT80, M0 to M9 2ss	2	4	-54.23	-54.27	-47.24	-42.25	4.99
	VHT80 Beam Forming, M0 to M9 1ss	2	7	-53.93	-54.25	-44.08	-42.25	1.83

Page No: 36 of 83

							613	
	VHT80 Beam Forming, M0 to M9 2ss	2	4	-54.23	-54.27	-47.24	-42.25	4.99
	VHT80 STBC, M0 to M9 1ss	2	4	-53.93	-54.25	-47.08	-42.25	4.83
							_	
5550	Non HT40, 6 to 54 Mbps	1	4	-54.4		-50.40	-41.5	8.90
	Non HT40, 6 to 54 Mbps	2	4	-54.4	-54.24	-47.31	-41.5	5.81
	HT/VHT40, M0 to M7	1	4	-54.26		-50.26	-41.5	8.76
	HT/VHT40, M0 to M7	2	4	-54.26	-54.04	-47.14	-41.5	5.64
	HT/VHT40, M8 to M15	2	4	-53.66	-53.81	-46.72	-41.5	5.22
	HT/VHT40 Beam Forming, M0 to M7	2	7	-54.26	-54.04	-44.14	-41.5	2.64
	HT/VHT40 Beam Forming, M8 to M15	2	4	-53.66	-53.81	-46.72	-41.5	5.22
	HT/VHT40 STBC, M0 to M7	2	4	-54.26	-54.04	-47.14	-41.5	5.64
5560	Non HT20, 6 to 54 Mbps	1	4	-54.86		4.00	-41.5	-45.50
	Non HT20, 6 to 54 Mbps	2	4	-54.86	-54.18	-47.50	-41.5	6.00
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	-54.86	-54.18	-44.50	-41.5	3.00
	HT/VHT20, M0 to M7	1	4	-54.55		-50.55	-41.5	9.05
	HT/VHT20, M0 to M7	2	4	-54.55	-54.35	-47.44	-41.5	5.94
	HT/VHT20, M8 to M15	2	4	-54.23	-53.77	-46.98	-41.5	5.48
	HT/VHT20 Beam Forming, M0 to M7	2	7	-54.55	-54.35	-44.44	-41.5	2.94
	HT/VHT20 Beam Forming, M8 to M15	2	4	-54.23	-53.77	-46.98	-41.5	5.48
	HT/VHT20 STBC, M0 to M7	2	4	-54.55	-54.35	-47.44	-41.5	5.94
5610	Non HT80, 6 to 54 Mbps	1	4	-53.91		-49.91	-42.25	7.66
	Non HT80, 6 to 54 Mbps	2	4	-53.91	-54.31	-47.10	-42.25	4.85
	VHT80, M0 to M9 1ss	1	4	-54.26		-50.26	-42.25	8.01
	VHT80, M0 to M9 1ss	2	4	-54.26	-54.36	-47.30	-42.25	5.05
	VHT80, M0 to M9 2ss	2	4	-54.17	-54.21	-47.18	-42.25	4.93
	VHT80 Beam Forming, M0 to M9 1ss	2	7	-54.26	-54.36	-44.30	-42.25	2.05
	VHT80 Beam Forming, M0 to M9 2ss	2	4	-54.17	-54.21	-47.18	-42.25	4.93
	VHT80 STBC, M0 to M9 1ss	2	4	-54.26	-54.36	-47.30	-42.25	5.05
							F	
5690	Non HT80, 6 to 54 Mbps	1	4	-54.08		-50.08	-42.25	7.83
	Non HT80, 6 to 54 Mbps	2	4	-54.08	-53.95	-47.00	-42.25	4.75
	VHT80, M0 to M9 1ss	1	4	-54.27		-50.27	-42.25	8.02
	VHT80, M0 to M9 1ss	2	4	-54.27	-54.43	-47.34	-42.25	5.09

Page No: 37 of 83

VHT80, M0 to M9 2ss									
VHT80 Beam Forming, M0 to M9 2ss 2 4 -54.16 -54.24 -47.19 -42.25 4.94 VHT80 STBC, M0 to M9 1ss 2 4 -54.27 -54.43 -47.34 -42.25 5.09 Non HT40, 6 to 54 Mbps 1		VHT80, M0 to M9 2ss	2	4	-54.16	-54.24	-47.19	-42.25	4.94
Non HT40, 6 to 54 Mbps		VHT80 Beam Forming, M0 to M9 1ss	2	7	-54.27	-54.43	-44.34	-42.25	2.09
Non HT40, 6 to 54 Mbps		VHT80 Beam Forming, M0 to M9 2ss	2	4	-54.16	-54.24	-47.19	-42.25	4.94
Non HT40, 6 to 54 Mbps		VHT80 STBC, M0 to M9 1ss	2	4	-54.27	-54.43	-47.34	-42.25	5.09
Non HT40, 6 to 54 Mbps									
HT/VHT40, M0 to M7	5710	Non HT40, 6 to 54 Mbps	1	4	-54.68		-50.68	-41.5	9.18
HT/VHT40, M0 to M7 2 4 -54.51 -54.21 -47.35 -41.5 5.85 HT/VHT40, M8 to M15 2 4 -54.66 -54.25 -47.44 -41.5 5.94 HT/VHT40 Beam Forming, M0 to M7 2 7 -54.51 -54.21 -44.35 -41.5 2.85 HT/VHT40 Beam Forming, M8 to M15 2 4 -54.66 -54.25 -47.44 -41.5 5.94 HT/VHT40 STBC, M0 to M7 2 4 -54.51 -54.21 -47.35 -41.5 5.85 Non HT20, 6 to 54 Mbps 1 4 -53.94 -53.74 -46.83 -41.5 5.33 Non HT20 Beam Forming, 6 to 54 Mbps 2 7 -53.94 -53.74 -43.83 -41.5 5.33 HT/VHT20, M0 to M7 1 4 -54.35 -54.1 -47.21 -41.5 5.71 HT/VHT20, M8 to M15 2 4 -54.35 -54.1 -47.21 -41.5 5.69 HT/VHT20 Beam Forming, M0 to M7 2 7 -54.35 -54.1 -47.21 -41.5 5.69 HT/VHT20 Beam Forming, M8 to M15 2 4 -54.21 -54.19 -47.19 -41.5 5.69 HT/VHT20 Beam Forming, M8 to M15 2 4 -54.21 -54.19 -47.19 -41.5 5.69		Non HT40, 6 to 54 Mbps	2	4	-54.68	-54.53	-47.59	-41.5	6.09
HT/VHT40, M8 to M15		HT/VHT40, M0 to M7	1	4	-54.51		-50.51	-41.5	9.01
HT/VHT40 Beam Forming, M0 to M7		HT/VHT40, M0 to M7	2	4	-54.51	-54.21	-47.35	-41.5	5.85
HT/VHT40 Beam Forming, M8 to M15		HT/VHT40, M8 to M15	2	4	-54.66	-54.25	-47.44	-41.5	5.94
HT/VHT40 STBC, M0 to M7 2 4 -54.51 -54.21 -47.35 -41.5 5.85 Non HT20, 6 to 54 Mbps		HT/VHT40 Beam Forming, M0 to M7	2	7	-54.51	-54.21	-44.35	-41.5	2.85
Non HT20, 6 to 54 Mbps 1 4 -53.94 -49.94 -41.5 8.44 Non HT20, 6 to 54 Mbps 2 4 -53.94 -53.74 -46.83 -41.5 5.33 Non HT20 Beam Forming, 6 to 54 Mbps 2 7 -53.94 -53.74 -43.83 -41.5 2.33 HT/VHT20, M0 to M7 1 4 -54.35 -50.35 -41.5 8.85 HT/VHT20, M0 to M7 2 4 -54.35 -54.1 -47.21 -41.5 5.71 HT/VHT20, M8 to M15 2 4 -54.21 -54.19 -47.19 -41.5 5.69 HT/VHT20 Beam Forming, M0 to M7 2 7 -54.35 -54.1 -44.21 -41.5 2.71 HT/VHT20 Beam Forming, M8 to M15 2 4 -54.21 -54.19 -47.19 -41.5 5.69		HT/VHT40 Beam Forming, M8 to M15	2	4	-54.66	-54.25	-47.44	-41.5	5.94
Non HT20, 6 to 54 Mbps 2 4 -53.94 -53.74 -46.83 -41.5 5.33 Non HT20 Beam Forming, 6 to 54 Mbps 2 7 -53.94 -53.74 -43.83 -41.5 2.33 HT/VHT20, M0 to M7 1 4 -54.35 -50.35 -41.5 8.85 HT/VHT20, M0 to M7 2 4 -54.35 -54.1 -47.21 -41.5 5.71 HT/VHT20, M8 to M15 2 4 -54.35 -54.1 -47.19 -41.5 5.69 HT/VHT20 Beam Forming, M0 to M7 2 7 -54.35 -54.1 -44.21 -41.5 2.71 HT/VHT20 Beam Forming, M8 to M15 2 4 -54.21 -54.19 -47.19 -41.5 5.69		HT/VHT40 STBC, M0 to M7	2	4	-54.51	-54.21	-47.35	-41.5	5.85
Non HT20, 6 to 54 Mbps 2 4 -53.94 -53.74 -46.83 -41.5 5.33 Non HT20 Beam Forming, 6 to 54 Mbps 2 7 -53.94 -53.74 -43.83 -41.5 2.33 HT/VHT20, M0 to M7 1 4 -54.35 -50.35 -41.5 8.85 HT/VHT20, M0 to M7 2 4 -54.35 -54.1 -47.21 -41.5 5.71 HT/VHT20, M8 to M15 2 4 -54.35 -54.1 -47.19 -41.5 5.69 HT/VHT20 Beam Forming, M0 to M7 2 7 -54.35 -54.1 -44.21 -41.5 2.71 HT/VHT20 Beam Forming, M8 to M15 2 4 -54.21 -54.19 -47.19 -41.5 5.69									
Non HT20 Beam Forming, 6 to 54 Mbps 2 7 -53.94 -53.74 -43.83 -41.5 2.33 HT/VHT20, M0 to M7 1 4 -54.35 -50.35 -41.5 8.85 HT/VHT20, M0 to M7 2 4 -54.35 -54.1 -47.21 -41.5 5.71 HT/VHT20, M8 to M15 2 4 -54.21 -54.19 -47.19 -41.5 5.69 HT/VHT20 Beam Forming, M0 to M7 2 7 -54.35 -54.1 -47.19 -41.5 2.71 HT/VHT20 Beam Forming, M8 to M15 2 4 -54.21 -54.19 -47.19 -41.5 5.69	5720	Non HT20, 6 to 54 Mbps	1	4	-53.94		-49.94	-41.5	8.44
HT/VHT20, M0 to M7 1 4 -54.35 -50.35 -41.5 8.85 HT/VHT20, M0 to M7 2 4 -54.35 -54.1 -47.21 -41.5 5.71 HT/VHT20, M8 to M15 2 4 -54.21 -54.19 -47.19 -41.5 5.69 HT/VHT20 Beam Forming, M0 to M7 2 7 -54.35 -54.1 -44.21 -41.5 2.71 HT/VHT20 Beam Forming, M8 to M15 2 4 -54.21 -54.19 -47.19 -41.5 5.69		Non HT20, 6 to 54 Mbps	2	4	-53.94	-53.74	-46.83	-41.5	5.33
HT/VHT20, M0 to M7 2 4 -54.35 -54.1 -47.21 -41.5 5.71 HT/VHT20, M8 to M15 2 4 -54.21 -54.19 -47.19 -41.5 5.69 HT/VHT20 Beam Forming, M0 to M7 2 7 -54.35 -54.1 -44.21 -41.5 2.71 HT/VHT20 Beam Forming, M8 to M15 2 4 -54.21 -54.19 -47.19 -41.5 5.69		Non HT20 Beam Forming, 6 to 54 Mbps	2	7	-53.94	-53.74	-43.83	-41.5	2.33
HT/VHT20, M8 to M15 2 4 -54.21 -54.19 -47.19 -41.5 5.69 HT/VHT20 Beam Forming, M0 to M7 2 7 -54.35 -54.1 -44.21 -41.5 2.71 HT/VHT20 Beam Forming, M8 to M15 2 4 -54.21 -54.19 -47.19 -41.5 5.69		HT/VHT20, M0 to M7	1	4	-54.35		-50.35	-41.5	8.85
HT/VHT20 Beam Forming, M0 to M7 2 7 -54.35 -54.1 -44.21 -41.5 2.71 HT/VHT20 Beam Forming, M8 to M15 2 4 -54.21 -54.19 -47.19 -41.5 5.69		HT/VHT20, M0 to M7	2	4	-54.35	-54.1	-47.21	-41.5	5.71
HT/VHT20 Beam Forming, M8 to M15 2 4 -54.21 -54.19 -47.19 -41.5 5.69		HT/VHT20, M8 to M15	2	4	-54.21	-54.19	-47.19	-41.5	5.69
<u> </u>		HT/VHT20 Beam Forming, M0 to M7	2	7	-54.35	-54.1	-44.21	-41.5	2.71
HT/VHT20 STBC, M0 to M7 2 4 -54.35 -54.1 -47.21 -41.5 5.71		HT/VHT20 Beam Forming, M8 to M15	2	4	-54.21	-54.19	-47.19	-41.5	5.69
		HT/VHT20 STBC, M0 to M7	2	4	-54.35	-54.1	-47.21	-41.5	5.71

Conducted Spurious Emissions Data Table – Peak

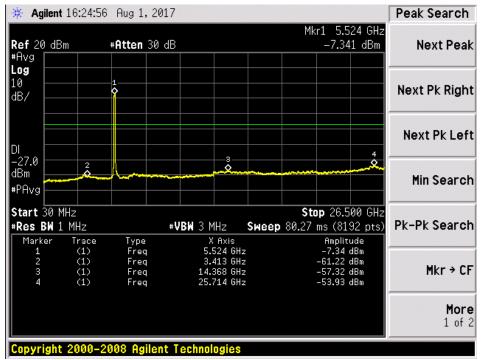
Frequency (MHz)	Mode	Tx Paths	Correlated Antenna Gain (dBi)	Conducted Spur TX path 1 (dBm/MHz)	Conducted Spur TX path 2 (dBm/MHz)	Total Conducted Spur (dBm/MHz)	Limit (dBm)	Margin (dB)
5500	Non HT20, 6 to 54 Mbps	1	4	-45.13		-41.13	-21.5	19.63
	Non HT20, 6 to 54 Mbps	2	4	-45.13	-44.53	-37.81	-21.5	16.31
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	-45.13	-44.53	-34.81	-21.5	13.31
	HT/VHT20, M0 to M7	1	4	-46.47		-42.47	-21.5	20.97
	HT/VHT20, M0 to M7	2	4	-46.47	-46.47	-39.46	-21.5	17.96
	HT/VHT20, M8 to M15	2	4	-45.46	-46.53	-38.95	-21.5	17.45
	HT/VHT20 Beam Forming, M0 to M7	2	7	-46.47	-46.47	-36.46	-21.5	14.96
	HT/VHT20 Beam Forming, M8 to M15	2	4	-45.46	-46.53	-38.95	-21.5	17.45
	HT/VHT20 STBC, M0 to M7	2	4	-46.47	-46.47	-39.46	-21.5	17.96
5510	Non HT40, 6 to 54 Mbps	1	4	-48.19		-44.19	-21.5	22.69
	Non HT40, 6 to 54 Mbps	2	4	-48.19	-45.58	-39.68	-21.5	18.18
	HT/VHT40, M0 to M7	1	4	-44.84		-40.84	-21.5	19.34
	HT/VHT40, M0 to M7	2	4	-44.84	-46.88	-38.73	-21.5	17.23
	HT/VHT40, M8 to M15	2	4	-44.38	-46.39	-38.26	-21.5	16.76
	HT/VHT40 Beam Forming, M0 to M7	2	7	-44.84	-46.88	-35.73	-21.5	14.23
	HT/VHT40 Beam Forming, M8 to M15	2	4	-44.38	-46.39	-38.26	-21.5	16.76
	HT/VHT40 STBC, M0 to M7	2	4	-44.84	-46.88	-38.73	-21.5	17.23
	F							
5530	Non HT80, 6 to 54 Mbps	1	4	-46.54		-42.54	-22.25	20.29
	Non HT80, 6 to 54 Mbps	2	4	-46.54	-46.31	-39.41	-22.25	17.16
	VHT80, M0 to M9 1ss	1	4	-45.97	45 = 1	-41.97	-22.25	19.72
	VHT80, M0 to M9 1ss	2	4	-45.97	-45.71	-38.83	-22.25	16.58
	VHT80, M0 to M9 2ss	2	4	-45.84	-46.77	-39.27	-22.25	17.02
	VHT80 Beam Forming, M0 to M9 1ss	2	7	-45.97	-45.71	-35.83	-22.25	13.58

Page No: 39 of 83

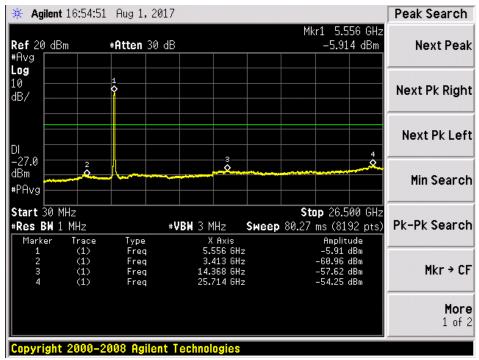
	VHT80 Beam Forming, M0 to M9 2ss	2	4	-45.84	-46.77	-39.27	-22.25	17.02
	VHT80 STBC, M0 to M9 1ss	2	4	-45.97	-45.71	-38.83	-22.25	16.58
5550	Non HT40, 6 to 54 Mbps	1	4	-47.52		-43.52	-21.5	22.02
	Non HT40, 6 to 54 Mbps	2	4	-47.52	-46.82	-40.15	-21.5	18.65
	HT/VHT40, M0 to M7	1	4	-45.29		-41.29	-21.5	19.79
	HT/VHT40, M0 to M7	2	4	-45.29	-44.89	-38.08	-21.5	16.58
	HT/VHT40, M8 to M15	2	4	-47.12	-46.55	-39.82	-21.5	18.32
	HT/VHT40 Beam Forming, M0 to M7	2	7	-45.29	-44.89	-35.08	-21.5	13.58
	HT/VHT40 Beam Forming, M8 to M15	2	4	-47.12	-46.55	-39.82	-21.5	18.32
	HT/VHT40 STBC, M0 to M7	2	4	-45.29	-44.89	-38.08	-21.5	16.58
5560	Non HT20, 6 to 54 Mbps	1	4	-46.41		-42.41	-21.5	20.91
	Non HT20, 6 to 54 Mbps	2	4	-46.41	-46.18	-39.28	-21.5	17.78
	Non HT20 Beam Forming, 6 to 54 Mbps	2	7	-46.41	-46.18	-36.28	-21.5	14.78
	HT/VHT20, M0 to M7	1	4	-46.21		-42.21	-21.5	20.71
	HT/VHT20, M0 to M7	2	4	-46.21	-45.18	-38.65	-21.5	17.15
	HT/VHT20, M8 to M15	2	4	-46.25	-44.84	-38.48	-21.5	16.98
	HT/VHT20 Beam Forming, M0 to M7	2	7	-46.21	-45.18	-35.65	-21.5	14.15
	HT/VHT20 Beam Forming, M8 to M15	2	4	-46.25	-44.84	-38.48	-21.5	16.98
	HT/VHT20 STBC, M0 to M7	2	4	-46.21	-45.18	4.00	-21.5	-25.50
-				P.	r		· ·	
5610	Non HT80, 6 to 54 Mbps	1	4	-47.31		-43.31	-22.25	21.06
	Non HT80, 6 to 54 Mbps	2	4	-47.31	-47.22	-40.25	-22.25	18.00
	VHT80, M0 to M9 1ss	1	4	-45.32		-41.32	-22.25	19.07
	VHT80, M0 to M9 1ss	2	4	-45.32	-46.3	-38.77	-22.25	16.52
	VHT80, M0 to M9 2ss	2	4	-46.37	-45.87	-39.10	-22.25	16.85
	VHT80 Beam Forming, M0 to M9 1ss	2	7	-45.32	-46.3	-35.77	-22.25	13.52
	VHT80 Beam Forming, M0 to M9 2ss	2	4	-46.37	-45.87	-39.10	-22.25	16.85
	VHT80 STBC, M0 to M9 1ss	2	4	-45.32	-46.3	-38.77	-22.25	16.52
		r	F.	r-	r			
5690	Non HT80, 6 to 54 Mbps	1	4	-45.59		-41.59	-22.25	19.34
	Non HT80, 6 to 54 Mbps	2	4	-45.59	-45.9	-38.73	-22.25	16.48
	VHT80, M0 to M9 1ss	1	4	-45.07		-41.07	-22.25	18.82
	VHT80, M0 to M9 1ss	2	4	-45.07	-45.28	-38.16	-22.25	15.91

Page No: 40 of 83

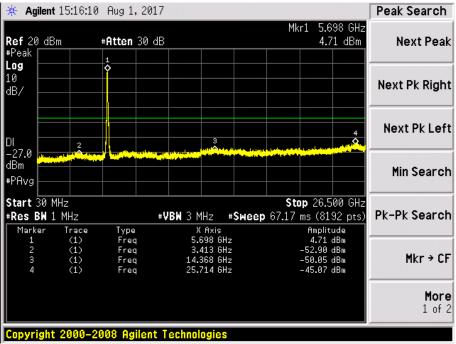

VHT80, M0 to M9 2ss	2	4	-45.56	-47.18	-39.28	-22.25	17.03
VHT80 Beam Forming, M0 to M9 1ss	2	7	-45.07	-45.28	-35.16	-22.25	12.91
VHT80 Beam Forming, M0 to M9 2ss	2	4	-45.56	-47.18	-39.28	-22.25	17.03
VHT80 STBC, M0 to M9 1ss	2	4	-45.07	-45.28	-38.16	-22.25	15.91
Non HT40, 6 to 54 Mbps	1	4	-46.68		-42.68	-21.5	21.18
Non HT40, 6 to 54 Mbps	2	4	-46.68	-46.57	-39.61	-21.5	18.11
HT/VHT40, M0 to M7	1	4	-45.13		-41.13	-21.5	19.63
HT/VHT40, M0 to M7	2	4	-45.13	-45.21	-38.16	-21.5	16.66
HT/VHT40, M8 to M15	2	4	-46.14	-44.15	-38.02	-21.5	16.52
HT/VHT40 Beam Forming, M0 to M7	2	7	-45.13	-45.21	-35.16	-21.5	13.66
HT/VHT40 Beam Forming, M8 to M15	2	4	-46.14	-44.15	-38.02	-21.5	16.52
HT/VHT40 STBC, M0 to M7	2	4	-45.13	-45.21	-38.16	-21.5	16.66
Non HT20, 6 to 54 Mbps	1	4	-44.59		-40.59	-21.5	19.09
Non HT20, 6 to 54 Mbps	2	4	-44.59	-44.12	-37.34	-21.5	15.84
Non HT20 Beam Forming, 6 to 54 Mbps	2	7	-44.59	-44.12	-34.34	-21.5	12.84
HT/VHT20, M0 to M7	1	4	-46.18		-42.18	-21.5	20.68
HT/VHT20, M0 to M7	2	4	-46.18	-45.27	-38.69	-21.5	17.19
HT/VHT20, M8 to M15	2	4	-45.55	-45.11	-38.31	-21.5	16.81
HT/VHT20 Beam Forming, M0 to M7	2	7	-46.18	-45.27	-35.69	-21.5	14.19
HT/VHT20 Beam Forming, M8 to M15	2	4	-45.55	-45.11	-38.31	-21.5	16.81
HT/VHT20 STBC, M0 to M7	2	4	-46.18	-45.27	-38.69	-21.5	17.19
	VHT80 Beam Forming, M0 to M9 1ss VHT80 Beam Forming, M0 to M9 2ss VHT80 STBC, M0 to M9 1ss Non HT40, 6 to 54 Mbps Non HT40, M0 to M7 HT/VHT40, M0 to M7 HT/VHT40, M8 to M15 HT/VHT40 Beam Forming, M0 to M7 HT/VHT40 STBC, M0 to M7 Non HT20, 6 to 54 Mbps Non HT20, 6 to 54 Mbps Non HT20, M0 to M7 HT/VHT40 Beam Forming, M8 to M15 HT/VHT40 STBC, M0 to M7	VHT80 Beam Forming, M0 to M9 1ss 2 VHT80 Beam Forming, M0 to M9 2ss 2 VHT80 STBC, M0 to M9 1ss 2 Non HT40, 6 to 54 Mbps 1 Non HT40, 6 to 54 Mbps 2 HT/VHT40, M0 to M7 1 HT/VHT40, M8 to M15 2 HT/VHT40 Beam Forming, M0 to M7 2 HT/VHT40 Beam Forming, M8 to M15 2 HT/VHT40 STBC, M0 to M7 2 Non HT20, 6 to 54 Mbps 1 Non HT20, 6 to 54 Mbps 2 Non HT20, M0 to M7 1 HT/VHT20, M0 to M7 2 HT/VHT20, M8 to M15 2 HT/VHT20 Beam Forming, M0 to M7 2 HT/VHT20 Beam Forming, M8 to M15 2 HT/VHT20 Beam Forming, M8 to M15 2	VHT80 Beam Forming, M0 to M9 1ss 2 7 VHT80 Beam Forming, M0 to M9 2ss 2 4 VHT80 STBC, M0 to M9 1ss 2 4 Non HT40, 6 to 54 Mbps 1 4 Non HT40, 6 to 54 Mbps 2 4 HT/VHT40, M0 to M7 1 4 HT/VHT40, M0 to M7 2 4 HT/VHT40 Beam Forming, M0 to M7 2 7 HT/VHT40 Beam Forming, M8 to M15 2 4 HT/VHT40 STBC, M0 to M7 2 4 Non HT20, 6 to 54 Mbps 1 4 Non HT20, 6 to 54 Mbps 2 4 Non HT20, M0 to M7 1 4 HT/VHT20, M0 to M7 1 4 HT/VHT20, M8 to M15 2 4 HT/VHT20 Beam Forming, M0 to M7 2 4 HT/VHT20 Beam Forming, M8 to M15 2 4 HT/VHT20 Beam Forming, M8 to M15 2 4	VHT80 Beam Forming, M0 to M9 1ss 2 7 -45.07 VHT80 Beam Forming, M0 to M9 2ss 2 4 -45.56 VHT80 STBC, M0 to M9 1ss 2 4 -45.07 Non HT40, 6 to 54 Mbps 1 4 -46.68 Non HT40, 6 to 54 Mbps 2 4 -46.68 HT/VHT40, M0 to M7 1 4 -45.13 HT/VHT40, M0 to M7 2 4 -45.13 HT/VHT40 Beam Forming, M0 to M7 2 7 -45.13 HT/VHT40 Beam Forming, M8 to M15 2 4 -46.14 HT/VHT40 STBC, M0 to M7 2 4 -45.13 Non HT20, 6 to 54 Mbps 1 4 -45.59 Non HT20, 6 to 54 Mbps 2 4 -44.59 Non HT20, M0 to M7 1 4 -46.18 HT/VHT20, M0 to M7 1 4 -46.18 HT/VHT20, M8 to M15 2 4 -45.55 HT/VHT20 Beam Forming, M0 to M7 2 7 -46.18 HT/VHT20 Beam Forming, M8 to M15 2 4 -45.55	VHT80 Beam Forming, M0 to M9 1ss 2 7 -45.07 -45.28 VHT80 Beam Forming, M0 to M9 2ss 2 4 -45.56 -47.18 VHT80 STBC, M0 to M9 1ss 2 4 -45.07 -45.28 Non HT40, 6 to 54 Mbps 1 4 -46.68 -46.57 HT/VHT40, M0 to M7 1 4 -46.68 -46.57 HT/VHT40, M0 to M7 2 4 -45.13 -45.21 HT/VHT40, M8 to M15 2 4 -45.13 -45.21 HT/VHT40 Beam Forming, M0 to M7 2 7 -45.13 -45.21 HT/VHT40 STBC, M0 to M7 2 4 -46.14 -44.15 HT/VHT40 STBC, M0 to M7 2 4 -45.13 -45.21 Non HT20, 6 to 54 Mbps 1 4 -44.59 -44.15 Non HT20, M0 to M7 1 4 -44.59 -44.12 HT/VHT20, M0 to M7 1 4 -46.18 -45.27 HT/VHT20, M8 to M15 2 4 -46.18 -45.27	VHT80 Beam Forming, M0 to M9 1ss 2 7 -45.07 -45.28 -35.16 VHT80 Beam Forming, M0 to M9 2ss 2 4 -45.56 -47.18 -39.28 VHT80 STBC, M0 to M9 1ss 2 4 -45.07 -45.28 -38.16 Non HT40, 6 to 54 Mbps 1 4 -46.68 -42.68 Non HT40, 6 to 54 Mbps 2 4 -46.68 -46.57 -39.61 HT/VHT40, M0 to M7 1 4 -45.13 -45.21 -38.16 HT/VHT40, M8 to M15 2 4 -46.13 -45.21 -38.16 HT/VHT40 Beam Forming, M0 to M7 2 7 -45.13 -45.21 -38.02 HT/VHT40 STBC, M0 to M7 2 4 -46.14 -44.15 -38.02 HT/VHT40 STBC, M0 to M7 2 4 -45.13 -45.21 -38.16 Non HT20, 6 to 54 Mbps 1 4 -44.59 -40.59 Non HT20, 6 to 54 Mbps 2 4 -44.59 -44.12 -37.34 Non H	VHT80 Beam Forming, M0 to M9 1ss 2 7 -45.07 -45.28 -35.16 -22.25 VHT80 Beam Forming, M0 to M9 2ss 2 4 -45.56 -47.18 -39.28 -22.25 VHT80 STBC, M0 to M9 1ss 2 4 -45.07 -45.28 -38.16 -22.25 VHT80 STBC, M0 to M9 1ss 2 4 -45.07 -45.28 -38.16 -22.25 VHT80 STBC, M0 to M9 1ss 2 4 -46.68 -46.57 -39.61 -22.25 VHT80 STBC, M0 to M9 1ss 2 4 -46.68 -46.57 -39.61 -21.5 VHT/VHT40, M0 to M7 1 4 -45.13 -45.21 -38.16 -21.5 VHT/VHT40, M0 to M7 1 4 -45.13 -45.21 -38.16 -21.5 VHT/VHT40, M0 to M7 2 4 -46.14 -44.15 -38.02 -21.5 VHT/VHT40 Beam Forming, M0 to M7 2 7 -45.13 -45.21 -35.16 -21.5 VHT/VHT40 STBC, M0 to M7 2 4 -46.14 -44.15 -38.02 -21.5 VHT/VHT40 STBC, M0 to M7 2 4 -45.13 -45.21 -38.16 -21.5 VHT/VHT40 STBC, M0 to M7 2 4 -44.59 -44.12 -37.34 -21.5 VHT/VHT20, M0 to M7 1 4 -46.18 -42.21 -36.34 -21.5 VHT/VHT20, M0 to M7 1 4 -46.18 -42.21 -38.69 -21.5 VHT/VHT20, M0 to M7 1 4 -46.18 -45.27 -38.69 -21.5 VHT/VHT20, M0 to M7 2 4 -45.55 -45.11 -38.31 -21.5 VHT/VHT20 Beam Forming, M0 to M7 2 7 -46.18 -45.27 -36.69 -21.5 VHT/VHT20, M8 to M15 2 4 -45.55 -45.11 -38.31 -21.5 VHT/VHT20 Beam Forming, M0 to M7 2 7 -46.18 -45.27 -35.69 -21.5 VHT/VHT20 Beam Forming, M0 to M7 2 7 -46.18 -45.27 -35.69 -21.5 VHT/VHT20 Beam Forming, M8 to M15 2 4 -45.55 -45.11 -38.31 -21.5 VHT/VHT20 Beam Forming, M8 to M15 2 4 -45.55 -45.11 -38.31 -21.5 VHT/VHT20 Beam Forming, M8 to M15 2 4 -45.55 -45.11 -38.31 -21.5 VHT/VHT20 Beam Forming, M8 to M15 2 4 -45.55 -45.11 -38.31 -21.5 VHT/VHT20 Beam Forming, M8 to M15 2 4 -45.55 -45.11 -38.31 -21.5 VHT/VHT20 Beam Forming, M8 to M15 2 4 -45.55 -45.11 -38.31 -21.5 VHT/VHT20 Beam Forming, M8 to M15 2 4 -45.55 -45.11 -38.31 -21.5 VHT/VHT20 Beam Forming, M8 to M15 2 4 -45.55 -45.11 -38.31 -21.5 VHT/VHT20 Beam Forming, M8 to M15 2 4 -45.55 -45.11 -38.31 -21.5 VHT/VHT20 Beam Forming, M8 to M15 2 4 -45.55 -45.11 -38.31 -21.5 VHT/VHT20 Beam Forming, M8 to M15 2 4 -45.55 -45.11 -38.31 -21.5 VHT/VHT20 Beam Forming, M8 to M15 2 4 -45.55 -45.11 -38.31 -21.5 VHT/VHT20 Beam Forming, M8 to M15 2 4 -45.55 -45.11 -38.31 -21.5 VHT/VHT20 B

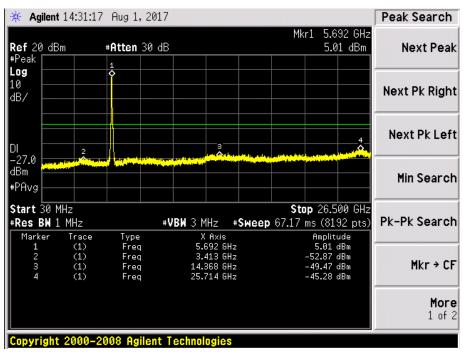


Conducted Spurs Peak, All Antennas



Conducted Spurs Average, 5530 MHz, VHT80, M0-M9 1ss


Antenna A


Antenna B

Conducted Spurs Peak, 5690 MHz, VHT80, BF, M0-M9 1ss

Antenna A

Antenna B

A.6 Conducted Band Edge

15.407(b) *Undesirable emission limits.* Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz..
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209.
- (7) The provisions of §15.205 apply to intentional radiators operating under this section.
- (8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits

Test Procedure

Ref. 789033 D02 General UNII Test Procedures New Rules v01r04 ANSI C63.10: 2013

Conducted Band edge

Test Procedure

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Place the radio in continuous transmit mode. Use the procedures in 789033 D02 General UNII Test Procedures New Rules v01r04 to substitute conducted measurements in place of radiated measurements.
- 3. Configure Spectrum analyzer as per test parameters below (be sure to enter all losses between the transmitter output and the spectrum analyzer).
- 4. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands.
- 5. The "measure-and-sum technique" is used for measuring in-band transmit power of a device. In the measure-and-sum approach, the conducted emission level is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically to determine the total emission level from the device. Summing is performed in linear power units. The worst case output is recorded.
- 6. Place a marker at the end of the band edge closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands
- 7. Capture graphs and record pertinent measurement data.

Ref. 789033 D02 General UNII Test Procedures New Rules

ANSI C63.10: 2013 Section 12.7.6 (Peak), Section 12.7.7.2 (Method AD)

Conducted Spurious Emissions							
Test parameters							
Peak	Average						
RBW = 1 MHz	RBW = 1 MHz						
$VBW \ge 3 MHz$	$VBW \ge 3 MHz$						
Sweep = Auto couple	Sweep = Auto couple						
Detector = Peak	Detector = RMS						
Trace = Max Hold.	Power Averaging						

Samples, Systems, and Modes

System	Description	Samples	System under	Support	
Number	Description	Samples	test	equipment	

Page No: 45 of 83

Radio Test Report No: EDCS - 11779336

2	Conducted testing: EUT + AC/DC Adapter	S02 and S03	\square	
---	---	-------------	-----------	--

Tested By:

Johanna Knudsen

Dates of testing:

April 9, 2018 – April 9, 2018 & April 27, 2018 – May 1, 2018

Test Result: PASS

Test Equipment

See Appendix C for list of test equipment

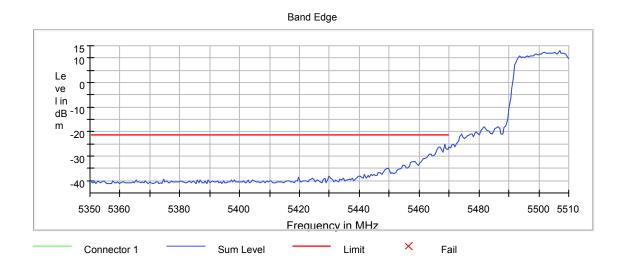
Conducted Band Edge Emissions Data Table – Average

Frequency (MHz)	Mode	Tx Paths	Duty Cycle	Correlated Antenna Gain (dBi)	Total Conducted Band Edge (dBm/MHz) - EIRP	Total Conducted Band Edge - corrected for duty cycle (dBm/MHz) - EIRP	Limit (dBm)	Margin (dB)
5500	Non HT20, 6 to 54 Mbps	1	96.5	4	-42.90	-42.75	-41.25	1.50
	Non HT20, 6 to 54 Mbps	2	96.5	4	-42.70	-42.55	-41.25	1.30
	Non HT20 Beam Forming, 6 to 54 Mbps	2	96.5	7	-42.70	-42.55	-41.25	1.30
	HT/VHT20, M0 to M7	1	98.3	4	-42.40	-42.33	-41.25	1.08
	HT/VHT20, M0 to M7	2	98.3	4	-41.90	-41.83	-41.25	0.58
	HT/VHT20, M8 to M15	2	96.7	4	-42.40	-42.25	-41.25	1.00
	HT/VHT20 Beam Forming, M0 to M7	2	98.3	7	-41.80	-41.73	-41.25	0.48
	HT/VHT20 Beam Forming, M8 to M15	2	96.7	4	-42.60	-42.45	-41.25	1.20
	HT/VHT20 STBC, M0 to M7	2	98.3	4	-41.90	-41.83	-41.25	0.58
5510	Non HT40, 6 to 54 Mbps	1	96.3	4	-41.60	-41.44	-41.25	0.19
	Non HT40, 6 to 54 Mbps	2	96.3	4	-42.60	-42.44	-41.25	1.19
	HT/VHT40, M0 to M7	1	96.4	4	-41.50	-41.34	-41.25	0.09
	HT/VHT40, M0 to M7	2	96.4	4	-42.30	-42.14	-41.25	0.89
	HT/VHT40, M8 to M15	2	97.4	4	-43.00	-42.89	-41.25	1.64
	HT/VHT40 Beam Forming, M0 to M7	2	96.4	7	-45.40	-45.24	-41.25	3.99
	HT/VHT40 Beam Forming, M8 to M15	2	97.4	4	-43.00	-42.89	-41.25	1.64
	HT/VHT40 STBC, M0 to M7	2	96.4	4	-42.30	-42.14	-41.25	0.89
5530	Non HT80, 6 to 54 Mbps	1	96.2	4	-42.60	-42.43	-41.25	1.18
	Non HT80, 6 to 54 Mbps	2	96.2	4	-43.20	-43.03	-41.25	1.78
	VHT80, M0 to M9 1ss	1	82.7	4	-42.30	-41.48	-41.25	0.23
	VHT80, M0 to M9 1ss	2	82.7	4	-43.00	-42.18	-41.25	0.93
	VHT80, M0 to M9 2ss	2	84.7	4	-42.90	-42.18	-41.25	0.93
	VHT80 Beam Forming, M0 to M9 1ss	2	82.7	7	-45.60	-44.78	-41.25	3.53
	VHT80 Beam Forming, M0 to M9 2ss	2	82.7	4	-43.00	-42.18	-41.25	0.93
	VHT80 STBC, M0 to M9 1ss	2	82.7	4	-43.00	-42.18	-41.25	0.93
Condu	icted Band Edge Emissions Data Tab	ے _ P	ak	·		·		

Conducted Band Edge Emissions Data Table – Peak

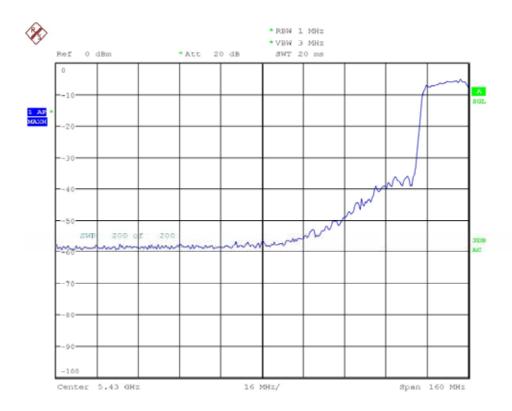
Page No: 47 of 83

Frequency (MHz)	Mode	Tx Paths	Duty Cycle	Correlated Antenna Gain (dBi)	Total Conducted Band Edge (dBm/MHz) - EIRP	Total Conducted Band Edge - corrected for duty cycle (dBm/MHz) - EIRP	Limit (dBm)	Margin (dB)
5500	Non HT20, 6 to 54 Mbps	1	96.5	4	-27.50	-27.35	-21.25	6.10
	Non HT20, 6 to 54 Mbps	2	96.5	4	-26.40	-26.25	-21.25	5.00
	Non HT20 Beam Forming, 6 to 54 Mbps	2	96.5	7	-26.40	-26.25	-21.25	5.00
	HT/VHT20, M0 to M7	1	98.3	4	-27.50	-27.43	-21.25	6.18
	HT/VHT20, M0 to M7	2	98.3	4	-26.80	-26.73	-21.25	5.48
	HT/VHT20, M8 to M15	2	96.7	4	-27.50	-27.35	-21.25	6.10
	HT/VHT20 Beam Forming, M0 to M7	2	98.3	7	-26.60	-26.53	-21.25	5.28
	HT/VHT20 Beam Forming, M8 to M15	2	96.7	4	-27.10	-26.95	-21.25	5.70
	HT/VHT20 STBC, M0 to M7	2	98.3	4	-26.80	-26.73	-21.25	5.48
		•			r.			
5510	Non HT40, 6 to 54 Mbps	1	96.3	4	-28.10	-27.94	-21.25	6.69
	Non HT40, 6 to 54 Mbps	2	96.3	4	-29.00	-28.84	-21.25	7.59
	HT/VHT40, M0 to M7	1	96.4	4	-25.00	-24.84	-21.25	3.59
	HT/VHT40, M0 to M7	2	96.4	4	-26.20	-26.04	-21.25	4.79
	HT/VHT40, M8 to M15	2	97.4	4	-27.60	-27.49	-21.25	6.24
	HT/VHT40 Beam Forming, M0 to M7	2	96.4	7	-30.30	-30.14	-21.25	8.89
	HT/VHT40 Beam Forming, M8 to M15	2	97.4	4	-27.70	-27.59	-21.25	6.34
	HT/VHT40 STBC, M0 to M7	2	96.4	4	-26.20	-26.04	-21.25	4.79
			·	Υ	v		1	
5530	Non HT80, 6 to 54 Mbps	1	96.2	4	-26.30	-26.13	-21.25	4.88
	Non HT80, 6 to 54 Mbps	2	96.2	4	-27.90	-27.73	-21.25	6.48
	VHT80, M0 to M9 1ss	1	82.7	4	-27.20	-26.38	-21.25	5.13
	VHT80, M0 to M9 1ss	2	82.7	4	-28.10	-27.28	-21.25	6.03
	VHT80, M0 to M9 2ss	2	84.7	4	-27.00	-26.28	-21.25	5.03
	VHT80 Beam Forming, M0 to M9 1ss	2	82.7	7	-32.00	-31.18	-21.25	9.93
	VHT80 Beam Forming, M0 to M9 2ss	2	82.7	4	-26.90	-26.08	-21.25	4.83
	VHT80 STBC, M0 to M9 1ss	2	82.7	4	-28.10	-27.28	-21.25	6.03


Conducted Band Edge Peak, 5510 MHz, M0-M7, HT/VHT40

Measurements

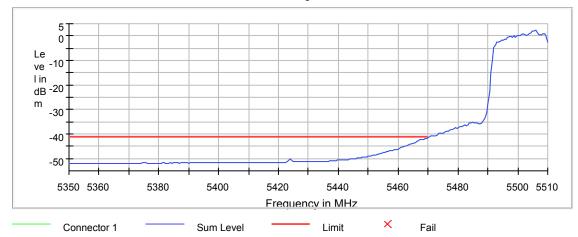
Page No: 48 of 83



Frequency (MHz)	Level (dBm)	Margin (dB)	Limit (dBm)	Result
5468.461538	-25.0	3.7	-21.2	PASS
5470.000000	-26.2	4.9	-21.2	PASS
5466.923077	-26.2	4.9	-21.2	PASS
5466.410256	-26.6	5.4	-21.2	PASS
5468.974359	-26.9	5.6	-21.2	PASS
5467.435897	-26.9	5.7	-21.2	PASS
5469.487179	-27.2	6.0	-21.2	PASS
5465.897436	-27.3	6.1	-21.2	PASS
5467.948718	-28.5	7.3	-21.2	PASS
5463.846154	-29.1	7.9	-21.2	PASS
5465.384615	-29.1	7.9	-21.2	PASS
5463.333333	-29.4	8.2	-21.2	PASS
5464.871795	-29.7	8.4	-21.2	PASS
5464.358974	-30.0	8.7	-21.2	PASS
5462.820513	-30.5	9.2	-21.2	PASS

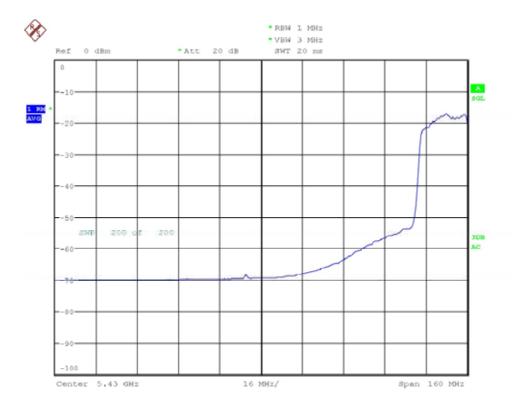
Band Edge Connector 1_0

Date: 27.APR.2018 19:16:02



Conducted Band Edge Average, 5510 MHz, M0-M7, HT/VHT40

Measurements


Frequency (MHz)	Level (dBm)	Margin (dB)	Limit (dBm)	Result
5470.000000	-41.5	0.3	-41.2	PASS
5469.487179	-41.8	0.5	-41.2	PASS
5468.974359	-42.0	0.8	-41.2	PASS
5467.948718	-42.4	1.1	-41.2	PASS
5468.461538	-42.4	1.2	-41.2	PASS
5467.435897	-42.4	1.2	-41.2	PASS
5466.923077	-42.5	1.3	-41.2	PASS
5466.410256	-42.8	1.6	-41.2	PASS
5465.897436	-43.2	2.0	-41.2	PASS
5465.384615	-43.6	2.4	-41.2	PASS
5464.871795	-43.9	2.7	-41.2	PASS
5464.358974	-44.1	2.8	-41.2	PASS
5463.846154	-44.1	2.9	-41.2	PASS
5463.333333	-44.5	3.2	-41.2	PASS
5462.820513	-44.7	3.5	-41.2	PASS

Band Edge

Band Edge Connector 1_0

Date: 27.APR.2018 19:17:32

Appendix B: Emission Test Results

B.1 Radiated Spurious Emissions

15.407(b) *Undesirable emission limits.* Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz..

15.205 / 15.209

- (7) The provisions of §15.205 apply to intentional radiators operating under this section.
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209.

Ref. ANSI C63.10: 2013 Section 12.7.6 (Peak), Section 12.7.7.2 (Method AD), and Section 6.6

Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode.

Radiated Spurious Emissions Test parameters	
Peak	Average
Span = $1-18$ GHz $/18$ GHz- 26.5 GHz/ 26.5 GHz- 40 GHz	Span = 1-18GHz /18GHz-26.5GHz/26.5GHz-40GHz
RBW = 1 MHz	RBW = 1 MHz
$VBW \ge 3 MHz$	$VBW \ge 3 MHz$
Sweep = Auto couple	Sweep = Auto couple
Detector = Peak	Detector = RMS
Trace = Max Hold.	Power Averaging

Terminate the access Point RF ports with 50 ohm loads.

Maximize Turntable (find worst case table angle), Maximize Antenna (find worst case height)

Save 2 plots: 1) Average Plot (Vertical and Horizontal), Limit= 54dBuV/m @3m

2) Peak plot (Vertical and Horizontal), Limit = 74dBuV/m @3m

Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands.

This report represents the worst case data for all supported operating modes and antennas. There were no spurious emissions in the range 1-18GHz. Please note, the emission at 1.377GHz was investigated and was not caused by the radio. The emission was present when the radio was not transmitting. There were no significant emissions above 18GHz.

Samples, Systems, and Modes

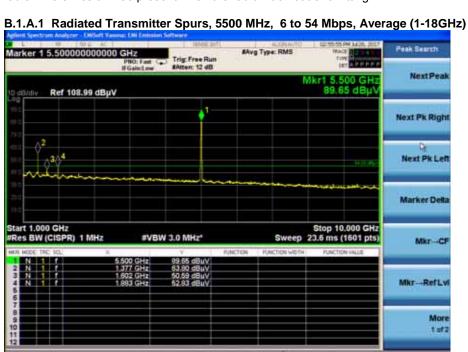
System Number Description		Samples	System under test	Support equipment	
3	Radiated Testing: EUT + AC/DC Adapter	S02 and S03	\square		
4	Radiated Testing: EUT + AC/DC Adapter	S02 and S04	\square		

Tested By : Date of testing:

July 26, 2017 – July 26, 2017

Test Result: PASS

Test Equipment

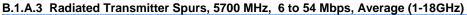

See Appendix C for list of test equipment

Page No: 54 of 83

B.1.A Transmitter Radiated Spurious Emissions-Average

This report represents the worst case data for all supported operating modes and antennas. There were no spurious emissions in the range 1-18GHz. Please note, the emission at 1.377GHz was investigated and was not caused by the radio. The emission was present when the radio was not transmitting.

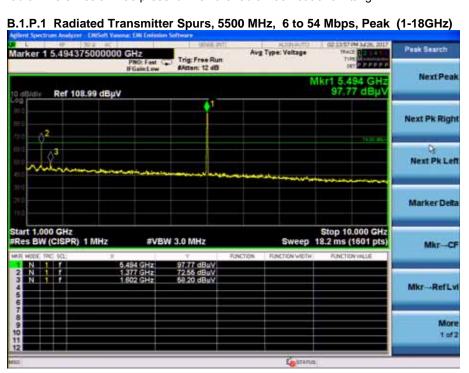
Page No: 55 of 83



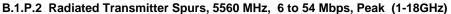
Page No: 58 of 83

There were no significant emissions above 18GHz.

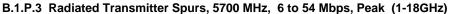
B.1.A.5 Radiated Transmitter Spurs, All rate, All modes, Average (18GHz - 26.5GHz) Horizontal & Vertical

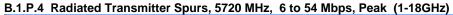

B.1.A.6 Radiated Transmitter Spurs, All rate, All modes, Average (26.5GHz – 40GHz) Horizontal & Vertical

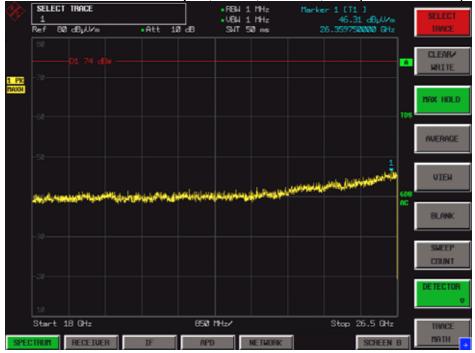
B.1.P Transmitter Radiated Spurious Emissions-Peak


This report represents the worst case data for all supported operating modes and antennas. There were no spurious emissions in the range 1-18GHz. Please note, the emission at 1.377GHz was investigated and was not caused by the radio. The emission was present when the radio was not transmitting.

Page No: 60 of 83







There were no significant emissions above 18GHz.

B.1.P.5 Radiated Transmitter Spurs, All rate, All modes, Peak (18GHz - 26.5GHz) Horizontal & Vertical

B.1.P.6 Radiated Transmitter Spurs, All rate, All modes, Peak (26.5-40GHz) Vertical & Horizontal

B.2 Radiated Emissions 30MHz to 1GHz

15.205 / 15.209

- (7) The provisions of §15.205 apply to intentional radiators operating under this section.
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209.

Ref. ANSI C63.10: 2013 section 12.7 sec 6.5

Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode.

Span: 30MHz – 1GHz

Reference Level: 80 dBuV
Attenuation: 10 dB
Sweep Time: Coupled
Resolution Bandwidth: 100kHz
Video Bandwidth: 300kHz
Detector: Quasi-Peak

Terminate the access Point RF ports with 50 ohm loads.

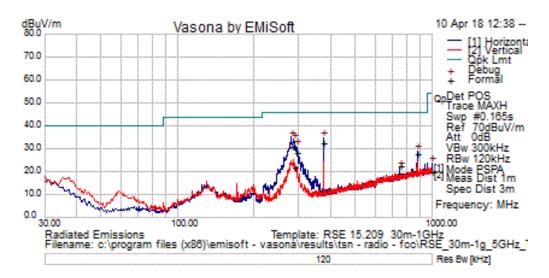
Maximize Turntable (find worst case table angle), Maximize Antenna (find worst case height)

This report represents the worst case data for all supported operating modes and antennas.

Samples, Systems, and Modes

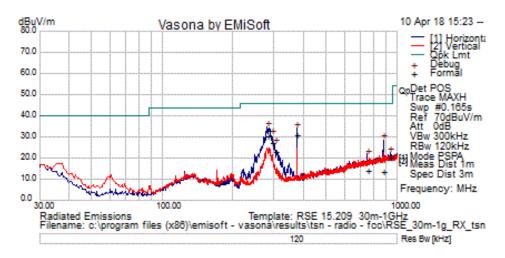
System Number	Description	Samples	System under test	Support equipment
4	Radiated Testing: EUT + AC/DC Adapter	S02 and S04	S	

Tested By :	Date of testing:
Johanna Knudsen	April 10 th , 2018- April 11 th , 2018
Test Result : PASS	


Test Equipment

See Appendix C for list of test equipment

Page No: 65 of 83


Transmitter Radiated Emission

Fo	Formal Data												
No	Frequency MHz		Cable Loss		Level dBuV/m	Measurement Type	Pol			Limit dBuV/m		Pass /Fail	Comments
1	280.072	25.7	1.4	3.9	31.0	Quasi Max	Н	109	328	46.0	-15.1	Pass	
2	286.363	16.5	1.4	3.8	21.8	Quasi Max	V	107	255	46.0	-24.2	Pass	
3	293.225	22.9	1.4	3.8	28.2	Quasi Max	Н	112	334	46.0	-17.9	Pass	
4	374.993	25.4	1.6	5.6	32.6	Quasi Max	Н	106	112	46.0	-13.4	Pass	
5	749.989	8.9	2.4	11.3	22.5	Quasi Max	Н	120	330	46.0	-23.5	Pass	
6	874.993	12.9	2.5	12.5	27.9	Quasi Max	Н	109	305	46.0	-18.1	Pass	

Receiver Radiated Emission

Fo	Formal Data												
No	Frequency MHz				Level dBuV/m	Measurement Type		-		Limit dBuV/m		Pass /Fail	Comments
1	280.436	25.0	1.4	3.9	30.2	Quasi Max	Н	102	142	46.0	-15.8	Pass	
2	375.008	23.7	1.6	5.6	30.9	Quasi Max	Н	102	112	46.0	-15.1	Pass	
3	293.386	21.9	1.4	3.8	27.1	Quasi Max	Н	102	333	46.0	-18.9	Pass	
4	875.105	-1.6	2.5	12.5	13.4	Quasi Max	Н	102	297	46.0	-32.6	Pass	
5	302.719	17.8	1.4	3.9	23.2	Quasi Max	Н	102	339	46.0	-22.8	Pass	
6	937.490	4.4	2.6	13.2	20.2	Quasi Max	Н	102	359	46.0	-25.8	Pass	

B.3 AC Conducted Emissions

FCC 15.207 (a)

Except when the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply, either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table in these sections. The more stringent limit applies at the frequency range boundaries.

Measurement Procedure

Accordance with ANSI C64.10:2013 section 6.2

Using Vasona, configure the spectrum analyzer as shown below (be sure to enter all losses between the transmitter output and the spectrum analyzer). Place the radio in continuous transmit mode.

Span: 150 KHz – 30 MHz

Attenuation: 10 dB Sweep Time: Coupled Resolution Bandwidth: 9 KHz Video Bandwidth: 30 KHz

Detector: Quasi-Peak / Average

Samples, Systems, and Modes

System Number	Description	Samples	System under test	Support equipment
5	AC Power Conducted Emissions: EUT + Power Supply	S05 and S06	S	

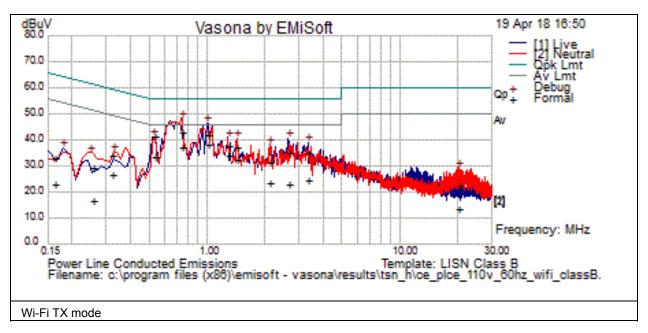
Tested By: Date of testing:

Marie Higa April 19, 2017 - April 19, 2017

Test Result: PASS

Test Equipment

See Appendix C for list of test equipment


Environmental Conditions:					
Temperature: (59 to 95)F	70.8 deg F				
Humidity: (10 to 75)%:	43.3%				
Comments:	No further comments				

Graphical Test Results

Note that the data displayed on the plots detailed in this appendix were measured using a 'Peak Detector'. Please refer to the results table for the detectors used during formal measurements

Page No: 68 of 83

Test Results Table

No	Frequency	Raw	Cable	Factors	Level	Measurement	Line	Limit	Margin	Pass /Fail	Comments
	MHz	dBuV	Loss	dB	dBuV	Туре		dBuV	dB		
1	1.013	18.5	19.9	.0	38.4	Average	Live	46.0	-7.6	Pass	
2	.743	17.3	19.9	.0	37.3	Average	Neutral	46.0	-8.7	Pass	
3	1.284	13.9	19.9	.0	33.8	Average	Live	46.0	-12.2	Pass	
4	.539	13.6	19.9	.0	33.6	Average	Live	46.0	-12.4	Pass	
5	.743	22.9	19.9	.0	42.8	Quasi Peak	Neutral	56.0	-13.2	Pass	
6	1.434	12.3	19.9	.0	32.3	Average	Neutral	46.0	-13.7	Pass	
7	1.013	22.0	19.9	.0	42.0	Quasi Peak	Live	56.0	-14.0	Pass	
8	.539	21.4	19.9	.0	41.4	Quasi Peak	Live	56.0	-14.6	Pass	
9	1.284	17.7	19.9	.0	37.7	Quasi Peak	Live	56.0	-18.4	Pass	
10	1.434	17.4	19.9	.0	37.3	Quasi Peak	Neutral	56.0	-18.7	Pass	
11	2.652	15.1	20.0	.1	35.2	Quasi Peak	Live	56.0	-20.8	Pass	
12	3.363	15.0	20.0	.1	35.1	Quasi Peak	Live	56.0	-20.9	Pass	
13	3.363	4.3	20.0	.1	24.3	Average	Live	46.0	-21.7	Pass	
14	2.114	3.4	20.0	.1	23.4	Average	Neutral	46.0	-22.6	Pass	
15	.323	6.4	20.3	.1	26.7	Average	Neutral	49.6	-22.9	Pass	
16	2.652	2.9	20.0	.1	22.9	Average	Live	46.0	-23.1	Pass	
17	2.114	11.6	20.0	.1	31.6	Quasi Peak	Neutral	56.0	-24.4	Pass	
18	.323	13.9	20.3	.1	34.3	Quasi Peak	Neutral	59.6	-25.4	Pass	
19	.256	9.0	20.5	.1	29.6	Quasi Peak	Neutral	61.6	-32.0	Pass	
20	.163	2.2	21.0	.1	23.2	Average	Live	55.3	-32.1	Pass	
21	.163	12.1	21.0	.1	33.2	Quasi Peak	Live	65.3	-32.2	Pass	
22	.256	-4.0	20.5	.1	16.6	Average	Neutral	51.6	-34.9	Pass	

Page No: 69 of 83

	- 1 7			Factors dB		Measurement Type			Margin dB	Pass /Fail	Comments
23	20.118	-7.4	20.4	.2	13.2	Average	Neutral	50.0	-36.8	Pass	
24	20.118	2.0	20.4	.2	22.7	Quasi Peak	Neutral	60.0	-37.3	Pass	

Page No: 70 of 83

Appendix C: List of Test Equipment Used to perform the test

Equipment used for Conducted Tests (99%/26dB Bandwidth, Maximum Conducted Output Power, and PSD)

Equip#	Manufacturer/ Model	Description	Last Cal	Next Due
55109	Keysight (Agilent/HP)	N9030A-550 / PXA Signal Analyzer, 3Hz to 50GHz	29-Sep-17	29-Sep-18
55093	NATIONAL INSTRUMENTS	PXI-1042 / CHASSIS, PXI	Cal not Req'd	Cal not Req'd
56092	NATIONAL INSTRUMENTS	PXI-2796 / 40 GHz Dual 6x1 Multiplexer (SP6T)	Cal not Req'd	Cal not Req'd
45384	Keysight (Agilent/HP)	N5182A / MXG Vector Signal Generator	10-Oct-17	10-Oct-18
54663	MEGAPHASE	F120-S1S1-48 / SMA Cable	3-Aug-17	3-Aug-18
55557	MINI-CIRCUITS	ZFSC-2-10G / SPLITTER, 2-10GHZ	27-Jul-17	27-Jul-18
51801	HUBER + SUHNER	Sucoflex101PE / 40 GHz Cable, K-Type	16 Nov 2016	16 Nov 2017
55365	PULSAR	PS4-09-452/4S / SPLITTER	12-Apr-17	12-Apr-18
55901	DYNAWAVE	SMSM-A2PH-018 / SMA Cable, 18 IN	10-Oct-16	10-Oct-17
55892	DYNAWAVE	SMSM-A2PH-018 / SMA Cable, 18 IN	10-Oct-16	10-Oct-17
54677	MEGAPHASE	RA08-S1S1-12 / SMA Cable	3-Aug-17	3-Aug-18
54653	Micro-Tronics	BRM50702-02 / Band Reject Filter	3-Aug-17	3-Aug-18
54676	MEGAPHASE	RA08-S1S1-12 / SMA Cable	3-Aug-17	3-Aug-18
54674	MEGAPHASE	RA08-S1S1-12 / SMA Cable	3-Aug-17	3-Aug-18
54654	Micro-Tronics	BRC50703-02 / Notch Filter	3-Aug-17	3-Aug-18

Page No: 71 of 83

				1
54671	MEGAPHASE	RA08-S1S1-12 / SMA Cable	3-Aug-17	3-Aug-18
54675	MEGAPHASE	RA08-S1S1-12 / SMA Cable	3-Aug-17	3-Aug-18
54656	Micro-Tronics	BRC50705-02 / Notch Filter	3-Aug-17	3-Aug-18
54678	MEGAPHASE	RA08-S1S1-12 / SMA Cable	3-Aug-17	3-Aug-18
54670	MEGAPHASE	RA08-S1S1-12 / SMA Cable	3-Aug-17	3-Aug-18
54655	Micro-Tronics	BRC50704-02 / Notch Filter	3-Aug-17	3-Aug-18
54673	MEGAPHASE	RA08-S1S1-12 / SMA Cable	3-Aug-17	3-Aug-18
54662	MEGAPHASE	SF18-S1S1-36 / Coaxial Cable 36 inch	3-Aug-17	3-Aug-18
55586	AEROFLEX	BWS30-W2 / 30dB SMA Attenuator	3-Aug-17	3-Aug-18
54601	IXIA	XM100GE4CXP / Plug-In Module	Cal not Req'd	Cal not Req'd
54608	DITOM	D3C2060 / Splitter	14-Nov-16	14-Nov-17
55863	DYNAWAVE	SMSM-A2PH-012 / SMA Cable 12 IN	29 Sep 2016	29 Sep 2017
42630	Pasternack / PE6072	SMA 50 Ohm Termination	08 Mar 2017	08 Mar 2018
42629	Pasternack / PE6072	SMA 50 Ohm Termination	08 Mar 2017	08 Mar 2018
54235	PASTERNACK / PE5011-1	PRESET TORQUE WRENCH, 8 IN/LBS	21-Feb-17	21-Feb-18
6335	LUFFT / 5063-33W	DIAL HYGROMETER	16 Aug 2017	16 Aug 2018

Equipment used for Conducted Tests (Conducted Spurious Emissions)

40603 Keysight (Agilent/HP) / Spectrum Analyzer 3Hz-26.5GHz 20-Oct-16 20-Oct-17	40603	, , , ,		20-Oct-16	20-Oct-17
---	-------	---------	--	-----------	-----------

Page No: 72 of 83

55965	DYNAWAVE / N-Type 12 in/lbs	Pre-Set Torque Wrench, 12 in/lbs	29-Sep-16	29-Sep-17
54235	PASTERNACK / PE5011-1	PRESET TORQUE WRENCH, 8 IN/LBS	21-Feb-17	21-Feb-18
42624	PASTERNACK / PE6072	SMA 50 Ohm Termination	8-Mar-17	8-Mar-18
6335	LUFFT / 5063-33W	DIAL HYGROMETER	16 Aug 2017	16 Aug 2018

Equipment used for Conducted Tests (Conducted Band Edge)

Equip#	Manufacturer/ Model	Description	Last Cal	Next Due
51702	ROHDE & SCHWARZ / TS8997	TS8997 ETSI Test System	07 Feb 2017	31 May 2018
40641	ROHDE & SCHWARZ / ESU26	EMI Test Receiver, 26GHZ	10 Jul 2017	10 Jul 2018
51703	ROHDE & SCHWARZ / OSP120	OSP120 Base Unit	25 Jan 2018	25 Jan 2019
51704	ROHDE & SCHWARZ / OSP-B157	OSP Module	25 Jan 2018	25 Jan 2019
56114	PASTERNACK / PE6072	SMA 50 Ohm Termination	01 Dec 2017	01 Dec 2018
56120	PASTERNACK / PE6072	SMA 50 Ohm Termination	01 Dec 2017	01 Dec 2018
46694	BIRD / 5-T-MN	TERMINATION	28 Nov 2017	28 Nov 2018
46693	BIRD / 5-T-MN	TERMINATION	28 Nov 2017	28 Nov 2018
55604	Mini-Circuits / BW-S10-2W263	SMA 10dB Attenuator	05 Sep 2017	05 Sep 2018
54412	HUBER + SUHNER / Sucoflex 102E	40GHz Cable K Connector	24 Apr 2018	24 Apr 2019
55601	Mini-Circuits / BW-S10-2W263	SMA 10dB Attenuator	05 Sep 2017	05 Sep 2018
54411	HUBER + SUHNER / Sucoflex 102E	40GHz Cable K Connector	24 Apr 2018	24 Apr 2019

Page No: 73 of 83

7329	Omega / CT485B	CHART RECORDER	26 Jan 2018	26 Jan 2019
56330	PASTERNACK / PE5019-1	Torque Wrench	28 Feb 2018	28 Feb 2019

Equipment used for Radiated Tests

30MHz-1GHz

Equip#	Manufacturer/ Model	Description	Last Cal	Next Due
45050	ROHDE & SCHWARZ / ESCI	EMI Test Receiver	16 Nov 2017	16 Nov 2018
56154	HUBER + SUHNER / Sucoflex 104PEA	Sucoflex N Type blue 7ft cable	18 Jan 2018	18 Jan 2019
20975	MICRO-COAX / UFB311A-0-1344-520520	Coaxial Cable-18Ghz	19-Feb-18	19-Feb-19
55936	HUBER + SUHNER / Sucoflex 106PEA	RF Type N Antenna Cable 18 GHz 8.5m	19-Oct-17	19-Oct-18
32806	SUNOL SCIENCES / JB1	Combination Antenna, 30MHz-2GHz	7-Jun-17	7-Jun-18
41929	NEWPORT / iBTHP-5-DB9	5 inch Temp/RH/Press Sensor w/20ft cable	28 Dec 2017	28 Dec 2018
27233	York	CNE V / Comparison Noise Emitter	Cal not Req'd	Cal not Req'd
35235	LUFKIN / HY1035CME	Tape measure	Cal not Req'd	Cal not Req'd
56330	PASTERNACK / PE5011-1	PRESET TORQUE WRENCH, 8 IN/LBS	28 Feb 2018	28 Feb 2019
42630	PASTERNACK	PE6072 / SMA 50 Ohm Termination	8-Mar-18	8-Mar-19

Page No: 74 of 83

54230

Newport

				cisco
56112	PASTERNACK	PE6072 / SMA 50 Ohm Termination	1-Dec-17	1-Dec-18
56129	PASTERNACK	PE6072 / SMA 50 Ohm Termination	1-Dec-17	1-Dec-18
1GHz-18GHz				
56052	MITEQ	TTA1800-30-HG / SMA 18GHz Pre Amplifier	9-Feb-17	9-Feb-18
35618	Micro-Tronics / HPM50112-02	Notch Filter	26-Jun-17	26-Jun-18
21117	MICRO-COAX / UFB311A-0-2484-520520	Coaxial Cable-18Ghz	16-Aug-17	16-Aug-18
49563	HUBER + SUHNER / Sucoflex 106A	Coaxial Cable, 8m	21-Aug-17	21-Aug-18
25662	Micro-COAX / UFB311A-1-0840-504504	Coaxial Cable, 84.0 in. to 18GHz	21 Feb 2017	21 Feb 2018
36716	CISCO / RF Coaxial Cable-SMA	Radio Test Cable, SMA-SMA	13-Jan-17	13-Jan-18
36717	CISCO / RF Coaxial Cable-SMA	Radio Test Cable, SMA-SMA	13-Jan-17	13-Jan-18
32544	ETS Lindgren / 3117	Double Ridged Horn Antenna	12-Jul-17	12-Jul-18
45166	Stanley	33-428 / 26' TAPE MEASURE	Cal Not Req'd	Cal Not Req'd
34075	SCHAFFNER	RSG 2000 / Reference Spectrum Generator, 1-18GHz	Cal Not Req'd	Cal Not Req'd
4883	EMCO	3115 / Horn Antenna	Cal Not Req'd	Cal Not Req'd
8171	Keysight (Agilent/HP)	8491B Opt 010 / ATTENUATOR	26-Apr-17	26-Apr-18
47300	Keysight (Agilent/HP)	N9038A / EMI Receiver	28-Mar-17	28-Mar-18
1				

Page No: 75 of 83

iBTHP-5-DB9 / 5 inch

Temp/RH/Press Sensor w/20ft cable

11-Feb-17

11-Feb-18

42629	PASTERNACK	PE6072 / SMA 50 Ohm Termination	8-Mar-17	8-Mar-18
42638	PASTERNACK	PE6072 / SMA 50 Ohm Termination	8-Mar-17	8-Mar-18
42634	PASTERNACK	PE6072 / SMA 50 Ohm Termination	8-Mar-17	8-Mar-18
42630	PASTERNACK	PE6072 / SMA 50 Ohm Termination	8-Mar-17	8-Mar-18
54235	PASTERNACK / PE5011-1	PRESET TORQUE WRENCH, 8 IN/LBS	21-Feb-17	21-Feb-18

18GHz-40GHz

41979	CISCO / 1840	18-40GHz EMI Test Head/Verification Fixture	30-Aug-17	30-Aug-18
44940	ROHDE & SCHWARZ / ESU40	EMI RECEIVER, 40GHZ	14-Nov-16	11/14/2017
37236	JFW / 50CB-015	Control Box, GPIB	Cal Not Req'd	Cal Not Req'd
54230	Newport	iBTHP-5-DB9 / 5 inch Temp/RH/Press Sensor w/20ft cable	11-Feb-17	11-Feb-18
42629	PASTERNACK	PE6072 / SMA 50 Ohm Termination	8-Mar-17	8-Mar-18
42638	PASTERNACK	PE6072 / SMA 50 Ohm Termination	8-Mar-17	8-Mar-18
42634	PASTERNACK	PE6072 / SMA 50 Ohm Termination	8-Mar-17	8-Mar-18
42630	PASTERNACK	PE6072 / SMA 50 Ohm Termination	8-Mar-17	8-Mar-18
54235	PASTERNACK / PE5011-1	PRESET TORQUE WRENCH, 8 IN/LBS	21-Feb-17	21-Feb-18
30486	Keysight (Agilent/HP)	E8257C / SIGNAL GENERATOR	15-Dec-16	15-Dec-17

Equipment used for AC Power Conducted Emissions

Equip#	Manufacturer/ Model	Description	Last Cal	Next Due
CIS008496	Fischer Custom Communications / FCC-450B-2.4-N	Instrumentation Limiter	16-MAY-17	16-MAY-18

Page No: 76 of 83

CIS018963	York / CNE V	Comparison Noise Emitter, 30 - 1000MHz	Cal Not Required	N/A
CIS035235	Lufkin / HY1035CME	5 Meter Tape Measure	Cal Not Required	N/A
CIS037229	Coleman / RG-223	25ft BNC cable	13-APR-18	13-APR-19
CIS037239	Rohde & Schwarz / ESCI	ESCI EMI Test Receiver	02-MAY-17	02-MAY-18
CIS044023	Fischer Custom Communications / FCC-801-M2-32A	Power Line Coupling Decoupling Network	09-NOV-17	09-NOV-18
CIS045990	Fischer Custom Communications / F-090527-1009-1	Line Impedance Stabilization Network	15-JUN-17	15-JUN-18
CIS045991	Fischer Custom Communications / F-090527-1009-2	Lisn Adapter	15-JUN-17	15-JUN-18
CIS049479	Coleman / RG223	BNC 2ft Cable	05-MAR-18	05-MAR-19
CIS049531	TTE / H785-150K-50-21378	High Pass Filter	03-MAY-17	03-MAY-18
CIS049558	Bird / 5-T-MB	5W 50 Ohm BNC Termination 4GHz	10-AUG-17	10-AUG-18
CIS054231	Newport / iBTHP-5-DB9	5 inch Temp/RH/Press Sensor w/20ft cable	09-FEB-18	09-FEB-19

Appendix D: Abbreviation Key and Definitions

The following table defines abbreviations used within this test report.

Abbreviation	Description	Abbreviation	Description
EMC	Electro Magnetic Compatibility	°F	Degrees Fahrenheit
EMI	Electro Magnetic Interference	°C	Degrees Celsius
EUT	Equipment Under Test	Temp	Temperature
ITE	Information Technology Equipment	S/N	Serial Number
TAP	Test Assessment Schedule	Qty	Quantity
ESD	Electro Static Discharge	emf	Electromotive force
EFT	Electric Fast Transient	RMS	Root mean square
EDCS	Engineering Document Control System	Qp	Quasi Peak
Config	Configuration	Av	Average
CIS#	Cisco Number (unique identification number for Cisco test equipment)	Pk	Peak
Cal	Calibration	kHz	Kilohertz (1x10 ³)
EN	European Norm	MHz	MegaHertz (1x10 ⁶)
IEC	International Electro technical Commission	GHz	Gigahertz (1x10 ⁹)
CISPR	International Special Committee on Radio Interference	Н	Horizontal
CDN	Coupling/Decoupling Network	V	Vertical
LISN	Line Impedance Stabilization Network	dB	decibel
PE	Protective Earth	V	Volt
GND	Ground	kV	Kilovolt (1x10 ³)
L1	Line 1	μV	Microvolt (1x10 ⁻⁶)
L2	Line2	Α	Amp
L3	Line 3	μΑ	Micro Amp (1x10 ⁻⁶)
DC	Direct Current	mS	Milli Second (1x10 ⁻³)
RAW	Uncorrected measurement value, as indicated by the measuring device	μS	Micro Second (1x10 ⁻⁶)
RF	Radio Frequency	μS	Micro Second (1x10 ⁻⁶)
SLCE	Signal Line Conducted Emissions	m	Meter
Meas dist	Measurement distance	Spec dist	Specification distance
N/A or NA	Not Applicable	SL	Signal Line (or Telecom Line)
Р	Power Line	L	Live Line
N	Neutral Line	R	Return
S	Supply	AC	Alternating Current

Page No: 78 of 83

Appendix E: Photographs of Test Setups

Title: Radiated Emissions Configuration Photograph 30MHz-1GHz
Title. Natiated Emissions Comiguration Photograph Somme-Tonz
Title: Radiated Emissions Configuration Photograph 1-18GHz
Title: Radiated Emissions Configuration Photograph 18-40GHz
Title: AC Power Conducted Emissions
Title: Conducted Setup (Band Edge)
Title: Conducted Setup (Bandwidth, Power, PSD)
, , , , , , , , , , , , , , , , , , , ,
Title Occident (Occident Decident Decid
Title: Conducted Setup (Conducted Spurious Emissions)

Appendix F: Software Used to Perform Testing

TS8997 Test System, Software: WMS32 version 10.20 Radiated Spurious Emissions, Conducted Spurious Emissions, Software: EMIsoft Vasona, version 6.031 Conducted Power, Bandwidth, PSD: RF Automation Main

Page No: 80 of 83

Appendix G:Test Procedures

Measurements were made in accordance with

- KDB 789033 D02 General UNII Test Procedures New Rules v01r04
- KDB 662911 MIMO
- ANSI C63.4 2014 Unintentional Radiators
- ANSI C63.10 2013 Intentional Radiators

Test procedures are summarized below:

FCC 5GHz Test Procedures	EDCS # 1445048
FCC 5GHz RSE Test Procedures	EDCS # 1511600

Appendix H: Scope of Accreditation (A2LA certificate number 1178-01)

The scope of accreditation of Cisco Systems, Inc. can be found on the A2LA web page at:

http://www.a2la.org/scopepdf/1178-01.pdf

Appendix I: Test Assessment Plan

Compliance Test Plan (Excel) EDCS# 11811301

Target Power Tables EDCS# 11759869

Appendix J: Worst Case Justification

Test modes were determined from the Compliance Test Plan EDCS# 11811301.

All formal data can be found in EDCS# 11811303.