Page 1 of 58 FCC ID: 2ALU5E100CTX Report No.: LCSA061223063E SAR TEST REPORT For TEVII TECHNOLOGY CO., LTD. Wireless HDMI Extender Test Model: E100C TX Additional Model No.: Present + Share USB-C Edition Prepared for : TEVII TECHNOLOGY CO., LTD. Address 10F, No. 125, Sec. 2, Datong Rd. 22183 Xizhi District, New Taipei City, Taiwan Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd. 101, 201 Building A and 301 Building C, Juji Industrial Park, Address : Yabianxueziwei Shajing Street, Baoan District, Shenzhen, 518000, P.R.C. Tel : (86)755-82591330 Fax : (86)755-82591332 Web : www.LCS-cert.com Mail : webmaster@LCS-cert.com Date of receipt of test sample : June 13, 2023 Number of tested samples : 1 Sample No. : A061223063-1 Serial number : Prototype Date of Test : June 13, 2023 ~June 13, 2023 Date of Report : June 20, 2023 Shenzhen LCS Compliance Testing Laboratory Ltd. Page 2 of 58 FCC ID: 2ALU5E100CTX Report No.: LCSA061223063E SAR TEST REPORT Report Reference No.: LCSA061223063E Date Of Issue: June 20, 2023 Testing Laboratory Name....:: **Shenzhen LCS Compliance Testing Laboratory Ltd.** Address:: 101, 201 Building A and 301 Building C, Juji Industrial Park, Yabianxueziwei Shajing Street, Baoan District, Shenzhen, 518000, P.R.C. Testing Location/ Procedure: Full application of Harmonised standards Applicant's Name: **TEVII TECHNOLOGY CO., LTD.** 10F, No. 125, Sec. 2, Datong Rd. 22183 Xizhi District, New Taipei Address:: City, Taiwan **Test Specification:** IEEE Std C95.1, 2019/IEC-IEEE 62209-1528-2020 Standard....:: /FCC Part 2.1093 Test Report Form No.: LCSEMC-1.0 TRF Originator.....: Shenzhen LCS Compliance Testing Laboratory Ltd. Master TRF: Dated 2014-09 #### Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved. This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes noresponsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context. Test Item Description.....: Wireless HDMI Extender Trade Mark: TEVII, ClearClick, SIIG Model/Type Reference....:: E100C TX Operation Frequency: WLAN5.2G. Ratings: DC 5V From Type-C Result: Positive Compiled by: Jay Zhan/ File administrators Supervised by: Approved by: Cary Luo /Technique principal Gavin Liang/ Manager Shenzhen LCS Compliance Testing Laboratory Ltd. FCC ID: 2ALU5E100CTX ## **SAR -- TEST REPORT** Report No.: LCSA061223063E Test Report No. : LCSA061223063E June 20, 2023 Date of issue Type / Model..... : E100C TX EUT..... : Wireless HDMI Extender Applicant..... : TEVII TECHNOLOGY CO., LTD. 10F, No. 125, Sec. 2, Datong Rd. 22183 Xizhi District, New Address..... Taipei City, Taiwan Telephone..... Fax..... TEVII TECHNOLOGY CO., LTD. Manufacturer..... 10F, No. 125, Sec. 2, Datong Rd. 22183 Xizhi District, New Address..... Taipei City, Taiwan Telephone..... Fax..... Factory..... Address.....: / Telephone.....: : / Fax..... | Test Result | Positive | |-------------|-----------| | rest Nesuit | i Ositive | The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory. NST 立语检测股份 LCS Testing Lab Page 4 of 58 FCC ID: 2ALU5E100CTX Report No.: LCSA061223063E ## **Revison History** | Revison History | | | | |-----------------|---------------|------------------|------------| | Revision | Issue Date | Revision Content | Revised By | | 000 | June 20, 2023 | Initial Issue | - 12 | Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China ## **TABLE OF CONTENTS** | 1. TES | T STANDARDS AND TEST DESCRIPTION | 6 | |--|--|--| | | TEST STANDARDS TEST DESCRIPTION | 6 | | | GENERAL REMARKS PRODUCT DESCRIPTION STATEMENT OF COMPLIANCE | e | | 2. TES | Γ ENVIRONMENT | 9 | | 2.2.
2.3.
2.4. | TEST FACILITY ENVIRONMENTAL CONDITIONS SAR LIMITS EQUIPMENTS USED DURING THE TEST | 9
10 | | 3. SAR | MEASUREMENTS SYSTEM CONFIGURATION | 11 | | 3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.
3.10.
3.11. | SARMEASUREMENT SET-UP OPENSAR E-FIELD PROBE SYSTEM PHANTOMS DEVICE HOLDER SCANNING PROCEDURE DATA STORAGE AND EVALUATION TISSUE DIELECTRIC PARAMETERS FOR HEAD AND BODY PHANTOMS TISSUE EQUIVALENT LIQUID PROPERTIES SYSTEM CHECK SAR MEASUREMENT PROCEDURE CONFIGURATION AND PERIPHERALS POWER REDUCTION POWER DRIFT | 11
12
13
14
16
18
19
21
24 | | 4. TES | T CONDITIONS AND RESULTS | 25 | | 4.4.
4.5.
4.6.
4.7.
4.8. | CONDUCTED POWER RESULTS. TRANSMIT ANTENNAS AND SAR MEASUREMENT POSITION. SAR MEASUREMENT RESULTS. SAR MEASUREMENT VARIABILITY. GENERAL DESCRIPTION OF TEST PROCEDURES. MEASUREMENT UNCERTAINTY (450MHz-6GHz). SYSTEM CHECK RESULTS. SAR TEST GRAPH RESULTS. | 26
28
28
29 | | 5. CAL | IBRATION CERTIFICATES | | | 5.1
5.2
5.3 | PROBE-EPGO376 CALIBRATION CERTIFICATE | 43 | | 6. PHO | TOGRAPHS OF THE TEST | 57 | | 7 EUT | PHOTOGRAPHS | 58 | Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Page **6** of **58** FCC ID: 2ALU5E100CTX Report No.: LCSA061223063E ## TEST STANDARDS AND TEST DESCRIPTION #### 1.1. Test Standards IEEE Std C95.1-2019: IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz.lt specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment. IEC-IEEE 62209-1528-2020: Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices –Part 1528: Human models, instrumentation, and procedures(Frequency range of 4 MHz to 10 GHz) FCC Part 2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices KDB447498 D01 General RF Exposure Guidance v06: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies KDB447498 D02 SAR Procedures for Dongle Xmtr v02r01: SAR Measurement Procedures For USB Dongle Transmitters. KDB865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 : SAR Measurement Requirements for 100 MHz to 6 GHz KDB865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations KDB 248227 D01 802.11 Wi-Fi SAR v02r02: SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS ## 1.2. Test Description If a suitable host computer is not available for testing the Horizontal-Down (B) or the remaining Vertical USB orientation, a high quality USB cable, 12 inches or less, may be used for testing these other orientations. checked periodically during the test to ascertain uniform power. And Test device is identical prototype. ## 1.3. General Remarks | Date of receipt of test sample | : | June 13, 2023 | |--------------------------------|---|---------------| | | | | | Testing commenced on | | June 13, 2023 | | | | | | Testing concluded on | : | June 13, 2023 | #### 1.4. Product Description The TEVII TECHNOLOGY CO., LTD.'s Model: E100C TX or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT. | General Description | | | |-----------------------|-------------------------------|--| | EUT: | Wireless HDMI Extender | | | Model/Type reference: | E100C TX | | | Additional Model No. | Present + Share USB-C Edition | | | Model Declaration | 1 | | | Hardware Version | 1 | | | Software Version: | 1 | | | Power supply: | DC 5V From Type-C | | | | | | The EUT is Wireless HDMI Extender, the Wireless HDMI Extender is intended for WLAN transmission. It is equipped with WiFi5.2G camera functions. For more information see the following datasheet, | Technical Characteristics | 3 | | |---------------------------|-----------------|--| | 5.2G WLAN | | | | Frequency Range: | 5180MHz-5240MHz | | Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000. China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity Page 7 of 58 FCC ID: 2ALU5E100CTX Report No.: LCSA061223063E | Type of Modulation: | IEEE 802.11a: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n: OFDM (64QAM, 16QAM, QPSK, BPSK) | | |----------------------|---|----------| | Channal number | 4 Channels for 20MHz bandwidth(5180MHz~5240MHz) | 7 Hijz | | Channel number: | 2 channels for 40MHz bandwidth(5190MHz~5230MHz) | -4i1 | | Antenna Description: | Iron sheet antenna , 2.22dBi(Max.) | | Page 8 of 58 FCC ID: 2ALU5E100CTX Report No.: LCSA061223063E ## 1.5. Statement of Compliance The maximum of results of SAR found during testing for E100C TX are follows: <Highest Reported standalone SAR Summary> | Classment | Frequency
| Body-worn | |-----------|-----------|-----------------------| | Class | Band | (Report SAR1-g (W/kg) | | NII | WIFI5.2G | 0.287 | This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2019, and had been tested in accordance with the measurement methods and procedures specified in IEC-IEEE 62209-1528- Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000. China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity Page 9 of 58 FCC ID: 2ALU5E100CTX Report No.: LCSA061223063E ## 2. TEST ENVIRONMENT ## 2.1. Test Facility The test facility is recognized, certified, or accredited by the following organizations: Site Description Sar Lab. : NVLAP Accreditation Code is 600167-0. FCC Designation Number is CN5024. CAB identifier is CN0071. CNAS Registration Number is L4595. ISED Designation Number is 9642A. #### 2.2. Environmental conditions During the measurement the environmental conditions were within the listed ranges: | Temperature: | 18-25 ° C | |-----------------------|--------------| | | | | Humidity: | 40-65 % | | | | | Atmospheric pressure: | 950-1050mbar | ## 2.3. SAR Limits FCC Limit (1g Tissue) | | SAR (W/kg) | | | | |--|--|--|--|--| | EXPOSURE LIMITS | (General Population /
Uncontrolled Exposure
Environment) | (Occupational /
Controlled Exposure
Environment) | | | | Spatial Average(averaged over the whole body) | 0.08 | 0.4 | | | | Spatial Peak(averaged over any 1 g of tissue) | 1.6 | 8.0 | | | | Spatial Peak(hands/wrists/
feet/anklesaveraged over 10 g) | 4.0 | 20.0 | | | Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure. Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation). 立语检测股份 LCS Testing Lab LCS Testing L Report No.: LCSA061223063E ## 2.4. Equipments Used during the Test | | F 520 willif 135 | F V.20 s. IIIII 138 | | F 528 a IIIII 134 | | F V.Pr = 11111 13% | |------|--|---------------------|-----------|---------------------|------------|--------------------| | Item | Equipment | Manufacturer | Model No. | Serial No. | Cal Date | Due Date | | 1 | PC | Lenovo | G5005 | MY42081102 | N/A | N/A | | 2 | SAR Measurement system | SATIMO | 4014_01 | SAR_4014_01 | N/A | N/A | | 3 | Signal Generator | Agilent | E4438C | MY49072627 | 2023-06-09 | 2024-06-08 | | 4 | S-parameter Network
Analyzer | Agilent | 8753ES | US38432944 | 2023-06-09 | 2024-06-08 | | 5 | Wideband Radio
Communication Tester | R&S | CMW500 | 103818-1 | 2022-10-29 | 2023-10-28 | | 6 | E-Field PROBE | MVG | SSE2 | SN 25/22
EPGO376 | 2022-06-29 | 2023-06-28 | | 7 | DIPOLE 5000-6000 | MVG | SWG5500 | SN 49/16
WGA 43 | 2021-09-22 | 2024-09-21 | | 8 | COMOSAR
OPENCoaxial Probe | SATIMO | OCPG 68 | SN 40/14
OCPG68 | 2022-10-29 | 2023-10-28 | | 9 | SAR Locator | SATIMO | VPS51 | SN 40/14
VPS51 | 2022-10-29 | 2023-10-28 | | 10 | Communication
Antenna | SATIMO | ANTA57 | SN 39/14
ANTA57 | 2022-10-29 | 2023-10-28 | | 11 | FEATURE
PHONEPOSITIONING
DEVICE | SATIMO | MSH98 | SN 40/14
MSH98 | N/A | N/A | | 12 | DUMMY PROBE | SATIMO | DP60 | SN 03/14
DP60 | N/A | N/A | | 13 | SAM PHANTOM | SATIMO | SAM117 | SN 40/14
SAM117 | N/A | N/A | | 14 | Liquid measurement Kit | HP | s 85033D | 3423A03482 | N/A | N/A | | 15 | Power meter | Agilent | E4419B | MY45104493 | 2022-10-29 | 2023-10-28 | | 16 | Power meter | Agilent | E4419B | MY45100308 | 2022-10-29 | 2023-10-28 | | 17 | Power sensor | Agilent | E9301H | MY41495616 | 2022-10-29 | 2023-10-28 | | 18 | Power sensor | Agilent | E9301H | MY41495234 | 2022-10-29 | 2023-10-28 | | 19 | Directional Coupler | MCLI/USA | 4426-20 | 03746 | 2023-06-09 | 2024-06-08 | | | | | | i | | | #### Note: - 1) Per KDB865664D01 requirements for dipole calibration, the test laboratory has adopted three year extended calibration interval. Each measured dipole is expected to evalute with following criteria at least on annual interval. - a) There is no physical damage on the dipole; - b) System check with specific dipole is within 10% of calibrated values; - c) The most recent return-loss results, measued at least annually, deviates by no more than 20% from the previous measurement; - d) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 5Ω from the provious measurement. - 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters. Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg Å & 301 Bldg Č, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Report No.: LCSA061223063E ## SAR MEASUREMENTS SYSTEM CONFIGURATION ## 3.1. SARMeasurement Set-up The OPENSAR system for performing compliance tests consist of the following items: A standard high precision 6-axis robot (KUKA) with controller and software. KUKA Control Panel (KCP) A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with a Video Positioning System(VPS). The stress sensor is composed with mechanical and electronic when the electronic part detects a change on the electro-mechanical switch, It sends an "Emergency signal" to the robot controller that to stop robot's moves A computer operating Windows XP. #### **OPENSAR** software Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc. The SAM phantom enabling testing left-hand right-hand and body usage. The Position device for handheld EUT Tissue simulating liquid mixed according to the given recipes. System validation dipoles to validate the proper functioning of the system. Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000. China # Page **12** of **58** ## 3.2. OPENSAR E-field Probe System The SAR measurements were conducted with the dosimetric probe EPGO376 (manufactured by MVG), designed in the classical triangular configuration and optimized for dosimetric evaluation. ## **Probe Specification** ConstructionSymmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE) Report No.: LCSA061223063E Calibration ISO/IEC 17025 calibration service available. Frequency 450 MHz to 6 GHz; Linearity:0.25dB(450 MHz to 6 GHz) Directivity 0.25 dB in HSL (rotation around probe axis) 0.5 dB in tissue material (rotation normal to probe axis) Dynamic Range 0.01W/kg to > 100 W/kg; Linearity: 0.25 dB Dimensions Overall length: 330 mm (Tip: 16mm) Tip diameter: 5 mm (Body: 8 mm) Distance from probe tip to sensor centers: 2.5 mm Application General dosimetry up to 6 GHz Dosimetry in strong gradient fields Compliance tests of Mobile Phones #### Isotropic E-Field Probe The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change. The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below: Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg Å & 301 Bldg Č, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Report No.: LCSA061223063E #### 3.3. Phantoms The SAM Phantom SAM117 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is in compliance with the specification set in IEEE 1528 and EN62209-1, EN62209-2. The phantom enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robo System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles. SAM Twin Phantom ## 3.4. Device Holder In combination with the Generic Twin PhantomSAM117, the Mounting Device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatedly positioned according to the FCC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom). Report No.: LCSA061223063E Device holder supplied by SATIMO ## 3.5. Scanning Procedure ## The procedure for assessing the peak spatial-average SAR value consists of the following steps #### Power Reference Measurement The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected
point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method. #### Area Scan The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained. | | ≤ 3 GHz | > 3 GHz | | |--|--|---|--| | Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | $5 \text{ mm} \pm 1 \text{ mm}$ | $\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$ | | | Maximum probe angle from probe axis to phantom surface normal at the measurement location | 30° ± 1° | 20° ± 1° | | | | \leq 2 GHz: \leq 15 mm $3 - 4$ GHz: \leq 12 mm $4 - 6$ GHz: \leq 10 mm | | | | Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area} | When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device. | | | #### Zoom Scan Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan. Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000. China Page 15 of 58 FCC ID: 2ALU5E100CTX Report No.: LCSA061223063E | Maximum zoom scan | snatial res | olution: Δx _{Zoom} , Δy _{Zoom} | ≤ 2 GHz: ≤ 8 mm | $3-4~\text{GHz}$: $\leq 5~\text{mm}^*$ | | |--|---|---|--|---|--| | Maximum 200m Scan | spatial res | ordron: Axzoom, Ayzoom | $2-3 \text{ GHz: } \leq 5 \text{ mm}^*$ | $4 - 6 \text{ GHz} \le 4 \text{ mm}^*$ | | | | uniform | grid: Δz _{Zoom} (n) | ≤ 5 mm | $3 - 4 \text{ GHz}: \le 4 \text{ mm}$
$4 - 5 \text{ GHz}: \le 3 \text{ mm}$
$5 - 6 \text{ GHz}: \le 2 \text{ mm}$ | | | Maximum zoom
scan spatial
resolution, normal to
phantom surface | nal to graded | Δz _{Zoom} (1): between 1 st two points closest to phantom surface | ≤ 4 mm | $3-4 \text{ GHz:} \le 3 \text{ mm}$
$4-5 \text{ GHz:} \le 2.5 \text{ mm}$
$5-6 \text{ GHz:} \le 2 \text{ mm}$ | | | | grid \[\Delta z_{Zoom}(n>1): \] between subsequent points | | $\leq 1.5 \cdot \Delta z_{Zoom}(n-1) \text{ mm}$ | | | | Minimum zoom
scan volume | x, y, z | | $\geq 30 \; mm$ | 3 – 4 GHz: ≥ 28 mm
4 – 5 GHz: ≥ 25 mm
5 – 6 GHz: ≥ 22 mm | | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details. 工资 立洲檢測股份 ^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. Page 16 of 58 FCC ID: 2ALU5E100CTX Report No.: LCSA061223063E #### Power Drift measurement The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have OPENSAR software stop the measurements if this limit is exceeded. ## 3.6. Data Storage and Evaluation ## **Data Storage** The OPENSAR software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated. The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages. #### **Data Evaluation** The OPENSAR software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software: Probe parameters: - Sensitivity Normi, ai0, ai1, ai2 Conversion factor ConvFiDiode compression point Dcpi Device parameters: - Frequency f - Crest factor cf Media parameters: - Conductivity σ - Density μ These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the OPENSAR components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as: $$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$ With Vi = compensated signal of channel i (i = x, y, z) Ui = input signal of channel i (i = x, y, z) cf = crest factor of exciting field dcpi = diode compression point From the compensated input signals the primary field data for each channel can be evaluated: Page 17 of 58 FCC ID: 2ALU5E100CTX Report No.: LCSA061223063E E-field probes: $$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$ H-field probes: $$\begin{split} H_i &= \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f} \\ & \text{(i = x, y, z)} \\ & \text{(i = x, y, z)} \end{split}$$ With Vi Normi = compensated signal of channel i = sensor sensitivity of channel i [mV/(V/m)2] for E-field Probes ConvF = sensitivity enhancement in solution = sensor sensitivity factors for H-field probes = carrier frequency [GHz] Εi = electric field strength of channel i in V/m Hi = magnetic field strength of channel i in A/m The RSS value of the field components gives the total field strength (Hermitian magnitude): $$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$ The primary field data are used to calculate the derived field units. $$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$ with SAR = local specific absorption rate in mW/g = total field strength in V/m Etot = conductivity in [mho/m] or [Siemens/m] = equivalent tissue density in g/cm3 Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. ## 3.7. Tissue Dielectric Parameters for Head and Body Phantoms The liquid is consisted of water, salt, Glycol, Sugar, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664. The composition of the tissue simulating liquid | Frequency
(MHz) | Bactericide | DGBE | HEC | NaCl | Sucrose | 1,2-
Propan
ediol | X100 | Water | Conductivity | Permittivity | |--------------------|-------------|-------|-----|------|-----------|-------------------------|-------|-------|--------------|--------------| | | % | % | % | % | % | % | % | % | σ | εr | | 750 | / | / | / | 0.79 | / | 64.81 | / | 34.40 | 0.97 | 41.8 | | 835 | / | / | / | 0.79 | / | 64.81 | / | 34.40 | 0.97 | 41.8 | | 900 | / | / | / | 0.79 | / | 64.81 | / | 34.40 | 0.97 | 41.8 | | 1800 | / | 13.84 | / | 0.35 | / | was the | 30.45 | 55.36 | 1.38 | 41.0 | | 1900 | 一江 图 测 图 | 13.84 | / | 0.35 | 小田位 | M Por 1 ap | 30.45 | 55.36 | 1.38 | 41.0 | | 2000 | Thesting | 7.99 | / | 0.16 | T Was Tes | ting / | 19.97 | 71.88 | 1.55 | 41.1 | |
2450 | 1 | 7.99 | / | 0.16 | 1 | / | 19.97 | 71.88 | 1.88 | 40.3 | | 2600 | / | 7.99 | / | 0.16 | / | / | 19.97 | 71.88 | 1.88 | 40.3 | | Target Frequency | He | ad | В | ody | |------------------|------|--------|-------|--------| | (MHz) | ٤r | σ(S/m) | ٤r | σ(S/m) | | 450 | 43.5 | 0.87 | 56.7 | 0.94 | | 835 | 41.5 | 0.90 | 55.2 | 0.97 | | 900 | 41.5 | 0.97 | 55.0 | 1.05 | | 915 | 41.5 | 0.98 | 55.0 | 1.06 | | 1450 | 40.5 | 1.20 | 54.0 | 1.30 | | 1610 | 40.3 | 1.29 | 53.8 | 1.40 | | 1800-2000 | 40.0 | 1.40 | 53.3 | 1.52 | | 2450 | 39.2 | 1.80 | 52.7 | 1.95 | | 2600 | 39.0 | 1.96 | 52.5 | 2.16 | | 3000 | 38.5 | 2.40 | 52.0 | 2.73 | | 5200 | 36.0 | 4.66 | 49.01 | 5.30 | | 5800 | 35.3 | 5.27 | 48.2 | 6.00 | ## 3.8. Tissue equivalent liquid properties Dielectric Performance of Head Tissue Simulating Liquid | Test Eng | Test Engineer: bob.yang | | | | | | | | | | | |----------|-------------------------|-------|-------------------|------|---------|----------|-------|--------|------------|--|--| | Tissue | Measured | Targe | t Tissue | | Measure | d Tissue | | Liquid | Test Data | | | | Type | Frequency
(MHz) | σ | $\epsilon_{ m r}$ | σ | Dev. | εr | Dev. | Temp. | | | | | 5200H | 5200 | 4.66 | 36.00 | 4.44 | -4.72% | 36.44 | 1.22% | 22.5 | 06/13/2023 | | | Shenzhen LCS Compliance Testing Laboratory Ltd. #### Report No.: LCSA061223063E ## **System Check** The purpose of the system check is to verify that the system operates within its specifications at the decice test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test; System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %). The output power on dipole port must be calibrated to 20 dBm (100mW) before dipole is connected. Photo of Dipole Setup Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000. China Page 20 of 58 FCC ID: 2ALU5E100CTX Report No.: LCSA061223063E #### **Justification for Extended SAR Dipole Calibrations** Referring to KDB 865664D01V01r04, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. While calibration intervals not exceed 3 years. SID5200 SN 49/16 DIP WGA43 Extend Dipole Calibrations | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | |------------------------|---------------------|--------------|----------------------------|----------------|---------------------------------|----------------| | 2021-09-22 | -8.59 | | 19.38 | | 13.50 | | | 2022-09-22 | -8.62 | 0.35 | 19.25 | -0.13 | 13.47 | -0.03 | | Mixture
Type | Frequency | Dower | SAR _{1q} | SAR _{10q} | Drift | 1W Ta | rget | _ | rence
ntage | Liquid | Date | |-----------------|-----------|------------------------|-------------------|--------------------|---------|-----------------------------|------------------------------|--------|----------------|-------------|------------| | | (MHz) | Power | (W/Kg) | (W/Kg) | (%) | SAR _{1g}
(W/Kg) | SAR _{10g}
(W/Kg) | 1g | 10g | Temp | Date | | | 7:17 | 100 mW | 15.852 | 5.569 | 4.19.10 | LingLab | | | 27 77 | MET IN CITY | D | | Head | 5200 | Normalize to 1
Watt | 158.52 | 55.69 | 3.96 | 165.77 | 57.2 | -4.37% | -2.64% | 22.5 | 06/13/2023 | Shenzhen LCS Compliance Testing Laboratory Ltd. FCC ID: 2ALU5E100CTX #### Report No.: LCSA061223063E BC ## 3.10. SAR measurement procedure The measurement procedures are as follows: #### 3.10.1 Conducted power measurement - a. For WWAN power measurement, use base station simulator connection with RF cable, at maximum power in each supported wireless interface and frequency band. - b. Read the WWAN RF power level from the base station simulator. - c. For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously Transmission, at maximum RF power in each supported wireless interface and frequency band. - d. Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power. ## 3.10.2 WIFI Test Configuration The SAR measurement and test reduction procedures are structured according to either the DSSS or OFDM transmission mode configurations used in each standalone frequency band and aggregated band. For devices that operate in exposure configurations that require multiple test positions, additional SAR test reduction may be applied. The maximum output power specified for production units, including tune-up tolerance, are used to determine initial SAR test requirements for the 802.11 transmission modes in a frequency band. SAR is measured using the highest measured maximum output power channel for the initial test configuration. SAR measurement and test reduction for the remaining 802.11 modes and test channels are determined according to measured or specified maximum output power and reported SAR of the initial measurements. The general test reduction and SAR measurement approaches are summarized in the following: - 1. The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures. - 2. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, an "initial test configuration" is first determined for each standalone and aggregated frequency band according to the maximum output power and tune-up tolerance specified for production units. - a. When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band. - b. SAR is measured for OFDM configurations using the initial test configuration procedures. Additional frequency band specific SAR test reduction may be considered for individual frequency bands - c. Depending on the reported SAR of the highest maximum output power channel tested in the initial test configuration, SAR test reduction may apply to subsequent highest output channels in the initial test configuration to reduce the number of SAR measurements. - 3. The Initial test configuration does not apply to DSSS. The 2.4 GHz band SAR test requirements and 802.11b DSSS procedures are used to establish the transmission configurations required for SAR measurement. - 4. An "initial test position" is applied to further reduce the number of SAR tests for devices operating in next to the ear, UMPC mini-tablet or hotspot mode exposure configurations that require multiple test positions. - a. SAR is measured for 802.11b according to the 2.4 GHz DSSS procedure using the exposure condition established by the initial test position. - b. SAR is measured for 2.4 GHz and 5 GHz OFDM configurations using the initial test configuration. 802.11b/g/n operating modes are tested independently according to the service requirements in each frequency band. 802.11b/g/n modes are tested on the maximum average output channel. - 5. The Initial test position does not apply to devices that require a fixed exposure test position. SAR is measured in a fixed exposure test position for these devices in 802.11b according to the 2.4 GHz DSSS procedure or in 2.4 GHz and 5 GHz OFDM configurations using the initial test configuration procedures. - 6. The "subsequent test configuration" procedures are applied to determine if additional SAR measurements are required for the remaining OFDM transmission modes that have not been tested in the initial test configuration. SAR test exclusion is determined according to reported SAR in the initial test configuration and maximum output power specified or measured for these other OFDM configurations. #### 2.4 GHz and 5GHz SAR Procedures Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C. Juji Industrial P Page 22 of 58 FCC ID: 2ALU5E100CTX Report No.: LCSA061223063E exposure test position and initial test position procedure applies to multiple exposure test positions. When SAR measurement is required for an OFDM configuration, the initial test configuration, subsequent test configuration and initial test position procedures are applied. The SAR test exclusion requirements for 802.11g/n OFDM configurations are described in section 5.2.2. 1. 802.11b DSSS SAR Test Requirements SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following: - a. When the reported SAR of the highest measured maximum output power channel (section 3.1) for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration. - b. When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing. - 1. 2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for
OFDM are applied (section 5.3). SAR is not required for the following 2.4 GHz OFDM conditions. - a. When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration - b. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. - 2. SAR Test Requirements for OFDM Configurations When SAR measurement is required for 802.11 a/g/n/ac OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. When the same transmitter and antenna(s) are used for U-NII-1 and U-NII-2A bands, additional SAR test reduction applies. When band gap channels between U-NII-2C band and 5.8 GHz U-NII-3 or §15.247 band are supported, the highest maximum output power transmission mode configuration and maximum output power channel across the bands must be used to determine SAR test reduction, according to the initial test configuration and subsequent test configuration requirements.20 In applying the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures. - 3. OFDM Transmission Mode SAR Test Configuration and Channel Selection Requirements The initial test configuration for 2.4 GHz and 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum output power channel determined by the default power measurement procedures (section 4). When multiple configurations in a frequency band have the same specified maximum output power, the initial test configuration is determined according to the following steps applied sequentially. - a. The largest channel bandwidth configuration is selected among the multiple configurations with the same specified maximum output power. - b. If multiple configurations have the same specified maximum output power and largest channel bandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected. - c. If multiple configurations have the same specified maximum output power, largest channel bandwidth and lowest order modulation, the lowest data rate configuration among these configurations is selected. - d. When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n. After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following. These channel selection procedures apply to both the initial test configuration and subsequent test configuration(s), with respect to the default power measurement procedures or additional power measurements required for further SAR test reduction. The same procedures also apply to subsequent highest output power channel(s) selection. - a. Channels with measured maximum output power within ¼ dB of each other are considered to have the same maximum output. - b. When there are multiple test channels with the same measured maximum output power, the channel closest to mid-band frequency is selected for SAR measurement. Page 23 of 58 FCC ID: 2ALU5E100CTX Report No.: LCSA061223063E c. When there are multiple test channels with the same measured maximum output power and equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement. Initial Test Configuration Procedures An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. For configurations with the same specified or measured maximum output power, additional transmission mode and test channel selection procedures are required (see section 5.3.2). SAR test reduction of subsequent highest output test channels is based on the reported SAR of the initial test configuration. For next to the ear, hotspot mode and UMC mini-tablet exposure configurations where multiple test positions are required, the initial test position procedure is applied to minimize the number of test positions required for SAR measurement using the initial test configuration transmission mode.23 For fixed exposure conditions that do not have multiple SAR test positions, SAR is measured in the transmission mode determined by the initial test configuration. When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for the subsequent next highest measured output power channel(s) in the initial test configuration until the reported SAR is ≤ 1.2 W/kg or all required channels are tested. 4. Subsequent Test Configuration Procedures SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. The initial test position procedure is applied to next to the ear, UMPC mini-tablet and hotspot mode configurations. When the same maximum output power is specified for multiple transmission modes, the procedures in section 5.3.2 are applied to determine the test configuration. Additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. The subsequent test configuration and SAR measurement procedures are described in the following. - a. When SAR test exclusion provisions of KDB Publication 447498 are applicable and SAR measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration. - b. When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration. - c. The number of channels in the initial test configuration and subsequent test configuration can be different due to differences in channel bandwidth. When SAR measurement is required for a subsequent test configuration and the channel bandwidth is smaller than that in the initial test configuration, all channels in the subsequent test configuration that overlap with the larger bandwidth channel tested in the initial test configuration should be used to determine the highest maximum output power channel. This step requires additional power measurement to identify the highest maximum output power channel in the subsequent test configuration to determine SAR test reduction. - 1). SAR should first be measured for the channel with highest measured output power in the subsequent test configuration. - 2). SAR for subsequent highest measured maximum output power channels in the subsequent test configuration is required only when the reported SAR of the preceding higher maximum output power channel(s) in the subsequent test configuration is > 1.2 W/kg or until all required channels are tested. - a) For channels with the same measured maximum output power, SAR should be measured using the channel closest to the center frequency of the larger channel bandwidth channel in the initial test configuration. - d. SAR measurements for the remaining highest specified maximum output power OFDM transmission mode configurations that have not been tested in the initial test configuration (highest maximum output) or subsequent test configuration(s) (subsequent next highest maximum output power) is determined by applying the subsequent test configuration procedures in this section to the remaining configurations according to the following: - 1) replace "subsequent test configuration" with "next subsequent test configuration" (i.e., subsequent next highest specified maximum output power configuration) Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg Å & 301 Bldg Č, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity FCC ID: 2ALU5E100CTX Report No.: LCSA061223063E 2) replace "initial test configuration" with "all tested higher output power configurations. ## 3.11. Configuration and Peripherals The EUT was tested in the following configuration(s) unless otherwise stated: - Powered via a USB port. - Test all USB orientations [see figure below: (A) Horizontal-Up, (B) Horizontal-Down, (C) Vertical-Front, and (D) Vertical-Back] with a device-to-phantom separation distance of 5 mm or less, according to KDB Publication 447498 D01 requirements. These test orientations are intended for the exposure conditions found in typical
laptop/notebook/netbook or tablet computers with either horizontal or vertical USB connector configurations at various locations in the keyboard section of the computer. Current generation portable host computers should be used to establish the required SAR measurement separation distance. The same test separation distance must be used to test all frequency bands and modes in each USB orientation. The typical Horizontal-Up USB connection (A), found in the majority of host computers, must be tested using an appropriate host computer. A host computer with either Vertical-Front (C) or Vertical-Back (D) USB connection should be used to test one of the vertical USB orientations. If a suitable host computer is not available for testing the Horizontal-Down (B) or the remaining Vertical USB orientation, a high quality USB cable, 12 inches or less, may be used for testing these other orientations. It must be documented that the USB cable does not influence the radiating characteristics and output power of the transmitter ## 3.12. Power Reduction The product without any power reduction. #### 3.13. Power Drift To control the output power stability during the SAR test, SAR system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. This ensures that the power drift during one measurement is within 5%. Page 25 of 58 FCC ID: 2ALU5E100CTX Report No.: LCSA061223063E ## 4. TEST CONDITIONS AND RESULTS ## 4.1. Conducted Power Results Max Conducted power measurement results and power drift from tune-up tolerance provide by manufacturer: #### <WLAN 5.2G Conducted Power> | CWLAN 5.29 Conducted Fower> | | | | | | | | | | | | |-----------------------------|---------|--------------------|-----------------------------------|---------------------------------|--|--|--|--|--|--|--| | Mode | Channel | Frequency
(MHz) | Conducted
Output
Power(dBm) | Worst Case
Test Rate
Data | | | | | | | | | | 36 | 5180 | 9.16 | MCS0 | | | | | | | | | IEEE 802.11a | 40 | 5200 | 8.38 | MCS0 | | | | | | | | | | 48 | 5240 | 8.21 | MCS0 | | | | | | | | | | 36 | 5180 | 9.04 | MCS0 | | | | | | | | | IEEE 802.11n HT20 | 40 | 5200 | 7.34 | MCS0 | | | | | | | | | | 48 | 5240 | 8.04 | MCS0 | | | | | | | | | IEEE 802.11n HT40 | 38 | 5190 | 7.34 | MCS0 | | | | | | | | | IEEE 802.11h H140 | 46 | 5230 | 8.83 | MCS0 | | | | | | | | Page **26** of **58** FCC ID: 2ALU5E100CTX Report No.: LCSA061223063E ## 4.2. Transmit Antennas and SAR Measurement Position #### Antenna information: | | NAME AND TRANSPORT | |------------------|----------------------| | WIFI Antenna | WLAN TX/RX | | VIII / AITOIIIIA | V = 1 (1 1) (1 () (| #### Measured Position: | Position 1 | Horizontal-Up | |------------|-----------------| | Position 2 | Horizontal-Down | | Position 3 | Vertical-Front | | Position 4 | Vertical- Back | Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000. China Page 27 of 58 FCC ID: 2ALU5E100CTX ## 4.3. SAR Measurement Results The calculated SAR is obtained by the following formula: Reported SAR=Measured SAR*10^{(Ptarget-Pmeasured))/10} Scaling factor=10^{(Ptarget-Pmeasured))/10} Reported SAR= Measured SAR* Scaling factor #### Where P_{target} is the power of manufacturing upper limit; P_{measured} is the measured power; Measured SAR is measured SAR at measured power which including power drift) Reported SAR which including Power Drift and Scaling factor **Duty Cycle** Report No.: LCSA061223063E | Duty | o yole | |-----------|------------| | Test Mode | Duty Cycle | | WLAN5200 | 1:1 | #### 4.4.1 SAR Results SAR Values [WIFI5.2G] | | | | | • | ,, v u | | [**11 13.20 | 1 | | | | | |------|---|---------|-----------------|----------------|----------|-------|-------------------------|-------------------|-------------------|-----------------------|-------------|------------------| | | | | | Conduc | cted | | ximum | Powe | | SAR _{1-g} re | sults(W/kg) | | | Ch. | Freq.
(MHz) | Service | Test
Positio | Powe | (dBm) | | llowed
Power
dBm) | r
Drift
(%) | Scaling
Factor | Measure
d | Reported | Graph
Results | | | measured / reported SAR numbers - Body (distance 0mm) | | | | | | | | | | | | | 36 | 5180 | 802.1 | 1a | Position 1 | 9.16 | 6 | 9.50 | 1.03 | 1.081 | 0.265 | 0.287 | Plot 1 | | | | | me | easured / repo | rted SAI | R nun | nbers - Bod | y (distand | ce 0mm) | | | | | 36 | 5180 | 802.1 | 1a | Position 2 | 9.16 | 6 | 9.50 | -3.03 | 1.081 | 0.247 | 0.267 | - 115 | | | IN: AL | 182711 | me | easured / repo | rted SAI | R nun | nbers - Body | y (distanc | ce 0mm) | | | 山川野之下 | | 36 | 5180 | 802.1 | 1a | Position 3 | 9.16 | 6 | 9.50 | 4.52 | 1.081 | 0.232 | 0.251 | ting Lar | | AST. | CS Tes | | me | easured / repo | rted SAI | R nun | nbers - Body | y (distanc | ce 0mm) | • | VISA LCS | 162. | | 36 | 5180 | 802.1° | 1a | Position 4 | 9.16 | 6 | 9.50 | 0.33 | 1.081 | 0.219 | 0.237 | | #### Remark: - 1. The value with blue color is the maximum SAR Value of each test band. - 2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s). - 3. When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements.19 If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, each band is tested independently for SAR. - 4. When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, each band is tested independently for SAR. Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101 201 Bldg A & 301 Bldg C. Juij Industrial P. Add: 101, 201 Bldg Å & 301 Bldg Č, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Report No.: LCSA061223063E ## 4.4. SAR Measurement Variability According to KDB865664, Repeated measurements are required only when the measured SAR is ≥ 0.80 W/kg. If the measured SAR value of the initial repeated measurement is < 1.45 W/kg with ≤ 20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. A second repeated measurement is required only if the measured result for the initial repeated measurement is within 10% of the SAR limit and vary by more than 20%, which are often related to device and measurement setup difficulties. The following procedures are applied to determine if repeated measurements are required. The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.19 The repeated measurement results must be clearly identified in the SAR report. All measured SAR, including the repeated results, must be considered to determine compliance and for reporting according to KDB 690783.Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply. - 1) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once. - 2) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit). - 3) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20. - 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20 | | | | | | | | First Re | epeated | |----|----------------------------|---------------|---------------------------------|------------------|-----------------------------|---|---|---| | 60 | Frequency
Band
(MHz) | Air Interface | RF
Exposure
Configuration | Test
Position | Repeated
SAR
(yes/no) | Highest
Measured
SAR _{1-g}
(W/Kg) | Measued
SAR _{1-g}
(W/Kg) | Largest
to
Smallest
SAR
Ratio | | | 5200 | 5.2GWLAN | Standalone | Position 1 | no | 0.265 | n/a | n/a | #### Remark: 1. Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20 or 3 (1-g or 10-g respectively) ## 4.5. General description of test procedures - 1. Test positions as described in the tables above are in accordance with the specified test standard. - 2. Tests in body position were performed in that configuration, which generates the highest time based averaged output power (see conducted power results). - 3. According to IEEE 1528 the SAR test shall be performed at middle channel. Testing of top and bottom channel is optional. - 4. According to KDB 447498 D01 testing of other
required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is: - \bullet ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transm0.105ission band is \le 100 MHz - \bullet ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz - 5. IEEE 1528-2003 require the middle channel to be tested first. This generally applies to wireless devices that are designed to operate in technologies with tight tolerances for maximum output power variations across channels in the band. When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel must be used. Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Page 29 of 58 FCC ID: 2ALU5E100CTX Report No.: LCSA061223063E 6. When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements.19 If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, each band is tested independently for SAR. 7. When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, each band is tested independently for SAR. ## 4.6. Measurement Uncertainty (450MHz-6GHz) Not required as SAR measurement uncertainty analysis is required in SAR reports only when the highest measured SAR in a frequency band is ≥ 1.5 W/kg for 1-g SAR according to KDB865664D01. Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China ## 4.7. System Check Results Test mode:5200MHz(Head) Product Description:Validation Model:Dipole SID5000 E-Field Probe: SSE2(SN 25/22 EPGO376) Test Date:June 13, 2023 | Medium(liquid type) | HSL _5000 | |-----------------------------------|-----------| | Frequency (MHz) | 5200.0000 | | Relative permittivity (real part) | 36.44 | | Conductivity (S/m) | 4.44 | | Input power | 100mW | | Crest Factor | 1.0 | | Conversion Factor | 1.85 | | Variation (%) | 3.960000 | | SAR 10g (W/Kg) | 5.569210 | | SAR 1g (W/Kg) | 15.852034 | ## **SURFACE SAR** ## **VOLUME SAR** Report No.: LCSA061223063E Page 31 of 58 FCC ID: 2ALU5E100CTX Report No.: LCSA061223063E ## 4.8. SAR Test Graph Results SAR plots for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination Test Mode: 802.11a (WiFi5.2G),Low channel (Test Position 1) Product Description: Wireless HDMI Extender Model: E100C TX Test Date: June 13, 2023 | Medium(liquid type) | HSL _5000 | |-----------------------------------|----------------------------| | Frequency (MHz) | 5180.0000 | | Relative permittivity (real part) | 36.68 | | Conductivity (S/m) | 4.43 | | E-Field Probe | SN 25/22 EPGO376 | | Crest Factor | 1.0 Till malab | | Conversion Factor | 1.85 (5 185) | | Sensor | 4mm | | Area Scan | dx=8mm dy=8mm | | Zoom Scan | 5x5x7,dx=8mm dy=8mm dz=5mm | | Variation (%) | 1.030000 | | SAR 10g (W/Kg) | 0.136225 | | SAR 1g (W/Kg) | 0.264914 | | SURFACE SAR | VOLUME SAR | #### **SURFACE SAR** SAVE Cancel Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China ## 5. CALIBRATION CERTIFICATES ## 5.1 Probe-EPGO376 Calibration Certificate ## COMOSAR E-Field Probe Calibration Report Ref: ACR.180.4.22.BES.A ## SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. 1F., XINGYUAN INDUSTRIAL PARK, TONGDA ROAD, BAO'AN BLVD BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE SERIAL NO.: SN 25/22 EPGO376 #### Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 06/29/2022 Accreditations #2-6789 Scope available on www.cofrac.f The use of the Cofrac brand and the accreditation references is prohibited from any reproduction ## Summary: This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed at MVG, using the CALIPROBE test bench, for use with a MVG COMOSAR system only. The test results covered by accreditation are traceable to the International System of Units (SI). Page: 1/11 Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Ref: ACR.180.4,22.BES.A | 28 | Name | Function | Date | Signature | |----------------------------------|--------------|-------------------------|-----------|--------------| | Prepared by : Jérôme Le Gall Mea | | Measurement Responsible | 6/30/2022 | 1 | | Checked & approved by: | Jérôme Luc | Technical Manager | 6/30/2022 | JS | | Authorized by: | Yann Toutain | Laboratory Director | 6/30/2022 | Yann TOUTANN | 2022.06.30 13:37:53 +02'00' | | Customer Name | | |---------------|---|--| | Distribution: | Shenzhen LCS
Compliance Testing
Laboratory Ltd. | | | Issue | Name | Date | Modifications | |-------|----------------|-----------|-----------------| | A | Jérôme Le Gall | 6/30/2022 | Initial release | | | | | | | | | | | | | 1 | | | | | | | | Page: 2/11 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. 518000, China Ref: ACR.180.4.22.BES.A Report No.: LCSA061223063E #### TABLE OF CONTENTS | 1 | Devi | ce Under Test | | |---|-------|-----------------------------|---| | 2 | Prod | uct Description4 | | | | 2.1 | General Information | 4 | | 3 | Mea | surement Method | | | | 3.1 | Linearity | 4 | | | 3.2 | Sensitivity | 4 | | | 3.3 | Lower Detection Limit | | | | 3.4 | Isotropy | 5 | | | 3.1 | Boundary Effect | 5 | | 4 | Mea | surement Uncertainty6 | | | 5 | Calil | bration Measurement Results | | | | 5.1 | Sensitivity in air | 6 | | | 5.2 | Linearity | 7 | | | 5.3 | Sensitivity in liquid | 8 | | | 5.4 | Isotropy | | | 6 | Liet | of Equipment 10 | | This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Ref: ACR.180.4.22.BES.A Report No.: LCSA061223063E #### DEVICE UNDER TEST | Device Under Test | | | |--|-----------------------|--| | Device Type COMOSAR DOSIMETRIC E FIELD F | | | | Manufacturer | MVG | | | Model | SSE2 | | | Serial Number | SN 25/22 EPGO376 | | | Product Condition (new / used) | New | | | Frequency Range of Probe | 0.15 GHz-6GHz | | | Resistance of Three Dipoles at Connector | Dipole 1: R1=0.193 MΩ | | | | Dipole 2: R2=0.188 MΩ | | | | Dipole 3: R3=0.198 MΩ | | #### 2 PRODUCT DESCRIPTION #### 2.1 GENERAL INFORMATION MVG's COMOSAR E field Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. Figure 1 – MVG COMOSAR Dosimetric E field Probe | Probe Length | 330 mm | |--|--------| | Length of Individual Dipoles | 2 mm | | Maximum external diameter | 8 mm | | Probe Tip External Diameter | 2.5 mm | | Distance between dipoles / probe extremity | 1 mm | #### 3 MEASUREMENT METHOD The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards. #### 3.1 LINEARITY The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg. #### 3.2 SENSITIVITY The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards. Page: 4/11 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity FCC ID: 2ALU5E100CTX Ref: ACR.180.4.22.BES.A Report No.: LCSA061223063E The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg. #### 3.4 ISOTROPY The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was
rotated along its main axis from 0 to 360 degrees in 15degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°-180°) in 15° increments. At each step the probe is rotated about its axis (0°-360°). #### 3.1 BOUNDARY EFFECT The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface. The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and dbe + d_{step} along lines that are approximately normal to the surface: SAR_{uncertainty} [%] = $$\delta$$ SAR_{be} $\frac{(d_{be} + d_{step})^2}{2d_{step}} \frac{(e^{-d_{be}/(\delta \beta)})}{\delta/2}$ for $(d_{be} + d_{step}) < 10$ mm where SARuncertainty is the uncertainty in percent of the probe boundary effect is the distance between the surface and the closest zoom-scan measurement d_{be} point, in millimetre is the separation distance between the first and second measurement points that Δ_{step} are closest to the phantom surface, in millimetre, assuming the boundary effect at the second location is negligible 8 is the minimum penetration depth in millimetres of the head tissue-equivalent liquids defined in this standard, i.e., $\delta \approx 14$ mm at 3 GHz; 4SAR_{be} in percent of SAR is the deviation between the measured SAR value, at the distance dbe from the boundary, and the analytical SAR value. The measured worst case boundary effect SAR uncertainty[%] for scanning distances larger than 4mm is 1.0% Limit ,2%). Page: 5/11 Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity Ref: ACR.180.4.22.BES.A ### MEASUREMENT UNCERTAINTY The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. | Uncertainty analysis of the probe calibration in waveguide | | | | | | |--|-----------------------|-----------------------------|---------|----|-----------------------------| | ERROR SOURCES | Uncertainty value (%) | Probability
Distribution | Divisor | ci | Standard
Uncertainty (%) | | Expanded uncertainty
95 % confidence level k = 2 | | | | | 14 % | ### CALIBRATION MEASUREMENT RESULTS | Calibration Parameters | | | |------------------------|-------------|--| | Liquid Temperature | 20 +/- 1 °C | | | Lab Temperature | 20 +/- 1 °C | | | Lab Humidity | 30-70 % | | ### SENSITIVITY IN AIR | | | Normz dipole
3 (μV/(V/m) ²) | |------|------|--| | 0.76 | 0.78 | 0.76 | | 4 8 8 | | DCP dipole 3 | |-------|------|--------------| | (mV) | (mV) | (mV) | | 106 | 107 | 108 | Calibration curves ei=f(V) (i=1,2,3) allow to obtain E-field value using the formula: $$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$ ### Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK Ref: ACR.180.4.22.BES.A Dipole 1 Dipole 2 Dipole 3 ### LINEARITY # Linearity Linearity:+/-1.81% (+/-0.08dB) Page: 7/11 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Ref: ACR.180.4.22.BES.A ### SENSITIVITY IN LIQUID | MHz +/-
 100MHz 1.74* 1.67* 1.67* 1.67* 1.69* 1.69* 1.73* 1.69* 1.73* 1.75* 1.80* 1.80* 1.80* 1.87* 1.80* 1.80* 1.87* 1.80* 1.80* 1.87* 1.80* 1.80* 1.87* 1.80* 1.80* 1.87* 1.80* 1.80* 1.80* 1.80* 1.80* 1.85* 1.80* | Liquid | Frequency | ConvF | |--|--------|-----------|-------| | HL450* 450* 1.74* BL450* 450* 1.67* HL750 750 1.69 BL750 750 1.73 HL850 835 1.75 BL850 835 1.80 HL900 900 1.87 BL900 900 1.85 HL1800 1800 2.09 BL1800 1800 2.15 HL1900 1900 2.14 BL1900 1900 2.27 HL2000 2000 2.31 BL2000 2000 2.31 BL2000 2000 2.34 HL2300 2300 2.46 BL2300 2300 2.51 HL2450 2450 2.60 BL2450 2450 2.70 HL2600 2600 2.39 BL2600 2600 2.50 HL5200 5200 1.85 BL5200 5200 1.81 HL5400 5400 2.00 BL5600 5600 2.19 BL5600 5600 2.11 HL5800 5800 2.01 | | | | | BL450* 450* 1.67* HL750 750 1.69 BL750 750 1.73 HL850 835 1.75 BL850 835 1.80 HL900 900 1.87 BL900 900 1.85 HL1800 1800 2.09 BL1800 1800 2.15 HL1900 1900 2.14 BL1900 1900 2.27 HL2000 2000 2.31 BL2000 2000 2.34 HL2300 2300 2.46 BL2300 2300 2.51 HL2450 2450 2.60 BL2450 2450 2.70 HL2600 2600 2.39 BL2600 2600 2.50 HL5200 5200 1.85 BL5200 5200 1.81 HL5400 5400 2.07 BL5400 5400 2.07 BL5400 5600 | | 100MHz) | | | HL750 750 1.69 BL750 750 1.73 HL850 835 1.75 BL850 835 1.80 HL900 900 1.87 BL900 900 1.85 HL1800 1800 2.09 BL1800 1800 2.15 HL1900 1900 2.14 BL1900 1900 2.27 HL2000 2000 2.31 BL2000 2000 2.34 HL2300 2300 2.46 BL2300 2300 2.51 HL2450 2450 2.60 BL2450 2450 2.70 HL2600 2600 2.39 BL2600 2600 2.50 HL5200 5200 1.85 BL5200 5200 1.81 HL5400 5400 2.07 BL5400 5400 2.00 HL5600 5600 2.19 BL5600 5600 | HL450* | 450* | 1.74* | | BL750 750 1.73 HL850 835 1.75 BL850 835 1.80 HL900 900 1.87 BL900 900 1.85 HL1800 1800 2.09 BL1800 1800 2.15 HL1900 1900 2.14 BL1900 1900 2.27 HL2000 2000 2.31
BL2000 2000 2.34 HL2300 2300 2.46 BL2300 2300 2.51 HL2450 2450 2.60 BL2450 2450 2.70 HL2600 2600 2.39 BL2600 2600 2.50 HL5200 5200 1.85 BL5200 5200 1.81 HL5400 5400 2.07 BL5400 5400 2.00 HL5600 5600 2.19 BL5600 5600 2.11 HL5800 5800 <td>BL450*</td> <td>450*</td> <td>1.67*</td> | BL450* | 450* | 1.67* | | HL850 835 1.75 BL850 835 1.80 HL900 900 1.87 BL900 900 1.85 HL1800 1800 2.09 BL1800 1800 2.15 HL1900 1900 2.14 BL1900 1900 2.27 HL2000 2000 2.31 BL2000 2000 2.34 HL2300 2300 2.46 BL2300 2300 2.51 HL2450 2450 2.60 BL2450 2450 2.70 HL2600 2600 2.39 BL2600 2600 2.50 HL5200 5200 1.85 BL5200 5200 1.81 HL5400 5400 2.07 BL5400 5400 2.00 HL5600 5600 2.19 BL5600 5600 2.11 HL5800 5800 2.01 | HL750 | 750 | 1.69 | | BL850 835 1.80 HL900 900 1.87 BL900 900 1.85 HL1800 1800 2.09 BL1800 1800 2.15 HL1900 1900 2.14 BL1900 1900 2.27 HL2000 2000 2.31 BL2000 2000 2.34 HL2300 2300 2.46 BL2300 2300 2.51 HL2450 2450 2.60 BL2450 2450 2.70 HL2600 2600 2.39 BL2600 2600 2.50 HL5200 5200 1.85 BL5200 5200 1.81 HL5400 5400 2.07 BL5400 5400 2.00 HL5600 5600 2.19 BL5600 5600 2.11 HL5800 5800 2.01 | BL750 | 750 | 1.73 | | HL900 900 1.87 BL900 900 1.85 HL1800 1800 2.09 BL1800 1800 2.15 HL1900 1900 2.14 BL1900 1900 2.27 HL2000 2000 2.31 BL2000 2000 2.34 HL2300 2300 2.46 BL2300 2300 2.51 HL2450 2450 2.60 BL2450 2450 2.70 HL2600 2600 2.39 BL2600 2600 2.50 HL5200 5200 1.85 BL5200 5200 1.81 HL5400 5400 2.07 BL5400 5400 2.00 HL5600 5600 2.19 BL5600 5600 2.11 HL5800 5800 2.01 | HL850 | 835 | 1.75 | | BL900 900 1.85 HL1800 1800 2.09 BL1800 1800 2.15 HL1900 1900 2.14 BL1900 1900 2.27 HL2000 2000 2.31 BL2000 2000 2.34 HL2300 2300 2.46 BL2300 2300 2.51 HL2450 2450 2.60 BL2450 2450 2.70 HL2600 2600 2.39 BL2600 2600 2.50 HL5200 5200 1.85 BL5200 5200 1.81 HL5400 5400 2.07 BL5400 5400 2.00 HL5600 5600 2.19 BL5600 5600 2.11 HL5800 5800 2.01 | BL850 | 835 | 1.80 | | HL1800 1800 2.09 BL1800 1800 2.15 HL1900 1900 2.14 BL1900 1900 2.27 HL2000 2000 2.31 BL2000 2000 2.34 HL2300 2300 2.46 BL2300 2300 2.51 HL2450 2450 2.60 BL2450 2450 2.70 HL2600 2600 2.39 BL2600 2600 2.50 HL5200 5200 1.85 BL5200 5200 1.81 HL5400 5400 2.07 BL5400 5400 2.00 HL5600 5600 2.19 BL5600 5600 2.11 HL5800 5800 2.01 | HL900 | 900 | 1.87 | | BL1800 1800 2.15 HL1900 1900 2.14 BL1900 1900 2.27 HL2000 2000 2.31 BL2000 2000 2.34 HL2300 2300 2.46 BL2300 2300 2.51 HL2450 2450 2.60 BL2450 2450 2.70 HL2600 2600 2.39 BL2600 2600 2.50 HL5200 5200 1.85 BL5200 5200 1.81 HL5400 5400 2.07 BL5400 5400 2.00 HL5600 5600 2.19 BL5600 5600 2.11 HL5800 5800 2.01 | BL900 | 900 | 1.85 | | HL1900 1900 2.14 BL1900 1900 2.27 HL2000 2000 2.31 BL2000 2000 2.34 HL2300 2300 2.46 BL2300 2300 2.51 HL2450 2450 2.60 BL2450 2450 2.70 HL2600 2600 2.39 BL2600 2600 2.50 HL5200 5200 1.85 BL5200 5200 1.81 HL5400 5400 2.07 BL5400 5400 2.00 HL5600 5600 2.19 BL5600 5600 2.11 HL5800 5800 2.01 | HL1800 | 1800 | 2.09 | | BL1900 1900 2.27 HL2000 2000 2.31 BL2000 2000 2.34 HL2300 2300 2.46 BL2300 2300 2.51 HL2450 2450 2.60 BL2450 2450 2.70 HL2600 2600 2.39 BL2600 2600 2.50 HL5200 5200 1.85 BL5200 5200 1.81 HL5400 5400 2.07 BL5400 5400 2.00 HL5600 5600 2.19 BL5600 5600 2.11 HL5800 5800 2.01 | BL1800 | 1800 | 2.15 | | HL2000 2000 2.31 BL2000 2000 2.34 HL2300 2300 2.46 BL2300 2300 2.51 HL2450 2450 2.60 BL2450 2450 2.70 HL2600 2600 2.39 BL2600 2600 2.50 HL5200 5200 1.85 BL5200 5200 1.81 HL5400 5400 2.07 BL5400 5400 2.00 HL5600 5600 2.19 BL5600 5600 2.11 HL5800 5800 2.01 | HL1900 | 1900 | 2.14 | | BL2000 2000 2.34 HL2300 2300 2.46 BL2300 2300 2.51 HL2450 2450 2.60 BL2450 2450 2.70 HL2600 2600 2.39 BL2600 2600 2.50 HL5200 5200 1.85 BL5200 5200 1.81 HL5400 5400 2.07 BL5400 5400 2.00 HL5600 5600 2.19 BL5600 5600 2.11 HL5800 5800 2.01 | BL1900 | 1900 | 2.27 | | HL2300 2300 2.46 BL2300 2300 2.51 HL2450 2450 2.60 BL2450 2450 2.70 HL2600 2600 2.39 BL2600 2600 2.50 HL5200 5200 1.85 BL5200 5200 1.81 HL5400 5400 2.07 BL5400 5400 2.00 HL5600 5600 2.19 BL5600 5600 2.11 HL5800 5800 2.01 | HL2000 | 2000 | | | BL2300 2300 2.51 HL2450 2450 2.60 BL2450 2450 2.70 HL2600 2600 2.39 BL2600 2600 2.50 HL5200 5200 1.85 BL5200 5200 1.81 HL5400 5400 2.07 BL5400 5400 2.00 HL5600 5600 2.19 BL5600 5600 2.11 HL5800 5800 2.01 | BL2000 | 2000 | 2.34 | | HL2450 2450 2.60 BL2450 2450 2.70 HL2600 2600 2.39 BL2600 2600 2.50 HL5200 5200 1.85 BL5200 5200 1.81 HL5400 5400 2.07 BL5400 5400 2.00 HL5600 5600 2.19 BL5600 5600 2.11 HL5800 5800 2.01 | HL2300 | 2300 | 2.46 | | BL2450 2450 2.70 HL2600 2600 2.39 BL2600 2600 2.50 HL5200 5200 1.85 BL5200 5200 1.81 HL5400 5400 2.07 BL5400 5400 2.00 HL5600 5600 2.19 BL5600 5600 2.11 HL5800 5800 2.01 | BL2300 | 2300 | 2.51 | | HL2600 2600 2.39 BL2600 2600 2.50 HL5200 5200 1.85 BL5200 5200 1.81 HL5400 5400 2.07 BL5400 5400 2.00 HL5600 5600 2.19 BL5600 5600 2.11 HL5800 5800 2.01 | HL2450 | 2450 | 2.60 | | BL2600 2600 2.50 HL5200 5200 1.85 BL5200 5200 1.81 HL5400 5400 2.07 BL5400 5400 2.00 HL5600 5600 2.19 BL5600 5600 2.11 HL5800 5800 2.01 | BL2450 | 2450 | 2.70 | | HL5200 5200 1.85 BL5200 5200 1.81 HL5400 5400 2.07 BL5400 5400 2.00 HL5600 5600 2.19 BL5600 5600 2.11 HL5800 5800 2.01 | HL2600 | 2600 | | | BL5200 5200 1.81
HL5400 5400 2.07
BL5400 5400 2.00
HL5600 5600 2.19
BL5600 5600 2.11
HL5800 5800 2.01 | BL2600 | 2600 | 2.50 | | HL5400 5400 2.07 BL5400 5400 2.00 HL5600 5600 2.19 BL5600 5600 2.11 HL5800 5800 2.01 | HL5200 | 5200 | 1.85 | | BL5400 5400 2.00
HL5600 5600 2.19
BL5600 5600 2.11
HL5800 5800 2.01 | BL5200 | 5200 | 1.81 | | HL5600 5600 2.19
BL5600 5600 2.11
HL5800 5800 2.01 | HL5400 | 5400 | 2.07 | | BL5600 5600 2.11
HL5800 5800 2.01 | BL5400 | 5400 | 2.00 | | HL5800 5800 2.01 | HL5600 | 5600 | 2.19 | | | BL5600 | 5600 | 2.11 | | P. 5000 | HL5800 | 5800 | 2.01 | | BL5800 5800 1.97 | BL5800 | 5800 | 1.97 | Frequency not cover by COFRAC scope, calibration not accredited LOWER DETECTION LIMIT: 7mW/kg This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Ref: ACR.180.4,22.BES.A ### ISOTROPY ### HL1800 MHz Ref: ACR.180.4,22,BES.A ### LIST OF EQUIPMENT | | Equipment Summary Sheet | | | | |---------------------------------------|-------------------------|----------------------------|--|---| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | CALIPROBE Test
Bench | Version 2 | NA | Validated. No cal
required. | Validated. No cal
required. | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 08/2021 | 08/2024 | | Network Analyzer | Agilent 8753ES | MY40003210 | 10/2019 | 10/2022 | | Network Analyzer –
Calibration kit | HP 85033D | 3423A08186 | 06/2021 | 06/2027 | | Multimeter | Keithley 2000 | 1160271 | 02/2020 | 02/2023 | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 03/2022 | 03/2025 | | Amplifier | MVG | MODU-023-C-0002 | Characterized prior to
test. No cal required. | Characterized prior to test. No cal required. | | Power Meter | NI-USB 5680 | 170100013 | 06/2021 | 06/2024 | | Power Meter | Rohde & Schwarz
NRVD | 832839-056 | 11/2019 | 11/2022 | | Directional Coupler | Krytar 158020 | 131467 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | Waveguide | MVG | SN 32/16 WG4_1 | Validated. No cal
required. | Validated. No cal
required. | | Liquid transition | MVG | SN 32/16
WGLIQ_0G900_1 | Validated. No cal
required. | Validated. No cal
required. | | Waveguide | MVG | SN 32/16 WG6_1 | Validated. No cal
required. | Validated. No cal
required. | | Liquid transition | MVG | SN 32/16
WGLIQ_1G500_1 | Validated. No cal
required. | Validated. No cal
required. | | Waveguide | MVG | SN 32/16 WG8_1 | Validated. No cal
required. | Validated. No cal
required. | | Liquid transition | MVG | SN 32/16
WGLIQ_1G800B_1 | Validated. No cal
required. | Validated. No cal
required. | | Liquid transition | MVG | SN 32/16
WGLIQ_1G800H_1 | Validated. No cal
required. | Validated. No cal
required. | | Waveguide | MVG | SN 32/16 WG10_1 | Validated. No cal
required. | Validated. No cal
required. | | Liquid transition | MVG | SN 32/16
WGLIQ_3G500_1 | Validated. No cal
required. | Validated. No cal
required. | | Waveguide | MVG | SN 32/16 WG12_1 | Validated. No cal
required. | Validated. No cal
required. | Page: 10/11 Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China ### COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.180.4.22.BES.A | Liquid transition | MVG | | | Validated. No cal
required. | |----------------------------------|--------------|----------|---------|--------------------------------| | Temperature / Humidity
Sensor | Testo 184 H1 | 44225320 | 06/2021 | 06/2024 | Page: 11/11 ### 5.2 SID5G-6G Dipole Calibration Ceriticate Report No.: LCSA061223063E ## SAR Reference Waveguide Calibration Report Ref: ACR.273.5.18.SATU.A # SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. 1F., XINGYUAN INDUSTRIAL PARK, TONGDA ROAD, BAO'AN BLVDBAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINAMVG COMOSAR REFERENCE WAVEGUIDE > FREQUENCY: 5000-6000 MHZ SERIAL NO.: SN 49/16 WGA 43 Calibrated at MVG US 2105
Barrett Park Dr. - Kennesaw, GA 30144 Calibration Date: 09/22/2021 ### Summary: This document presents the method and results from an accredited SAR reference waveguide calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China ### SAR REFERENCE WAVEGUIDE CALIBRATION REPORT Ref: ACR.273.5.18.SATU. A | · | Name | Function | Date | Signature | |---------------|---------------|-----------------|------------|--------------| | Prepared by : | Jérôme LUC | Product Manager | 09/28/2021 | Jes | | Checked by: | Jérôme LUC | Product Manager | 09/28/2021 | Jes | | Approved by : | Kim RUTKOWSKI | Quality Manager | 09/28/2021 | them Puthous | | | Customer Name | |----------------|---| | Distribution : | Shenzhen LCS
Compliance Testing
Laboratory Ltd. | | Issue | Date | Mod.fications | |-------|------------|-----------------| | A | 09/28/2021 | Initial release | | 5 | | | | | | | | | | | Page: 2/13 Ref: ACR.273.5.18.SATU. A Report No.: LCSA061223063E ### TABLE OF CONTENTS | Į | Intro | duction4 | | |---|-------|-----------------------------|--| | 2 | Devi | ce Under Test4 | | | 3 | Prod | luct Description4 | | | | 3.1 | General Information | | | 4 | Mea | surement Method4 | | | | 4.1 | Return Loss Requirements | | | | 4.2 | Mechanical Requirements | | | 5 | Mea | surement Uncertainty5 | | | | 5.1 | Return Loss | | | | 5.2 | Dimension Measurement | | | | 5.3 | Validation Measurement | | | 6 | Calil | bration Measurement Results | | | | 6.1 | Return Loss | | | | 6.2 | Mechanical Dimensions | | | 7 | Valid | dation measurement | | | | 7.1 | Head Liquid Measurement | | | | 7.2 | Measurement Result | | | | 7.3 | Body Measurement Result | | | 8 | List | of Equipment13 | | # Ref: ACR, 273, 5, 18, SATU, A #### 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528 and CEI/IEC 62209 standards for reference waveguides used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### 2 DEVICE UNDER TEST | | Device Under Test | |--------------------------------|---| | Device Type | COMOSAR 5000-6000 MHz REFERENCE WAVEGUIDE | | Manufacturer | MVG | | Model | SWG5500 | | Scrial Number | SN 49/16 WGA 43 | | Product Condition (new / used) | Used | A yearly calibration interval is recommended. #### PRODUCT DESCRIPTION 3 #### 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Waveguides are built in accordance to the IEEE 1528 and CEI/IEC 62209 standards. ### MEASUREMENT METHOD The IEEE 1528 and CEI/IEC 62209 standards provide requirements for reference waveguides used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. #### RETURN LOSS REQUIREMENTS 4.1 The waveguide used for SAR system validation measurements and checks must have a return loss of -8 dB or better. The return loss measurement shall be performed with matching layer placed in the open end of the waveguide, with the waveguide and matching layer in direct contact with the phantom shell as outlined in the fore mentioned standards. ### 4.2 MECHANICAL REQUIREMENTS The IEEE 1528 and CEI/IEC 62209 standards specify the mechanical dimensions of the validation waveguide, the specified dimensions are as shown in Section 6.2. Figure 1 shows how the dimensions relate to the physical construction of the waveguide. Page: 4/13 $\label{this document shall not be reproduced, except in full or in part, without the written approval of MVG.$ The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000. China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity Ref: ACR,273,5,18,SATU, A Report No.: LCSA061223063E ### MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k-2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. #### RETURN LOSS 5.1 The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | |----------------|-------------------------------------| | 400-6000MHz | 0.1 dB | ### 5.2 <u>DIMENSION MEASUREMENT</u> The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | |-------------|--------------------------------| | 3 - 300 | 0.05 mm | ### VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | |-------------|----------------------| | 1 g | 20.3 % | | 10 g | 20.1 % | ### CALIBRATION MEASUREMENT RESULTS #### 6.1 RETURN LOSS IN HEAD LIQUID Page: 5/13 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000. China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity Ref: ACR,273,5,18,SATU, A Report No.: LCSA061223063E | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|--------------------------------| | 5200 | -9.15 | -8 | $20.57 \Omega + 11.55 j\Omega$ | | 5400 | -11.21 | -8 | $75.27 \Omega + 4.08 j\Omega$ | | 5600 | -14.50 | -8 | 33.91 Ω - 8.72 jΩ | | 5800 | -12.26 | -8 | $53.07 \Omega + 23.41 j\Omega$ | #### 6.2 RETURN LOSS IN BODY LIQUID | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|--------------------------------| | 5200 | -8.59 | -8 | $19.38 \Omega + 13.50 jΩ$ | | 5400 | -10.58 | -8 | $77.13 \Omega + 1.81 j\Omega$ | | 5600 | -13.39 | -8 | 30.95 Ω - 7.75 jΩ | | 5800 | -11.37 | -8 | $54.79 \Omega + 25.47 j\Omega$ | #### 6.3 MECHANICAL DIMENSIONS | Frequenc | L(| mm) | W (| mm) | L _f (| mm) | $W_{\rm f}$ | mm) | Τ (| mm) | |----------|-----------------|--------------|-----------------|--------------|------------------|--------------|-----------------|--------------|--------------|--------------| | y (MHz) | Require
d | Measure
d | | 5200 | 40.39 =
0.13 | PASS | 20.19 =
0.13 | PASS | 81.03 <u> </u> | PASS | 61.98 =
0.13 | PASS | 5.3* | PASS | | 5800 | 40.39 =
0.13 | PASS | 20.19 =
0.13 | PASS | 81.03 =
0.13 | PASS | 61.98 =
0.13 | PASS | 4.3* | PASS | * The tolerance for the matching layer is included in the return loss measurement. Page: 6/13 $\label{thm:continuous} \emph{This document shall not be reproduced, except in full or in part, without the written approval of MVG.}$ The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity ReF ACR 273 5 18 SATU A Figure 1: Validation Waveguide Dimensions ### VALIDATION MEASUREMENT The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference waveguide meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed with the matching layer placed in the open end of the waveguide, with the waveguide and matching layer in direct contact with the phantom shell. ### 7.1 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative peri | nittivity (ɛ/') | Conductivi | ty (σ) S/m | |------------------|---------------|-----------------|------------|------------| | | required | measured | required | measured | | 5000 | 36.2 ±10 % | | 4.45 ±10 % | | | 5100 | 36.1 ±10 % | | 4.56 ±10 % | | | 5200 | 36.0 ±10 % | PASS | 4.66 ±10 % | PASS | | 5300 | 35.9 ±10 % | | 4.76 ±10 % | | | 5400 | 35.8 ±10 % | PASS | 4.86 ±10 % | PASS | | 5500 | 35.6 ±10 % | | 4.97 ±10 % | | | 5600 | 35.5 ±10 % | PASS | 5.07 ±10 % | PASS | | 5700 | 35.4 ±10 % | | 5.17 ±10 % | | | 5800 | 35.3 ±10 % | PASS | 5.27 ±10 % | PASS | | 5900 | 35.2 ±10 % | | 5.38 ±10 % | | | 6000 | 35.1 ±10 % | | 5.48 ±10 % | | ### 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID At those frequencies, the target SAR value can not be generic. Hereunder is the target SAR value defined by MVG, within the uncertainty for the system validation. All SAR values are normalized to 1 W net power. In bracket, the measured SAR is given with the used input power. Page: 7/13 Liquid Temperature Lab Temperature Lab Humidity ### SAR REFERENCE WAVEGUIDE CALIBRATION REPORT Ref: ACR.273.5.18.SATU.A. | Software | OPENSAR V4 | |--
--| | Phantom | SN 20/09 SAM71 | | Probe | SN 18/11 EPG122 | | Liquid | Head Liquid Values 5200 MHz: eps': 35.64 sigma: 4.67
Head Liquid Values 5400 MHz: eps': 36.44 sigma: 4.87
Head Liquid Values 5600 MHz: eps': 36.66 sigma: 5.17
Head Liquid Values 5800 MHz: eps': 35.31 sigma: 5.31 | | Distance between dipole waveguide and liquid | 0 mm | | Area sean resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=4mm/dy=4m/dz=2mm | | Frequency | 5200 MHz
5400 MHz
5600 MHz
5800 MHz | | Input power | 20 dBm | | | | 21 °C 21 °C 45 % | Frequency (MHz) | 1 g SAR (W/kg) | | 10 g SA | R (W/kg) | |-----------------|----------------|----------------|----------|--------------| | (| required | measured | required | measured | | 5200 | 159.00 | 165.77 (16.58) | 56.90 | 57.20 (5.72) | | 5400 | 166.40 | 173.20 (17.32) | 58.43 | 59.22 (5.92) | | 5600 | 173.80 | 179.61 (17.96) | 59.97 | 60.98 (6.10) | | 5800 | 181.20 | 186.77 (18.68) | 61.50 | 62.84 (6.28) | S ### SAR MEASUREMENT PLOTS @ 5200 MHz Page: 8/13 Ref: ACR.273.5.18.SATU. A ### SAR MEASUREMENT PLOTS @ 5600 MHz ### SAR MEASUREMENT PLOTS @ 5800 MHz Page: 9/13 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Shenzhen LCS Compliance Testing Laboratory Ltd. Ref: ACR.273.5.18.SATU. A ### BODY LIQUID MEASUREMENT | Frequency
MHz | Relative per | Relative permittivity (ϵ_{i} ') | | Conductivity (a) S/m | | |------------------|--------------|---|------------|----------------------|--| | | required | measured | required | measured | | | 5200 | 49.0 ±10 % | PASS | 5.30 ±10 % | PASS | | | 5300 | 48.9 ±10 % | | 5.42 ±10 % | | | | 5400 | 48.7 ±10 % | PASS | 5.53 ±10 % | PASS | | | 5500 | 48.6 ±10 % | | 5.65 ±10 % | | | | 5600 | 48.5 ±10 % | PASS | 5.77 ±10 % | PASS | | | 5800 | 48.2 ±10 % | PASS | 6.00 ±10 % | PASS | | ### 7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID | OPENSAR V4 | |--| | SN 20/09 SAM71 | | SN 18/11 EPG122 | | Body Liquid Values 5200 MHz: eps':48.64 sigma: 5.51
Body Liquid Values 5400 MHz: eps':46.52 sigma: 5.77
Body Liquid Values 5600 MHz: eps':46.79 sigma: 5.77
Body Liquid Values 5800 MHz: eps':47.04 sigma: 6.10 | | 0 mm | | dx=8mm/dy=8mm | | dx=4mm/dy=4m/dz=2mm | | 5200 MHz
5400 MHz
5600 MHz
5800 MHz | | 20 dBm | | 21 °C | | 21 °C | | 45 % | | | | Frequency (MHz) | 1 g SAR (W/kg) | 10 g SAR (W/kg) | | |-----------------|----------------|-----------------|--| | | measured | measured | | | 5200 | 159.09 (15.91) | 56.13 (5.61) | | | 5400 | 164.56 (16.46) | 57.31 (5.73) | | | 5600 | 172.25 (17.23) | 59.72 (5.97) | | | 5800 | 177.77 (17.78) | 61.06 (6.11) | | Page: 10/13 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity Ref: ACR.273.5.18.SATU. A ### BODY SAR MEASUREMENT PLOTS @ 5400 MHz # 测股份 sting Lab ### BODY SAR MEASUREMENT PLOTS @ 5600 MHz Page: 11/13 Ref: ACR,273.5.18.SATU. A BODY SAR MEASUREMENT PLOTS @ 5800 MHz Page: 12/13 Ref: ACR.273.5.18.SATU. A ### LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | | |------------------------------------|-------------------------|--------------------|--|---|--|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current Next Calibration Calibration Date Date | | | | | Flat Phantom | MVG | SN-20/09-SAM71 | Validated. No cal required. | Validated. No cal
required. | | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal required. | Validated. No cal
required. | | | | Network Analyzer | Rhode & Schwarz
ZVA | SN100132 | 06/2021 | 06/2024 | | | | Calipers | Carrera | CALIPER-01 | 01/2020 | 01/2023 | | | | Reference Probe | MVG | EPG122 SN 18/11 | 08/2021 | 08/2022 | | | | Multimeter | Keithley 2000 | 1188656 | 01/2020 | 01/2023 | | | | Signal Generator | Agilent E4438C | MY49070581 | 01/2020 | 01/2023 | | | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | Power Meter | HP E4418A | US38261498 | 11/2020 | 11/2023 | | | | Power Sensor | HP ECP-E26A | US37181460 | 01/2020 | 01/2023 | | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | Temperature and
Humidity Sensor | Control Company | 150798832 | 11/2020 | 11/2023 | | | ### Report No.: LCSA061223063E ### 5.3 SPHOTOGRAPHS OF THE LIQUID Photograph of the depth in the Head Phantom (5200MHz, 16.2cm depth) Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Report No.: LCSA061223063E ### 6. PHOTOGRAPHS OF THE TEST Please refer to separated files for Test Setup Photos of SAR. Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Page **58** of **58** FCC ID: 2ALU5E100CTX Report No.: LCSA061223063E ### 7. EUT PHOTOGRAPHS Please refer to separated files for Test Setup Photos of SAR.The End of Test Report..... Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity