

In accordance with the requirements of FCC 47 CFR Part 2(2.1093), ANSI/IEEE C95.1-1992 and IEEE Std 1528-2013

FCC SAR EVALUATION REPORT

Product Name :	10" Tablet Computer With Rugged Protective Case
Trade Mark :	Commercial Markets
Model Name :	FLEX10A
Serial Model :	n/a
Report No. :	NTEK-2016NT10089250HF
FCC ID :	O86-FLEX10A

Prepared for

MobileDemand LC

1501 Boyson Square Drive, Suite 101, Hiawatha, Iowa, United States

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel.: +86-755-6115 6588 Fax.: +86-755-6115 6599 Website:http:// www.ntek.org.cn

TEST RESULT CERTIFICATION

Applicant's name MobileDemand LC						
Address 1501 Boyson Square Drive, Suite 101, Hiawatha, Iowa, United States						
Manufacturer's Name.	Emdoor Digital Technology Co.,Ltd					
Address	6 thFloor,Jin Fu Lai Mansion,No.49-1 Dabaolu Rd, Baoan28 District,Shenzhen City,518049 China					
Product description						
Product name	10" Tablet Computer With Rugged Protective Case					
Trademark	Commercial Markets					
Model and/or type FLEX10A						
Serial Model	n/a					
	FCC 47 CFR Part 2(2.1093)					
Standards	ANSI/IEEE C95.1-1992					
Stanuarus	 IEEE Std 1528-2013					
	Published RF exposure KDB procedures					

This device described above has been tested by Shenzhen NTEK. In accordance with the measurement methods and procedures specified in IEEE Std 1528-2013 and KDB 865664 D01. Testing has shown that this device is capable of compliance with localized specific absorption rate (SAR) specified in FCC 47 CFR Part 2(2.1093) and ANSI/IEEE C95.1-1992. The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK, this document may be altered or revised by Shenzhen NTEK, personal only, and shall be noted in the revision of the document.

Date of Test

Date (s) of performance of tests...... Oct. 12, 2016 ~ Oct. 12, 2016

Date of Issue Nov. 03, 2016

Test Result Pass

Prepared By (Test Engineer)

: Cheny January (Cheng Jiawen)

Approved By (Lab Manager) : Sam . Chew

(Sam Chen)

**** ** Revision History ** ****

REV.	DESCRIPTION	ISSUED DATE	REMARK
Rev.1.0	Initial Test Report Release	Nov. 03, 2016	Cheng Jiawen

TABLE OF CONTENTS

1.	General Information	6
	1.1. RF exposure limits	6
	1.2. Statement of Compliance	7
	1.3. EUT Description	8
	1.4. Test specification(s)	9
	1.5. Ambient Condition	9
2.	SAR Measurement System	.10
	2.1. SATIMO SAR Measurement Set-up Diagram	.10
	2.2. Robot	.11
	2.3. E-Field Probe	.12
	2.3.1. E-Field Probe Calibration	.12
	2.4. SAM phantoms	.13
	2.4.1. Technical Data	.13
	2.5. Device Holder	.15
	2.6. Test Equipment List	.16
3.	SAR Measurement Procedures	.18
	3.1. Power Reference	.18
	3.2. Area scan & Zoom scan	.18
	3.3. Description of interpolation/extrapolation scheme	.20
	3.4. Volumetric Scan	.20
	3.5. Power Drift	.20
4.	System Verification Procedure	.21
	4.1. Tissue Verification	.21
	4.1.1. Tissue Dielectric Parameter Check Results	.21
	4.2. System Verification Procedure	.22
	4.2.1. System Verification Results	.23
5.	SAR Measurement variability and uncertainty	.24
	5.1. SAR measurement variability	
	5.2. SAR measurement uncertainty	.24
6.	RF Exposure Conditions	.25
	6.1. Tablet host platform exposure conditions	.25
7.	RF Output Power	.26
	7.1. Maximum Tune-up Limit	.26
	7.2. WiFi & BT Output Power	.26
	7.2.1. Output Power Results of WiFi	.27
	7.2.2. Output Power Results of BT	.27
8.	Antenna Location	
9.	Stand-alone SAR test exclusion	
10.	SAR Measurement Results	.31

	10.1. SAR measurement results	31
	10.1.1. SAR measurement Result of WiFi 2.4G	32
	10.1.2. Simultaneous Transmission Analysis	33
11.	Appendix A. Photo documentation	34
12.	Appendix B. System Check Plots	39
13.	Appendix C. Plots of High SAR Measurement	41
14.	Appendix D. Calibration Certificate	43

1. General Information

1.1. RF exposure limits

(A).Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

(B).Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

NOTE: *Whole-Body SAR* is averaged over the entire body, *partial-body SAR* is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. *SAR for hands, wrists, feet and ankles* is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Occupational/Controlled Environments:

Are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

General Population/Uncontrolled Environments:

Are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

NOTE HEAD AND TRUNK LIMIT 1.6 W/kg APPLIED TO THIS EUT

1.2. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for FLEX10A are as follows.

	Max. Reported SAR(W/kg)	
Band	1-g Body	
	(Separation distance of 0mm)	
WiFi 2.4G	1.320	

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR Part 2(2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE Std 1528-2013 & KDB 865664 D01.

1.3. EUT Description

Device Information						
Product Name	10" Tablet Computer With Rugged Protective Case					
Trade Mark	Commercial Markets	Commercial Markets				
Model Name	FLEX10A	FLEX10A				
Serial Model	n/a					
FCC ID						
Device Phase	Identical Prototype	Identical Prototype				
Exposure Category	General population / Uncontrolled environment					
Antenna Type	FPCB Antenna					
Battery Information	DC 3.7V, 5800mAh	DC 3.7V, 5800mAh				
Device Operating Configurations						
Supporting Mode(s)	WiFi 2.4G, BT					
Test Modulation	WiFi(DSSS/OFDM)					
	Band	Tx (MHz)	Rx (MHz)			
Operating Frequency Range(s)	WiFi 2.4G	2412-2462				
	BT 2402-2480					
Test Channels (low-mid-high) 1-6-11(WiFi 2.4G)						

1.4. Test specification(s)

FCC 47 CFR Part 2(2.1093)

ANSI/IEEE C95.1-1992

IEEE Std 1528-2013

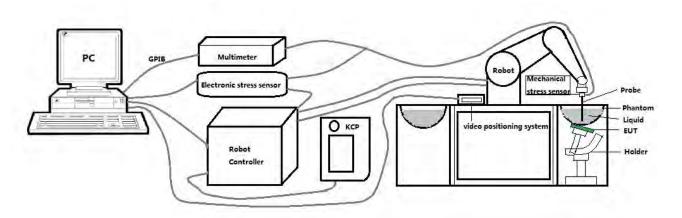
KDB 865664 D01 SAR measurement 100 MHz to 6 GHz

KDB 865664 D02 RF Exposure Reporting

KDB 447498 D01 General RF Exposure Guidance

KDB 248227 D01 802.11 Wi-Fi SAR

KDB 616217 D04 SAR for laptop and tablets


1.5. Ambient Condition

Ambient temperature	20°C – 24°C
Relative Humidity	30% – 70%

2. SAR Measurement System

2.1. SATIMO SAR Measurement Set-up Diagram

These measurements were performed with the automated near-field scanning system OPENSAR from SATIMO. The system is based on a high precision robot (working range: 901 mm), which positions the probes with a positional repeatability of better than ± 0.03 mm. The SAR measurements were conducted with dosimetric probe (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation.

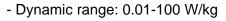
The first step of the field measurement is the evaluation of the voltages induced on the probe by the device under test. Probe diode detectors are nonlinear. Below the diode compression point, the output voltage is proportional to the square of the applied E-field; above the diode compression point, it is linear to the applied E-field. The compression point depends on the diode, and a calibration procedure is necessary for each sensor of the probe.

The Keithley multimeter reads the voltage of each sensor and send these three values to the PC. The corresponding E field value is calculated using the probe calibration factors, which are stored in the working directory. This evaluation includes linearization of the diode characteristics. The field calculation is done separately for each sensor. Each component of the E field is displayed on the "Dipole Area Scan Interface" and the total E field is displayed on the "3D Interface"

NTEK

2.2. Robot

The SATIMO SAR system uses the high precision robots from KUKA. For the 6-axis controller system, the robot controller version (KUKA) from KUKA is used. The KUKA robot series have many features that are important for our application:


- High precision (repeatability ±0.03 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)

2.3. E-Field Probe

This E-field detection probe is composed of three orthogonal dipoles linked to special Schottky diodes with low detection thresholds. The probe allows the measurement of electric fields in liquids such as the one defined in the IEEE and CENELEC standards.

For the measurements the Specific Dosimetric E-Field Probe SN 14/16 EPGO 306 with following specifications is used

- Tip Diameter : 2.5 mm
- Distance between probe tip and sensor center: 1 mm

- Distance between sensor center and the inner phantom surface: 4 mm (repeatability better than ±1 mm).

- Probe linearity: ±0.07 dB
- Axial isotropy: <0.25 dB
- Hemispherical Isotropy: <0.50 dB
- Calibration range: 450MHz to 6000MHz for head & body simulating liquid.
- Lower detection limit: 9mW/kg

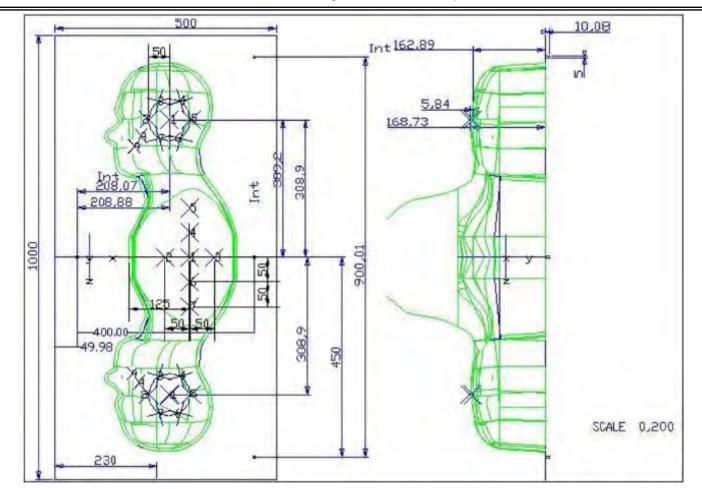
Angle between probe axis (evaluation axis) and surface normal line: less than 30°.

2.3.1. E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than $\pm 10\%$. The spherical isotropy shall be evaluated and within ± 0.25 dB. The sensitivity parameters (Norm X, Norm Y, and Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe are tested. The calibration data can be referred to appendix D of this report.

2.4. SAM phantoms

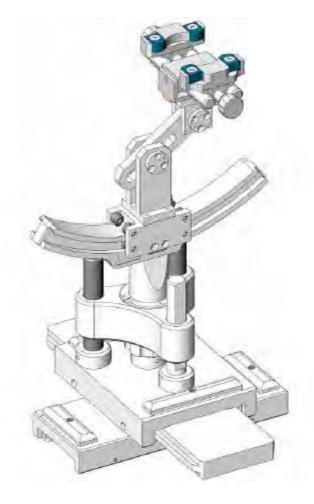
Photo of SAM phantom SN 16/15 SAM119



The SAM phantom is used to measure the SAR relative to people exposed to electro-magnetic field radiated by mobile phones.

2.4.1. Technical Data

Serial Number	Shell thickness	Filling volume	Dimensions	Positionner Material	Permittivity	Loss Tangent
SN 16/15 SAM119	2 mm ±0.2 mm	27 liters	Length:1000mm Width:500mm Height:200mm	Gelcoat with fiberglass	3.4	0.02


Serial Number	Left Head		Right Head		Flat Part	
	2	2.02	2	2.08	1	2.09
	3	2.05	3	2.06	2	2.06
	4	2.07	4	2.07	3	2.08
SN 16/15 SAM119	5	2.08	5	2.08	4	2.10
	6	2.05	6	2.07	5	2.10
	7	2.05	7	2.05	6	2.07
	8	2.07	8	2.06	7	2.07
	9	2.08	9	2.06	-	-

The test, based on ultrasonic system, allows measuring the thickness with an accuracy of 10 $\mu m.$

2.5. Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1 degree.

Serial Number	Holder Material	Permittivity	Loss Tangent
SN 16/15 MSH100	Delrin	3.7	0.005

2.6. Test Equipment List

This table gives a complete overview of the SAR measurement equipment.

Devices used during the test described are marked $\begin{tabular}{|c|c|c|c|} \hline \end{tabular}$

Main dial different Type modes Serial Number Last Cal. Due Date MVG E FIELD PROBE SSE2 SN 14/16 EPGO306 Aug. 08, 2016 2016 2017 MVG 450 MHz Dipole SID450 06450-345 2015 2018 MVG 750 MHz Dipole SID750 SN 03/15 DIP Apr. 06, Apr. 05, 06450-345 2015 2018 MVG 835 MHz Dipole SID750 SN 03/15 DIP Apr. 06, Apr. 05, 06935-347 2015 2018 MVG 835 MHz Dipole SID835 SN 03/15 DIP Apr. 06, Apr. 05, 06930-348 2015 2018 MVG 900 MHz Dipole SID900 G0630-349 2015 2018 MVG 1800 MHz Dipole SID1800 SN 03/15 DIP Apr. 06, Apr. 05, 2015 2018 MVG 1900 MHz Dipole SID1900 SID900 1G800-349 2015 2018 MVG 1900 MHz Dipole SID1900 SN 03/15 DIP Apr. 06, Apr. 05, 2015 2018 MVG 2000 MHz Dipole SID2000 SN 03/15 DIP		Manufacturer	Name of	Type/Model	Serial Number	Calib	ration
⊠ MVG E FIELD PROBE SSE2 SN 14/16 EPG0306 2016 2017 □ MVG 450 MHz Dipole SID450 SN 03/15 DIP Apr. 06, Apr. 05, 0G450-345 2015 2018 □ MVG 750 MHz Dipole SID750 SN 03/15 DIP Apr. 06, Apr. 05, 0G750-355 2015 2018 □ MVG 835 MHz Dipole SID750 SN 03/15 DIP Apr. 06, Apr. 05, 0G35-347 2015 2018 □ MVG 900 MHz Dipole SID900 SN 03/15 DIP Apr. 06, Apr. 05, 0G305-347 2015 2018 □ MVG 900 MHz Dipole SID900 SN 03/15 DIP Apr. 06, Apr. 05, 2018 2015 2018 □ MVG 1800 MHz Dipole SID1800 SN 03/15 DIP Apr. 06, Apr. 05, 2018 2015 2018 □ MVG 1900 MHz Dipole SID2000 SN 03/15 DIP Apr. 06, Apr. 05, 2015 2018 □ MVG 2000 MHz Dipole SID2000 SN 03/15 DIP Apr. 06, Apr. 05, 2018 2015 2018 <		Manufacturer	Equipment	i ype/wodei	Senar Number	Last Cal.	Due Date
Image: constraint of the second se		MVG		88E2		Aug. 08,	Aug. 07,
Image: MVG 450 MHz Dipole SID450 0G450-345 2015 2018 Image: MVG 750 MHz Dipole SID750 SIN 03/15 DIP Apr. 06, Apr. 05, 0G750-355 2015 2018 Image: MVG 835 MHz Dipole SID835 SIN 03/15 DIP Apr. 06, Apr. 05, 0G835-347 2015 2018 Image: MVG 900 MHz Dipole SID800 SIN 03/15 DIP Apr. 06, Apr. 05, 0G805-347 2015 2018 Image: MVG 900 MHz Dipole SID900 SIN 03/15 DIP Apr. 06, Apr. 05, 0G900-348 2015 2018 Image: MVG 1800 MHz Dipole SID1800 SIN 03/15 DIP Apr. 06, Apr. 05, 2015 2018 Image: MVG 1900 MHz Dipole SID1900 SIN 03/15 DIP Apr. 06, Apr. 05, 2015 2018 Image: MVG 2000 MHz Dipole SID2000 SIN 03/15 DIP Apr. 06, Apr. 05, 2015 2018 Image: MVG 2450 MHz Dipole SID2000 SIN 03/15 DIP Apr. 06, Apr. 05, 2015 2018 Image: MVG 2600 MHz Dipole SID2600 SIN 03/15 DIP Apr. 06, Apr. 05, 2015 2018 <td></td> <td></td> <td>E FIELD FROBE</td> <td>33E2</td> <td>SN 14/10 EFG0300</td> <td>2016</td> <td>2017</td>			E FIELD FROBE	33E2	SN 14/10 EFG0300	2016	2017
Image: state of the		MVC	450 MHz Dipolo	SID450	SN 03/15 DIP	Apr. 06,	Apr. 05,
Image: MVG 750 MHz Dipole SID750 OG750-355 2015 2018 Image: MVG 835 MHz Dipole SID835 SN 03/15 DIP Apr. 06, Apr. 05, 2018 Image: MVG 900 MHz Dipole SID900 SN 03/15 DIP Apr. 06, Apr. 05, 2018 Image: MVG 900 MHz Dipole SID900 SN 03/15 DIP Apr. 06, Apr. 05, 2018 Image: MVG 1800 MHz Dipole SID1800 SN 03/15 DIP Apr. 06, Apr. 05, Image: MVG 1900 MHz Dipole SID1900 SN 03/15 DIP Apr. 06, Apr. 05, Image: MVG 1900 MHz Dipole SID1900 SN 03/15 DIP Apr. 06, Apr. 05, Image: MVG 2000 MHz Dipole SID2000 SN 03/15 DIP Apr. 06, Apr. 05, Image: MVG 2450 MHz Dipole SID2600 SN 03/15 DIP Apr. 06, Apr. 05, Image: MVG 2600 MHz Dipole SID2600 SN 03/15 DIP Apr. 06, Apr. 05, Image: MVG 2600 MHz Dipole SWG5500 SN 13/14 WGA 33 <td></td> <td>NV G</td> <td></td> <td>310450</td> <td>0G450-345</td> <td>2015</td> <td>2018</td>		NV G		310450	0G450-345	2015	2018
Image: constraint of the constraint of thetex constraint of the constraint of the constraint of t		MVG	750 MHz Dipolo	SID750	SN 03/15 DIP	Apr. 06,	Apr. 05,
Image: MVG 835 MHz Dipole SID835 0G835-347 2015 2018 Image: MVG 900 MHz Dipole SID900 SN 03/15 DIP Apr. 06, Apr. 05, 03900-348 2015 2018 Image: MVG 1800 MHz Dipole SID1800 SN 03/15 DIP Apr. 06, Apr. 05, 2015 2018 Image: MVG 1800 MHz Dipole SID1800 SN 03/15 DIP Apr. 06, Apr. 05, 2015 2018 Image: MVG 1900 MHz Dipole SID1900 SN 03/15 DIP Apr. 06, Apr. 05, 2015 2018 Image: MVG 2000 MHz Dipole SID2000 SN 03/15 DIP Apr. 06, Apr. 05, 2015 2018 Image: MVG 2000 MHz Dipole SID2000 SN 03/15 DIP Apr. 06, Apr. 05, 2015 2018 Image: MVG 2450 MHz Dipole SID2600 SN 03/15 DIP Apr. 06, Apr. 05, 2015 2018 Image: MVG 2600 MHz Dipole SID2600 SN 03/15 DIP Apr. 06, Apr. 05, 2015 2018 Image: MVG 2600 MHz Dipole SWG5500 SN 13/14 WGA 33 Apr. 06, Apr. 05, 2015 2018 Image: MVG Liquid measurement				30730	0G750-355	2015	2018
Image: constraint of the second sec		MVG	835 MHz Dipolo	SID835	SN 03/15 DIP	Apr. 06,	Apr. 05,
Image: MVG 900 MHz Dipole SID900 0G900-348 2015 2018 Image: MVG 1800 MHz Dipole SID1800 SN 03/15 DIP Apr. 06, Apr. 05, 2015 2018 Image: MVG 1900 MHz Dipole SID1900 SN 03/15 DIP Apr. 06, Apr. 05, 2015 2018 Image: MVG 1900 MHz Dipole SID1900 SN 03/15 DIP Apr. 06, Apr. 05, 2015 2018 Image: MVG 2000 MHz Dipole SID2000 SN 03/15 DIP Apr. 06, Apr. 05, 2G000-351 2015 2018 Image: MVG 2450 MHz Dipole SID2450 SN 03/15 DIP Apr. 06, Apr. 05, 2G450-352 2015 2018 Image: MVG 2600 MHz Dipole SID2600 SN 03/15 DIP Apr. 06, Apr. 05, 2G450-352 2015 2018 Image: MVG 2600 MHz Dipole SID2600 SN 03/15 DIP Apr. 06, Apr. 05, 2015 2018 Image: MVG 2600 MHz Dipole SWG5500 SN 13/14 WGA 33 Apr. 06, Apr. 05, 2015 2018 Image: MVG Liquid SCLMP SN 21/15 OCPG 72 NCR NCR Image: MVG				310033	0G835-347	2015	2018
Image: constraint of the second sec		MVG	900 MHz Dipolo	SID000	SN 03/15 DIP	Apr. 06,	Apr. 05,
MVG 1800 MHz Dipole SID1800 1G800-349 2015 2018 MVG 1900 MHz Dipole SID1900 SN 03/15 DIP Apr. 06, Apr. 05, 2015 2018 MVG 2000 MHz Dipole SID2000 SN 03/15 DIP Apr. 06, Apr. 05, 2015 2018 MVG 2000 MHz Dipole SID2000 SN 03/15 DIP Apr. 06, Apr. 05, 2015 2018 MVG 2450 MHz Dipole SID2450 SN 03/15 DIP Apr. 06, Apr. 05, 2015 2018 MVG 2450 MHz Dipole SID2450 SN 03/15 DIP Apr. 06, Apr. 05, 2015 2018 MVG 2600 MHz Dipole SID2600 SN 03/15 DIP Apr. 06, Apr. 05, 2015 2018 MVG 2600 MHz Dipole SID2600 SN 03/15 DIP Apr. 06, Apr. 05, 2015 2018 MVG 2600 MHz Dipole SWG5500 SN 13/14 WGA 33 Apr. 06, Apr. 05, 2015 2018 MVG Liquid measurement Kit SCLMP SN 21/15 OCPG 72 NCR NCR MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR				310900	0G900-348	2015	2018
Image: book of the sector of the se		MVG		SID1800	SN 03/15 DIP	Apr. 06,	Apr. 05,
Image: MVG 1900 MHz Dipole SID1900 1G900-350 2015 2018 Image: MVG 2000 MHz Dipole SID2000 SN 03/15 DIP Apr. 06, Apr. 05, 2G000-351 2015 2018 Image: MVG 2450 MHz Dipole SID2450 SN 03/15 DIP Apr. 06, Apr. 05, 2G450-352 2015 2018 Image: MVG 2600 MHz Dipole SID2600 SID2600 SN 03/15 DIP Apr. 06, Apr. 05, 2G450-352 2015 2018 Image: MVG 2600 MHz Dipole SID2600 SIN 03/15 DIP Apr. 06, Apr. 05, 2G600-356 2015 2018 Image: MVG 2600 MHz Dipole SWG5500 SN 13/14 WGA 33 Apr. 06, Apr. 05, 2015 2018 Image: MVG Liquid measurement Kit SCLMP SN 21/15 OCPG 72 NCR NCR Image: MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR Image: MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR Image: MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR I		NV G		3101000	1G800-349	2015	2018
Image: Market interview Image: Market interview <thimage: interview<="" market="" th=""> <thimage: in<="" market="" td=""><td></td><td>MVG</td><td></td><td>SID1000</td><td>SN 03/15 DIP</td><td>Apr. 06,</td><td>Apr. 05,</td></thimage:></thimage:>		MVG		SID1000	SN 03/15 DIP	Apr. 06,	Apr. 05,
MVG 2000 MHz Dipole SID2000 2G000-351 2015 2018 MVG 2450 MHz Dipole SID2450 SN 03/15 DIP Apr. 06, Apr. 05, 2018 MVG 2600 MHz Dipole SID2600 SN 03/15 DIP Apr. 06, Apr. 05, 2018 MVG 2600 MHz Dipole SID2600 SN 03/15 DIP Apr. 06, Apr. 05, 2018 MVG 2600 MHz Dipole SID2600 SN 03/15 DIP Apr. 06, Apr. 05, 2015 2018 MVG 5000 MHz Dipole SWG5500 SN 13/14 WGA 33 Apr. 06, Apr. 05, 2015 2018 MVG Liquid SCLMP SN 21/15 OCPG 72 NCR NCR MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR KEITHLEY Millivoltmeter 2000 4072790 NCR NCR R&S Universal radio communication tester CMU200 117858 Aug. 09, Aug. 08, 2017 R&S Wideband radio communication tester CMW500				3101900	1G900-350	2015	2018
Image: Constraint of the second system of the sec		MVC	2000 MHz Dipolo	SID2000	SN 03/15 DIP	Apr. 06,	Apr. 05,
MVG 2450 MHz Dipole SID2450 2G450-352 2015 2018 MVG 2600 MHz Dipole SID2600 SN 03/15 DIP Apr. 06, Apr. 05, 2015 2018 MVG 5000 MHz Dipole SWG5500 SN 13/14 WGA 33 Apr. 06, Apr. 05, 2015 2018 MVG 5000 MHz Dipole SWG5500 SN 13/14 WGA 33 Apr. 06, Apr. 05, 2015 2018 MVG Liquid SCLMP SN 21/15 OCPG 72 NCR NCR MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR KEITHLEY Millivoltmeter 2000 4072790 NCR NCR R&S Universal radio communication tester CMU200 117858 Aug. 09, 2016 2017 R&S Wideband radio communication tester CMW500 148500 Jun. 26, 2016 2017 HP Network Analyzer 8753D 3410J01136 Aug. 09,<		NV G		3102000	2G000-351	2015	2018
MVG2600 MHz DipoleSID2600SN 03/15 DIP 2G600-356Apr. 06, 2015Apr. 05, 2018MVG5000 MHz DipoleSWG5500SN 13/14 WGA 33Apr. 06, 2015Apr. 05, 2018MVG5000 MHz DipoleSWG5500SN 13/14 WGA 33Apr. 06, 2015Apr. 05, 2018MVGLiquid measurement KitSCLMPSN 21/15 OCPG 72NCRNCRMVGPower AmplifierN.AAMPLISAR_28/14_003NCRNCRMVGPower AmplifierN.AAMPLISAR_28/14_003NCRNCRKEITHLEYMillivoltmeter20004072790NCRNCRR&SUniversal radio communication testerCMU200117858Aug. 09, 2016Aug. 08, 2016R&SWideband radio communication testerCMW500148500Jun. 26, 2016Jun. 25, 2017HPNetwork Analyzer8753D3410J01136Aug. 09, Aug. 08,Aug. 08, 2016		MVC	2450 MHz Dipolo	SID2450	SN 03/15 DIP	Apr. 06,	Apr. 05,
Image: MVG2600 MHz DipoleSID26002G600-35620152018Image: MVG5000 MHz DipoleSWG5500SN 13/14 WGA 33Apr. 06, 20152018Image: MVGLiquid measurement KitSCLMPSN 21/15 OCPG 72NCRNCRImage: MVGPower AmplifierN.AAMPLISAR_28/14_003NCRNCRImage: MVGMVGCMU200117858Aug. 09, 20162017Image: MVGR&SImage: MVG00148500Jun. 26, 2017Jun. 25, 2017Image: MVGHPNetwork Analyzer8753D3410J01136Aug. 09, Aug. 08, 2017		NIVG		3102430	2G450-352	2015	2018
Image: constraint of the system2G600-35620152018Image: constraint of the systemSUG5500SN 13/14 WGA 33Apr. 06, 2015Apr. 05, 2018Image: constraint of the systemLiquid measurement KitSCLMPSN 21/15 OCPG 72NCRNCRImage: constraint of the systemMVGPower AmplifierN.AAMPLISAR_28/14_003NCRNCRImage: constraint of the systemMVGPower AmplifierN.AAMPLISAR_28/14_003NCRNCRImage: constraint of the systemMillivoltmeter20004072790NCRNCRImage: constraint of the systemUniversal radio communication testerCMU200117858Aug. 09, 20162017Image: constraint of testerWideband radio communication testerCMW500148500Jun. 26, 20162017Image: constraint of testerHPNetwork Analyzer8753D3410J01136Aug. 09, Aug. 08, 2017		MVC	2600 MHz Dipolo	SID3600	SN 03/15 DIP	Apr. 06,	Apr. 05,
Image: MVG5000 MHz DipoleSWG5500SN 13/14 WGA 3320152018Image: MVGLiquid measurement KitSCLMPSN 21/15 OCPG 72NCRNCRImage: MVGPower AmplifierN.AAMPLISAR_28/14_003NCRNCRImage: MVGPower AmplifierN.AAMPLISAR_28/14_003NCRNCRImage: MVGPower AmplifierN.AAMPLISAR_28/14_003NCRNCRImage: MVGPower AmplifierN.AAMPLISAR_28/14_003NCRNCRImage: MVGMillivoltmeter20004072790NCRNCRImage: MVGMillivoltmeter2000117858Aug. 09, 2016Aug. 08, 2016Image: MVGR&SUniversal radio communication testerCMU200117858Aug. 09, 2016Aug. 08, 2016Image: MVGR&SWideband radio communication testerCMW500148500Jun. 26, 2016Jun. 25, 2016Image: MPNetwork Analyzer8753D3410J01136Aug. 09, Aug. 08,Aug. 08,		NV G		3102000	2G600-356	2015	2018
Image: Market for the second		MVC	5000 MHz Dipolo	SW/G5500	SNI 12/14 M/CA 22	Apr. 06,	Apr. 05,
Image: MVGMVGMVGSCLMPSN 21/15 OCPG 72NCRNCRImage: MVGPower AmplifierN.AAMPLISAR_28/14_003NCRNCRImage: MVGPower AmplifierN.AAMPLISAR_28/14_003NCRNCRImage: MVGMillivoltmeter20004072790NCRNCRImage: MVGMillivoltmeter20004072790NCRNCRImage: MVGUniversal radio communication testerCMU200117858Aug. 09, 2016Aug. 08, 2016Image: MVGR&SWideband radio communication testerCMW500148500Jun. 26, 2016Jun. 25, 2016Image: MVGHPNetwork Analyzer8753D3410J01136Aug. 09, Aug. 08,Aug. 08,				30000	SN 15/14 WGA 55	2015	2018
Image: Service of the service of th		MVG	Liquid	SCIMP			
Image: Normalized filled (2001)Normalized (2001)Normalized (2001)Normalized (2001)Normalized (2001)Image: Normalized filled (2001)Millivoltmeter20004072790NCRNCRImage: Normalized filled (2001)Universal radio communication testerCMU200117858Aug. 09, 2016Aug. 08, 2016Image: Normalized filled (2001)CMU200117858Aug. 09, 2016Aug. 08, 2017Image: Normalized filled (2001)CMU200117858Jun. 26, 2016Jun. 25, 2016Image: Normalized filled (2001)CMW500148500Jun. 26, 2016Jun. 25, 2017Image: Normalized filled (2001)CMW500148500Aug. 09, Aug. 08,Aug. 09, Aug. 08,Image: Normalized filled (2001)HPNetwork Analyzer8753D3410J01136Aug. 09, Aug. 08,			measurement Kit	SCLIVIE	SN 21/15 OCPG 72	NCK	NCK
Image: Constraint of the constra	\square	MVG	Power Amplifier	N.A	AMPLISAR_28/14_003	NCR	NCR
R&S communication tester CMU200 117858 Aug. 09, 2016 Aug. 08, 2017 R&S wideband radio communication tester CMW500 148500 Jun. 26, 2016 Jun. 25, 2017 HP Network Analyzer 8753D 3410J01136 Aug. 09, Aug. 08,	\square	KEITHLEY	Millivoltmeter	2000	4072790	NCR	NCR
Image: Constraint of testerCMU200117858Constraint of testerImage: Constraint of testertester20162017Image: Constraint of testerWideband radio communication testerCMW500148500Jun. 26, 2016Jun. 25, 2016Image: Constraint of testerCMW500148500Aug. 09, Aug. 08,			Universal radio			• • • • •	
testertesterR&SWideband radio communication testerCMW500148500Jun. 26, 2016Jun. 25, 2016HPNetwork Analyzer8753D3410J01136Aug. 09, Aug. 08,		R&S	communication	CMU200	117858	•	•
R&S communication CMW500 148500 Jun. 26, Jun. 25, Jun. 26, Jun. 25, Jun. 26, Jun. 25, Jun. 26, Jun. 26, <th< td=""><td></td><td></td><td>tester</td><td></td><td></td><td>2016</td><td>2017</td></th<>			tester			2016	2017
Image: R&S communication CMW500 148500 2016 2017 tester tester Aug. 09, Aug. 09, Aug. 08,			Wideband radio			lun 26	lun 25
tester Aug. 09, Aug. 08, HP Network Analyzer 8753D 3410J01136 Aug. 09, Aug. 08,		R&S	communication	CMW500	148500		
$ \bigtriangleup $ $\square \square$ Network Analyzer 8753D 3410J01136 \square \square			tester			2010	2017
		НР		07500	2440 104400	Aug. 09,	Aug. 08,
		I IF	Network Analyzer	8753D	3410J01136	2016	2017

Page 17 of 65

Report No.: NTEK-2016NT10089250HF

\boxtimes	Agilent	PSG Analog Signal Generator	E8257D	MY51110112	Aug. 09, 2016	Aug. 08, 2017
\boxtimes	Agilent	Power meter	E4419B	MY45102538	Aug. 09, 2016	Aug. 08, 2017
\boxtimes	Agilent	Power sensor	E9301A	MY41495644	Aug. 09, 2016	Aug. 08, 2017
\boxtimes	Agilent	Power sensor	E9301A	US39212148	Aug. 09, 2016	Aug. 08, 2017
\boxtimes	MCLI/USA	Directional Coupler	CB11-20	0D2L51502	Aug. 09, 2016	Aug. 08, 2017

3. SAR Measurement Procedures

The measurement procedures are as follows:

<Output power measurement>

(a) For WiFi/BT power measurement, use engineering software to configure EUT WiFi/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band.

(b) Connect EUT RF port through RF cable to the power meter, and measure WiFi/BT output power.

<SAR measurement>

(a) Use engineering software to configure EUT WiFi/BT continuously transmission, at maximum RF power, in the highest power channel.

- (b) Place the EUT in the positions as Appendix A demonstrates.
- (c) Set scan area, grid size and other setting on the OPENSAR software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band.

(f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

3.1. Power Reference

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

3.2. Area scan & Zoom scan

The area scan is a 2D scan to find the hot spot location on the DUT. The zoom scan is a 3D scan above the hot spot to calculate the 1g and 10g SAR value.

Measurement of the SAR distribution with a grid of 8 to 16 mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme. Around this point, a cube of 30 * 30 *30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

From the scanned SAR distribution, identify the position of the maximum SAR value, in addition identify the positions of any local maxima with SAR values within 2 dB of the maximum value that will not be within the zoom scan of other peaks; additional peaks shall be measured only when the primary peak is within 2 dB of the SAR compliance limit (e.g., 1 W/kg for 1,6 W/kg 1 g limit, or 1,26 W/kg for 2 W/kg, 10 g limit).

Area scan & Zoom scan scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

			\leq 3 GHz	> 3 GHz	
Maximum distance fro (geometric center of pr			$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
	Maximum probe angle from probe axis to phantom surface normal at the measurement location		$30^{\circ} \pm 1^{\circ}$	$20^{\circ} \pm 1^{\circ}$	
			\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan sp	atial resolu	ition: Δx _{Area} , Δy _{Area}	When the x or y dimension o measurement plane orientation the measurement resolution r x or y dimension of the test d measurement point on the test	on, is smaller than the above, must be \leq the corresponding evice with at least one	
Maximum zoom scan s	patial reso	lution: Δx_{Zoom} , Δy_{Zoom}	$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ $2 - 3 \text{ GHz:} \leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$	
	uniform	grid: $\Delta z_{Zoom}(n)$	\leq 5 mm	$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm	
Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm	
	grid $\Delta z_{Zoom}(n>1)$: between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$		
Minimum zoom scan volume	x, y, z	1	\geq 30 mm	$3 - 4 \text{ GHz}: \ge 28 \text{ mm}$ $4 - 5 \text{ GHz}: \ge 25 \text{ mm}$ $5 - 6 \text{ GHz}: \ge 22 \text{ mm}$	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

3.3. Description of interpolation/extrapolation scheme

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimise measurements errors, but the highest local SAR will occur at the surface of the phantom.

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1 mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

3.4. Volumetric Scan

The volumetric scan consists to a full 3D scan over a specific area. This 3D scan is useful form multi Tx SAR measurement. Indeed, it is possible with OpenSAR to add, point by point, several volumetric scan to calculate the SAR value of the combined measurement as it is define in the standard IEEE1528 and IEC62209.

3.5. Power Drift

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In OpenSAR measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in V/m. If the power drifts more than ±5%, the SAR will be retested.

4. System Verification Procedure

4.1. Tissue Verification

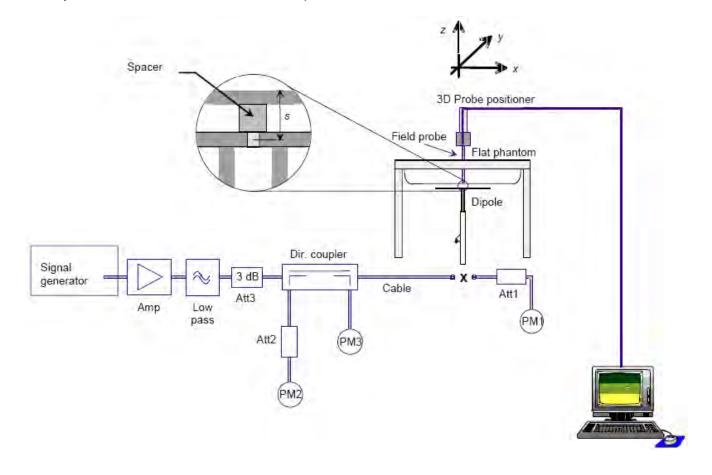
The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients (% of weight)				Head	Tissue			
Frequency Band (MHz)	750	835	900	1800	1900	2000	2450	2600
Water	34.40	34.40	34.40	55.36	55.36	57.87	57.87	57.87
NaCl	0.79	0.79	0.79	0.35	0.35	0.16	0.16	0.16
1,2-Propanediol	64.81	64.81	64.81	0.00	0.00	0.00	0.00	0.00
Triton X-100	0.00	0.00	0.00	30.45	30.45	19.97	19.97	19.97
DGBE	0.00	0.00	0.00	13.84	13.84	22.00	22.00	22.00
Ingredients (% of weight)				Body	Tissue			
Frequency Band (MHz)	750	835	900	1800	1900	2000	2450	2600
Water	50.30	50.30	50.30	69.91	69.91	71.88	71.88	71.88
NaCl	0.60	0.60	0.60	0.13	0.13	0.16	0.16	0.16
1,2-Propanediol	49.10	49.10	49.10	0.00	0.00	0.00	0.00	0.00
Triton X-100	0.00	0.00	0.00	9.99	9.99	19.97	19.97	19.97
DGBE	0.00	0.00	0.00	19.97	19.97	7.99	7.99	7.99

4.1.1. Tissue Dielectric Parameter Check Results

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within $\pm 5\%$ of the target values.

 .	Measured	Target Tissue		Measured Tissue			
Tissue Type	Frequency (MHz)	εr (±5%)	σ (S/m) (±5%)	٤r	σ (S/m)	Liquid Temp.	Test Date
Body		52.70	1.95	54.33	1 00	21.3 °C	Oct 12 2016
2450	2450	(50.07~55.33)	(1.85~2.04)	54.55	1.88	21.3 C	Oct. 12, 2016


NOTE: The dielectric parameters of the tissue-equivalent liquid should be measured under similar ambient conditions and within 2 °C of the conditions expected during the SAR evaluation to satisfy protocol requirements.

4.2. System Verification Procedure

The system verification is performed for verifying the accuracy of the complete measurement system and performance of the software. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 100mW (below 5GHz) or 100mW (above 5GHz). To adjust this power a power meter is used. The power sensor is connected to the cable before the system verification to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the system verification to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

The system verification is shown as below picture:

4.2.1. System Verification Results

Comparing to the original SAR value provided by SATIMO, the verification data should be within its specification of $\pm 10\%$. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance verification can meet the variation criterion and the plots can be referred to Appendix B of this report.

Target SAR (1W)			Measured SAR				
System	(±10%)		(Normalized to 1W)		Liquid	Tak Data	
Verification	Verification 1-g (W/Kg)		1-g (W/Kg)	10-g (W/Kg)	Temp.	Test Date	
2450MHz Body	49.32 (44.39~54.25)	22.89 (20.60~25.17)	47.30	22.36	21.3 °C	Oct. 12, 2016	

5. SAR Measurement variability and uncertainty

5.1. SAR measurement variability

Per KDB865664 D01 SAR measurement 100 MHz to 6 GHz, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

 Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (~ 10% from the 1-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

5.2. SAR measurement uncertainty

Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.

6. **RF Exposure Conditions**

6.1. Tablet host platform exposure conditions

Per KDB616217 D04, When the modular approach is used, transmitters and modules must be initially tested for standalone operations in generic host conditions according to the following minimum test separation distance and antenna installation requirements for incorporation in the tablet platform. The separation distance required for incorporation in qualified hosts is described in KDB 447498; item 5) of section 4.1 and item 1) of section 5.2.2 etc.

- \leq 5 mm between the antenna and user for both back surface and edge exposure conditions
- the antennas used by the host must have been tested for equipment approval or qualify for SAR test exclusion
- the antenna polarization, physical orientation, rotation and installation configurations used by the host must have been tested for compliance or qualify for test exclusion
- when the *SAR Test Exclusion Threshold* in KDB 447498 applies, a *test separation distance* of 5 mm is required to determine test exclusion for the tablet platform

The antennas embedded in tablets are typically ≤ 5 mm from the outer housing. The required antenna to user test separation distance is a "not to exceed test" distance required to apply the modular approach. Instead of the typical zero gap tablet edge test requirement between the edge of a tablet and the user, when an antenna has been tested at ≤ 5 mm according to the modular approach it can be incorporated into tablets with at least twice the tested distance from the outer housing of the tablet edge; otherwise, the tablet edge zero gap test requirement applies. When the dedicated host approach is applied, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom.

NTEK

7. RF Output Power

7.1. Maximum Tune-up Limit

Band	Band Mode		The Tune-up Maximum Power (Customer Declared)(dBm)	Range	Measured Output Maximum Power(dBm)
	802.	.11b	13.5±1	12.5~14.5	13.78
WiFi	802.11g		9.5±1	8.5~10.5	9.78
2.4G	802.11r	n-HT20	9.5±1	8.5~10.5	9.45
	802.11r	n-HT40	9.5±1	8.5~10.5	9.66
	3.	0	-2±1	-3~-1	-1.30
DT		0CH	3±1	2~4	2.37
BT	4.0	19CH	3±1	2~4	3.28
		39CH	4±1	3~5	4.24

7.2. WiFi & BT Output Power

Per KDB248227 D01 v02r02, The default power measurement procedures are:

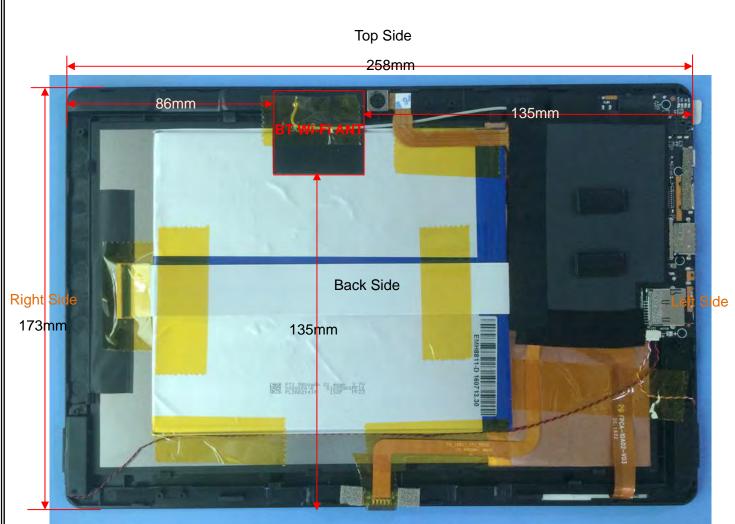
- a) Power must be measured at each transmit antenna port according to the DSSS and OFDM transmission configurations in each standalone and aggregated frequency band.
- b) Power measurement is required for the transmission mode configuration with the highest maximum output power specified for production units.¹¹
 - When the same highest maximum output power specification applies to multiple transmission modes, the largest channel bandwidth configuration with the lowest order modulation and lowest data rate is measured.
 - 2) When the same highest maximum output power is specified for multiple largest channel bandwidth configurations with the same lowest order modulation or lowest order modulation and lowest data rate, power measurement is required for all equivalent 802.11 configurations with the same maximum output power.¹²
- c) For each transmission mode configuration, power must be measured for the highest and lowest channels; and at the mid-band channel(s) when there are at least 3 channels. For configurations with multiple mid-band channels, due to an even number of channels, both channels should be measured.

7.2.1. Output Power Results of WiFi

Mode	Channel	Frequence (MHz)	Tune-up	Output Power (dBm)
	1	2412	14.50	13.75
802.11b	6	2437	14.50	13.64
	11	2462	14.50	13.78
	1	2412	10.50	9.78
802.11g	6	2437	10.50	9.50
	11	2462	10.50	9.38
000.44	1	2412	10.50	9.45
802.11n	6	2437	10.50	9.35
(HT20)	11	2462	10.50	9.28
000.44.5	3	2422	10.50	9.66
802.11n	6	2437	10.50	9.25
(HT40)	9	2452	10.50	9.21

The output power of WiFi is as following:

7.2.2. Output Power Results of BT


The output power of BT is as following:

57		Output Po	ower (dBm)	
BT	Tune-up	1M	2M	3M
0CH	-1.00	-2.96	-2.28	-2.21
39CH	-1.00	-2.79	-1.44	-1.30
78CH	-1.00	-2.18	-1.69	-1.43

	Channel	Tune-up	Output Power (dBm)
	0CH	4.00	2.37
BT(4.0)	19CH	4.00	3.28
	39CH	5.00	4.24

NTEK

8. Antenna Location

Bottom Side

Distance of the Antenna to the EUT surface/edge							
Antennas	Antennas Front Side Back Side Left Side Right Side Top Side Bottom Side						
WLAN & BT 0mm 0mm 135mm 86mm 0mm 135mm							

Positions for SAR tests					
Test separation distances \leq 50 mm					
F B W	Tune-up Maximum power of 802.11				
Exposure Positions	14.5dBm				
	Antenna to user(mm)	5			
Front Side	SAR exclusion threshold	8.85			
	SAR testing required?	YES			
	Antenna to user(mm)	5			
Back Side	SAR exclusion threshold	8.85			
	SAR testing required?	YES			
	Antenna to user(mm)	5			
Top Side	SAR exclusion threshold	8.85			
	SAR testing required?	YES			

NOTE: Refer to section 4.3.1 of KDB 447498 D01.

Positions for SAR tests						
Test separation distances > 50 mm						
	Tune-up Maximur	Tune-up Maximum power of 802.11				
Exposure Positions	14.5dBm	28.2mW				
	Antenna to user(mm)	135				
Left Side	SAR exclusion threshold(mW)	946				
	SAR testing required?	NO				
	Antenna to user(mm)	86				
Right Side	SAR exclusion threshold(mW)	456				
	SAR testing required?	NO				
	Antenna to user(mm)	135				
Bottom Side	SAR exclusion threshold(mW)	946				
	SAR testing required?	NO				

NOTE: Refer to section 4.3.1 of KDB 447498 D01.

9. Stand-alone SAR test exclusion

Refer to KDB 447498 D01, the 1-g SAR and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f_{(GHZ)}}$] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR, where:

- $f_{(GHZ)}$ is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Mode	P _{max}	P _{max}	Distance	f	Calculation	SAR Exclusion	SAR test
Mode	(dBm)	(mW)	(mm)	(GHz)	Result	threshold	exclusion
BT	5	3.16	<5	2.480	1	3.0	Yes

NOTE: Standalone SAR test exclusion for BT

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] * $[\sqrt{f_{(GHZ)}/x}]$ W/kg for test separation distances \leq 50mm, where x = 7.5 for 1-g SAR and x = 18.75 for 10-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Mode	Position	P _{max} (dBm)	P _{max} (mW)	Distance (mm)	f (GHz)	х	Estimated SAR (W/Kg)
BT	Body	5	3.16	<5	2.480	7.5	0.133

NOTE: Estimated SAR calculation for BT

10. SAR Measurement Results

10.1. SAR measurement results

General Notes:

1) Per KDB447498 D01, all measurement SAR results are scaled to the maximum tune-up tolerance limit to demonstrate compliant.

2) Per KDB447498 D01, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is: ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz. When the maximum output power variation across the required test channels is > $\frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used.

3) Per KDB865664 D01, for each frequency band, repeated SAR measurement is required only when the measured SAR is \geq 0.8W/Kg; if the deviation among the repeated measurement is \leq 20%,and the measured SAR <1.45W/Kg, only one repeated measurement is required.

4) Per KDB865664 D02, SAR plot is only required for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination; Plots are also required when the measured SAR is > 1.5 W/kg, or > 7.0 W/kg for occupational exposure. The published RF exposure KDB procedures may require additional plots; for example, to support SAR to peak location separation ratio test exclusion and/or volume scan post-processing(Refer to appendix C for details).

10.1.1. SAR measurement Result of WiFi 2.4G

Test Position	Test	SAR Value		Power	Conducted	Tune-up	Scaled	
of Body with	channel	Test Mode	(W/	/kg)	Drift	power	power	SAR 1g
0mm	/Freq.		1g	10g	(±5%)	(dBm)	(dBm)	(W/Kg)
Front Side	11/2462	802.11b	0.517	0.282	-0.52	13.78	14.50	0.610
Back Side	11/2462	802.11b	0.810	0.409	-0.09	13.78	14.50	0.956
Top Side	11/2462	802.11b	0.152	0.100	-0.84	13.78	14.50	0.179
Back Side	1/2412	802.11b	0.721	0.363	-0.80	13.75	14.50	0.857
Back Side	6/2437	802.11b	1.083	0.534	-0.09	13.64	14.50	1.320
Back Side -	6/2437	802.11b	1.082	0.533	3 -0.17	7 13.64	14.50	1.319
Repeated	0/2437	002.110	1.002	0.335	-0.17	13.04	14.50	1.319

NOTE: Body SAR test results of WiFi 2.4G

10.1.2. Simultaneous Transmission Analysis

WiFi 2.4GHz and BT share the same antenna, and cannot transmit simultaneously.

11. Appendix A. Photo documentation

Table of contents			
Test Facility			
Product Photo			
Test Positions			
Liquid depth			

Test Facility

Measurement System SATIMO

Product Photo

Front View	Back View
Reference Line	n/a
	n/a

Test Positions

lest Positions	
Front Side	Back Side
(Separation distance of 0mm)	(Separation distance of 0mm)
Omm 11mm	Omm
Top Side	n/a
(Separation distance of 0mm)	1 <i>1</i> //a
	n/a

Liquid depth

Body Position with 2450MHz liquid depth (15.2cm)	n/a	
	n/a	

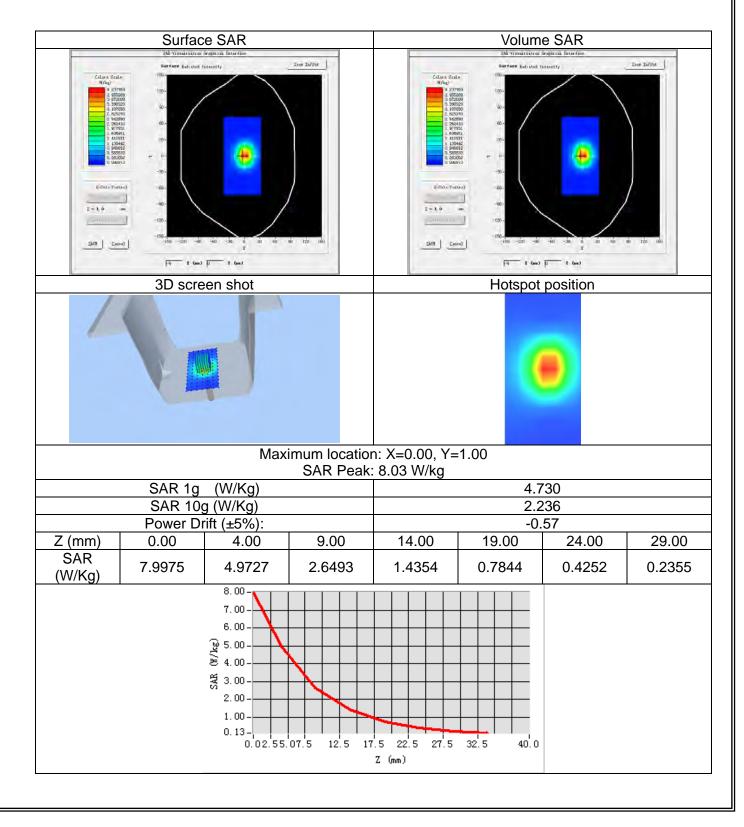

12. Appendix B. System Check Plots

Table of contents

System Performance Check - 2450MHz

System Performance Check - 2450MHz

Date of measurement:	Oct. 12, 2016
Signal:	Communication System: CW; Frequency: 2450MHz; Duty Cycle: 1:1.00
ConvF:	2.38
Liquid Parameters:	Relative permittivity (real part): 54.33; Conductivity (S/m): 1.88;
Device Position:	Dipole
Area Scan:	dx=12mm dy=12mm, h=5.00mm
Zoom Scan:	7x7x7, dx=5mm dy=5mm dz=5mm, h=5.00mm

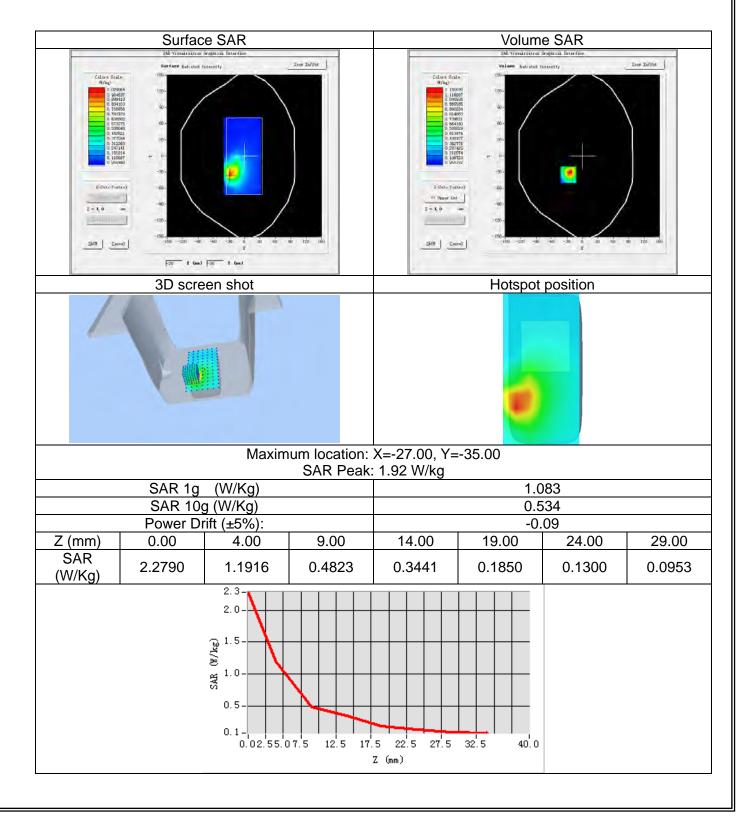

13. Appendix C. Plots of High SAR Measurement

Table of contents

WiFi 2.4G Body

WiFi 2.4G_802.11b_Ch6_Back Side_0mm

Date of measurement:	Oct. 12, 2016
Signal:	Communication System: WiFi 802.11a/b/g/n/ac; Frequency: 2437MHz; Duty Cycle: 1:1.00
ConvF:	2.38
Liquid Parameters:	Relative permittivity (real part): 54.39; Conductivity (S/m): 1.87;
Device Position:	Body
Area Scan:	dx=12mm dy=12mm, h=5.00mm
Zoom Scan:	7x7x7, dx=5mm dy=5mm dz=5mm, h=5.00mm

14. Appendix D. Calibration Certificate

Table of contents

E Field Probe - SN 14/16 EPGO306

2450 MHz Dipole - SN 03/15 DIP 2G450-352

Extended Calibration Certificate

COMOSAR E-Field Probe Calibration Report

Ref : ACR.225.1.16.SATU.A

NTEK TESTING TECHNOLOGY CO., LTD. BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE SERIAL NO.: SN 14/16 EPGO306

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 08/08/2016

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in MVG USA using the CALISAR / CALIBAIR test bench, for use with a COMOSAR system only. All calibration results are traceable to national metrology institutions.

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.225.1.16.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	8/12/2016	Jes
Checked by :	Jérôme LUC	Product Manager	8/12/2016	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	8/12/2016	them putthowshi

	Customer Name
	NTEK TESTING
Distribution :	TECHNOLOGY
	CO., LTD.

Issue	Date	Modifications
A	8/12/2016	Initial release

Page: 2/10

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.225.1.16.SATU.A

TABLE OF CONTENTS

1	Dev	ice Under Test4	
2	Pro	duct Description	
	2.1	General Information	4
3	Mea	asurement Method	
	3.1	Linearity	4
	3.2	Sensitivity	5
	3.3	Lower Detection Limit	5
	3.4	Isotropy	5
	3.5	Boundary Effect	5
4	Mea	surement Uncertainty	
5	Cal	bration Measurement Results6	
	5.1	Sensitivity in air	6
	5.2	Linearity	
	5.3	Sensitivity in liquid	7
	5.4	Isotropy	8
6	List	of Equipment10	

Page: 3/10

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.225.1.16.SATU.A

DEVICE UNDER TEST

Device Under Test				
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE			
Manufacturer	MVG			
Model	SSE2			
Serial Number	SN 14/16 EPGO306			
Product Condition (new / used)	New			
Frequency Range of Probe	0.7 GHz-6GHz			
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.196 MΩ			
	Dipole 2: R2=0.226 MΩ			
	Dipole 3: R3=0.239 MΩ			

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – MVG COMOSAR Dosimetric E field Dipole

Probe Length	330 mm	
Length of Individual Dipoles	2 mm	
Maximum external diameter	8 mm	
Probe Tip External Diameter	2.5 mm	
Distance between dipoles / probe extremity	1 mm	

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/10

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.225.1.16.SATU.A

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°-180°) in 15° increments. At each step the probe is rotated about its axis (0°-360°).

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Reflected power	3.00%	Rectangular		1	1.732%
Liquid conductivity	5.00%	Rectangular		1	2.887%
Liquid permittivity	4.00%	Rectangular		1	2.309%
Field homogeneity	3.00%	Rectangular		1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%

Page: 5/10

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.225.1.16.SATU.A

Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Combined standard uncertainty					5.831%
Expanded uncertainty 95 % confidence level k = 2					12.0%

5 CALIBRATION MEASUREMENT RESULTS

	Calibration Parameters	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

5.1 SENSITIVITY IN AIR

Normx dipole 1 $(\mu V/(V/m)^2)$	Normy dipole $2 (\mu V/(V/m)^2)$	Normz dipole 3 $(\mu V/(V/m)^2)$
0.80	0.75	0.71

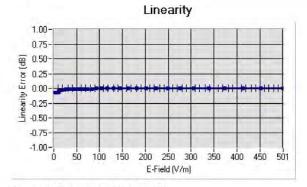
DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
93	91	91

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$

Calibration curves

Page: 6/10



COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.225.1.16.SATU.A

5.2 <u>LINEARITY</u>

Linearity: I+/-1.68% (+/-0.07dB)

5.3 SENSITIVITY IN LIQUID

<u>Liquid</u>	<u>Frequency</u> (MHz +/- 100MHz)	<u>Permittivity</u>	Epsilon (S/m)	<u>ConvF</u>
HL450	450	42.17	0.86	1.76
BL450	450	57.65	0.95	1.81
HL750	750	40.03	0.93	1.53
BL750	750	56.83	1.00	1.59
HL850	835	42.19	0.90	1.75
BL850	835	54.67	1.01	1.82
HL900	900	42.08	1.01	1.65
BL900	900	55.25	1.08	1.70
HL1800	1800	41.68	1.46	1.90
BL1800	1800	53.86	1.46	1.94
HL1900	1900	38.45	1.45	2.13
BL1900	1900	53.32	1.56	2.19
HL2000	2000	38.26	1.38	2.14
BL2000	2000	52.70	1.51	2.22
HL2450	2450	37.50	1.80	2.30
BL2450	2450	53.22	1.89	2.38
HL2600	2600	39.80	1.99	2.31
BL2600	2600	52.52	2.23	2.37
HL5200	5200	35.64	4.67	2.16
BL5200	5200	48.64	5.51	2.21
HL5400	5400	36.44	4.87	2.25
BL5400	5400	46.52	5.77	2.32
HL5600	5600	36.66	5.17	2.27
BL5600	5600	46.79	5.77	2.35
HL5800	5800	35.31	5.31	2.20
BL5800	5800	47.04	6.10	2.26

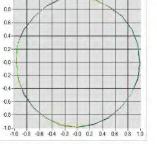
LOWER DETECTION LIMIT: 9mW/kg

Page: 7/10

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.225.1.16.SATU.A

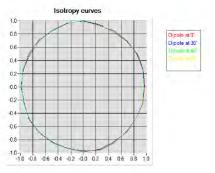
5.4 ISOTROPY


HL900 MHz

Axial isotropy:Hemispherical isotropy:

0.04 dB 0.05 dB

1.0-


Dipole at 0° Dipole at 30°

HL1800 MHz

- Axial isotropy:

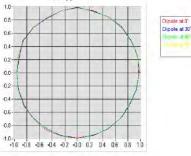
- Hemispherical isotropy:

0.04 dB 0.06 dB

Page: 8/10

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.225.1.16.SATU.A


HL5600 MHz

A 3210	1COTPODT?
AAIdi	isotropy:

- Hemispherical isotropy:

0.0	8 d	B	
Isotro	py cu	rves	

0.05 dB

Page: 9/10

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.225.1.16.SATU.A

6 LIST OF EQUIPMENT

	Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
Flat Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.		
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019		
Reference Probe	M∨G	EP 94 SN 37/08	10/2015	10/2016		
Multimeter	Keithley 2000	1188656	12/2013	12/2016		
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016		
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Power Meter	HP E4418A	US38261498	12/2013	12/2016		
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016		
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.		
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.		
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.		
Temperature / Humidity Sensor	Control Company	150798832	10/2015	10/2017		

Page: 10/10

SAR Reference Dipole Calibration Report

Ref: ACR.139.9.15.SATU.A

NTEK TESTING TECHNOLOGY CO., LTD. BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 2450 MHZ

SERIAL NO.: SN 03/15 DIP 2G450-352

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Ref: ACR.139.9.15.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	5/19/2015	Jez
Checked by :	Jérôme LUC	Product Manager	5/19/2015	Jes
Approved by :	Kim RUTKOWSKI	Quality Manager	5/19/2015	them Muthanest

	Customer Name
Distribution :	NTEK TESTING
	TECHNOLOGY
	CO., LTD.

Issue	Date	Modifications
А	5/19/2015	Initial release

Page: 2/11

Ref: ACR 139.9.15 SATU A

TABLE OF CONTENTS

1	Int	roduction4	
2	De	vice Under Test	
3	Pro	oduct Description	
	3.1	General Information	4
4	Me	asurement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Me	asurement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Ca	libration Measurement Results6	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Va	lidation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	Lis	t of Equipment	

Page: 3/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.139.9.15.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE	
Manufacturer	MVG	
Model	SID2450	
Serial Number	SN 03/15 DIP 2G450-352	
Product Condition (new / used)	New	

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - MVG COMOSAR Validation Dipole

Page: 4/11

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

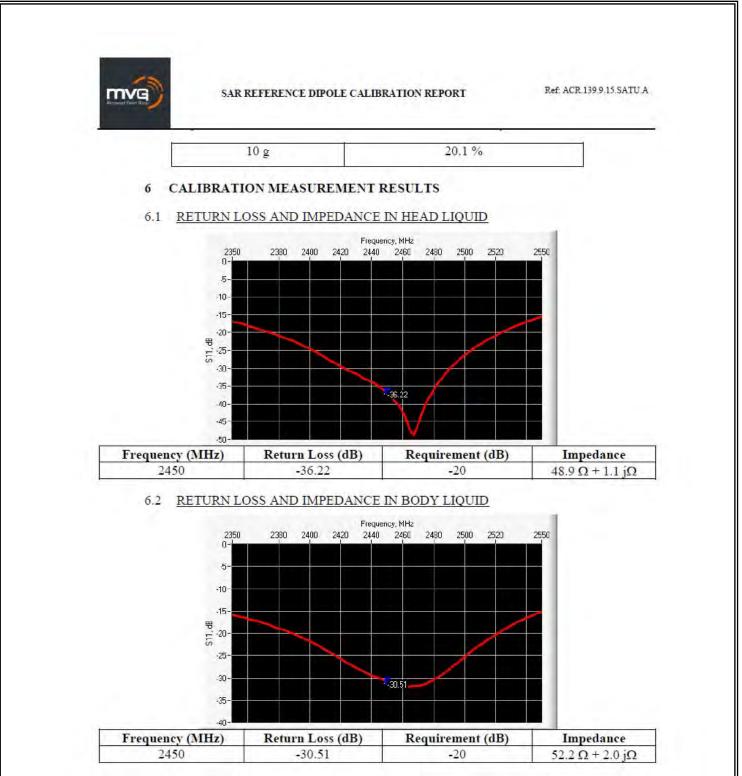
The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Los		
400-6000MHz	0.1 dB		

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)		Expanded Uncertainty on Leng	
	3 - 300	0.05 mm	


5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g.	20.3 %

Page: 5/11

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Ln	nm	hm	im	d r	nm
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	

Page: 6/11

Ref: ACR 139.9 15 SATU A

450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0±1%.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.	P	3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7±1%.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5±1%.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.	PASS	30.4 ±1 %.	PASS	3.6 ±1 %.	PAS
2600	48.5 ±1 %.		28.8 ±1 %.	1.	3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

Frequency MHz	Relative permittivity (ϵ_r)		Conductivity (σ) S/m	
	required	measured	required	measured
300	45.3 ±5 %	1000	0.87 ±5 %	1.00
450	43.5 ±5 %		0.87 ±5 %	j
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %	1	0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %	1	1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	

7.1 HEAD LIQUID MEASUREMENT

Page: 7/11

Ref: ACR.139.9.15.SATU.A

	1.40 ±5 %		40.0 ±5 %	1800
	1.40 ±5 %		40.0 ±5 %	1900
12	1.40 ±5 %		40.0 ±5 %	1950
	1.40 ±5 %		40.0 ±5 %	2000
	1.49 ±5 %		39.8±5%	2100
	1.67 ±5 %		39.5 ±5 %	2300
PAS	1.80 ±5 %	PASS	39.2 ±5 %	2450
i	1.96 ±5 %		39.0±5%	2600
1	2.40 ±5 %		38.5 ±5 %	3000
	2.91 ±5 %		37.9 ±5 %	3500

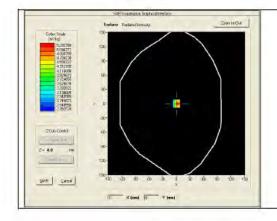
7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

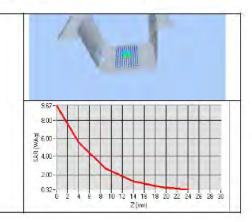
The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4		
Phantom	SN 20/09 SAM71		
Probe	SN 18/11 EPG122		
Liquid	Head Liquid Values: eps' : 38.3 sigma : 1.80		
Distance between dipole center and liquid	10.0 mm		
Area scan resolution	dx=8mm/dy=8mm		
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm		
Frequency	2450 MHz		
Input power	20 dBm		
Liquid Temperature	21 °C		
Lab Temperature	21 °C		
Lab Humidity	45 %		

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/W)	
1000	required	measured	required	measured
300	2.85		1.94	Prove in
450	4.58		3.06	1.1.2
750	8.49		5,55	1
835	9.56		6.22	F.
900	10.9	2 mm	6.99	1
1450	29		16	11.
1500	30.5		16.8	
1640	34.2	F	18.4	
1750	36.4		19.3	
1800	38.4		20.1	1.1

Page: 8/11




mvg

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 139.9.15.SATU.A

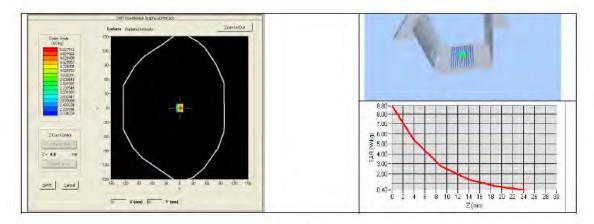
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	1.10.00
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4	52.28 (5.23)	24	23.80 (2.38)
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	1

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	Relative permittivity (ϵ_r)		ity (σ <mark>)</mark> S/m
	required	measured	required	measured
150	61.9 ±5 %	A	0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	11
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %	-	0.96 ±5 %	1
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %	1.2	1.05 ±5 %	1
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	1
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	10
2100	53.2 ±5 %	1	1.62 ±5 %	1
2450	52.7 ±5 %	PASS	1.95 ±5 %	PASS

Page: 9/11

SAR REFERENCE DIPOLE CALIBRATION REPORT


Ref: ACR 139.9.15.SATU.A

2600	52.5 ±5 %	2.16 ±5 %
3000	52.0 ±5 %	2.73 ±5 %
3500	51.3 ±5 %	3.31 ±5 %
5200	49.0 ±10 %	5.30 ±10 %
5300	48.9 ±10 %	5.42 ±10 %
5400	48.7 ±10 %	5.53 ±10 %
5500	48.6 ±10 %	5.65 ±10 %
5600	48.5 ±10 %	5.77 ±10 %
5800	48.2 ±10 %	6.00 ±10 %

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4			
Phantom	SN 20/09 SAM71			
Probe	SN 18/11 EPG122			
Liquid	Body Liquid Values: eps': 52.7 sigma : 1.94			
Distance between dipole center and liquid	10.0 mm			
Area scan resolution	dx=8mm/dy=8mm			
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm			
Frequency	2450 MHz			
Input power	20 dBm			
Liquid Temperature	21 °C			
Lab Temperature	21 °C			
Lab Humidity	45 %			

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)	
	measured	measured	
2450	49.32 (4.93)	22.89 (2.29)	

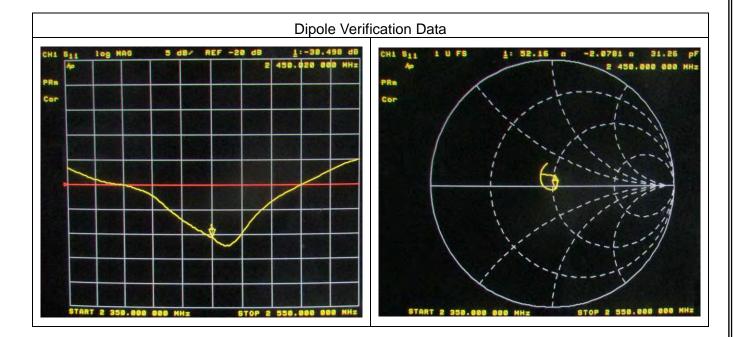
Page: 10/11

Ref: ACR 139.9.15 SATU A

8 LIST OF EQUIPMENT

Equipment	Manufacturer /		Current	Next Calibration Date	
Description	Model	Identification No.	Calibration Date		
SAM Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016	
Calipers	Carrera	CALIPER-01	12/2013	12/2016	
Reference Probe	MVG	EPG122 SN 18/11	10/2014	10/2015	
Multimeter	Keithley 2000	1188656	12/2013	12/2016	
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	12/2013 12/2016		
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.		
Temperature and Humidity Sensor	Control Company	11-661-9	8/2012 8/2015		

Page: 11/11


<Justification of the extended calibration>

If dipoles are verified in return loss(<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

<Body 2450MHz>

Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)	Date of Measurement
-30.51	-	52.2	-	Apr. 06, 2015
-30.498	0.039	52.16	0.04	Apr. 05, 2016

The return loss is <-20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

END