FCC RADIO TEST REPORT

Report No. : FR8D2018-01

FCC RADIO TEST REPORT

FCC ID		NM82Q6U100
Equipment	:	Smart Hub
Brand Name		HTC
Model Name	:	2Q6U100
Applicant		HTC Corporation
		No.88, Sec. 3, Zhongxing Rd., Xindian Dist., New Taipei City 231, Taiwan (R.O.C.)
Manufacturer		HTC Corporation
		No.88, Sec. 3, Zhongxing Rd., Xindian Dist., New Taipei City 231, Taiwan (R.O.C.)
Standard		47 CFR FCC Part 15.255

The product was received on Jan. 11, 2019, and testing was started from Jan. 11, 2019 and completed on Mar. 05, 2019. We, SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013, 47 CFR FCC Part 15.255, Millimeter Wave Test Procedures and shown compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Sam Chen

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

TEL : 886-3-656-9065 FAX : 886-3-656-9085 Report Template No.: CB Ver1.0

Page Number: 1 of 70Issued Date: Mar. 26, 2019Report Version: 03

Table of Contents

Histor	y of this test report	3
Summ	ary of Test Result	4
1	General Description	5
1.1	Information	5
1.2	Additional Information Provided by the Submitter	9
1.3	Accessories	10
1.4	Support Equipment	10
1.5	EUT Operation during Test	10
1.6	Test Setup Diagram	11
1.7	Testing Applied Standards	13
1.8	Testing Location	13
2	Test Configuration of Equipment under Test	14
2.1	Test Channel Frequencies	14
2.2	Conformance Tests and Related Test Frequencies	14
2.3	Far Field Boundary Calculations	15
3	Transmitter Test Result	16
3.1	AC Power Conducted Emissions	16
3.2	Occupied Bandwidth	21
3.3	EIRP Power	32
3.4	Peak Conducted Power	36
3.5	Transmitter Spurious Emissions	39
3.6	Frequency Stability	64
3.7	Operation Restriction and Group Installation	67
4	Test Equipment and Calibration Data	68
5	Measurement Uncertainty	70
Appen	dix A. Test Photos	

Photographs of EUT v01

History of this test report

Report No.	Version	Description	Issued Date
FR8D2018-01	01	Initial issue of report.	Mar. 14, 2019
FR8D2018-01	02	Adding the li-ion polymer battery information on section 1.3.	Mar. 15, 2019
FR8D2018-01	03	Revising the test distance of EIRP power.	Mar. 26, 2019

Page Number: 3 of 70Issued Date: Mar. 26, 2019Report Version: 03

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	FCC 15.207	AC Power Conducted Emissions	PASS	-
3.2	FCC 15.255(e)	Occupied Bandwidth	PASS	-
3.3	FCC 15.255(c)	EIRP Power	PASS	-
3.4	FCC 15.255(c)	Peak Conducted Power	PASS	-
3.5	FCC 15.255(d)	Transmitter Spurious Emissions	PASS	-
3.6	FCC 15.255(f)	Frequency Stability	PASS	-
3.7	FCC 15.255(a), (h)	Operation Restriction and Group Installation	PASS	-

Summary of Test Result

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Sam Chen

Report Producer: Cindy Peng

1 General Description

1.1 Information

1.1.1 The Channel Plan(s)

Frequency Range	57-71 GHz
The Channel Plan(s)	Channel 1: 58.32 GHz
	Channel 2: 60.48 GHz
	Channel 3: 62.64 GHz
	Channel 4: 64.80 GHz

1.1.2 Antenna Information

For Radio 1:

Ant	Brand	Madal Nama			Connector	Gain (dBi)			
Ant. Brand	Model Name	Туре	Connector	Channel 1	Channel 2	Channel 3	Channel 4		
1	Samsung Electro-Mechanics	SWL-QD40	Array	I-PEX	8.68	9.03	10.29	3.81	

For Radio 2:

Ant.	Brand	Model Name	е Туре	Type Connector	Gain (dBi)				
Ant. Dra	Branu			Connector	Channel 1	Channel 2	Channel 3	Channel 4	
1	Samsung Electro-Mechanics	SWL-QD40	Array	I-PEX	5.83	10.25	11.80	10.44	

Note 1: The above information was declared by manufacturer.

Note 2: The EUT has two radios.

Note 3: The EUT supports the radios with TX and RX diversity functions.

Both Radio 1 and Radio 2 support transmit and receive functions, but only one of them will be used at one time.

1.1.3 Power Levels

For Radio 1:

Worst Power Levels for Channel 1					
Applicable power levels		EIRP			
Antenna gain	8.68 dBi				
		Highest setting (P _{high}): (dBm)		
Frequency (GHz)	Modulation	AV Power	Peak Power		
58.32	MCS8	23.79	30.45		

Worst Power Levels for Channel 2					
Applicable power levels	Conducted Z EIRP				
Antenna gain	9.03 dBi				
		Highest setting (P _{high}): (dBm)		
Frequency (GHz)	Modulation	AV Power	Peak Power		
60.48	MCS8	20.01	27.60		

Worst Power Levels for Channel 3					
Applicable power levels	Conducted 🛛 I	EIRP			
Integral antenna gain	10.29 dBi				
	Highest setting (P _{high}): (dBm)				
Frequency (GHz)	Modulation	AV Power	Peak Power		
62.64	MCS8	24.35	31.65		

Worst Power Levels for Channel 4				
Applicable power levels		EIRP		
Integral antenna gain	3.81 dBi			
Eroguopov (CHz)	I	Highest setting (P _{high}): (dBm))	
Frequency (GHz)	Modulation	AV Power	Peak Power	
64.80	MCS8	20.72	28.53	

For Radio 2:

Worst Power Levels for Channel 1				
Applicable power levels	Conducted Z EIRP			
Antenna gain	5.83 dBi			
	ŀ	Highest setting (P _{high}): (dBm)	
Frequency (GHz)	Modulation	AV Power	Peak Power	
58.32	MCS8	17.98	25.73	

Worst Power Levels for Channel 2							
Applicable power levels	Conducted 🛛 E	EIRP					
Antenna gain	10.25 dBi						
	Highest setting (P _{high}): (dBm)						
Frequency (GHz)	Modulation	AV Power	Peak Power				
60.48	MCS8	21.36	29.04				

Worst Power Levels for Channel 3							
Applicable power levels	Conducted Z EIRP						
Integral antenna gain	11.80 dBi						
Eroguopov (CHz)	Highest setting (P _{high}): (dBm)						
Frequency (GHz)	Modulation	AV Power	Peak Power				
62.64	MCS8	22.42	30.23				

Worst Power Levels for Channel 4						
Applicable power levels	Conducted E	IRP				
Integral antenna gain	10.44 dBi					
	Highest setting (P _{high}): (dBm)					
Frequency (GHz)	Modulation	AV Power	Peak Power			
64.80	MCS8	21.00	28.85			

1.1.4 Extreme Operating

The Extreme Operating Temperature Range that Apply to the Equipment							
□ -20 °C to +50 °C							
0 °C to +40 °C							
☑ Other: -10 °C to +55 °C	;						
EUT Power Type	From power	adapter or host system					
Supply Voltage	AC	State AC voltage 120 V					
Supply Voltage	DC	State DC voltage V					

1.1.5 Equipment Use Condition

Equipment Use Condition					
Fixed field disturbance sensors at 61-61.5GHz					
Except fixed field disturbance sensors at 61-61.5GHz					
Except fixed field disturbance sensors					

1.1.6 User Condition

Intended Operation					
🖾 Indoor					
Outdoor (except outdoor fixed Point to Point)					
Outdoor fixed Point to Point					

Note: The above information was declared by manufacturer.

1.2 Additional Information Provided by the Submitter

1.2.1 Modulation

IEEE 802.11ad Modulation Scheme

MCS Index	Modulation	Code rate	Data rate (Mbit/s)			
0	π/-2BPSK	1/2	27.5			
1	π/-2BPSK	1/2	385			
2	π/-2BPSK	1/2	770			
3	π/-2BPSK	5/8	962.5			
4	π/-2BPSK	3/4	1155			
5	π/-2BPSK	13/16	1251.25			
6	π/-2QPSK	1/2	1540			
7	π/-2QPSK	5/8	1925			
8	π/-2QPSK	3/4	2310			
9	π/-2QPSK	13/16	2502.5			
10	π/2 - 16QAM	1/2	3080			
11	π/2 - 16QAM	5/8	3850			
12	π/2-16QAM	3/4	4620			
Channel Bandwidth is 2.16GHz						
Can the transmitt	er operate un-modulated	l: 🛛 Yes	□ No			

1.2.2 Duty Cycle

For Radio 1 and Radio 2:

Duty C	ycle	Duty Cycle Factor		
The transmitter is intended	100%	0		

1.3 Accessories

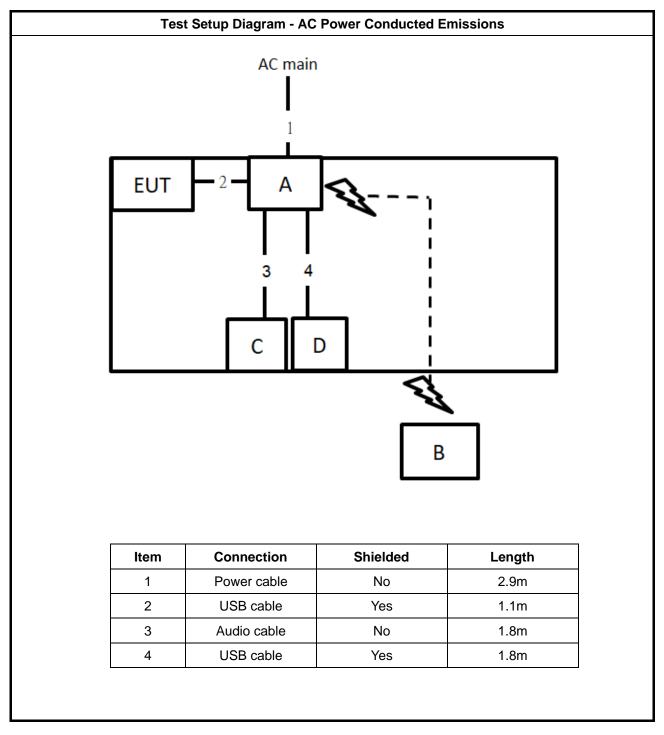
Accessories								
No.	Equipment Name	Brand Name	Model Name	Rating				
1	Adapter	hTC	TC NE30W-US	INPUT: 100-240V, 750mA, 50-60Hz OUTPUT: 12V, 2.5A				
2	Li-ion Polymer Battery	ATL	B2Q6U100	3.85V, 7660mAh, 29.49Wh				
Other								
3	3 USB cable: Shielded, 1.1m							

1.4 Support Equipment

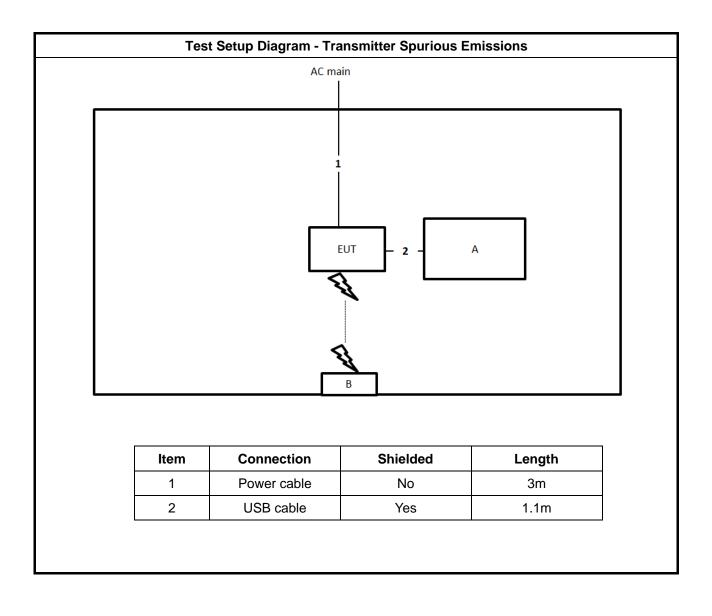
For AC Power Conducted Emissions test:

	Support Equipment								
No.	No. Equipment Brand Name Model Name FCC ID								
А	NB	LENOVO	L430	N/A					
В	AP Router	ASUS	RP-N53	MSQ-RPN53					
С	Earphone	SHYARO CHI	MIC-04	N/A					
D	Mouse	LENOVO	LOC9ULA	N/A					

For other tests:


	Support Equipment								
No.	Equipment	Brand Name	Model Name	FCC ID					
А	Notebook	Lenovo	L412	N/A					
В	AP	Trendnet	TEW-651BR	N/A					

1.5 EUT Operation during Test


During the test, executed the test program to control the EUT continuously transmit RF signal.

1.6 Test Setup Diagram

1.7 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15.255
- ANSI C63.10-2013 Section 9. "Procedures for testing millimeter-wave systems"

1.8 Testing Location

Testing Location									
	HWA YA	ADD	:	No. 52,	No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)				
		TEL	:	886-3-3	27-3456	FAX	:	886-3-327-	-0973
\bowtie	JHUBEI	ADD	:	No.8, La	No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.				
		TEL	:	886-3-6	886-3-656-9065 FAX : 886-3-656-9085				
Test Site No.									
	CO	01-CB				03CH01-	СВ		TH01-CB

Test site Designation No. TW0006 with FCC.

Test site registered number IC 4086B with Industry Canada.

2 Test Configuration of Equipment under Test

2.1 Test Channel Frequencies

Test Channel Frequencies Configuration							
Channel 1	58.32 GHz						
Channel 2	60.48 GHz						
Channel 3	62.64 GHz						
Channel 4	64.80 GHz						

2.2 Conformance Tests and Related Test Frequencies

Test Item	Test Frequencies (GHz)				
AC Power Conducted Emissions	CTX 62.64				
Occupied Bandwidth	58.32, 60.48, 62.64, 64.80				
EIRP Power	58.32, 60.48, 62.64, 64.80				
Peak Conducted Power	58.32, 60.48, 62.64, 64.80				
Transmitter Spurious Emissions (below 1 GHz)	CTX 62.64				
Transmitter Spurious Emissions (1 GHz-40 GHz)	58.32, 60.48, 62.64, 64.80				
Transmitter Spurious Emissions (above 40 GHz)	58.32, 60.48, 62.64, 64.80				
Frequency Stability	Un-Modulation				

The following test modes were performed for all tests:

For AC Power Conducted Emissions test:

The EUT has four channels (Channel 1: 58.32 GHz, Channel 2: 60.48 GHz, Channel 3: 62.64 GHz and Channel 4: 64.80 GHz).

Channel 3: 62.64 GHz generated the worst test result for Transmitter Spurious Emissions (1 GHz-40 GHz) test, thus the measurement for AC Power Conducted Emissions test will follow this same test configuration.

Mode 1. Radio 1 + power by adapter

Mode 2. Radio 2 + power by adapter

Mode 1 has been evaluated to be the worst case among Mode 1~2, thus measurement for Mode 3 will follow this same test mode.

Mode 3. Radio 1 + power by host system

Mode 3 is the worst case, so it was selected to record in this test report.

For Transmitter Spurious Emissions (below 1 GHz) test:

- The EUT has two radios (Radio 1 and Radio 2) and four channels (Channel 1: 58.32 GHz, Channel 2: 60.48 GHz, Channel 3: 62.64 GHz and Channel 4: 64.80 GHz). Radio 1, Channel 3: 62.64 GHz generated the worst test result for Transmitter Spurious Emissions (1 GHz-40 GHz) test, thus the measurement for Transmitter Spurious Emissions (below 1 GHz) test will follow this same test configuration.
- The EUT was performed at X axis, Y axis and Z axis position for Transmitter Spurious Emissions test, and the worst case was found at Y axis for Transmitter Spurious Emissions (1 GHz-40 GHz) test, thus the measurement for Transmitter Spurious Emissions (below 1 GHz) test will follow this same test configuration.

Mode 1. EUT Y axis with Radio 1 + power by adapter

Mode 2. EUT Y axis with Radio 1 + power by host system

Mode 1 is the worst case, so it was selected to record in this test report.

For Transmitter Spurious Emissions (1 GHz-40 GHz) test:

1. The EUT was performed at X axis, Y axis and Z axis position for Transmitter Spurious Emissions test, and the worst case was found at Y axis. So the measurement will follow this same test configuration.

2. The EUT has two radios (Radio 1 and Radio 2), and all test results were recorded in this report.

For other tests: The EUT has two radios (Radio 1 and Radio 2), and all test results were recorded in this report.

2.3 Far Field Boundary Calculations

The far-field boundary is given as:

far field = $(2 * L^2) / \lambda$

where:

L = Largest Antenna Dimension, including the reflector, in meters

 λ = wavelength in meters

For Radio 1 and Radio 2:

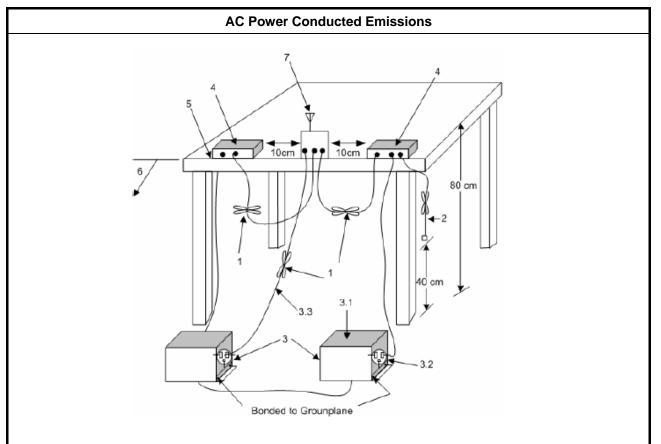
	Far Field (m)									
Frequency (GHz)	L (m)	Lambda (m)	d(Far Field) (m)	d(Far Field) (cm)						
58.32	0.02	0.0051440	0.156	15.55						
60.48	0.02	0.0049603	0.161	16.13						
62.64	0.02	0.0047893	0.167	16.70						
64.80	0.02	0.0046296	0.173	17.28						

3 Transmitter Test Result

3.1 AC Power Conducted Emissions

3.1.1 Limit of AC Power Conducted Emissions

AC Power Conducted Emissions Limit									
Frequency Emission (MHz) Quasi-Peak Average									
0.15-0.5	66 - 56 *	56 - 46 *							
0.5-5	56	46							
5-30	60	50							
Note: * Decreases with the logarithm of the free	quency.								


3.1.2 Measuring Instruments

Refer a measuring instruments list in this test report.

3.1.3 Test Procedures

Method of measurement: Refer as ANSI C63.10-2013, clause 6.2.

3.1.4 Test Setup

1—Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long.

2—The I/O cables that are not connected to an accessory shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

3—EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω loads. LISN may be placed on top of, or immediately beneath, reference ground plane.

3.1—All other equipment powered from additional LISN(s).

3.2—A multiple-outlet strip may be used for multiple power cords of non-EUT equipment.

3.3—LISN at least 80 cm from nearest part of EUT chassis.

4-Non-EUT components of EUT system being tested.

5-Rear of EUT, including peripherals, shall all be aligned and flush with edge of tabletop.

6—Edge of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

7—Antenna can be integral or detachable. If detachable, then the antenna shall be attached for this test.

3.1.5 Test Result of AC Power Conducted Emissions

Test Conditions	see ANSI C63.10, clause 5.11
Test Setup	see ANSI C63.10, clause 6.2.3
NOTE 1: If equipm	ent having different channel plan and nominal channel bandwidth modes (see test report
clause 1.7	1.1), the measurements are uninfluenced by different channel plan and nominal channel
bandwidth	n modes, may not need to be repeated for all modes. If equipment having different
transmit o	operating modes (see test report clause 1.1.2), the measurements are uninfluenced by
different t	ransmit operating modes, may not need to be repeated for all the operating modes.
Similar, if	the equipment supports different modulations and/or data rates, the measurements
described	in ANSI C63.10, clause 5.12 may not need to be repeated for all these modulations and
data rates	s. Simple comparison of engineering test across all operating modes, modulations and
data rates	s may need to be performed to define the worse case combination to be used for the
conforma	nce testing.
NOTE 2: ">20dB" ı	means the tables in this clause should only list values of spurious emissions that exceed
the level of	of 20 dB below the applicable limit, see ANSI C63.4, clause 10.1.8.1.

emp		22	2.7~23	.1°C				Hun	nidity		61	1~62%		
est Engi	neer	Р	eter W	u				Pha	se		Li	ne		
onfigura	tion	С	ТΧ					Test	Mod	е	М	ode 3		
Mode 3	3 MM	M	Aww I										BOM	5/03/2019 Lim.QP Lim.AV AV XV
Туре	•	evel	Limit	Margin	Factor	Condition	Comment		AF		AT			
QP		dBuV) 18.72	(dBuV) 63.63	(dB) -14.91	(dB) 9.99	Line	-	(dBuV) 38.73	(dB) 0.06		(dB) 9.79			
AV/		0.70	52.62	42.04	0.00	1.7		20.72	0.00		0.70			

	(Hz)	(dBuV)	(dBuV)	(dB)	(dB)			(dBuV)	(dB)	(dB)	(dB)		
QP	199.5k	48.72	63.63	-14.91	9.99	Line	-	38.73	0.06	0.14	9.79		
AV	199.5k	39.72	53.63	-13.91	9.99	Line	-	29.73	0.06	0.14	9.79		
QP	258k	47.68	61.49	-13.81	9.99	Line	-	37.69	0.06	0.13	9.80		
AV	258k	37.05	51.49	-14.44	9.99	Line	-	27.06	0.06	0.13	9.80		
QP	496.5k	29.60	56.06	-26.46	10.01	Line	-	19.59	0.06	0.14	9.81		
AV	496.5k	11.96	46.06	-34.10	10.01	Line	-	1.95	0.06	0.14	9.81		
QP	717k	30.47	56.00	-25.53	10.06	Line	-	20.41	0.07	0.17	9.82		
AV	717k	10.54	46.00	-35.46	10.06	Line	-	0.48	0.07	0.17	9.82		
QP	3.098M	47.83	56.00	-8.17	10.10	Line	-	37.73	0.11	0.17	9.82		
AV	3.098M	38.92	46.00	-7.08	10.10	Line	"Worst"	28.82	0.11	0.17	9.82		
QP	3.908M	43.70	56.00	-12.30	10.06	Line	-	33.64	0.12	0.13	9.81		
AV	3.908M	38.02	46.00	-7.98	10.06	Line	-	27.96	0.12	0.13	9.81		

emp		2	2.7~23	.1°C				Hun	nidity		6	62%	
est Eng	gineer	Р	eter W	'u				Pha	se		Ν	Veutral	
Configuration			тх					Test	Mode	9	Ν	/lode 3	
Mode 80-	e 3												05/03/2019
60 - 50 - 40 - 30 - 20 - 10 -	AM	Mm	And	WAAA	I mlanna)					ang pangang terdapat Salap ber	a jogen den sen det I som det det av til til	A Providing A station of the station	Lim.AV AV
0- 150k				1	M					10M		30M	
													~
													d <u></u>
Туре	Freq	Level	Limit	Margin	Factor	Condition	Comment		AF	CL	AT		
	(Hz)	(dBuV)	(dBuV)	(dB)	(dB)			(dBuV)	(dB)	(dB)	(dB)		
QP	(Hz) 204k	(dBuV) 49.52	(dBuV) 63.44	(dB) -13.92	(dB) 9.97	Neutral	-	(dBuV) 39.55	(dB) 0.04	(dB) 0.14	(dB) 9.79		
QP AV	(Hz) 204k 204k	(dBuV) 49.52 41.01	(dBuV) 63.44 53.44	(dB) -13.92 -12.43	(dB) 9.97 9.97	Neutral Neutral	-	(dBuV) 39.55 31.04	(dB) 0.04 0.04	(dB) 0.14 0.14	(dB) 9.79 9.79		
QP AV QP	(Hz) 204k 204k 253.5k	(dBuV) 49.52 41.01 52.16	(dBuV) 63.44 53.44 61.64	(dB) -13.92 -12.43 -9.48	(dB) 9.97 9.97 9.97	Neutral Neutral Neutral	- - "Worst"	(dBuV) 39.55 31.04 42.19	(dB) 0.04 0.04 0.04	(dB) 0.14 0.14 0.13	(dB) 9.79 9.79 9.80		
QP AV QP AV	(Hz) 204k 204k 253.5k 253.5k	(dBuV) 49.52 41.01 52.16 38.64	(dBuV) 63.44 53.44 61.64 51.64	(dB) -13.92 -12.43 -9.48 -13.00	(dB) 9.97 9.97 9.97 9.97 9.97	Neutral Neutral Neutral Neutral	- - "Worst" -	(dBuV) 39.55 31.04 42.19 28.67	(dB) 0.04 0.04 0.04 0.04	(dB) 0.14 0.14 0.13 0.13	(dB) 9.79 9.79 9.80 9.80		
QP AV QP	(Hz) 204k 204k 253.5k	(dBuV) 49.52 41.01 52.16	(dBuV) 63.44 53.44 61.64	(dB) -13.92 -12.43 -9.48	(dB) 9.97 9.97 9.97	Neutral Neutral Neutral	- - "Worst"	(dBuV) 39.55 31.04 42.19	(dB) 0.04 0.04 0.04	(dB) 0.14 0.14 0.13	(dB) 9.79 9.79 9.80		

Neutral

Neutral

Neutral

Neutral

Neutral

Neutral

25.79

17.17

36.03

23.58

36.12

24.88

0.06

0.06

0.09

0.09

0.09

0.09

0.20

0.20

0.17

0.17

0.16

0.16

9.82

9.82

9.82

9.82

9.82

9.82

QP

AV QP

AV QP

AV

1.014M

1.014M

2.967M

2.967M

3.233M

3.233M

35.87

27.25

46.11

33.66

46.19

34.95

56.00

46.00

56.00

46.00

56.00

46.00

-20.13

-18.75

-9.89

-12.34

-9.81

-11.05

10.08

10.08

10.08

10.08

10.07

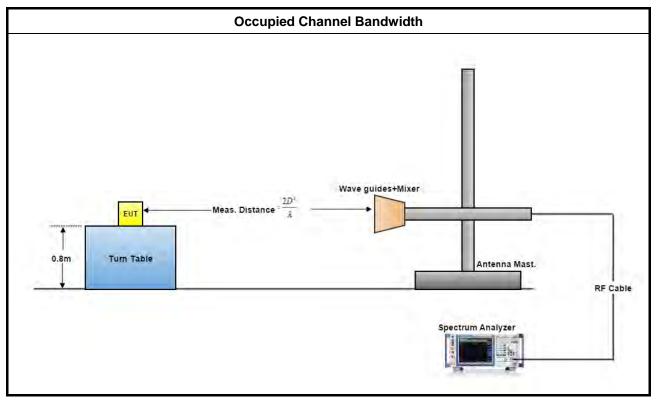
10.07

3.2 Occupied Bandwidth

3.2.1 Limit of Occupied Bandwidth

6dBc Bandwidth (see Note 1)	None							
99% Occupied Bandwidth (see Note 2)	None							
NOTE 1: The 6dBc bandwidth is the frequency bandwidth of the signal power at the -6 dBc points when								
measured with a 100 kHz resolution bandwidth. These measurements shall also be performed at								
normal test conditions.								
NOTE 2: The 99% occupied bandwidth is the frequer	ncy bandwidth of the signal power at the 99% channel							
power of occupied bandwidth when resolution	on bandwidth should be approximately 1 $\%$ to 5 $\%$ of							
the occupied bandwidth (OBW). These me	easurements shall also be performed at normal test							
conditions.								

3.2.2 Measuring Instruments


Refer a measuring instruments list in this test report.

3.2.3 Test Procedures

Method of measurement: Refer as ANSI C63.10-2013, clauses 6.9.2.

3.2.4 Test Setup

Test Result of Occupied Bandwidth 3.2.5

Test Conditions	see ANSI C63.10, clause 5.11
Test Setup	see ANSI C63.10, clause 6.9.2
NOTE: If equipme	ent having different transmit operating modes (see test report clause 1.1.2), the
measurem	ents are uninfluenced by different transmit operating modes, may not need to be
repeated f	for all the operating modes. Similar, if the equipment supports different modulations
and/or dat	a rates, the measurements described in ANSI C63.10, clause 5.11 may not need to be
repeated f	or all these modulations and data rates. Simple comparison of engineering test across
all operation	ng modes, modulations and data rates may need to be performed to define the worse
case com	bination to be used for the conformance testing. Refer as ANSI C63.10, clause 15,
observe a	nd record with plotted graphs or photographs the worst-case (i.e., widest) occupied
bandwidth	produced by these different modulation sources.

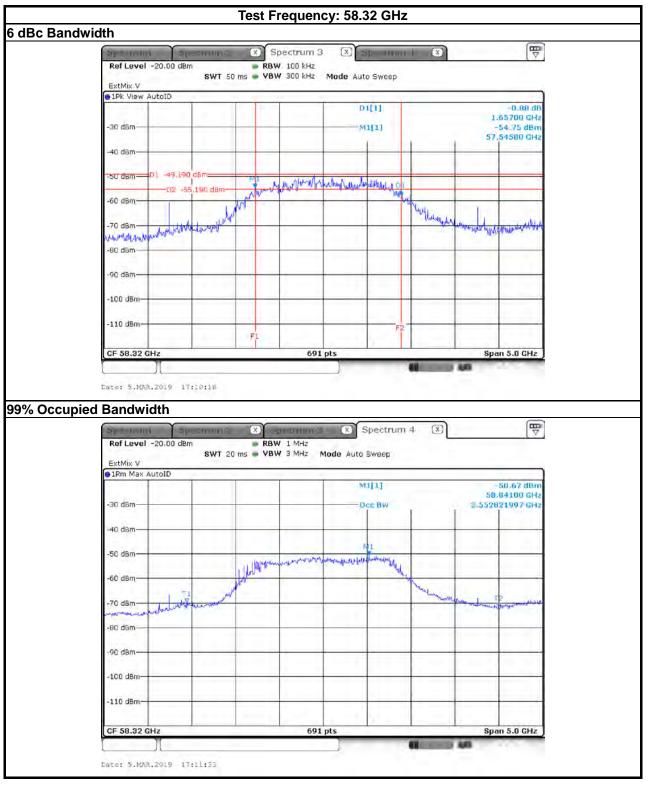
For Radio 1:

Temp	22~24 ℃	Humidity	50~60%					
Test Engineer	Gary Chu							
Test Results								
Test Freq.	6 dBc Bandwidth	99% Occupied	Limit					
(GHz)	(MHz)	Bandwidth (MHz) (MHz)					
58.32	1657.00	3552.82	N/A					
60.48	1657.00	3350.22	N/A					
62.64	1671.50	3350.22	N/A					
64.80	1866.90	3806.08	N/A					

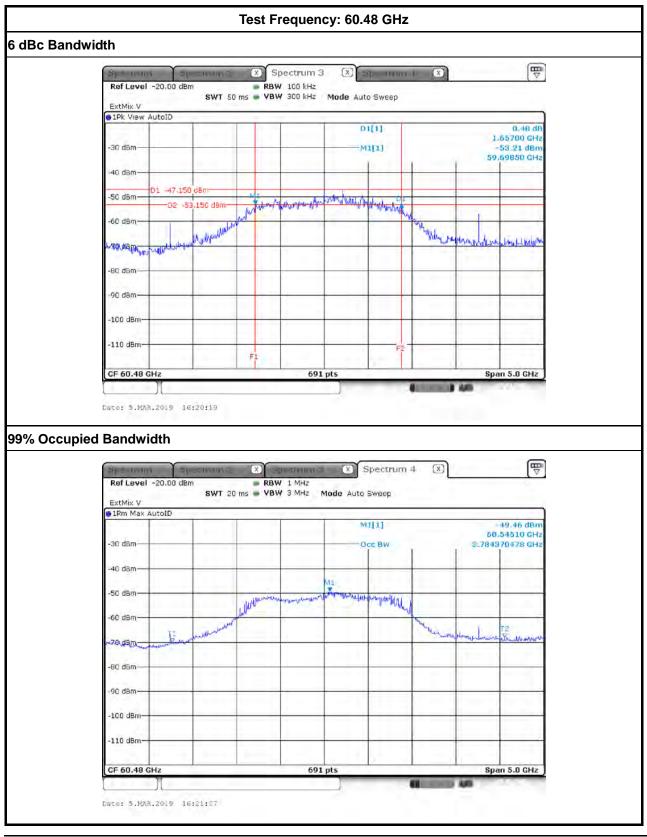
For Radio 2:

Temp	22~24 ℃	Humidity	50~60%							
Test Engineer	Gary Chu	Gary Chu								
Test Results										
Test Freq.	6 dBc Bandwidth	99% Occupied	Limit							
(GHz)	(MHz)	Bandwidth (MHz) (MHz)							
58.32	1439.90	3342.98	N/A							
60.48	1555.70	3863.97	N/A							
62.64	1671.50	3270.62	N/A							
64.80	1809.00	3625.18	N/A							

TEL: 886-3-656-9065 FAX: 886-3-656-9085 Report Template No.: CB Ver1.0 Page Number : 23 of 70 Issued Date


: Mar. 26, 2019

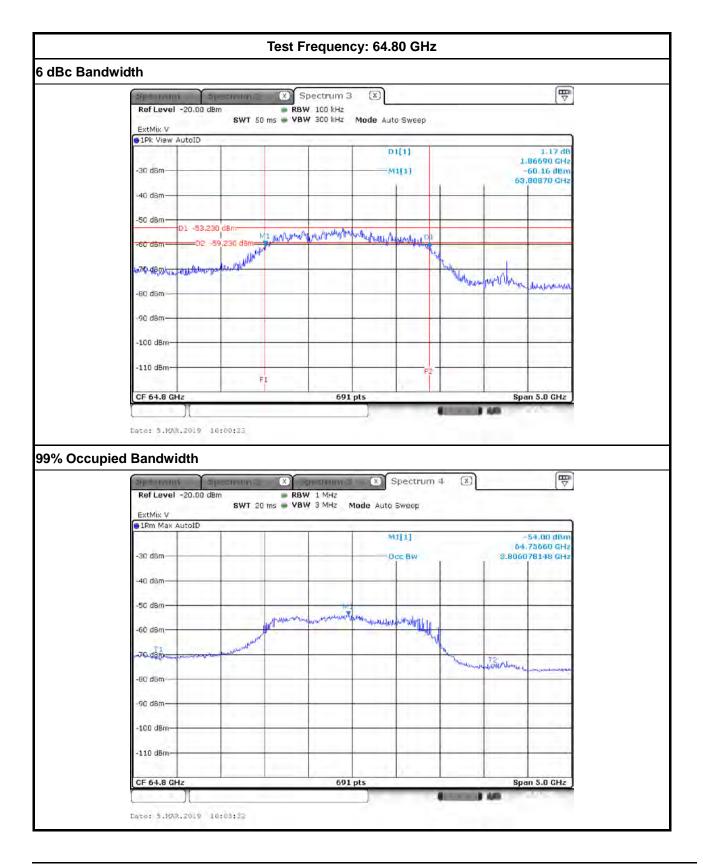
Report Version : 03



3.2.5.1 Bandwidth Plots

For Radio 1:





Page Number : 25 of 70 Issued Date : Mar. 26, 2019 Report Version : 03



For Radio 2:



Page Number : 29 of 70 Issued Date : Mar. 26, 2019 Report Version : 03

3.3 EIRP Power

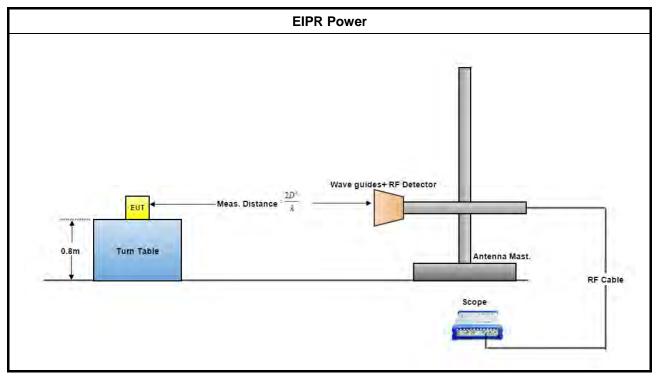
3.3.1 Limit of EIRP Power

EIRP Power Limit							
Use Condition	EIRP Average Power	EIRP Peak Power					
Fixed field disturbance sensors at							
within the frequency band	40 dBm	43 dBm					
61-61.5GHz							
Fixed field disturbance sensors at	10 dDm	40 dDm					
outside of the band 61-61.5GHz	10 dBm	13 dBm					
Except fixed field disturbance	N1/A	40 dDm					
sensors at 61-61.5GHz	N/A	10 dBm					
Except outdoor fixed Point to Point	40 dBm	43 dBm					
Outdoor fixed Point to Point	82 dBm	85 dBm					

Note: For fixed point-to-point transmitters located outdoors, the average power of any emission shall not exceed 82 dBm, and shall be reduced by 2 dB for every dB that the antenna gain is less than 51 dBi. The peak power of any emission shall not exceed 85 dBm, and shall be reduced by 2 dB for every dB that the antenna gain is less than 51 dBi.

NOTE: For the applicable limit, see FCC 15.255 (c)

3.3.2 Measuring Instruments


Refer a measuring instruments list in this test report.

3.3.3 Test Procedures

Method of measurement: Refer as ANSI C63.10-2013 clause 9.3 & 9.5.

3.3.4 Test Setup

3.3.5 Test Result of EIRP Power

Test Conditions	st Conditions see ANSI C63.10, clause 5.11 & clause 9					
Test Setup	see ANSI C63.10, clause 9.11					
NOTE: If the equip	NOTE: If the equipment supports different modulations and/or data rates, the measurements described in					
ANSI C63.1	ANSI C63.10, clause 5.11 may not need to be repeated for all these modulations and data rates.					
Simple comparison of engineering test across all operating modes, modulations and data rates may						
need to be performed to define the worst case combination to be used for the conformance testing.						

3.3.5.1 Test Result of EIRP Power

For Radio 1:

Temp			22~	∙24 °C		Hum	idity	50~6	60%			
Test Eng	ineer		Ga	ry Chu		Test	Distance	0.50	0.50 m			
Test Date	St Date Jan. 11, 2019~Mar. 05, 2019						,					
	Test Results											
Test	Test Rx DSO			Power Measured		E	E _{Meas}		EIRP		EIRP Limit	
Freq.	Gain	(m	V)	(dBm)		(dBuV/m)		(dBm)		(dBm) (note 1)		
(GHz)	(dBi)	Peak	AV	Peak	AV	Peak	AV	Peak	AV	Peak	AV	
58.32	23.6	166.12	62.58	-7.70	-14.36	141.27	134.61	30.45	23.79	43	40	
60.48	23.6	111.87	28.53	-10.87	-18.46	138.42	130.83	27.60	20.01	43	40	
62.64	23.6	164.56	62.03	-7.12	-14.42	142.47	135.17	31.65	24.35	43	40	
64.80	23.6	111.32	28.67	.67 -10.54 -18.35 ⁻			131.54	28.53	20.72	43	40	
The mea	The measured power level is converted to EIRP using the Friis equation:											

For radiated emissions, calculate the field strength (E) in $dB\mu V/meter$.

$$E = 126.8 - 20log(\lambda) + P - G$$

where:

E : is the field strength of the emission at the measurement distance, in $dB\mu V/m$

P : is the power measured at the output of the test antenna, in dBm

 $\pmb{\lambda}$: is the wavelength of the emission under investigation [300/fMHz], in m

G : is the gain of the test antenna, in dBi For radiated emissions, calculate the EIRP (dBm). If the

measurement was performed in the far field, calculate the EIRP.

EIRP = E-meas +20log(d-meas)-104.7

where:

EIRP : is the equivalent isotopically radiated power, in dBm

E-meas. : is the field strength of the emission at the measurement distance, in $dB\mu V/m$

d-meas. : is the measurement distance, in m

NOTE 1: For the applicable limit, see FCC 15.255 (c)

NOTE 2: The comparison method which replaces EUT with a signal generator is used to find the correct conversion factor between "DSO(mV)" & "Power Measured(dBm)".

For Radio 2:

Temp			22~	∙24 °C		Hun	midity 50~60%					
Test Eng	ineer		Gai	ry Chu		Test	est Distance 0.50 m					
Test Date	;		Jan	. 11, 2019~	Mar. 05, 2	019	Э					
	Test Results											
Test	Rx	DS	DSO Power Measure		easured	E _{Meas}		EIRP		EIRP Limit		
Freq.	Gain	(m	V)	(dBm)		(dBı	(dBuV/m)		(dBm)		(dBm) (note 1)	
(GHz)	(dBi)	Peak	AV	Peak	AV	Peak	AV	Peak	AV	Peak	AV	
58.32	23.6	86.78	18.63	-12.42	-20.17	136.55	128.80	25.73	17.98	43	40	
60.48	23.6	130.19	38.86	-9.43	-17.11	139.86	132.18	29.04	21.36	43	40	
62.64	23.6	149.56	46.98	-8.54	-16.35	141.05	133.24	30.23	22.42	43	40	
64.80	23.6	117.47	30.51	-10.22	-18.07	139.67	131.82	28.85	21.00	43	40	

The measured power level is converted to EIRP using the Friis equation:

For radiated emissions, calculate the field strength (E) in $dB\mu V/meter$.

 $\mathsf{E} = 126.8 - 20 \mathsf{log}(\lambda) + \mathsf{P} - \mathsf{G}$

where:

 E : is the field strength of the emission at the measurement distance, in $\mathsf{dB}\mu\mathsf{V}/\mathsf{m}$

P : is the power measured at the output of the test antenna, in dBm

 λ : is the wavelength of the emission under investigation [300/fMHz], in m

G : is the gain of the test antenna, in dBi For radiated emissions, calculate the EIRP (dBm). If the measurement was performed in the far field, calculate the EIRP.

EIRP = E-meas +20log(d-meas)-104.7

where:

EIRP : is the equivalent isotopically radiated power, in dBm

E-meas. : is the field strength of the emission at the measurement distance, in $dB\mu V/m$

d-meas. : is the measurement distance, in m

NOTE 1: For the applicable limit, see FCC 15.255 (c)

NOTE 2: The comparison method which replaces EUT with a signal generator is used to find the correct conversion factor between "DSO(mV)" & "Power Measured(dBm)".

3.4 Peak Conducted Power

3.4.1 Limit of Peak Conducted Power

Peak Conducted Power Limit						
6dBc Bandwidth Peak Conducted Power (note 1)						
> 100MHz 500mW						
≤ 100MHz 500mW x (BW/100) (see note 2)						
NOTE 1: For the applicable limit, see FCC 15.255(c)						
NOTE 2: BW= 6dB bandwidth (measured at RBW 100kHz)						

3.4.2 Measuring Instruments

Refer a measuring instruments list in this test report.

3.4.3 Test Procedures

Method of measurement: Refer as ANSI C63.10-2013, clause 9.5

3.4.4 Test Result of Peak Conducted Power

Test Conditions see ANSI C63.10, clause 5.11 & clause 9

Test Setup see ANSI C63.10, clause 9.11

NOTE: If the equipment supports different modulations and/or data rates, the measurements described in ANSI C63.10, clause 5.11 may not need to be repeated for all these modulations and data rates. Simple comparison of engineering test across all operating modes, modulations and data rates may need to be performed to define the worst case combination to be used for the conformance testing.

3.4.4.1 Peak Conducted Power

For Radio 1:

Temp	22~24 ℃		Humidity	50	~60%						
Test Engineer	Gary Chu		Test Date	Ja	n. 11, 2019~N	1ar. 05, 2019					
Test Results											
Test Freg.	EIRP	Max.	Peak Power	Peak	6dBc BW	Peak Power					
	(dBm)	Ant. Gain	(dBm)	Power	(MHz)	Limit (mW)					
(GHz)	(автт)	(dBi)	(note1)	(mW)	(note2)	(note3)					
58.32	30.45	8.68	21.77	150.42	9 1657.00	500.00					
60.48	27.60	9.03	18.57	71.932	1657.00	500.00					
62.64	31.65	10.29	21.36	136.89	9 1671.50	500.00					
64.80	28.53	3.81	24.72	296.37	9 1866.90	500.00					
NOTE 1: Because EUT used	for the inte	gral antenna	without tempora	ry RF co	nnector provi	ded. Therefore					
peak conducted powe	er is equal	to EIRP powe	er subtract the a	ntenna g	ain.						

NOTE 2: For the 6dBc bandwidth, see test report clause 3.2.5.

NOTE 3: For the applicable limit, see FCC 15.255(c)

NOTE 4: For radiated emission measurements, calculate conducted transmitter output power P(cond)(dBm)

P(cond) = EIRP - G(dBi)

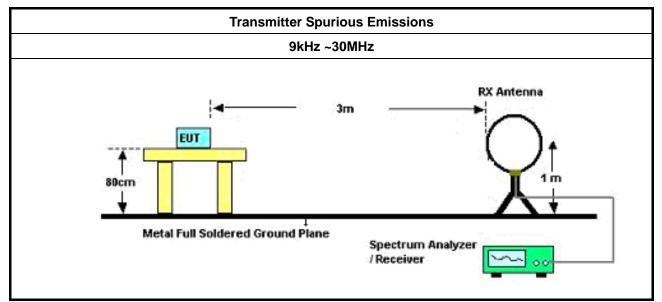
where:

G(dBi) is gain of EUT antenna.

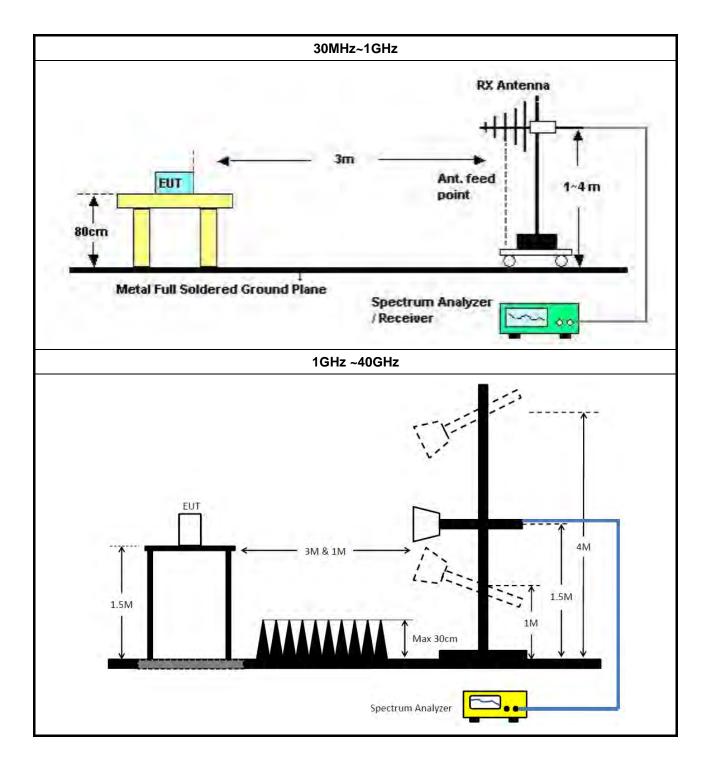
For	Radio	2:
-----	-------	----

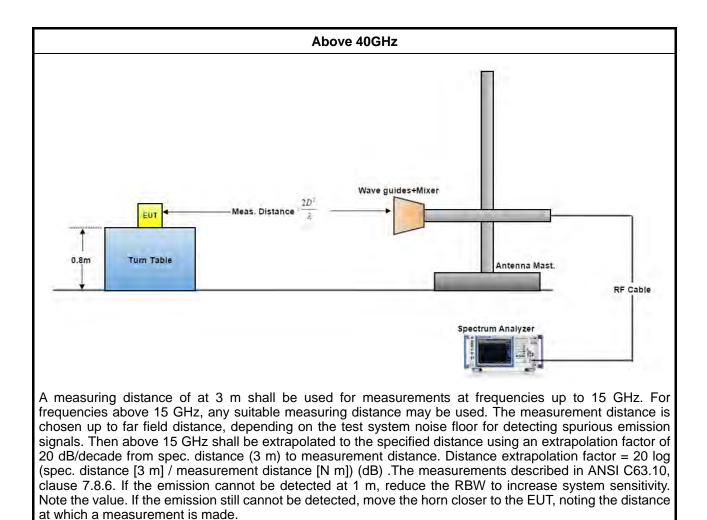
Тетр	22~24 °C		Humidity		50~	50~60%		
Test Engineer	Gary Chu		Test Date		Jan	n. 11, 2019~Mar. 05, 2019		
		Test R	esults					
Test Freq.	EIRP	Max.	Peak Power	Peak Power Pea		6dBc BW	Peak Power	
		Ant. Gain	(dBm)	Ρον	ver	(MHz)	Limit (mW)	
(GHz)	(dBm) (dBi) (note1) (r		(m	W)	(note2)	(note3)		
58.32	25.73	5.83	19.90	97.7	799	1439.90	500.00	
60.48	29.04	10.25	18.79	75.6	670	1555.70	500.00	
62.64	30.23	11.80	18.43	69.727		1671.50	500.00	
64.80	28.85	10.44	18.41	69.318		1809.00	500.00	
NOTE 1: Because EUT used	for the inte	gral antenna	without tempora	ary RF	- con	nector provi	ded. Therefore	
peak conducted powe	er is equal	to EIRP powe	er subtract the ar	ntenna	a gai	n.		
NOTE 2: For the 6dBc bandwi	dth, see te	st report claus	se 3.2.5.					
NOTE 3: For the applicable lin	nit, see FC	C 15.255(c)						
NOTE 4: For radiated emission	n measurei	ments, calcula	ate conducted tra	ansmi	itter o	output power	P(cond)(dBm)	
P(cond) = EIRP - G(cond)	lBi)							
where:								
G(dBi) is gain of EUT	antenna.							

3.5 Transmitter Spurious Emissions


3.5.1 Limit of Transmitter Spurious Emissions

Frequency Range	Limit						
Radiated emissions below 40 GHz	FCC 15.209						
Radiated emissions above 40 GHz – 200GHz	90 pW/cm ² @ 3 m (Equivalent EIRP 102 μ W, -9.91dBm)						
NOTE 1: For the applicable limit, see FCC 15.255(d)							
NOTE 2: Spurious emissions shall not exceed the level of the fundamental emission.							


3.5.2 Test Procedures


Method of measurement: Refer as ANSI C63.10-2013, clause 9.12

3.5.3 Test Setup

3.5.4 Test Result of Transmitter Spurious Emissions

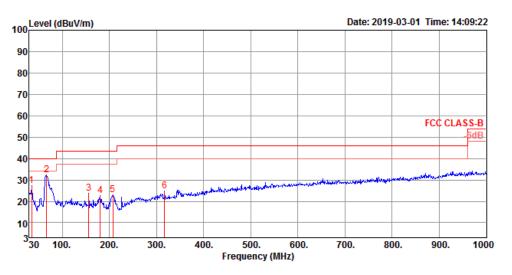
Test Conditions	see ANSI C63.10, clause 5.11 & clause 9							
Test Setup	see ANSI C63.10, clause 9.12 9.13							
NOTE: If equipment having different channel plan and nominal channel bandwidth modes (see test report								

clause 1.1.1), the measurements are uninfluenced by different channel plan and nominal channel

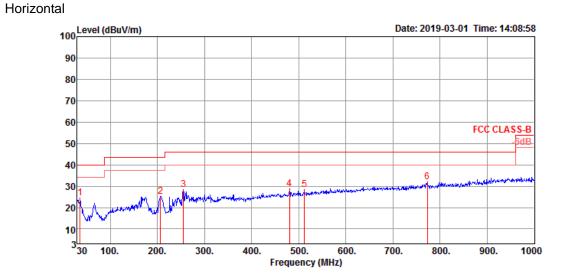
bandwidth modes, may not need to be repeated for all modes.

3.5.4.1 Test Result of Transmitter Spurious Emissions (Below 30MHz)

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.


The radiated emissions were investigated from 9 kHz or the lowest frequency generated within the device, up to the 10 harmonic or 40 GHz, whichever is appropriate.

3.5.4.2 Test Result of Transmitter Spurious Emissions


Тетр	22~24 ℃	Humidity	50~60%
Test Engineer	Gary Chu	Test Distance	3 m
Test Range	30 MHz – 1,000 MHz	Test Configuration	СТХ
Test Mode	Mode 1		

Vertical

	Freq	Level		Over Limit						T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	34.85	27.30	40.00	-12.70	37.87	0.66	21.37	32.60	100	257	Peak	VERTICAL
2	66.86	32.20	40.00	-7.80	51.64	1.17	11.96	32.57	300	164	Peak	VERTICAL
3	156.10	23.72	43.50	-19.78	38.23	1.88	16.12	32.51	150	320	Peak	VERTICAL
4	180.35	22.70	43.50	-20.80	38.11	2.05	15.03	32.49	100	270	Peak	VERTICAL
5	207.51	22.98	43.50	-20.52	38.13	2.31	15.02	32.48	300	188	Peak	VERTICAL
6	317.12	24.73	46.00	-21.27	34.90	3.04	19.23	32.44	200	183	Peak	VERTICAL

	Freq	Level		Over Limit						T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	35.82	24.57	40.00	-15.43	35.63	0.72	20.82	32.60	125	359	Peak	HORIZONTAL
2	206.54	25.36	43.50	-18.14	40.50	2.31	15.03	32.48	125	303	Peak	HORIZONTAL
3	255.04	28.24	46.00	-17.76	39.19	2.66	18.85	32.46	100	216	Peak	HORIZONTAL
4	480.08	28.75	46.00	-17.25	34.16	3.95	23.08	32.44	100	301	Peak	HORIZONTAL
5	512.09	28.40	46.00	-17.60	33.52	4.16	23.17	32.45	300	136	Peak	HORIZONTAL
6	773.02	32.07	46.00	-13.93	33.45	5.46	25.54	32.38	100	104	Peak	HORIZONTAL

For Radio 1:

Тетр	22~24 ℃	Humidity	50~60%
Test Engineer	Gary Chu	Test Distance	3 m
Test Range	1 GHz – 18 GHz	Test Freq. (GHz)	58.32
Test Date	Jan. 11, 2019~Mar. 05, 2019		

Vertical

	Freq	Level						Preamp Factor		T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	7289.92 7290.24								207 207		Average Peak	VERTICAL

	Freq	Level						Preamp Factor		T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	7289.99 7290.12										Average Peak	HORIZONTAL HORIZONTAL

Temp	22~24 ℃	Humidity	50~60%
Test Engineer	Gary Chu	Test Distance	1 m
Test Range	18 GHz – 40 GHz	Test Freq. (GHz)	58.32
Test Date	Jan. 11, 2019~Mar. 05, 2019		

	Freq	Level		Over Limit					A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	18396.15 18396.39								150 150	-	Peak Average	VERTICAL VERTICAL

	Freq	Level		Over Limit						T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	18044.15 18044.24								150 150		Average Peak	HORIZONTAL HORIZONTAL

Temp	22~24 ℃	Humidity	50~60%
Test Engineer	Gary Chu	Test Distance	3 m
Test Range	1 GHz – 18 GHz	Test Freq. (GHz)	60.48
Test Date	Jan. 11, 2019~Mar. 05, 2019		

	Freq	Level		Over Limit					A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	7559.92 7559.97								186 186		Peak Average	VERTICAL VERTICAL

	Freq	Level		Over Limit						T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	7559.91 7559.94								230 230		Peak Average	HORIZONTAL HORIZONTAL

Temp	22~24 ℃	Humidity	50~60%
Test Engineer	Gary Chu	Test Distance	1 m
Test Range	18 GHz – 40 GHz	Test Freq. (GHz)	60.48
Test Date	Jan. 11, 2019~Mar. 05, 2019		

	Freq	Level	Limit Line					Preamp Factor		T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	18396.22 18396.40								150 150		Average Peak	VERTICAL

	Freq	Level						Preamp Factor		T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	18396.12 18396.37								150 150		Average Peak	HORIZONTAL HORIZONTAL

Temp	22~24 ℃	Humidity	50~60%
Test Engineer	Gary Chu	Test Distance	3 m
Test Range	1 GHz – 18 GHz	Test Freq. (GHz)	62.64
Test Date	Jan. 11, 2019~Mar. 05, 2019		

	Freq	Level		Over Limit						T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	7829.87 7829.97								200 200		Peak Average	VERTICAL VERTICAL

Freq	Level						Preamp Factor			Remark	Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
7829.91 7829.96										Average Peak	HORIZONTAL HORIZONTAL

Temp	22~24 ℃	Humidity	50~60%
Test Engineer	Gary Chu	Test Distance	1 m
Test Range	18 GHz – 40 GHz	Test Freq. (GHz)	62.64
Test Date	Jan. 11, 2019~Mar. 05, 2019		

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	18088.26 18088.32								150 150		Average Peak	VERTICAL

Freq	Level		Over Limit					A/Pos	T/Pos	Remark	Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
18396.12 18396.13								150 150	-	Peak Average	HORIZONTAL HORIZONTAL

Temp	22~24 ℃	Humidity	50~60%
Test Engineer	Gary Chu	Test Distance	3 m
Test Range	1 GHz – 18 GHz	Test Freq. (GHz)	64.80
Test Date	Jan. 11, 2019~Mar. 05, 2019		

	Freq	Level	Limit Line	Over Limit						T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	8099.71 8099.93								190 190		Peak Average	VERTICAL VERTICAL

	Freq	Level		Over Limit							Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	8099.93 8100.04										Average Peak	HORIZONTAL HORIZONTAL

Temp	22~24 ℃	Humidity	50~60%
Test Engineer	Gary Chu	Test Distance	1 m
Test Range	18 GHz – 40 GHz	Test Freq. (GHz)	64.80
Test Date	Jan. 11, 2019~Mar. 05, 2019		

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	18000.40 18000.52								150 150		Average Peak	VERTICAL

	Freq	Level	Limit Line						A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	18044.30 18044.57								150 150		Average Peak	HORIZONTAL HORIZONTAL

For Radio 2:

Temp	22~24 ℃	Humidity	50~60%
Test Engineer	Gary Chu	Test Distance	3 m
Test Range	1 GHz – 18 GHz	Test Freq. (GHz)	58.32
Test Date	Jan. 11, 2019~Mar. 05, 2019		

Vertical

Freq	Level	Limit Line						A/Pos	T/Pos	Remark	Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
7289.98 7290.13											VERTICAL

	Freq	Level		Over Limit						T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	7289.90 7289.99								226 226		Peak Average	HORIZONTAL HORIZONTAL

Temp	22~24 ℃	Humidity	50~60%
Test Engineer	Gary Chu	Test Distance	1 m
Test Range	18 GHz – 40 GHz	Test Freq. (GHz)	58.32
Test Date	Jan. 11, 2019~Mar. 05, 2019		

	Freq	Level	Limit Line	Over Limit						T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	18088.15 18088.27								150 150		Average Peak	VERTICAL

	Freq	Level		Over Limit					A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	18352.24 18352.70								150 150		Average Peak	HORIZONTAL HORIZONTAL

Temp	22~24 ℃	Humidity	50~60%
Test Engineer	Gary Chu	Test Distance	3 m
Test Range	1 GHz – 18 GHz	Test Freq. (GHz)	60.48
Test Date	Jan. 11, 2019~Mar. 05, 2019		

	Freq	Level		Over Limit					A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	7559.87 7559.91								210 210		Peak Average	VERTICAL VERTICAL

	Freq	Level						Preamp Factor			Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	7559.94 7560.00										Average Peak	HORIZONTAL HORIZONTAL

Temp	22~24 ℃	Humidity	50~60%
Test Engineer	Gary Chu	Test Distance	1 m
Test Range	18 GHz – 40 GHz	Test Freq. (GHz)	60.48
Test Date	Jan. 11, 2019~Mar. 05, 2019		

	Freq	Level	Limit Line						A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	18044.23 18044.26								150 150		Peak Average	VERTICAL VERTICAL

	Freq	Level						Preamp Factor		T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	18396.55 18396.70								150 150		Average Peak	HORIZONTAL HORIZONTAL

Temp	22~24 ℃	Humidity	50~60%
Test Engineer	Gary Chu	Test Distance	3 m
Test Range	1 GHz – 18 GHz	Test Freq. (GHz)	62.64
Test Date	Jan. 11, 2019~Mar. 05, 2019		

	Freq	Level						Preamp Factor		T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	7829.99 7830.05										Average Peak	VERTICAL

	Freq	Level						Preamp Factor		T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	7829.95 7830.02											HORIZONTAL HORIZONTAL

Ter	mp		22~24°	С			н	lumidity			50~60%		
Tes	st Enginee	r	Gary C	hu			т	est Dist	ance		1 m		
Tes	st Range		18 GHz	z – 40 G	Hz		Т	est Frec	I. (GHz)		62.64		
Test Date Jan. 11, 2019~Mar. 05, 2019													
Ver	rtical												
	Freq	Level	Limit Line	Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase	
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg			
1 2	18396.12 18396.65			-30.82 -20.60				49.82 49.82	150 150		Peak Average	VERTICAL VERTICAL	
Но	rizontal												
	Freq	Level	Limit Line		Read Level			Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase	
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg			

18484.26 53.02 83.54 -30.52 52.98 12.63 37.21 49.80 150

2 18484.99 42.11 63.54 -21.43 42.07 12.63 37.21 49.80 150

1

0 Peak

HORIZONTAL

0 Average HORIZONTAL

Temp	22~24 ℃	Humidity	50~60%
Test Engineer	Gary Chu	Test Distance	3 m
Test Range	1 GHz – 18 GHz	Test Freq. (GHz)	64.80
Test Date	Jan. 11, 2019~Mar. 05, 2019		

	Freq	Level		Over Limit				•		T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	8099.97 8100.15								189 189		Average Peak	VERTICAL

	Freq	Level		Over Limit						T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	8099.89 8100.00								198 198		Peak Average	HORIZONTAL HORIZONTAL

Temp	22~24 ℃	Humidity	50~60%
Test Engineer	Gary Chu	Test Distance	1 m
Test Range	18 GHz – 40 GHz	Test Freq. (GHz)	64.80
Test Date	Jan. 11, 2019~Mar. 05, 2019		

	Freq	Level		Over Limit					A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	18088.24 18088.35								150 150	-	Peak Average	VERTICAL VERTICAL

Freq	Level		Over Limit					A/Pos	T/Pos	Remark	Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
18220.11 18220.20								150 150	-	Peak Average	HORIZONTAL HORIZONTAL

For Radio 1:

Тетр	22~24 °C	Humidity	50~60%
Test Engineer	Gary Chu	Test Date	Jan. 11, 2019~Mar. 05, 2019
Test Range	40GHz – 200GHz		

Test Frequency (GHz)	Rx Antenna Gain (dBi)	Measurement Distance (m)	Read Worse Frequency (GHz)	Read Level (dBm)
58.32	23.6	0.50	56.56	-67.37
EIRP (dBm)	Specification Distance (m)	Power Density (pW/cm^2)	Limit (pW/cm^2)	Test Result
-29.50	3	0.9924	90.00	PASS

Test Frequency (GHz)	Rx Antenna Gain (dBi)	Measurement Distance (m)	Read Worse Frequency (GHz)	Read Level (dBm)
60.48	23.6	0.50	56.63	-72.17
EIRP (dBm)	Specification Distance (m)	Power Density (pW/cm^2)	Limit (pW/cm^2)	Test Result
-34.29	3	0.3294	90.00	PASS

Test Frequency (GHz)	Rx Antenna Gain (dBi)	Measurement Distance (m)	Read Worse Frequency (GHz)	Read Level (dBm)
62.64	23.6	0.50	50.02	-75.05
EIRP (dBm)	Specification Distance (m)	Power Density (pW/cm^2)	Limit (pW/cm^2)	Test Result
-38.25	3	0.1324	90.00	PASS

Test Frequency (GHz)	Rx Antenna Gain (dBi)	Measurement Distance (m)	Read Worse Frequency (GHz)	Read Level (dBm)
64.80	23.6	0.50	50.68	-76.65
EIRP (dBm)	Specification Distance (m)	Power Density (pW/cm^2)	Limit (pW/cm^2)	Test Result
-39.73	3	0.0941	90.00	PASS

Note:

EIRP = Prx – Grx + Free Space Path Loss = Prx – Grx + $20Log(4\pi d/ \lambda)^2$

Which

Prx = Read Level.

Grx = Rx Antenna Gain.

A distance factor is offset and the formula is 20LOG(D1/D2)

Which

D1 = Specification Distance

D2 = Measurement Distance

For Radio 2:

Тетр	22~24 °C	Humidity	50~60%
Test Engineer	Gary Chu	Test Date	Jan. 11, 2019~Mar. 05, 2019
Test Range	40GHz – 200GHz		

Test Frequency (GHz)	Rx Antenna Gain (dBi)	Measurement Distance (m)	Read Worse Frequency (GHz)	Read Level (dBm)
58.32	23.6	0.50	56.56	-66.71
EIRP (dBm)	Specification Distance (m)	Power Density (pW/cm^2)	Limit (pW/cm^2)	Test Result
-28.84	3	1.1552	90.00	PASS

Test Frequency (GHz)	Rx Antenna Gain (dBi)	Measurement Distance (m)	Read Worse Frequency (GHz)	Read Level (dBm)	
60.48	23.6	0.50	56.63	-67.89	
EIRP (dBm)	Specification Distance (m)	Power Density (pW/cm^2)	Limit (pW/cm^2)	Test Result	
-30.01	3	0.8826	90.00	PASS	

Test Frequency (GHz)	Rx Antenna Gain (dBi)	MeasurementRead WorseDistanceFrequency(m)(GHz)		Read Level (dBm)	
62.64	23.6	0.50	50.03	-73.96	
EIRP (dBm)	Specification Distance (m)	Power Density (pW/cm^2)	Limit (pW/cm^2)	Test Result	
-37.16	3	0.1702	90.00	PASS	

Test Frequency (GHz)	Rx Antenna Gain (dBi)	Measurement Distance (m)	Read Worse Frequency (GHz)	Read Level (dBm)	
64.80	23.6	0.50	50.46	-72.77	
EIRP (dBm)	Specification Distance (m)	Power Density (pW/cm^2)	Limit (pW/cm^2)	Test Result	
-35.89	3	0.2278	90.00	PASS	

Note:

EIRP = Prx – Grx + Free Space Path Loss = Prx – Grx + $20Log(4\pi d/ \lambda)^2$

Which

Prx = Read Level.

Grx = Rx Antenna Gain.

A distance factor is offset and the formula is 20LOG(D1/D2)

Which

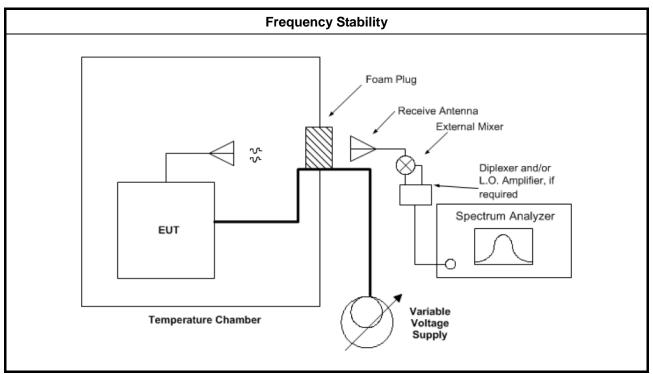
D1 = Specification Distance

D2 = Measurement Distance

3.6 Frequency Stability

3.6.1 Limit of Frequency Stability

Frequency Stability	Limit			
Refer as FCC 15.255(f) and	within the frequency hands			
ANSI C63.10-2013, clause 9.14	within the frequency bands			
Note: These measurements shall also be performed at normal and extreme test conditions.				


3.6.2 Measuring Instruments

Refer a measuring instruments list in this test report.

3.6.3 Test Procedures

Method of measurement: Refer as ANSI C63.10-2013, clauses 9.14.

3.6.4 Test Setup

3.6.5 Test Result of Frequency Stability

Test Conditions	see ANSI C63.10, clause 5.11 & clause 9					
Test Setup	see ANSI C63.10, clause 9.14					
NOTE: If equipme	NOTE: If equipment having different channel plan and nominal channel bandwidth modes (see test report					
clause 1.1.1), the measurements are uninfluenced by different channel plan and nominal channel						
bandwidth i	modes, may not need to be repeated for all modes.					

3.6.5.1 Frequency Stability with Respect to Ambient Temperature

For Radio 1:

Frequency Stability with Respect to Ambient Temperature						
Тетр	22~24 ℃		Humidity	Humidity 50~60%		
Test Engineer	Gary Chu		Test Date		Jan. 11, 2019	9∼Mar. 05, 2019
			est Results			
Test Temperature (°C)		Measured Frequency (MHz)		Delta Frequency (kHz)		Limit (±kHz)
-10		6049	4.713	465		Within band
0		60494	60494.459		211	Within band
10		60494.413		165		Within band
20		60494.248		Reference		Within band
30		60494.486		238		Within band
40	40 6049		94.592		344	Within band
50	50 60494		4.978 730		Within band	
55		60494.734		486		Within band
NOTE: The manufa	cturer's specif	ied temperatui	re range of -10	to 55°C		

For Radio 2:

	Frequency Stability with Respect to Ambient Temperature						
Тетр	22~24 °C		Humidity	Humidity 50			
Test Engineer	Gary Chu		Test Date		Jan. 11, 2019	9∼Mar. 05, 2019	
		Т	est Results				
Test Temperature (°C)		Measured Frequency (MHz)		Delta Frequency (kHz)		Limit (±kHz)	
-10		60494	4.744	496		60494.744	
0		60494	60494.169		-79	60494.169	
10		60494.794		546		60494.794	
20		60494.248		Reference		60494.248	
30		60494.132		-116		60494.132	
40		60494	94.384		136	60494.384	
50	6049		60494.469 221 6049		60494.469		
55		60494.197		-51		60494.197	
NOTE: The manufa	acturer's specif	ied temperatur	e range of -10) to 55°C	•		

3.6.5.2 Frequency Stability When Varying Supply Voltage

For Radio 1:

Frequency Stability When Varying Supply Voltage							
Тетр	22~24 ℃	I	Humidity 50~60%		50~60%		
Test Engineer	Gary Chu	-	Test Da	Date Jan. 11, 2019		~Mar. 05, 2019	
	Test Results						
Test Voltage: (Vdc)		Measured Frequency De (MHz)		Delta Frequency (kHz)		Limit (±kHz)	
10.2		60494.781		533		Within band	
12		60494.248		Reference		Within band	
13.8	5	60494.156		-92		Within band	

For Radio 2:

Frequency Stability When Varying Supply Voltage							
Тетр	22~24 ℃		Humidi	ity	50~60%		
Test Engineer	Gary Chu		Test Da	st Date Jan. 11, 2019		~Mar. 05, 2019	
Test Results							
Test Voltage: (Vdc)		Measured Frequency De (MHz)		Delta	Frequency (kHz)	Limit (±kHz)	
10.2		60494.913		665		Within band	
12	12 60494.24		}	Reference		Within band	
13.8		60494.647	•		399	Within band	

3.7 Operation Restriction and Group Installation

3.7.1 Limit of Operation Restriction and Group Installation

Item	Limit					
	Operation is not permitted for the following products:					
Operation Restriction	• Equipment used on aircraft or satellites. (Refer as FCC 15.255 (a))					
	• Field disturbance sensors, including vehicle radar systems, unless the field					
	disturbance sensors are employed for fixed operation. (Refer as FCC					
	15.255 (a))					
	Operation is not permitted for the following products:					
Group Installation	External phase-locking (Refer as FCC 15.255 (h))					

3.7.2 Result of Operation Restriction

Manufacturer declares that EUT will not been used on aircraft or satellites. Then user manual will include a statement to caution EUT is not permitted for used on aircraft or satellites. EUT is a wireless video area network (WVAN) for the connection of consumer electronic (CE) audio and video devices.

3.7.3 Result of Group Installation

The frequency, amplitude and phase of the transmit signal are set within the EUT. There are no external phase-locking inputs or any other means of combining two or more units together to realize a beam-forming array.

Test Equipment and Calibration Data 4

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
EMI Receiver	Agilent	N9038A	My52260123	9kHz ~ 8.45GHz	Jan. 28, 2019	Jan. 29, 2020	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50 -16-2	04083	150kHz ~ 100MHz	Dec. 24, 2018	Dec. 23, 2019	Conduction (CO01-CB)
LISN	Schwarzbeck	NSLK 8127	8127647	9kHz ~ 30MHz	Jan. 11, 2019	Jan. 10, 2020	Conduction (CO01-CB)
COND Cable	Woken	Cable	Low cable-CO01	150kHz ~ 30MHz	May 22, 2018	May 21, 2019	Conduction (CO01-CB)
Software	Audix	E3	6.120210n	-	N.C.R.	N.C.R.	Conduction (CO01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9kHz - 30 MHz	Mar. 16, 2018	Mar. 15, 2019	Radiation (03CH01-CB)
BILOG ANTENNA with 6dB Attenuator	TESEQ & EMCI	CBL6112D & N-6-06	37880 & AT-N0609	20MHz ~ 2GHz	Aug. 27, 2018	Aug. 26, 2019	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz ~ 18GHz	Nov. 13, 2018	Nov. 12, 2019	Radiation (03CH01-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA917025 2	15GHz ~ 40GHz	Jun. 28, 2018	Jun. 27, 2019	Radiation (03CH01-CB)
Pre-Amplifier	EMCI	EMC330N	980332	20MHz ~ 3GHz	May 02, 2018	May 01, 2019	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Jan. 08, 2019	Jan. 07, 2020	Radiation (03CH01-CB)
Pre-Amplifier	MITEQ	TTA1840-35- HG	1864479	18GHz ~ 40GHz	Jul. 04, 2018	Jul. 03, 2019	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSP40	100080	9kHz~40GHz	Oct. 03, 2018	Oct. 02, 2019	Radiation (03CH01-CB)
EMI Test Receiver	R&S	ESCS	100359	9kHz ~ 2.75GHz	Jul. 03, 2018	Jul. 02, 2019	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-16+17	N/A	30 MHz ~ 1 GHz	Oct. 08, 2018	Oct. 07, 2019	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-16	N/A	1 GHz ~ 18 GHz	Oct. 08, 2018	Oct. 07, 2019	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-16+17	N/A	1 GHz ~ 18 GHz	Oct. 08, 2018	Oct. 07, 2019	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G#1	N/A	18GHz ~ 40 GHz	Jul. 27, 2018	Jul. 26, 2019	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G#2	N/A	18GHz ~ 40 GHz	Jul. 27, 2018	Jul. 26, 2019	Radiation (03CH01-CB)
Mixer	OML	M19HW/A	U91113-1	40 ~ 60 GHz	Oct. 12, 2017*	Oct. 11, 2019*	Radiation (03CH01-CB)
Mixer	OML	M15HW/A	V91113-1	50 ~ 75 GHz	Oct. 12, 2017*	Oct. 11, 2019*	Radiation (03CH01-CB)
Mixer	OML	M12HW/A	E91113-1	60 ~ 90 GHz	Oct. 12, 2017*	Oct. 11, 2019*	Radiation (03CH01-CB)
Mixer	OML	M08HW/A	F91113-1	90 ~ 140 GHz	Oct. 12, 2017*	Oct. 11, 2019*	Radiation (03CH01-CB)

TEL: 886-3-656-9065 FAX: 886-3-656-9085 Report Template No.: CB Ver1.0 Page Number : 68 of 70

Issued Date : Mar. 26, 2019

Report Version : 03

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
Mixer	OML	M05HW/A	G91113-1	140 ~ 220 GHz	Oct. 12, 2017*	Oct. 11, 2019*	Radiation (03CH01-CB)
Standard Horn Antenna	Custom Microwave	M19RH	U91113-A	40 ~ 60 GHz	N.C.R	N.C.R	Radiation (03CH01-CB)
Standard Horn Antenna	Custom Microwave	M15RH	V91113-A	50 ~ 75 GHz	N.C.R	N.C.R	Radiation (03CH01-CB)
Standard Horn Antenna	Custom Microwave	M12RH	E91113-A	60 ~ 90 GHz	N.C.R	N.C.R	Radiation (03CH01-CB)
Standard Horn Antenna	Custom Microwave	M08RH	F91113-A	90 ~ 140 GHz	N.C.R	N.C.R	Radiation (03CH01-CB)
Standard Horn Antenna	Custom Microwave	M05RH	G91113-A	140 ~ 220 GHz	N.C.R	N.C.R	Radiation (03CH01-CB)
Detector	Millitech	DET-15-RPF W0	#A18185(074)	50 ~ 75 GHz	Jan. 29, 2018*	Jan. 29, 2020*	Radiation (03CH01-CB)
Pico Scope	Pico	Pico Scope 6402C	CX372/002	N/A	Jul. 13, 2018	Jul. 12, 2019	Radiation (03CH01-CB)
Temp. and Humidity Chamber	Ten Billion	TTH-D3SP	TBN-931011	-30~100 degree	Jun. 01, 2018	May 31, 2019	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

"*" Calibration Interval of instruments listed above is two years.

N.C.R. means Non-Calibration required.

5 Measurement Uncertainty

Test Items	Uncertainty	Remark	
Conducted Emission (150kHz ~ 30MHz)	2.0 dB	Confidence levels of 95%	
Radiated Emission (30MHz ~ 1,000MHz)	3.6 dB	Confidence levels of 95%	
Radiated Emission (1GHz ~ 18GHz)	3.7 dB	Confidence levels of 95%	
Radiated Emission (18GHz ~ 40GHz)	3.5 dB	Confidence levels of 95%	
Radiated Emission (40GHz ~ 220GHz)	4.7 dB	Confidence levels of 95%	
Temperature	0.7°C	Confidence levels of 95%	