	TEST R Test report no.:					
Testing	laboratory	Applicant				
CETECOM ICT Services G Untertuerkheimer Strasse G 66117 Saarbruecken / Gerr Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9 Internet: http://www.cetec e-mail: ict@cetecom.com Accredited Testing Labor	- 10 nany 075 <u>om.com</u> <u>n</u>	Neratec Solutions AG Rosswiesstrasse 29 8608 Bubikon / SWITZERLAND Phone: +41 55 253 2078 Fax: +41 55 253 20 70 Contact: Michael Aeschbacher e-mail: michael.aeschbacher@neratec.com Phone: +41 55 253 20 73				
The testing laboratory (and according to DIN EN ISC Deutsche Akkreditierungsst The accreditation is value	ea of testing) is accredited D/IEC 17025 (2005) by the elle GmbH (DAkkS) d for the scope of testing accreditation certificate with	Manufacturer Neratec Solutions AG Rosswiesstrasse 29 8608 Bubikon / SWITZERLAND				
	Test sta	ndard/s				
47 CFR Part 15	Title 47 of the Code of Federa devices	I Regulations; Chapter I; Part 15 - Radio frequency				
RSS - 247 Issue 1	RSS - 247 Issue 1 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE-LAN) Devices					
RSS - Gen Issue 4	RSS - Gen Issue 4 Spectrum Management and Telecommunications Radio Standards Specifications - General Requirements and Information for the Certification of Radio Apparatus					
For further applied test star	dards please refer to section 3 of t	his test report.				
	Test	item				
Model name:	WLAN modem DT50RF MK2					
FCC ID:	2AEJD-103902-DT50RF					

00:14:5a:03:06:6b 0060010001030004 Technology tested: WLAN (OFDM/a-; n HT20- & n HT40-mode) SN: External Sencity® Spot-S antenna - up to 2 x SPA-Antenna: 5600/40/14/0/V_2 Power supply: 3.3 V DC by external power supply Temperature range: -40°C to +85°C

5150 MHz to 5250 MHz; 5250 MHz to 5350 MHz;

5470 MHz to 5725 MHz and 5725 MHz to 5850 MHz

9301A-103902DT50

UNII bands

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

IC:

Frequency:

Marco Bertolino Lab Manager Radio Communications & EMC

Test performed:

Andreas Luckenbill Lab Manager Radio Communications & EMC

neratec

103899 V00

MAC:

DT50RF_MK2

1 Table of contents

1	Table	of contents	2
2	Gener	al information	3
		Notes and disclaimer Application details	
3	Test s	tandard/s and references	3
4	Test e	nvironment	5
5	Test it	em	5
		General description Additional information	
6	Test la	boratories sub-contracted	5
7	Descr	ption of the test setup	6
		Shielded semi anechoic chamber	
	7.2	Shielded fully anechoic chamber	8
		Radiated measurements > 18 GHz	
_		Conducted measurements	
8	-	nce of testing	
		Sequence of testing radiated spurious 9 kHz to 30 MHz	
		Sequence of testing radiated spurious 30 MHz to 1 GHz Sequence of testing radiated spurious 1 GHz to 18 GHz	
		Sequence of testing radiated spurious above 18 GHz	
9	Measu	rement uncertainty	15
10	Sum	nary of measurement results	16
11	Addi	ional comments	17
12	Meas	urement results	19
	12.1	Identify worst case data rate	19
	12.2	Antenna gain	
	12.3	Duty cycle	
	12.4	Maximum output power conducted Power spectral density	
	12.5 12.6	Minimum emission bandwidth for the band 5.725-5.85 GHz	
	12.7	Spectrum bandwidth – 26 dB bandwidth	
	12.8	Occupied bandwidth – 99% emission bandwidth	.126
	12.9	Band edge compliance radiated	.163
	12.10	TX spurious emissions radiated	
	12.11	Spurious emissions radiated < 30 MHz	.272
13	Obse	rvations	. 288
An	nex A	Document history	. 288
An	nex B	Further information	.288
An	nex C	Accreditation Certificate	.289

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2015-12-02
Date of receipt of test item:	2015-12-02
Start of test:	2015-12-07
End of test:	2016-04-13
Person(s) present during the test:	-/-

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15	-/-	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 1	May 2015	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices
RSS - Gen Issue 4	November 2014	Spectrum Management and Telecommunications Radio Standards Specifications - General Requirements and Information for the Certification of Radio Apparatus

Guidance	Version	Description
UNII: KDB 789033 D02	v01r01	Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E Compliance measurement procedures for unlicensed - national
UNII: KDB 905462 D02	v01r02	information infrastructure devices operating in the 5250 - 5350 MHz and 5470 - 5725 MHz bands incorporating dynamic frequency selection
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices
KDB 662911 D01	V02r01	Emissions Testing of Transmitters with Multiple Outputs in the Same Band

4 Test environment

Temperature : T		T _{nom} T _{max} T _{min}	+23 °C during room temperature tests No tests under extreme conditions required! No tests under extreme conditions required!
Relative humidity content	:		55 %
Barometric pressure	:		not relevant for this kind of testing
Power supply	:	V _{nom} V _{max} V _{min}	3.3 V DC by external power supplyNo tests under extreme conditions required!No tests under extreme conditions required!

5 Test item

5.1 General description

Kind of test item	:	WLAN modem			
Type identification		DT50RF MK2			
HMN	:	-/-			
PMN	:	DT50RF_MK2			
HVIN	:	DT50RF_MK2			
FVIN	:	6.6			
S/N serial number	:	Conducted unit: 0060010001030016 Radiated unit: 0060010001030021			
HW hardware status	:	MK2			
SW software status	:	6.6			
Frequency band	:	UNII bands 5150 MHz to 5250 MHz; 5250 MHz to 5350 MHz; 5470 MHz to 5725 MHz and 5725 MHz to 5850 MHz			
Type of radio transmission Use of frequency spectrum		OFDM			
Type of modulation	:	BPSK, QPSK, 16 – QAM, 64 – QAM			
Antenna	:	External Sencity® Spot-S antenna – up to 2 x SPA-5600/40/14/0/V_2			
Power supply	:	3.3 V DC by external power supply			
Temperature range	:	-40°C to +85°C			

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report:

1-0585/15-01-01_AnnexA 1-0585/15-01-01_AnnexB 1-0585/15-01-01_AnnexD

6 Test laboratories sub-contracted

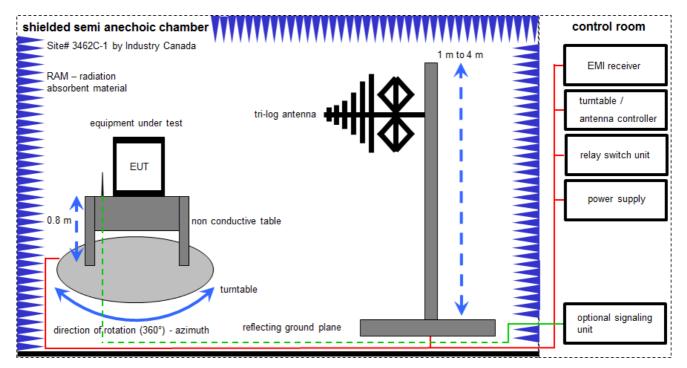
None

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

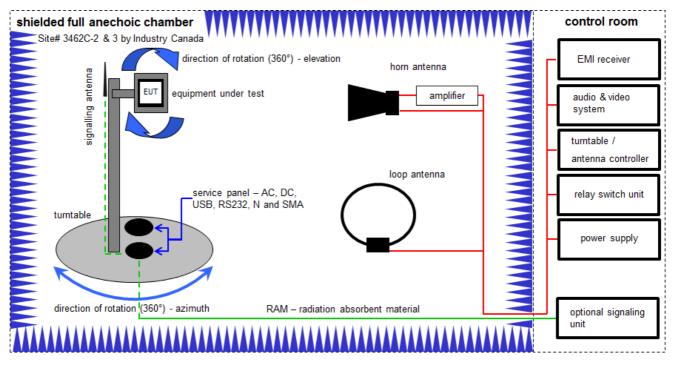
7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)


Example calculation:

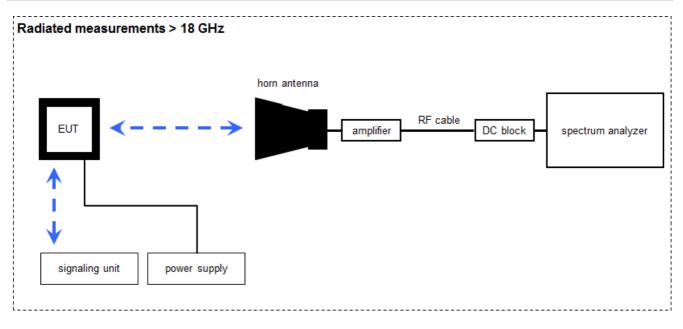
FS [dBµV/m] = 12.35 [dBµV/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dBµV/m] (35.69 µV/m)

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	26.01.2016	27.01.2017
2	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
3	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
4	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
5	A	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	22.04.2014	22.04.2016

7.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF (FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)


Example calculation:

 $\overline{FS [dB\mu V/m]} = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$

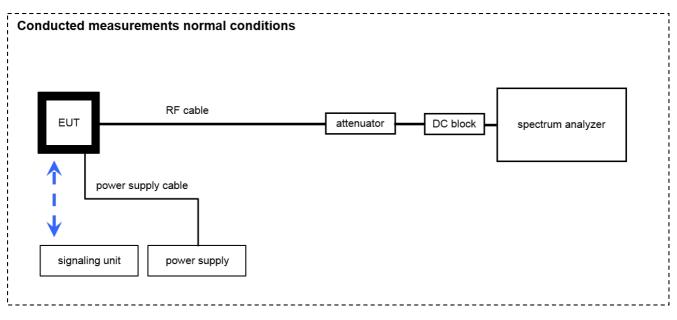
No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	A, B	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	Ve	20.01.2015	20.01.2018
2	А	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	viKi!	20.05.2015	20.05.2017
3	A, B	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
4	A, B	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
5	А, В	Active Loop Antenna 10 kHz to 30 MHz	6502	EMCO/2	8905-2342	300000256	k	24.06.2015	24.06.2017
6	A	Amplifier	js42-00502650-28- 5a	Parzich GMBH	928979	300003143	ne	-/-	-/-
7	A	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne	-/-	-/-
8	А	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
9	A, B	EMI Test Receiver 9kHz-26,5GHz	ESR26	R&S	101376	300005063	k	04.09.2015	04.09.2016
10	С	Signal Analyzer	FSV40	R&S	101042	300004517	k	21.01.2016	21.01.2017
11	С	Amplifier 2-40 GHz	JS32-02004000-57- 5P	MITEQ	1777200	300004541	ev	-/-	-/-
12	С	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
13	С	RF-Cable	ST18/SMAm/SMm/4 8	Huber & Suhner	Batch no. 127377	400001183	ev	-/-	-/-
14	С	DC-Blocker 0.1-40 GHz	8141A	Inmet	Batch no. 606844	400001185	ev	-/-	-/-
15	с	Std. Gain Horn Antenna 12.4 to 18.0 GHz	639	Narda	8402	300000787	k	14.08.2015	14.08.2017

7.3 Radiated measurements > 18 GHz

Measurement distance: horn antenna 50 cm

 $FS = U_R + CA + AF$

(FS-field strength; U_R-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)


Example calculation:

 $\overline{FS [dB\mu V/m]} = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \mu V/m)$

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	21.01.2016	21.01.2017
2	А	Amplifier 2-40 GHz	JS32-02004000-57- 5P	MITEQ	1777200	300004541	ev	-/-	-/-
3	А	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
4	A	RF-Cable	ST18/SMAm/SMm/4 8	Huber & Suhner	Batch no. 127377	400001183	ev	-/-	-/-
5	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	Batch no. 606844	400001185	ev	-/-	-/-
6	А	Std. Gain Horn Antenna 18.0 to 26.5 GHz	638	Narda	8402	300000486	k	10.09.2015	10.09.2017
7	А	Std. Gain Horn Antenna 26.5 to 40.0 GHz	V637	Narda	82-16	300000510	k	14.08.2015	14.08.2017

7.4 Conducted measurements

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	А	PC-WLAN Tester	Intel Core i3 3220/3,3 GHz, Prozessor	-/-	2V2403033A45 23	300004589	ne	-/-	-/-
2	А	Teststand	Teststand Custom Sequence Editor	National Instruments GmbH	2V2403033A45 23	300004590	ne	-/-	-/-
3	А	RF-Cable	ST18/SMAm/SMAm/ 60	Huber & Suhner	Batch no. 606844	400001181	ev	-/-	-/-
4	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	Batch no. 606844	400001185	ev	-/-	-/-
5	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	21.01.2016	21.01.2017

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

9 Measurement uncertainty

Measurement uncertainty							
Test case	Uncertainty						
Antenna gain	± 3 dB						
Power spectral density	± 1.5 dB						
Spectrum bandwidth	± 100 kHz (depends on the used RBW)						
Occupied bandwidth	± 100 kHz (depends on the used RBW)						
Maximum output power	± 1.5 dB						
Minimum emissions bandwidth	± 100 kHz (depends on the used RBW)						
Spurious emissions conducted	± 3 dB						
Spurious emissions radiated below 30 MHz	± 3 dB						
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB						
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB						
Spurious emissions radiated above 12.75 GHz	± 4.5 dB						
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB						

10 Summary of measurement results

	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
\boxtimes	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS 247, Issue 1	see table	2016-04-22	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	с	NC	NA	NP	Remark
-/-	Output power verification (conducted)	Nominal	Nominal		-/	'-		-/-
-/-	Antenna gain	Nominal	Nominal		-/	-		Declared
U-NII Part 15	Duty cycle	Nominal	Nominal		-/	'_		-/-
§15.407(a) RSS - 247 (6.2.1) (1) RSS - 247 (6.2.2) (1) RSS - 247 (6.2.3) (1) RSS - 247 (6.2.4) (1)	Maximum output power (conducted & radiated)	Nominal	Nominal	\boxtimes				-/-
§15.407(a) RSS - 247 (6.2.1) (1) RSS - 247 (6.2.2) (1) RSS - 247 (6.2.3) (1) RSS - 247 (6.2.4) (1)	Power spectral density	Nominal	Nominal	\boxtimes				-/-
RSS - 247 (6.2.4)	Spectrum bandwidth 6dB bandwidth	Nominal	Nominal	\boxtimes				-/-
§15.407(a)	Spectrum bandwidth 26dB bandwidth	Nominal	Nominal	\boxtimes				-/-
RSS Gen clause 6.6	Spectrum bandwidth 99% bandwidth	Nominal	Nominal		-/	'-		-/-!
§15.205 RSS - 247 (6.2.1) (2) RSS - 247 (6.2.2) (2) RSS - 247 (6.2.3) (2) RSS - 247 (6.2.4) (2)	Band edge compliance radiated	Nominal	Nominal	\boxtimes				-/-
§15.407(b) RSS - 247 (6.2.1) (2) RSS - 247 (6.2.2) (2) RSS - 247 (6.2.3) (2) RSS - 247 (6.2.4) (2)	TX spurious emissions radiated	Nominal	Nominal	\boxtimes				-/-
§15.109 RSS-Gen	RX spurious emissions radiated	Nominal	Nominal				\boxtimes	*
§15.209(a) RSS-Gen	Spurious emissions radiated < 30 MHz	Nominal	Nominal	\boxtimes				-/-
§15.107(a) §15.207	Spurious emissions conducted emissions < 30 MHz	Nominal	Nominal	\boxtimes				-/-
§15.407 RSS - 247 (6.3)	DFS	Nominal	Nominal				\boxtimes	See report 1-0585/15-01- 06 & 07

<u>Note:</u> C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

* Test cases performed under the project number: 1-0585/15-02

11 Additional comments

Reference documents:	5G_Patch_14dBi_HuberSuhner				
	Antennas_DT50RF_Module_Certification				
	Cetecom_Customer_Questionnaire				
	Offer_request_Cetecom				
	PowerSettings_Patch_SPA_5600_40_14_0_V_2				
Special test descriptions:	EUT supports 2 TX / RX antennas with 2 spatial streams The antennas are connected with a 2 m cable with 2dB attenuation.				

Channel Center Frequency		36 518 MH	0 5 [.]	38 190 IHz	40 5200 MHz	44 5220 MHz	46 5230 MHz) 52		52 5260 MHz	54 5270 MHz	56 5280 MHz		00 8	62 5310 VHz	64 5320 MHz
a		6			6	7			7	12	11112	13	13		1112	13
n20		7			7	7			7	14		14	14	4		14
n40				8			8				14				10	
Channel Center Frequency	100 5500 MHz	102 5510 MHz	104 5520 MHz	108 5540 MHz	110 5550 MHz	112 5560 MHz	116 5580 MHz	118 5590 MHz	120 5600 MHz	124 5620 MHz	126 5630 MHz	128 5640 MHz	132 5660 MHz	134 5670 MHz	136 5680 MHz	140 5700 MHz
а	14		14	14		13	8		12	11		11	10		10	10
n20	15		15	14		14	14		14	12		14	14		14	13
n40		13			16			15			15			15		

Configuration descriptions:

Channel	149	151	153	157	159	161	165
Center Frequency	5745 MHz	5755 MHz	5765 MHz	5785 MHz	5795 MHz	5805 MHz	5825 MHz
а	9		9	8		8	7
n20	13		12	13		10	11
n40		16			16		

Test mode:		No test mode available. Iperf was used to ping another device with the largest support packet size
	\boxtimes	Special software is used. EUT is transmitting pseudo random data by itself
Antennas and transmit operating modes:		 Operating mode 1 (single antenna) Equipment with 1 antenna, Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)
	\boxtimes	Operating mode 2 (multiple antennas, no beamforming)
		 Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming.
		Operating mode 3 (multiple antennas, with beamforming)
		 Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming. In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the measurements.

12 Measurement results

12.1 Identify worst case data rate

Measurement:

All modes of the module will be measured with an average power meter or spectrum analyzer to identify the maximum transmission power.

In further tests only the identified worst case modulation scheme or bandwidth will be measured and this mode is used as representative mode for all other modulation schemes.

Additional the band edge compliance test will be performed in the lowest and highest modulation scheme.

Measurement parameters:

Measurement parameter				
Detector:	Peak			
Sweep time:	Auto			
Resolution bandwidth:	3 MHz			
Video bandwidth:	3 MHz			
Trace mode:	Max hold			
Used test setup:	see chapter 7.4 – A			
Measurement uncertainty:	see chapter 9			

Results:

Modulation	Modulation scheme / bandwidth						
Frequency	5180 MHz	5320 MHz	5500 MH	5700 MHz	5745 MHz	5825 MHz	
OFDM / a – mode	6 Mbit/s	6 Mbit/s	6 Mbit/s	6 Mbit/s	6 Mbit/s	6 Mbit/s	
OFDM / n HT20 – mode	MCS0	MCS0	MCS0	MCS0	MCS0	MCS0	
Frequency	5190 MHz	5310 MHz	5510 MHz	5670 MHz	5755 MHz	5815 MHz	
OFDM / n HT40 – mode	MCS0	MCS0	MCS0	MCS0	MCS0	MCS0	

12.2 Antenna gain

Limits:

FCC	IC			
6 dBi / > 6 dBi output power and power density reduction required				

Results:

T _{nom}	V _{nom}	UNII bands
	na gain e manufacturer	14 dBi
Cable attenuation chip to antenna		2 dB
Calculated antenna gain		12 dBi

Product Configuration

Technical Data

Electrical Data

Frequency (MHz) VSWR Gain 3dB beamwidth (h) (°) 3dB beamwidth (v) (°) Front to back ratio	Band 1 5150 - 5875 1.5 14 dBi 40 35 20 dB
Front to back ratio	20 dB
Vertical electrical tilt (°)	0
*Extract out of the datache	at of the enterne

*Extract out of the datasheet of the antenna

Note: output power limit and power spectral density limit shall be reduced by 6 dB.

12.3 Duty cycle

Description:

The duty cycle is necessary to compute the maximum power during an actual transmission. The shown plots and values are to show an example of the measurement procedure. The real value is measured direct during the power measurement or power density measurement. The correction value is shown in each plot of these measurements.

Measurement:

Measurement parameter							
According to: KDB789033 D02, B.							
Detector:	Peak						
Sweep time:	Auto						
Resolution bandwidth:	10 MHz						
Video bandwidth:	10 MHz						
Span:	Zero						
Trace-Mode:	Video trigger / view / single sweep						
Used test setup:	see chapter 7.4 – A						
Measurement uncertainty:	see chapter 9						

Results:

Duty cycle and correction factor: example for one channel and one antenna port

OFDM / a – mode:	97.00 % duty cycle	=>	0.13 dB
OFDM / n HT20 – mode:	96.99 % duty cycle	=>	0.13 dB
OFDM / n HT40 – mode:	94.91 % duty cycle	=>	0.23 dB

Plots:

Plot 1: duty cycle of the transmitter – OFDM / a – mode

Spect	rum										
Ref Le	vel 1	6.78 dB	m	🔵 RE	W 10 MHz						
Att		35 c	ib 👄 SWT 4.2	ms 👄 VE	3W 10 MHz						
SGL Co	unt 1,	/1	TDF								
⊖1Pk Cl	rw										
								1[1]			2.72 dBm
10 dBm-	helph and	mallidule	hardhallan	1 มีหนังสุภาพยาย	Munaulaha	aher	hallhander	lent no	www.hund	and maintenested	
0 dBm—	~	0.40°	has an atrification	Y		run .	Dž	211	1 4 4 900 0.	0 4- 00 0	
о цыпі—									1	1	1.36402 ms
-10 dBm											
-20 dBm	∩—			4				D 2			//
				•							
-30 dBm	ا – ۱										
-40 dBm											
-50 dBm											
	·										
-60 dBm	∩—										
-70 dBm	ا – ۱					-					
-80 dBm					1000						
CF 5.18	3 GHZ				1000	pts	5				421.88 µs/
Marker											
Type M1	Ref	Trc 1	X-value	49 ms	<u>Y-value</u> 2.72 dE	m	Funct	ion		unction R	esuit
D2	M1	1		02 ms	-23.25						
D3	M1	1		25 ms	0.19						
	_					<u> </u>				4.5/2	08.04.2016
	<u> </u>						,			191	

Date: 8.APR.2016 14:27:50

Plot 2: duty cycle of the transmitter – OFDM / n HT20 – mode

Ref Level 17.19 dBm RBW 10 MHz Att 35 dB SWT 4 ms VBW 10 MHz SGL Count 1/1 TDF 100 MHz SIDE MI[1] 4.70 dBm Aut 0 dBm MI[1] 4.70 dBm Aut 0 dBm MI[1] 4.70 dBm Aut 0 dBm 0 dBm 0 dBm 0 dBm -10 dBm -20 dBm -20 dBm -27.62 dI -27.52 dI -30 dBm -20 dBm	Spect	rum														
SGL Count 1/1 TDF 1Pk Clrw M1[1] 4.70 dBm 10 dBm 0 01 -20 dBm 0 0 -30 dBm 0 0 -40 dBm 0 0 -50 dBm 0 0 -60 dBm 0 0 -70 dBm 0 0 -10 dBm 0 0 -20 dBm 0 0	Ref Le	vel 1	7.19 dBn	1	👄 RI	3W 10	MHz									
IPk Clrw M1[1] 4.70 dBn 10/0 mm				8 👄 SWT 4 n	ns 👄 VI	BW 10	MHz									
40 d8m M1[1] 4.70 d8m -10 d8m -20 d8m -21 62 d8m -20 d8m -20 d8m -20 d8m -30 d8m -20 d8m -20 d8m -40 d8m -20 d8m -20 d8m -50 d8m -20 d8m -20 d8m -60 d8m -20 d8m -20 d8m -10 d8m -20 d8m -20 d8m -20 d8m -20 d8m -20 d8m -10 d8m -20 d8m -20 d8m			/1	TDF												
10 dBm -27,62 dl 0 dBm -27,62 dl -10 dBm -20 dl -20 dBm -20 dl -30 dBm -20 dl -40 dBm -20 dl -50 dBm -20 dl -60 dBm -20 dl -70 dBm -20 dl -70 dBm -20 dl -70 dBm -20 dl -40 dBm -20 dl -40 dBm -20 dl -40 dBm -20 dl -50 dBm -20 dl -70 dl -20 dl -70 dl -20 dl -70 dl -20 dl -20 dl -20 dl <td>⊖1Pk C</td> <td>rw</td> <td></td>	⊖1Pk C	rw														
0 dBm									M1	L[1]						
0 dBm	ng langer	termun	unlinder	www.www.www.	and way the	rtp.	philippi	Heredo	արհեղի։ D2	Allerandia	holding	فالأر	unnu	adappendappen	-27	<u> 後見</u> し 1.62 df
-20 dB m	0 dBm-														1.275	518 m
-20 dB m																
.30 dBm	-10 dBn	ר ו														
.30 dBm	-20 d <mark>B</mark> h	n——				D2										
.40 dBm	90					Z "						ы				
-50 dBm -60 dBm -70	-30 dBn	<u>ו</u> רי														
-50 dBm -60 dBm -70	-40 dBr	n——														
-60 dBm																
AB0 dBm Image: CF 5.18 GHz Image: SF 5.18 GHz	-50 dBn	+-י														
AB0 dBm Image: CF 5.18 GHz Image: SF 5.18 GHz	-60 dBo															
Bit Market 1000 pts 395.62 µs/ -80 dBm	00 001	'														
CF 5.18 GHz 1000 pts 395.62 µs/ Marker Type Ref Trc X-value Y-value Function Function Result M1 1 233.65 µs 4.70 dBm Function Function Result D2 M1 1 1.27518 ms -27.62 dB Function Function Result	-70 dBn	י +−י						<u> </u>								
CF 5.18 GHz 1000 pts 395.62 µs/ Marker Type Ref Trc X-value Y-value Function Function Result M1 1 233.65 µs 4.70 dBm Function Function Result D2 M1 1 1.27518 ms -27.62 dB Function Function Result	00.42-															
Marker Your Yealue Function Function Result M1 1 233.65 µs 4.70 dBm Function Function Result D2 M1 1 1.27518 ms -27.62 dB Function Function							1000	Ints							395.6	2 115 /
Type Ref Trc X-value Y-value Function Function Result M1 1 233.65 µs 4.70 dBm D2 M1 1 1.27518 ms -27.62 dB		0.012					1000								0,0.0	~ 1-27
M1 1 233.65 µs 4.70 dBm D2 M1 1 1.27518 ms -27.62 dB		Ref	Tro	X-value		Y	-value	1	Funct	ion			Fun	ction Re	esult	
D2 M1 1 1.27518 ms -27.62 dB						<u> </u>		m								
D3 M1 1 1.31479 ms -0.08 dB	D2	M1	1				-27.62	зв								
Deady 08.04.2016	D3	M1	1	1.314	479 ms		-0.08	зB								
			1							e a d y	- 11	111		120	08.04.2	2016

Date: 8.APR.2016 14:57:17

Plot 3: duty cycle of the transmitter – OFDM / n HT40 – mode

Specti	rum											
Ref Le	vel 1	5.06 dBn	n	👄 RB	W 10	MHz						
Att		35 di	8 👄 SWT 2 r	ns 👄 VB	W 10	MHz						
SGL Co	unt 1,	/1	TDF									
😑 1Pk Cli	rw) I
10 dBm-								M1[1]				1.86 dBm
where where	фали М	h ang hin	ulleredallikappediene	hand	NAMMANIA	DOL MILLA	Mad M	Apple and the second second	والمحمر ووالملوم	MANNU I	wohentehr	ut-uliaansa uuta
0 dBm—		4V. "I"			· · ·	4	100 .	D2[1]		ר ויי	W C C C C	-24.35 dB
												633.64 µs
-10 dBm	η 											
-20 dBm	1 1 2				- P					- W		
	- W.				4	anda.				×ψ		
-30 dBm	η 				_							
-40 dBm												
-50 dBm												
-50 UBII												
-60 dBm												
00 001	·											
-70 dBm	-											
-80 dBm	η <u> </u>											
CF 5.19						1000	Inte					199.69 µs/
Marker	9 9 9 72					1000	pts					<u></u>
	Ref	Trc	X-value	. 1		value	- 1	Function	1		ction Res	
Type M1	Ker	1		, 7.87 μs	¥ -	1.86 dB	m	Function		Fun	cuon Res	un
D2	M1	1		3.64 µs		-24.35 (
D3	M1	1		7.63 µs		0.11 (
		1										08.04.2016
											1,20	

Date: 8.APR.2016 15:26:45

12.4 Maximum output power conducted

Description:

Measurement of the maximum output power conduced

Measurement:

Measurement parameter						
According to: KDB789033 D02, E.2.e.						
Detector:	RMS					
Sweep time:	≥10*(swp points)*(total on/off time)					
Resolution bandwidth:	1 MHz					
Video bandwidth:	≥ 3 MHz					
Span:	> EBW					
Trace-Mode:	Max hold					
Analyser function	Band power / channel power Interval > 26 dB EBW					
Used test setup: see chapter 7.4 – A						
Measurement uncertainty:	see chapter 9					

Limits:

Radiated output power	Conducted output power
5.150-5.250 GHz 200 mW or 10 dBm + 10 log Bandwidth (IC) All other bands: Conducted power + 6dBi antenna gain	250mW 5.150-5.250 GHz (FCC) The lesser one of 250mW or 11 dBm + 10 log Bandwidth 5.250-5.350 GHz 250mW or 11 dBm + 10 log Bandwidth 5.470-5.725 GHz (where Bandwidth is the 26dB Bandwidth [MHz]) 1W 5.725-5.85 GHz
5.150-5.250 GHz 200 mW or 10 dBm + 10 log Bandwidth (IC) All other bands: Conducted power + 12dBi antenna gain*	200 mW (EIRP) ≙ 13 mW (cond.) = 11 dBm (cond.) 250 mW: 24 dBm – 6 dB = 18 dBm = 63 mW 1 W: 30 dBm – 6 dB = 24 dBm = 250 mW

Note: all limits shall be reduced by 6 dB because of 12 dBi effective antenna gain.

Result: antenna port 1

OFDM / a – mode	Maximum output power conducted [dBm]						
Channel	5180 MHz	5200 MHz	5300 MHz	5320 MHz			
Including duty cycle correction factor	2.8	3.2	10.3	10.4			
Channel	5500 MHz	5600 MHz	5700 MHz	-/-			
Including duty cycle correction factor	11.2	8.9	7.1	-/-			
Channel	5745 MHz	5785 MHz	5805 MHz	5825 MHz			
Including duty cycle correction factor	6.5	5.9	5.7	5.1			

OFDM / n HT20 – mode	Maxin	Maximum output power conducted [dBm]						
Channel	5180 MHz	5200 MHz	5300 MHz	5320 MHz				
Including duty cycle correction factor	4.2	4.0	11.0	11.0				
Channel	5500 MHz	5600 MHz	5700 MHz	-/-				
Including duty cycle correction factor	10.6	11.4	10.7	-/-				
Channel	5745 MHz	5785 MHz	5805 MHz	5825 MHz				
Including duty cycle correction factor	10.3	10.8	7.4	9.0				

OFDM / n HT40 – mode	Maximum output power conducted [dBm]						
Channel	5190 MHz	5230 MHz	5270 MHz	5310 MHz			
Including duty cycle correction factor	5.5	5.8	11.1	7.3			
Channel	5510 MHz	5550 MHz	5630 MHz	5670 MHz			
Including duty cycle correction factor	9.9	12.5	12.5	12.0			
Channel	5755 MHz	5795 MHz	-/-	-/-			
Including duty cycle correction factor	12.8	13.1	-/-	-/-			

Result: antenna port 2

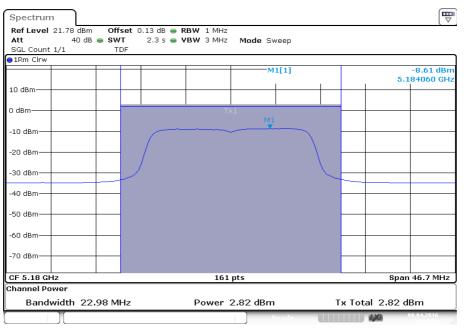
OFDM / a – mode	Maximum output power conducted [dBm]						
Channel	5180 MHz	5200 MHz	5300 MHz	5320 MHz			
Including duty cycle correction factor	3.3	3.1	10.2	10.1			
Channel	5500 MHz	5600 MHz	5700 MHz	-/-			
Including duty cycle correction factor	10.8	9.2	8.1	-/-			
Channel	5745 MHz	5785 MHz	5805 MHz	5825 MHz			
Including duty cycle correction factor	6.9	5.8	6.4	5.2			

OFDM / n HT20 – mode	Maximum output power conducted [dBm]						
Channel	5180 MHz	5200 MHz	5300 MHz	5320 MHz			
Including duty cycle correction factor	4.1	4.4	11.3	11.2			
Channel	5500 MHz	5600 MHz	5700 MHz	-/-			
Including duty cycle correction factor	10.7	11.5	11.1	-/-			
Channel	5745 MHz	5785 MHz	5805 MHz	5825 MHz			
Including duty cycle correction factor	11.4	11.1	8.3	9.1			

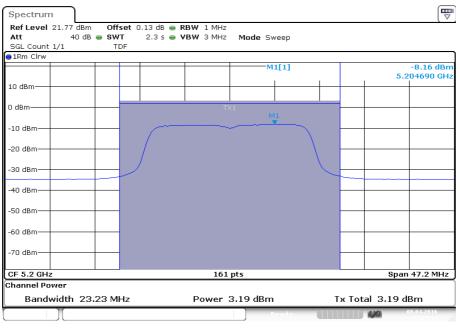
OFDM / n HT40 – mode	Maximum output power conducted [dBm]			
Channel	5190 MHz	5230 MHz	5270 MHz	5310 MHz
Including duty cycle correction factor	5.6	5.7	11.9	7.6
Channel	5510 MHz	5550 MHz	5630 MHz	5670 MHz
Including duty cycle correction factor	10.0	12.1	12.3	12.3
Channel	5755 MHz	5795 MHz	-/-	-/-
Including duty cycle correction factor	14.2	12.9	-/-	-/-

<u>Result:</u> antenna port 1 + antenna port 2

OFDM / a – mode	Maximum output power conducted [dBm]			
Channel	5180 MHz	5200 MHz	5300 MHz	5320 MHz
Including duty cycle correction factor	6.07	6.16	13.26	13.26
Channel	5500 MHz	5600 MHz	5700 MHz	-/-
Including duty cycle correction factor	14.01	12.06	10.64	-/-
Channel	5745 MHz	5785 MHz	5805 MHz	5825 MHz
Including duty cycle correction factor	9.71	8.86	9.07	8.16

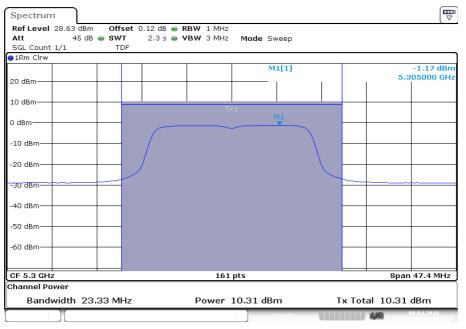

OFDM / n HT20 – mode	Maximum output power conducted [dBm]			
Channel	5180 MHz	5200 MHz	5300 MHz	5320 MHz
Including duty cycle correction factor	7.16	7.21	14.16	14.11
Channel	5500 MHz	5600 MHz	5700 MHz	-/-
Including duty cycle correction factor	13.66	14.46	13.91	-/-
Channel	5745 MHz	5785 MHz	5805 MHz	5825 MHz
Including duty cycle correction factor	13.90	13.96	10.88	12.06

OFDM / n HT40 – mode	Maximum output power conducted [dBm]			
Channel	5190 MHz	5210 MHz	5270 MHz	5310 MHz
Including duty cycle correction factor	8.56	8.76	14.53	10.46
Channel	5510 MHz	5550 MHz	5630 MHz	5670 MHz
Including duty cycle correction factor	12.96	15.31	15.41	15.16
Channel	5755 MHz	5795 MHz	-/-	-/-
Including duty cycle correction factor	16.57	16.01	-/-	-/-

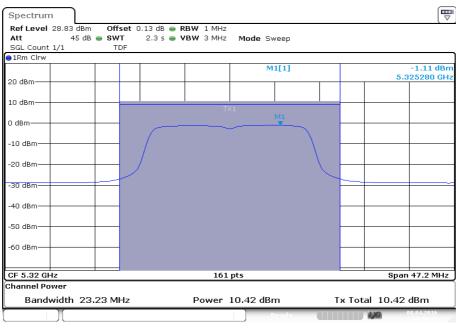

Plots: OFDM / a - mode, antenna port 1

Plot 1: 5180 MHz

Date: 8.APR.2016 14:28:21

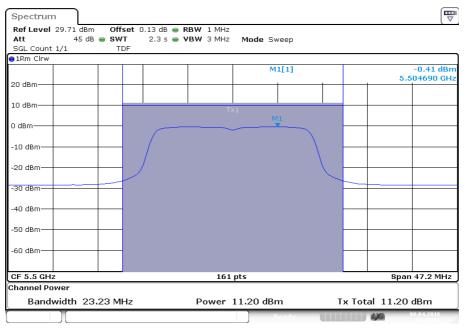

Plot 2: 5200 MHz

Date: 8.APR.2016 14:29:35

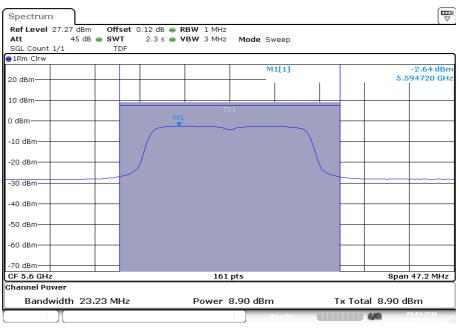


Plot 3: 5300 MHz

Date: 8.APR.2016 14:35:32

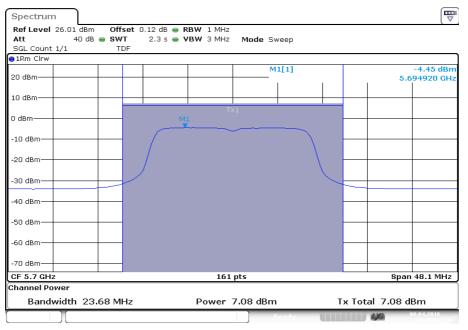

Plot 4: 5320 MHz

Date: 8.APR.2016 14:36:43

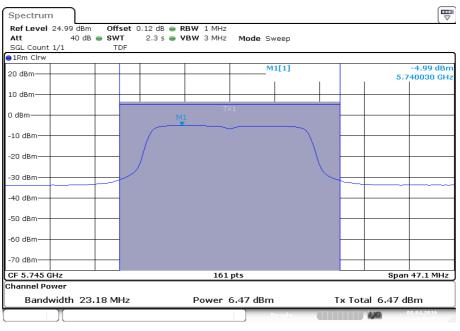


Plot 5: 5500 MHz

Date: 8.APR.2016 14:37:56

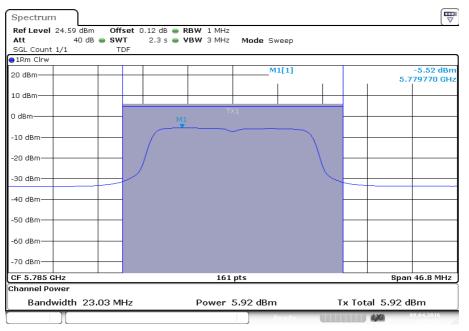

Plot 6: 5600 MHz

Date: 8.APR.2016 14:43:52

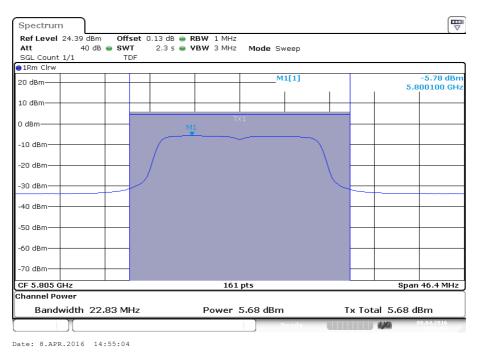


Plot 7: 5700 MHz

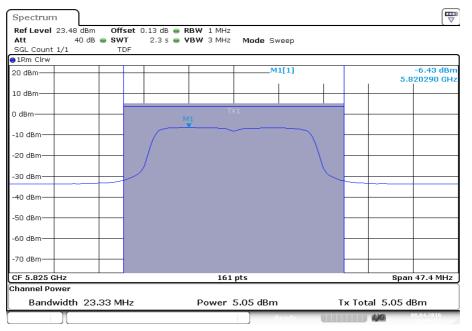
Date: 8.APR.2016 14:49:53


Plot 8: 5745 MHz

Date: 8.APR.2016 14:51:06

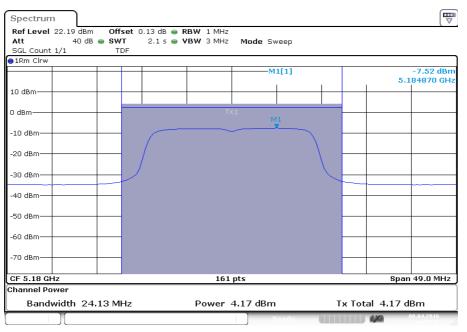


Plot 9: 5785 MHz

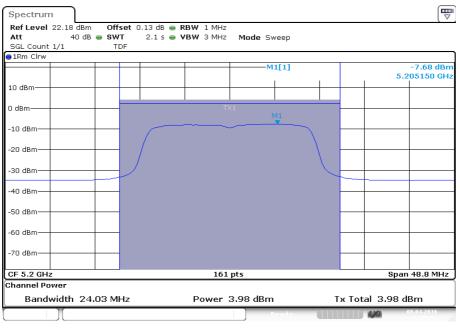

Date: 8.APR.2016 14:53:45

Plot 10: 5805 MHz

Plot 11: 5825 MHz

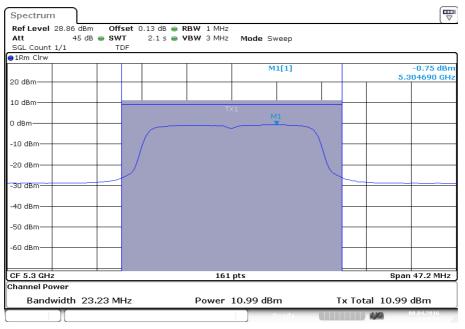


Date: 8.APR.2016 14:56:23

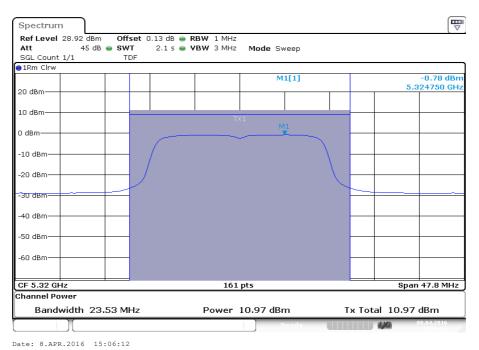

Plots: OFDM / n HT20 - mode, antenna port 1

Plot 1: 5180 MHz

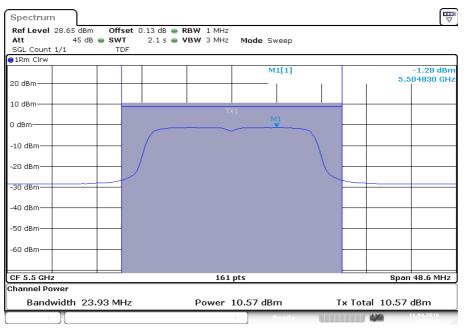
Date: 8.APR.2016 14:57:47


Plot 2: 5200 MHz

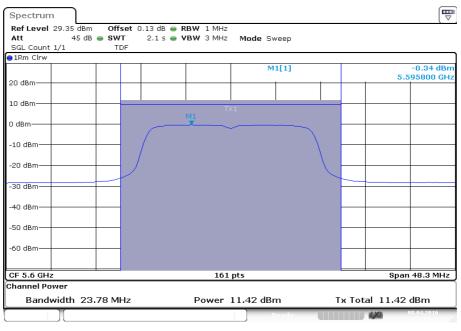
Date: 8.APR.2016 14:59:01



Plot 3: 5300 MHz

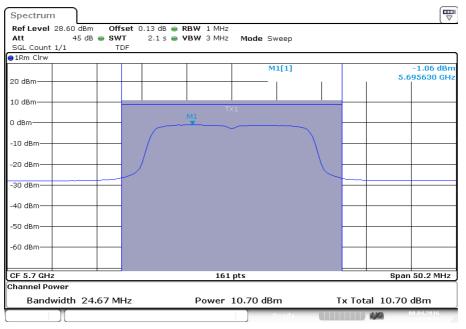

Date: 8.APR.2016 15:05:00

Plot 4: 5320 MHz

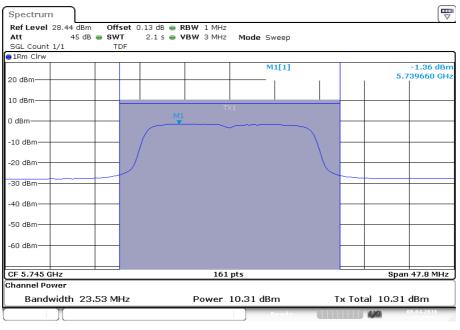


Plot 5: 5500 MHz

Date: 11.APR.2016 08:54:42

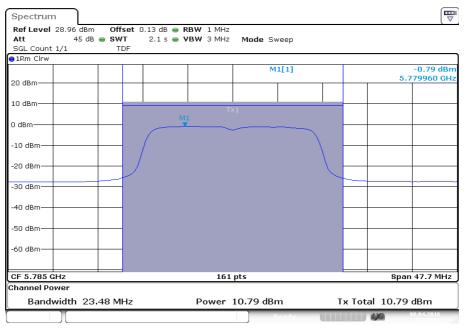

Plot 6: 5600 MHz

Date: 8.APR.2016 15:13:21



Plot 7: 5700 MHz

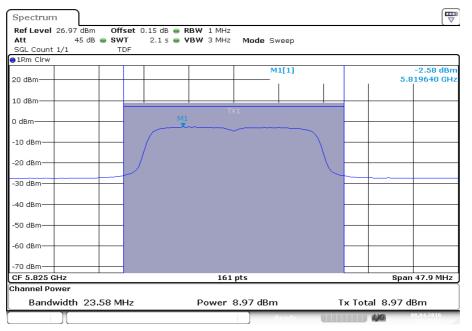
Date: 8.APR.2016 15:19:22


Plot 8: 5745 MHz

Date: 8.APR.2016 15:20:35

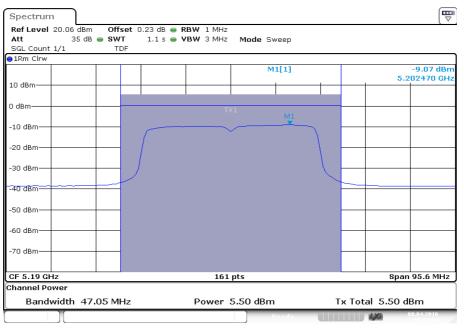
Plot 9: 5785 MHz

Date: 8.APR.2016 15:23:14

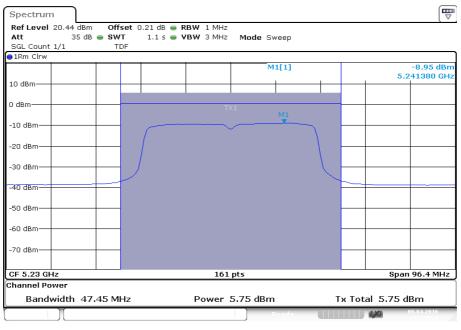

Plot 10: 5805 MHz

Date: 8.APR.2016 15:24:33

Plot 11: 5825 MHz

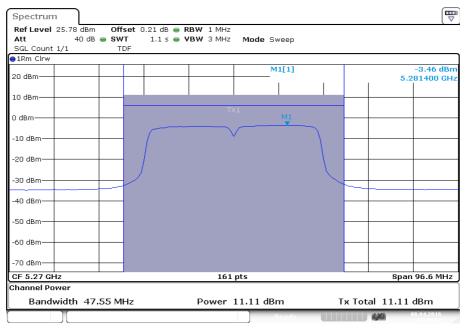


Date: 8.APR.2016 15:25:52

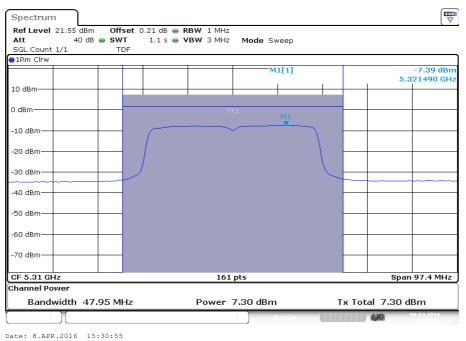

Plots: OFDM / n HT40 - mode, antenna port 1

Plot 1: 5190 MHz

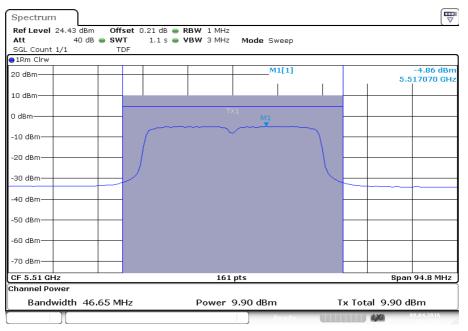
Date: 8.APR.2016 15:27:15


Plot 2: 5230 MHz

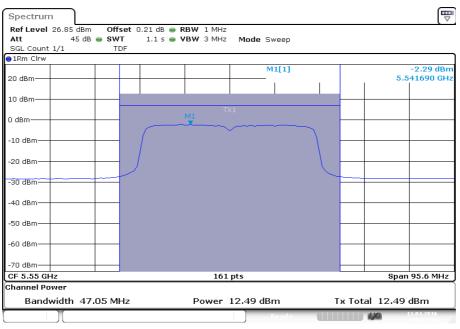
Date: 8.APR.2016 15:28:28



Plot 3: 5270 MHz

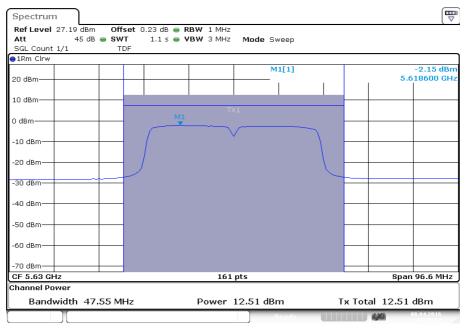

Date: 8.APR.2016 15:29:42

Plot 4: 5310 MHz

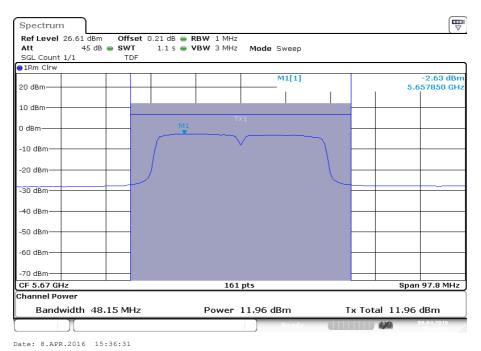


Plot 5: 5510 MHz

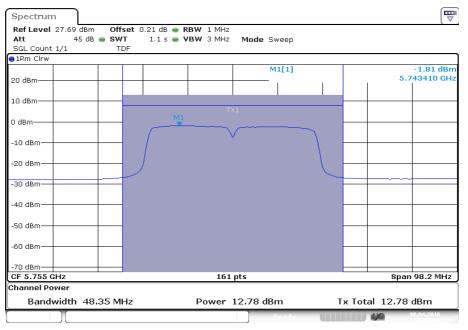
Date: 8.APR.2016 15:32:02


Plot 6: 5550 MHz

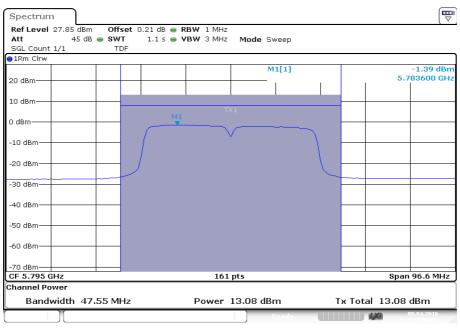
Date: 11.APR.2016 08:57:11



Plot 7: 5630 MHz


Date: 8.APR.2016 15:35:24

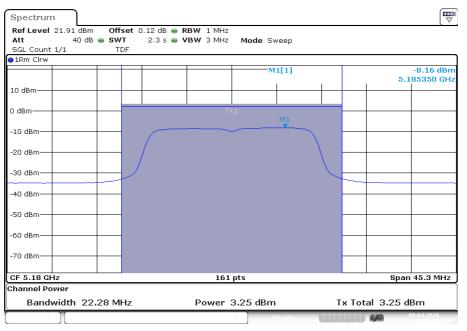
Plot 8: 5670 MHz



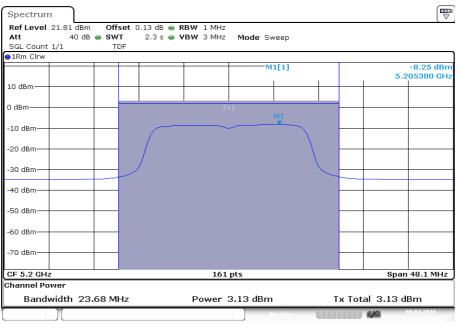
Plot 9: 5755 MHz

Date: 8.APR.2016 15:37:38

Plot 10: 5795 MHz

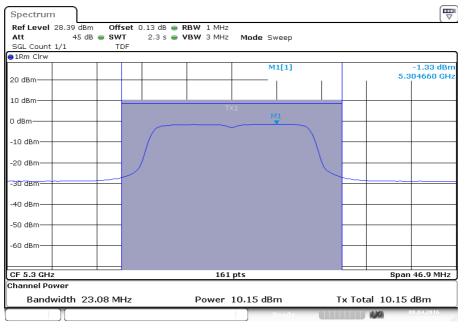


Date: 8.APR.2016 15:38:51

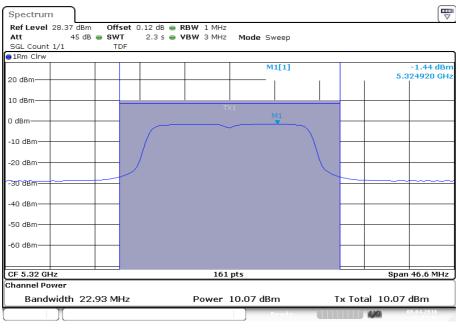

Plots: OFDM / a – mode, antenna port 2

Plot 12: 5180 MHz

Date: 8.APR.2016 13:05:26

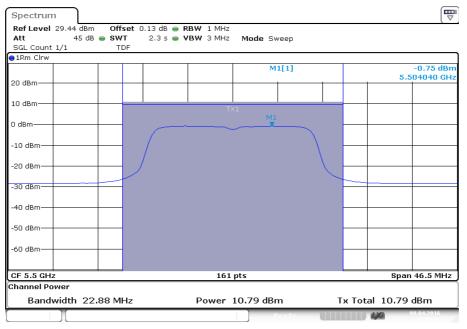

Plot 13: 5200 MHz

Date: 8.APR.2016 13:06:41

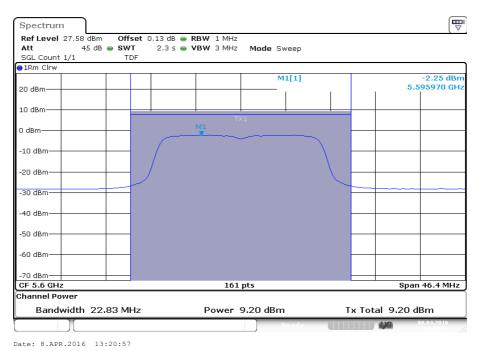


Plot 14: 5300 MHz

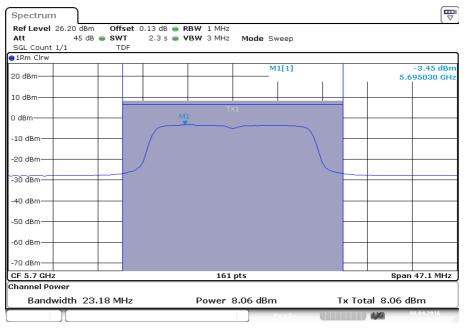
Date: 8.APR.2016 13:12:38


Plot 15: 5320 MHz

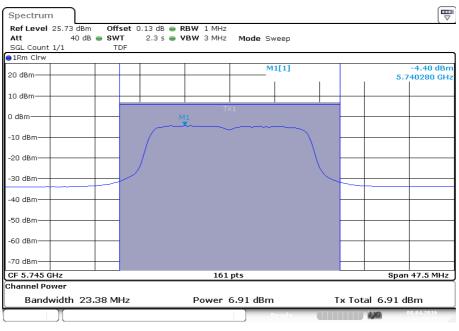
Date: 8.APR.2016 13:13:48



Plot 16: 5500 MHz

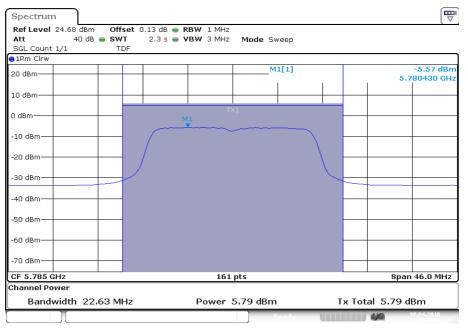

Date: 8.APR.2016 13:15:01

Plot 17: 5600 MHz

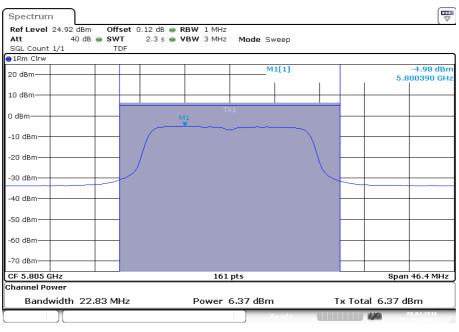


Plot 18: 5700 MHz

Date: 8.APR.2016 13:26:58

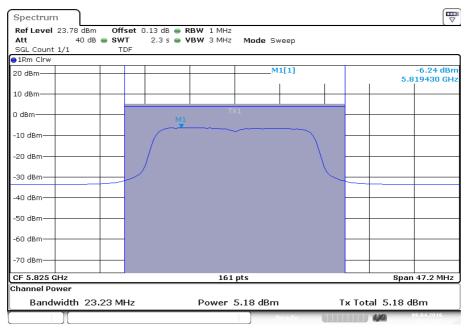

Plot 19: 5745 MHz

Date: 8.APR.2016 13:28:10



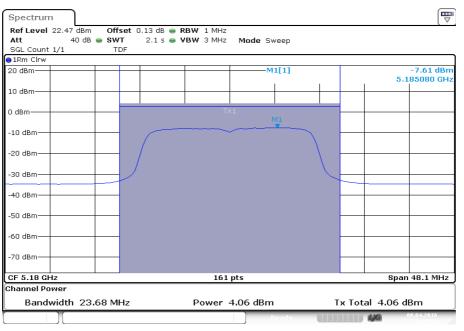
Plot 20: 5785 MHz

Date: 8.APR.2016 13:30:49

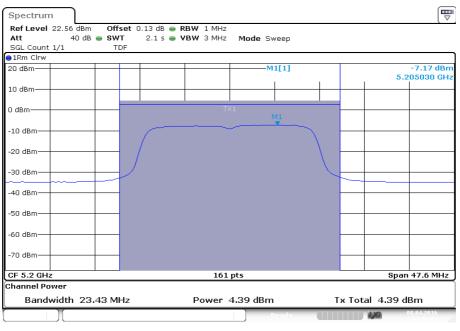

Plot 21: 5805 MHz

Date: 8.APR.2016 13:32:08

Plot 22: 5825 MHz

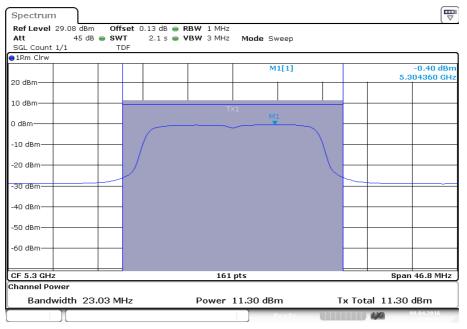


Date: 8.APR.2016 13:33:26

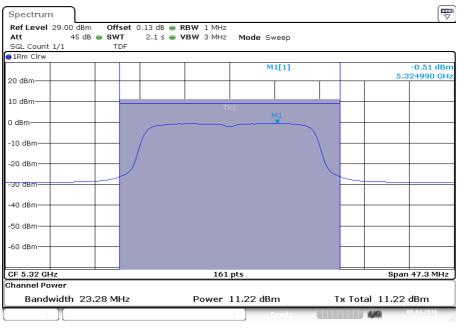

Plots: OFDM / n HT20 – mode, antenna port 2

Plot 12: 5180 MHz

Date: 8.APR.2016 13:34:51

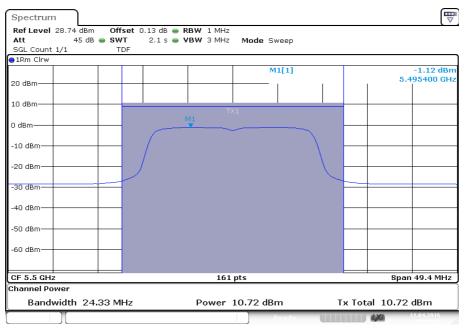

Plot 13: 5200 MHz

Date: 8.APR.2016 13:36:04

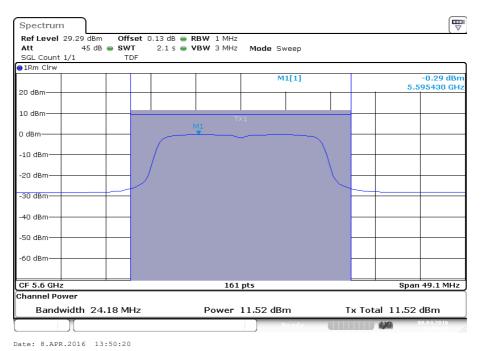


Plot 14: 5300 MHz

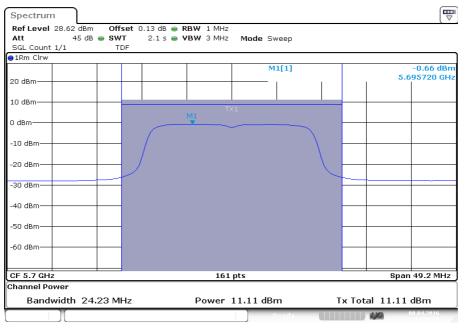
Date: 8.APR.2016 13:42:02


Plot 15: 5320 MHz

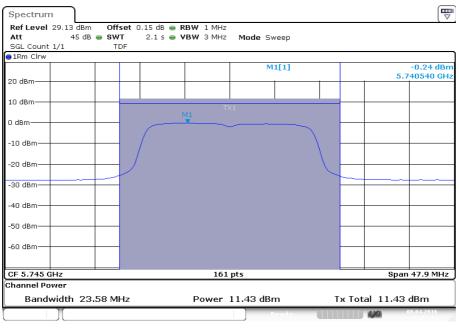
Date: 8.APR.2016 13:43:12



Plot 16: 5500 MHz

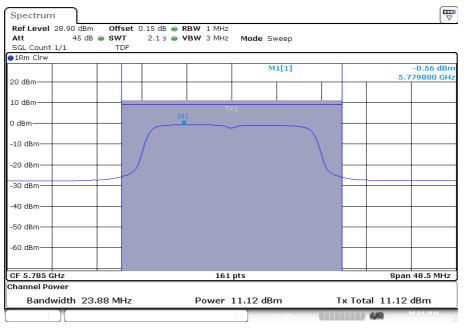

Date: 11.APR.2016 09:09:45

Plot 17: 5600 MHz

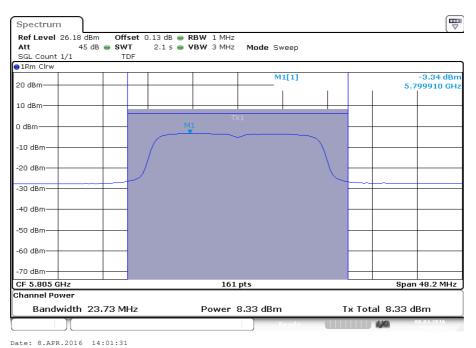


Plot 18: 5700 MHz

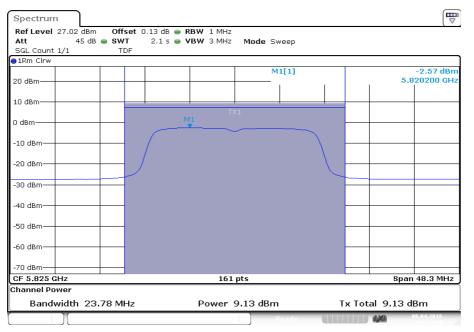
Date: 8.APR.2016 13:56:21


Plot 19: 5745 MHz

Date: 8.APR.2016 13:57:34

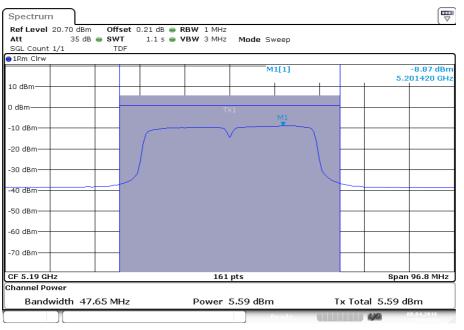


Plot 20: 5785 MHz

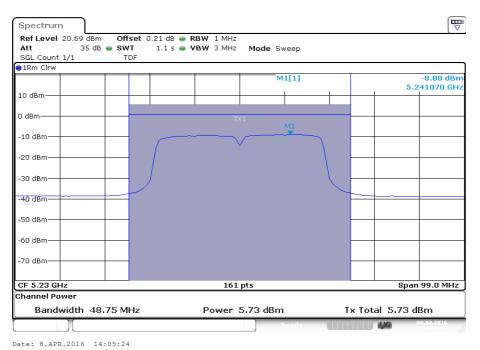

Date: 8.APR.2016 14:00:12

Plot 21: 5805 MHz

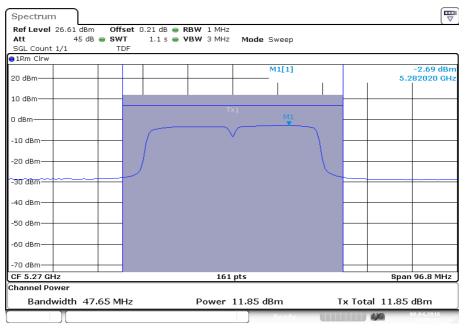
Plot 22: 5825 MHz



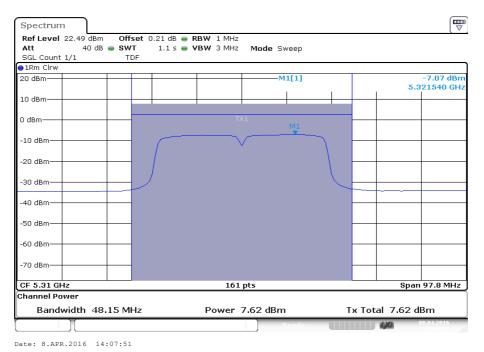
Date: 8.APR.2016 14:02:49


Plots: OFDM / n HT40 – mode, antenna port 2

Plot 11: 5190 MHz

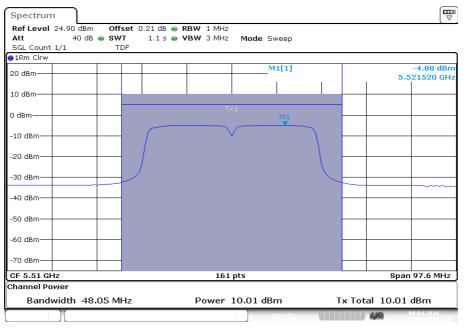

Date: 8.APR.2016 14:04:11

Plot 12: 5230 MHz

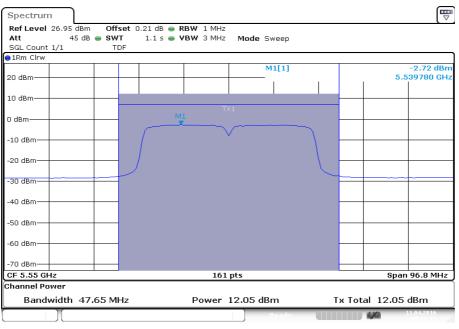


Plot 13: 5270 MHz

Date: 8.APR.2016 14:06:38

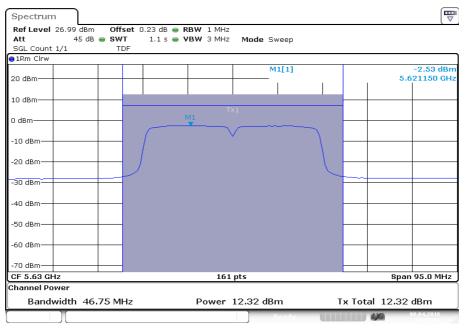

Plot 14: 5310 MHz

Page 58 of 289

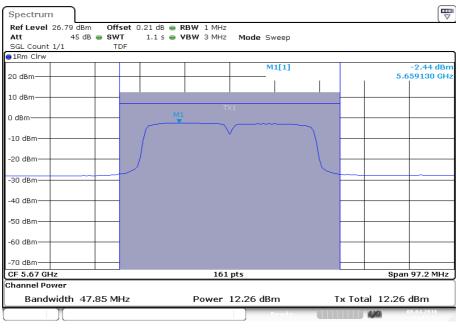


Plot 15: 5510 MHz

Date: 8.APR.2016 14:08:58

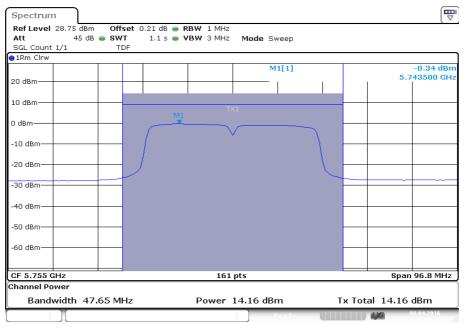

Plot 16: 5550 MHz

Date: 11.APR.2016 09:12:11

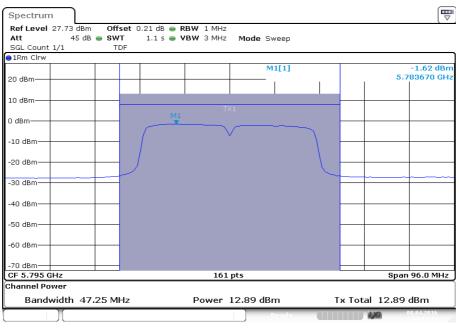


Plot 17: 5630 MHz

Date: 8.APR.2016 14:12:19


Plot 18: 5670 MHz

Date: 8.APR.2016 14:13:25



Plot 19: 5755 MHz

Date: 8.APR.2016 14:14:32

Plot 20: 5795 MHz

Date: 8.APR.2016 14:15:45