INDEX OF SUBMITTED MEASURED DATA

This exhibit contains the measured data for this equipment as follows:

EXHIBIT 6A - RF Power Output

EXHIBIT 6B - Transmit Audio Response

6B-1 - 158.55 MHz, 12.5 kHz Channel Spacing

6B-2 - 158.55 MHz, 25 kHz Channel Spacing (Part 22, 80)

EXHIBIT 6C - Transmit Audio Low pass Filter Response

6C-1 - 158.55 MHz, 12.5 kHz Channel Spacing

6C-2 - 158.55 MHz, 25 kHz Channel Spacing (Part 22, 80)

EXHIBIT 6D - Modulation Limiting Characteristics

6D-1 - 158.55 MHz, 12.5 kHz Channel Spacing

6D-2 - 158.55 MHz, 25 kHz Channel Spacing (Part 22, 80)

EXHIBIT 6E – Modulation Techniques and Occupied Bandwidth

6E-1: 138.0125 MHz, 12.5 kHz Channel Spacing, 2500Hz Audio Modulation only, 11K0F3E Mask D (Not for FCC Review)

6E-2: 138.0125 MHz, O.153 Test Pattern 4FSK Voice and Data Modulation, 7K60F1W Mask D (Not for FCC Review)

6E-3: 138.0125 MHz, O.153 Test Pattern 4FSK Data Modulation only, 7K60F1D Mask D (Not for FCC Review)

6E-4: 138.0125 MHz, O.153 Test Pattern 4FSK Voice Modulation only, 7K60F1E Mask D (Not for FCC Review)

6E-5: 158.55 MHz, 12.5 kHz Channel Spacing, 2500Hz Audio Modulation only, 11K0F3E Mask D

6E-6: 158.55 MHz, O.153 Test Pattern 4FSK Voice and Data Modulation, 7K60F1W Mask D

6E-7: 158.55 MHz, O.153 Test Pattern 4FSK Data Modulation only, 7K60F1D Mask D

6E-8: 158.55 MHz, O.153 Test Pattern 4FSK Voice Modulation only, 7K60F1E Mask D

6E-9: 173.3875 MHz, 12.5 kHz Channel Spacing, 2500Hz Audio Modulation only, 11K0F3E Mask D

6E-10: 173.3875 MHz, O.153 Test Pattern 4FSK Voice and Data Modulation, 7K60F1W Mask D

6E-11: 173.3875 MHz, O.153 Test Pattern 4FSK Data Modulation only, 7K60F1D Mask D

6E-12: 173.3875 MHz, O.153 Test Pattern 4FSK Voice Modulation only, 7K60F1E Mask D

6E-13: 138.0125 MHz, 25 kHz Channel Spacing, 2500Hz Audio Modulation only, 16K0F3E Mask B (Not for FCC Review)

6E-14: 158.55 MHz, 25 kHz Channel Spacing, 2500Hz Audio Modulation only, 16K0F3E Mask B, Part 22 limit, Mask 80.211(f) (Part 22, 80)

6E-15: 161.7 MHz, 25 kHz Channel Spacing, 2500Hz Audio Modulation only, 16K0F3E Mask B, Mask 74.462 (c) (Part 74)

6E-16: 173.3875 MHz, 25 kHz Channel Spacing, 2500Hz Audio Modulation only, 16K0F3E Mask B (Not for FCC Review)

6E-17: 158.55 MHz, 25 kHz Channel Spacing, 2500Hz Audio Modulation only, 16K0F3E Mask 80.211 (c) (Part 80)

EXHIBIT 6F - Conducted Spurious Emissions

6F-1 - 54 Watts, 138.0125 MHz, Analog 25 kHz Channel Spacing (Not for FCC Review)

6F-2 - 54 Watts, 158.55 MHz, Analog 25 kHz Channel Spacing (Part 22, 80)

6F-3 - 54 Watts, 161.7 MHz, Analog 25 kHz Channel Spacing (Part 74)

6F-4 - 54 Watts, 173.3875 MHz, Analog 25 kHz Channel Spacing (Not for FCC Review)

6F-5 – 25 Watts, 158.55 MHz, Analog 25 kHz Channel Spacing (Part 22, 80)

6F-6 - 25 Watts, 161.7 MHz, Analog 25 kHz Channel Spacing (Part 74)

6F-7 – 54 Watts, 138.0125 MHz Digital 12.5 kHz Channel Spacing (Not for FCC Review)

6F-8 - 54 Watts, 158.55 MHz, Digital 12.5 kHz Channel Spacing

6F-9 - 54 Watts, 161.7 MHz, Digital 12.5 kHz Channel Spacing

6F-10 - 54 Watts, 173.3875 MHz, Digital 12.5 kHz Channel Spacing

6F-11 - 25 Watts, 158.55 MHz, Digital 12.5 kHz Channel Spacing

6F-12 - 25 Watts, 161.7 MHz, Digital 12.5 kHz Channel Spacing

EXHIBIT 6G - Radiated Spurious Emissions

6G-1 – 54 Watts, 138.0125 MHz, Analog 25 kHz Channel Spacing (Not for FCC Review)

6G-2 - 54 Watts, 158.55 MHz, Analog 25 kHz Channel Spacing (Part 22, 80)

6G-3 – 54 Watts, 161.7 MHz, Analog 25 kHz Channel Spacing (Part 74)

6G-4 - 54 Watts, 173.3875 MHz, Analog 25 kHz Channel Spacing (Not for FCC Review)

6G-5 - 25 Watts, 158.55 MHz, Analog 25 kHz Channel Spacing (Part 22, 80)

6G-9 – 25 Watts, 161.7 MHz, Analog 25 kHz Channel Spacing (Part 74)

6G-7 – 54 Watts, 138.0125 MHz Digital 12.5 kHz Channel Spacing (Not for FCC Review)

6G-8 - 54 Watts, 158.55 MHz, Digital 12.5 kHz Channel Spacing

6G-9 - 54 Watts, 161.7 MHz, Digital 12.5 kHz Channel Spacing

6G-10 - 54 Watts, 173.3875 MHz, Digital 12.5 kHz Channel Spacing

6G-11 - 25 Watts, 158.55 MHz, Digital 12.5 kHz Channel Spacing

6G-12 - 25 Watts, 161.7 MHz, Digital 12.5 kHz Channel Spacing

EXHIBIT 6H – Frequency Stability

6H-1 – 158.55 MHz Frequency Stability vs. Temperature

6H-2 - 158.55 MHz Frequency Stability vs. Voltage

EXHIBIT 6I – Transient Frequency Behavior

6I-1 - 158.55 MHz, 12.5 kHz Channel Spacing Key-Up Attack Time

6I-2 - 158.55 MHz, 12.5 kHz Channel Spacing De-Key Decay Time

6I-3 – 158.55 MHz, 25 kHz Channel Spacing Key-Up Attack Time (Part 22, 80)

6I-4 - 158.55 MHz, 25 kHz Channel Spacing De-Key Decay Time (Part 22, 80)

** Please note that the above data were taken following the procedures and limits outlined in TIA 603-D and RSS 119 during the month of September 2015. See Table 2 in Ex07 test procedures

Radio model tested: AAM28JQN9RA1AN

Important Note: The data in this test report meets or exceeds the technical requirements of FCC Rule Parts 22, 74, 80 and 90.

EXHIBIT 6A - RF POWER OUTPUT

HIGH POWER SETTING, FREQUENCY 138.0125 MHz (Not for FCC Review)

Measured RF Output Power:53.4WattsMeasured DC Voltage:13.2VoltsMeasured DC Input Current:8.45Amperes

LOW POWER SETTING, FREQUENCY 138.0125 MHz (Not for FCC Review)

Measured RF Output Power: 24.6 Watts
Measured DC Voltage: 13.2 Volts
Measured DC Input Current: 5.71 Amperes

HIGH POWER SETTING, FREQUENCY 158.55 MHz

Measured RF Output Power:53.6WattsMeasured DC Voltage:13.2VoltsMeasured DC Input Current:8.56Amperes

HIGH POWER SETTING, FREQUENCY 158.55 MHz (Part 80)

Measured RF Output Power:49.2WattsMeasured DC Voltage:13.2VoltsMeasured DC Input Current:8.44Amperes

LOW POWER SETTING, FREQUENCY 158.55 MHz

Measured RF Output Power:24.5WattsMeasured DC Voltage:13.2VoltsMeasured DC Input Current:5.91Amperes

HIGH POWER SETTING, FREQUENCY 161.7 MHz

Measured RF Output Power: 53.5 Watts
Measured DC Voltage: 13.2 Volts
Measured DC Input Current: 8.4 Amperes

LOW POWER SETTING, FREQUENCY 161.7 MHz

Measured RF Output Power:24.8WattsMeasured DC Voltage:13.2VoltsMeasured DC Input Current:5.84Amperes

HIGH POWER SETTING, FREQUENCY 173.3875 MHz

Measured RF Output Power: 53.6 Watts
Measured DC Voltage: 13.2 Volts
Measured DC Input Current: 8.9 Amperes

LOW POWER SETTING, FREQUENCY 173.3875 MHz

Measured RF Output Power:24.6WattsMeasured DC Voltage:13.2VoltsMeasured DC Input Current:5.71Amperes

EXHIBIT 6B - Transmit Audio Response

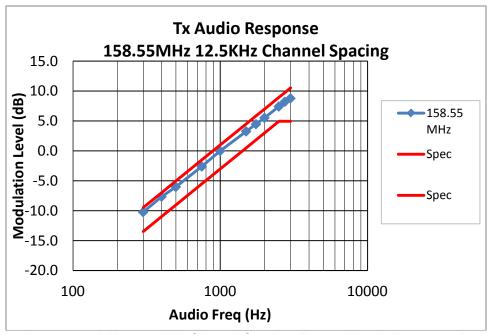


Figure 6B-1: 158.55 MHz, 12.5 kHz Channel Spacing, Transmit Audio Frequency Response

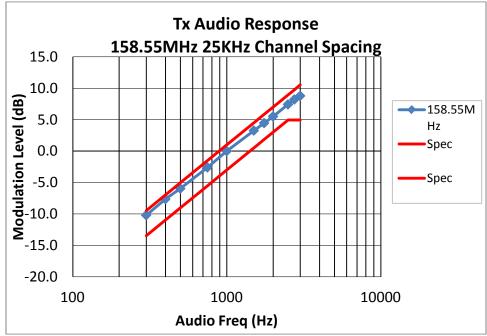


Figure 6B-2: 158.55 MHz, 25 kHz Channel Spacing, Transmit Audio Frequency Response (Part 22, 80)

EXHIBIT 6C - Transmit Audio Post Limiter Low Pass Filter Response

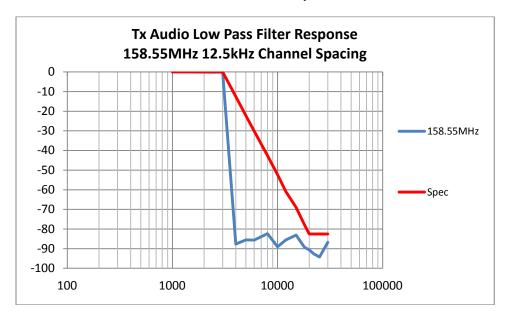


Figure 6C-1: 158.55 MHz, 12.5 kHz Channel Spacing, Transmit Audio Low Pass Filter Response

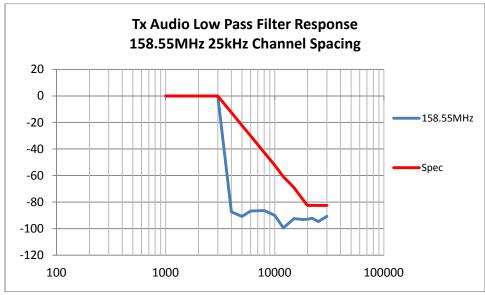


Figure 6C-2: 158.55 MHz, 25 kHz Channel Spacing, Transmit Audio Low Pass Filter Response (Part 22, 80)

EXHIBIT 6D - Modulation Limiting Characteristic

Figure 6D-1: 158.55 MHz, 12.5 KHz Channel Spacing, Modulation Limiting

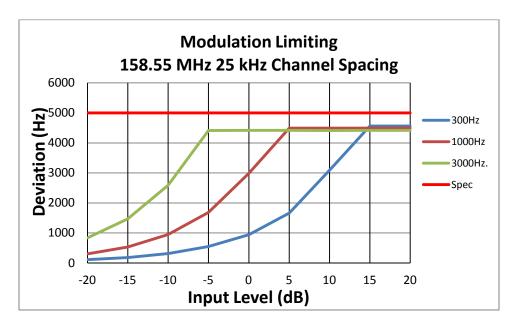


Figure 6D-2: 158.55 MHz, 25 KHz Channel Spacing, Modulation Limiting (Part 22, 80)

EXHIBIT 6E - Modulation Techniques

The transmitter is capable of the following types of modulation:

- i) Modulation of PL (Private Line) Direct FM tone modulation of 67 Hz to 250.3 Hz at 15% of full system deviation. Also referred to as TPL (Tone Private Line).
- ii) Modulation of DPL (Digital Private Line) Direct FM modulation at 134 bps at 15% of full system deviation.
- iii) Modulation of 2000/3000 Hz FSK Data FM modulation at nominally 60% of full system deviation.
- iv) Modulation of DTMF (Dual Tone Multi Frequency) FM modulation at nominally 60% of full system deviation
- v) Modulation of 9600 bps 4 level FSK Data

Standard Audio Modulation (25 kHz Channelization, Analog Voice)

Per CFR Title 47, Part 2, Section 2.201, the Carson's Rule calculation for necessary bandwidth, BW = 2M +2DK, where M = maximum modulating frequency in Hz, D = peak deviation in Hz, and K=1, is as follows:

In this case the maximum modulating frequency is 3.0 kHz with a 5.0 kHz deviation.

BW = 2(M+D) = 2*(3.0 kHz + 5.0 kHz) = 16 kHz (16K0 designator)

Per CFR Title 47, Part 2, Section 2.201:

Frequency Modulation F	
A single channel containing analogue information 3	
Telephony (including sound broadcasting) E	

The complete emissions designator for this transmitter is **16K0F3E**.

Standard Audio Modulation (12.5 kHz Channelization, Analog Voice)

Per CFR Title 47, Part 2, Section 2.201, the Carson's Rule calculation for necessary bandwidth, BW = 2M +2DK, where M = maximum modulating frequency in Hz, D = peak deviation in Hz, and K=1, is as follows:

In this case the maximum modulating frequency is 3.0 kHz with a 2.5 kHz deviation.

BW = 2(M+D) = 2*(3.0 kHz + 2.5 kHz) = 11 kHz (11K0 designator)

Per CFR Title 47, Part 2, Section 2.201:

Frequency Modulation	F
A single channel containing analogue information	3
Telephony (including sound broadcasting)	Ε

The complete emissions designator for this transmitter is 11K0F3E.

4 Level FSK Digital Modulation Techniques

The modulation sends 4800 symbols/sec with each symbol conveying 2 bits of information for a data rate of 9600 bps in a 12.5 kHz channel, which is equivalent to 4800 bps per 6.25kHz. The maximum deviation $\,D$, of the symbol is defined as:

$$D = 3h/2T$$

where:

h is the deviation index defined for the modulation

T is the symbol time (1/4800) in seconds

The deviation index, h, is 0.27. This yields a symbol deviation of 1.944 kHz at the symbol center. The mapping between symbols and bits is shown below:

Informati	on Bits	Cymphol	4FCK Doviction				
Bit 1	Bit 0	Symbol	4FSK Deviation				
0	1	1 +3 +1.					
0	0	+1	+0.648 kHz				
1	0	-1	-0.648 kHz				
1	1	-3	-1.944 kHz				

A Square Root Raised Cosine Filter is implemented for the modulation low pass filter. The input to the modulation low pass filter consists of a series of impulses separated in time by 208.33 microseconds (1/4800 sec). The group delay of the filter is flat over the passband for |f| < 2880 Hz. The magnitude response of the filter is given by the following formula.

|F(f)| = magnitude response of the Square Root Raised Cosine Filter

|F(f)| = 1 for $|f| \le 1920$ Hz

 $|F(f)| = |\cos(\pi \Box f / 1920)| \text{ for } 1920 \text{ Hz} < |f| 2880 \text{ Hz}$

|F(f)| = 0 for |f| > 2880 Hz

where f = frequency in hertz.

The 4FSK modulator consists of a Square Root Raised Cosine Filter, cascaded with a frequency modulator.

Dibits	F (f)	Frequency	4FSK
Input	Filter	Modulator	Output

4 Level FSK Digital Modulation (12.5 kHz Channelization, Digital Data)

Measurement's per Rule Part 2.202(c)(4) where employed because Part 2.202(g) Table III A formulation produces an excessive result using the value of K recommended in the Table. Therefore, the 99% energy rule (Title 47 CFR 2.989) was used for digital mode and is more accurate than Carson's rule. It states that 99% of the modulation energy falls within X kHz, which in this case is 7.6 kHz (**7K60** designator).

Per CFR Title 47, Part 2, Section 2.201:

Frequency Modulation	F
A single channel containing quantized or digital informat	ion without the use of a modulating sub-carrier
	1 Č
Data Transmission, telemetry, telecommand	D

Note: This product utilizes a Time Division Multiple Access (TDMA) protocol.

The complete emissions designator for this transmitter is **7K60F1D**.

4 Level FSK Digital Modulation (12.5 kHz Channelization, Digital Voice)

Measurement's per Rule Part 2.202(c)(4) where employed because Part 2.202(g) Table III A formulation produces an excessive result using the value of K recommended in the Table. Therefore the 99% energy rule (title 47CFR2.989)

was used for digital mode and is more accurate than Carson's rule. It states that 99% of the modulation energy falls within X kHz, which in this case is 7.6 kHz (**7K60** designator).

Per CFR Title 47, Part 2, Section 2.201:

Frequency Modulation	F
A single channel containing quantized or digital inform	
excluding time-division multiplex	1 ·
Telephony (including sound broadcasting)	E

Note: This product utilizes a Time Division Multiple Access (TDMA) protocol.

The complete emissions designator for this transmitter is **7K60F1E**.

4 Level FSK Digital Modulation (12.5 kHz Channelization, Digital Voice and Data)

Measurement's per Rule Part 2.202(c)(4) where employed because Part 2.202(g) Table III A formulation produces an excessive result using the value of K recommended in the Table. Therefore the 99% energy rule (title 47CFR2.989) was used for digital mode and is more accurate than Carson's rule. It states that 99% of the modulation energy falls within X kHz, which in this case is 7.6 kHz (**7K60** designator).

Per CFR Title 47, Part 2, Section 2.201:

Frequency Modulation	F
A single channel containing quantized or digital information without the use of	
excluding time-division multiplex	1
Combination of Data Transmission, telemetry, telecommand (D), and Telepho	onv (E) W

Note: This product utilizes a Time Division Multiple Access (TDMA) protocol.

The complete emissions designator for this transmitter is 7K60F1W.

<u>Digital Modulation (12.5 kHz Channelization, Digital Data)</u>

Measurement's per Rule Part 2.202(c)(4) where employed because Part 2.202(g) Table III A formulation produces an excessive result using the value of K recommended in the Table. Therefore, the 99% energy rule (Title 47 CFR 2.989) was used for digital mode and is more accurate than Carson's rule. It states that 99% of the modulation energy falls within X kHz, which in this case is 7.6 kHz (**7K60** designator).

Per CFR Title 47, Part 2, Section 2.201:

Frequency Modulation F	
Case not otherwise covered X	
Data Transmission, telemetry, telecommand D	

Note: This product utilizes a Time Division Multiple Access (TDMA) protocol.

The complete emissions designator for this transmitter is **7K60FXD**.

Digital Modulation (12.5 kHz Channelization, Digital Voice)

Measurement's per Rule Part 2.202(c)(4) where employed because Part 2.202(g) Table III A formulation produces an excessive result using the value of K recommended in the Table. Therefore the 99% energy rule (title 47CFR2.989) was used for digital mode and is more accurate than Carson's rule. It states that 99% of the modulation energy falls within X kHz, which in this case is 7.6 kHz (**7K60** designator).

Per CFR Title 47, Part 2, Section 2.201:

Frequency Modulation	F
Case not otherwise covered	X
Telephony (including sound broadcasting)	Ε

Note: This product utilizes a Time Division Multiple Access (TDMA) protocol.

The complete emissions designator for this transmitter is **7K60FXE**.

OCCUPIED BANDWIDTH MEASUREMENT

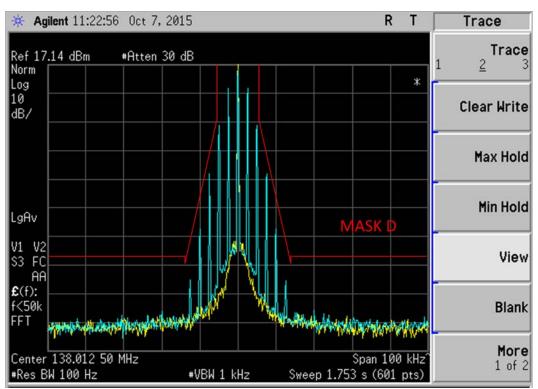
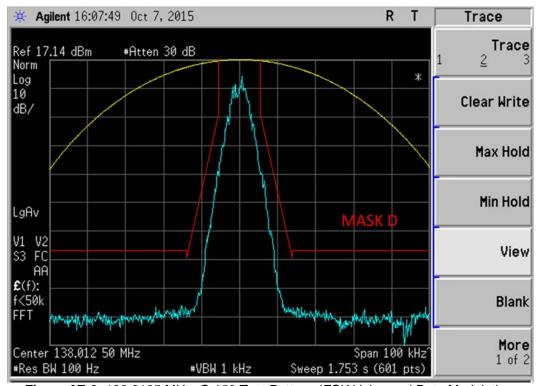



Figure 6E-1: 138.0125 MHz, 12.5 kHz Channel Spacing, 2500Hz Audio Modulation only, 11K0F3E Mask D (Not for FCC Review)

Figure 6E-2: 138.0125 MHz, O.153 Test Pattern 4FSK Voice and Data Modulation, **7K60F1W Mask D** (Not for FCC Review)

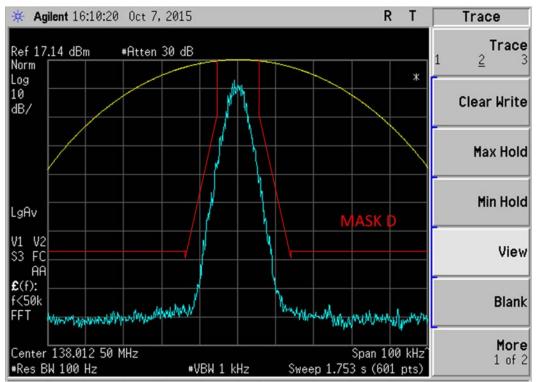
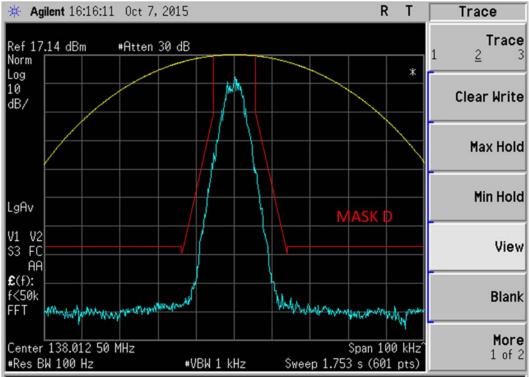
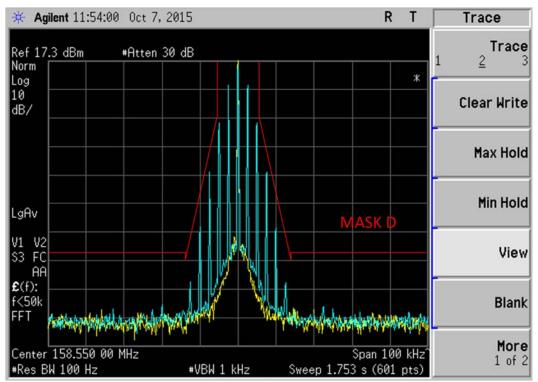




Figure 6E-3: 138.0125 MHz, O.153 Test Pattern 4FSK Data Modulation only, 7K60F1D Mask D (Not for FCC Review)

Figure 6E-4: 138.0125 MHz, O.153 Test Pattern 4FSK Voice Modulation only, **7K60F1E Mask D** (Not for FCC Review)

Figure 6E-5: 158.55 MHz, 12.5 kHz Channel Spacing, 2500Hz Audio Modulation only, **11K0F3E Mask D**

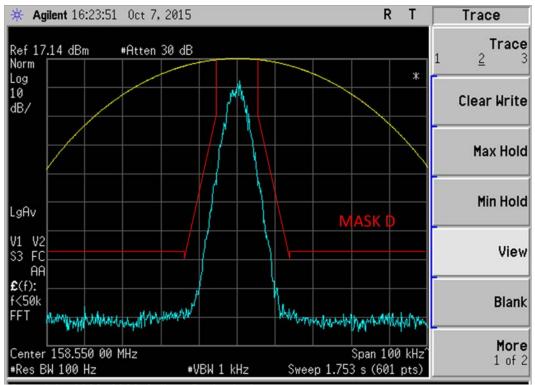


Figure 6E-6: 158.55 MHz, O.153 Test Pattern 4FSK Voice and Data Modulation, 7K60F1W Mask D

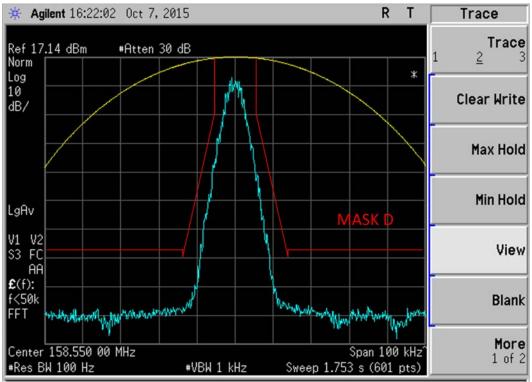


Figure 6E-7: 158.55 MHz, O.153 Test Pattern 4FSK Data Modulation only, 7K60F1D Mask D

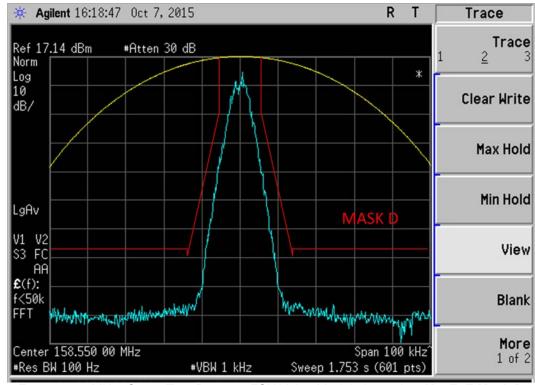


Figure 6E-8: 158.55 MHz, O.153 Test Pattern 4FSK Voice Modulation only, 7K60F1E Mask D

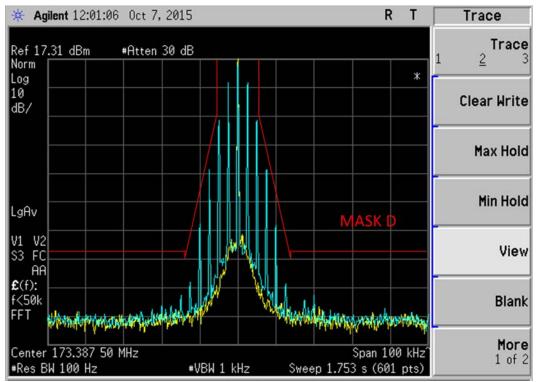


Figure 6E-9: 173.3875MHz, 12.5 kHz Channel Spacing, 2500Hz Audio Modulation only, 11K0F3E Mask D

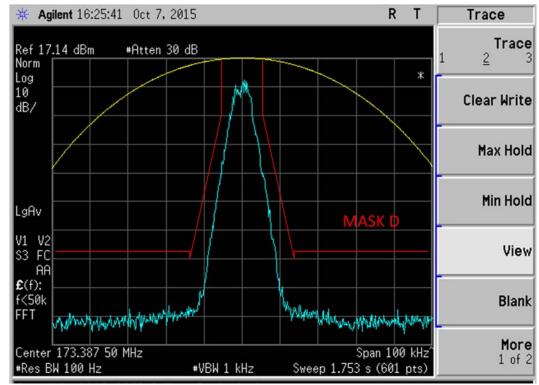


Figure 6E-10: 173.3875MHz, O.153 Test Pattern 4FSK Voice and Data Modulation, 7K60F1W Mask D

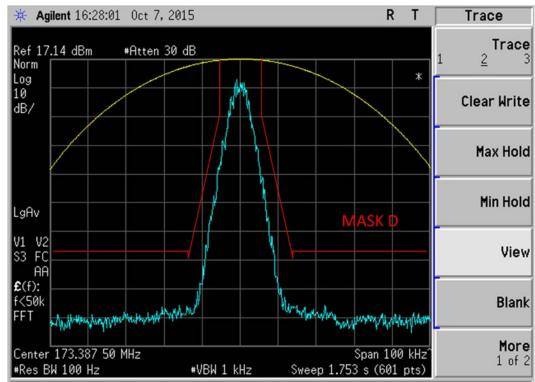


Figure 6E-11: 173.3875MHz, O.153 Test Pattern 4FSK Data Modulation only, 7K60F1D Mask D

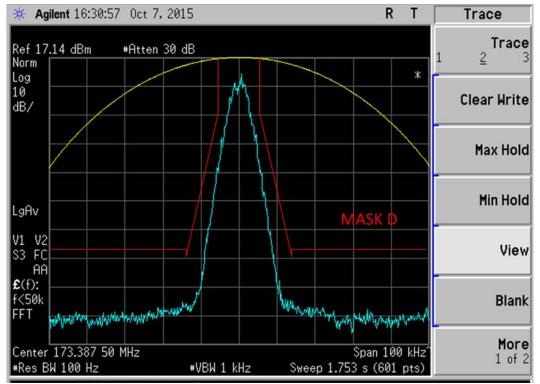


Figure 6E-12: 173.3875MHz, O.153 Test Pattern 4FSK Voice Modulation only, 7K60F1E Mask D

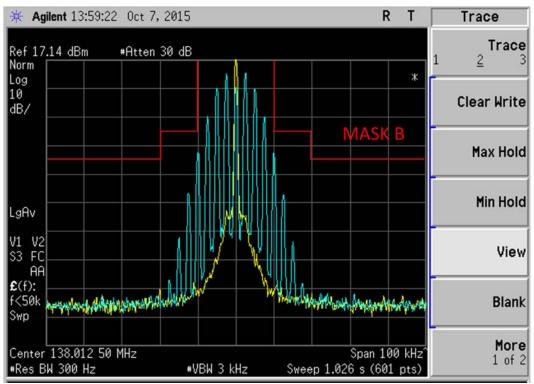


Figure 6E-13: 138.0125 MHz, 25 kHz Channel Spacing, 2500Hz Audio Modulation only, 16K0F3E Mask B (Not for FCC Review)

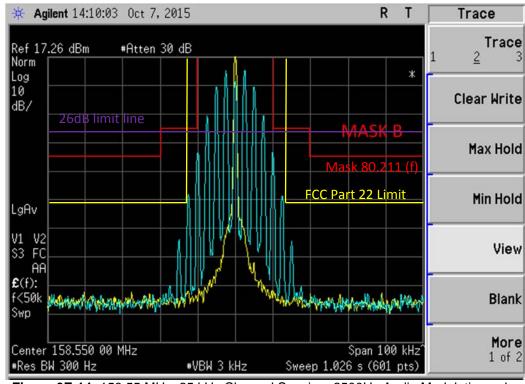


Figure 6E-14: 158.55 MHz, 25 kHz Channel Spacing, 2500Hz Audio Modulation only, 16K0F3E Mask B, Part 22 limit, Mask 80.211 (f) (Part 22, 80)

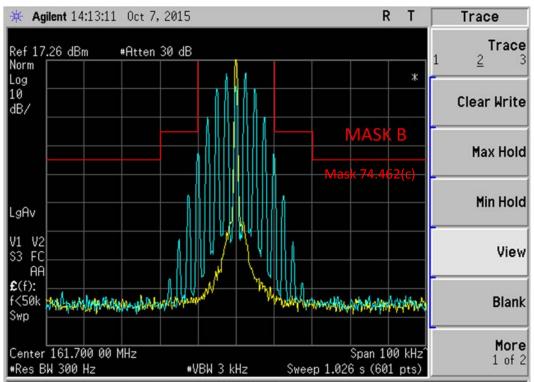


Figure 6E-15: 161.7 MHz, 25 kHz Channel Spacing, 2500Hz Audio Modulation only, 16K0F3E Mask B, Mask 74.462 (c) (Part 74)

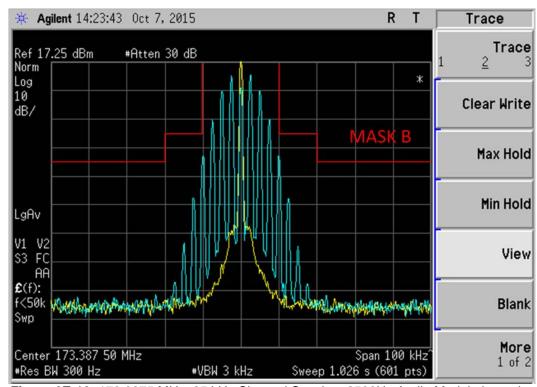


Figure 6E-16: 173.3875 MHz, 25 kHz Channel Spacing, 2500Hz Audio Modulation only, 16K0F3E Mask B (Not for FCC Review)

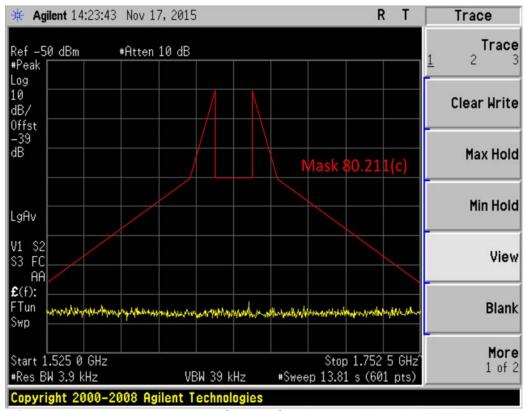


Figure 6E-17: 158.55 MHz, 25 kHz Channel Spacing, 2500Hz Audio Modulation only, 16K0F3E Mask 80.211 (c) (Part 80)

**NOTE:-

- For 4FSK Digital Modulation, 12.5 kHz Data 7K60F1D & 7K60FXD would be the same. Therefore only measurements with 7K60F1D shown above.
- For 4FSK Digital Modulation, 12.5 kHz Voice 7K60F1E & 7K60FXE would be the same. Therefore only measurements with 7K60F1E shown above.
- All measurements of Occupied Bandwidth which are shown on the above plots are measured using a Spectrum Analyzer
- Measurement using a Spectrum Analyzer must use a 30dB attenuation in order to avoid damage to it
- Therefore the reference power level (Ref) shown on each plot refers to its true power level

EXHIBIT 6F – Transmitter Conducted Spurious Emissions

Note: Display lines on graphs correspond to the FCC limit of – 13dBm (25 kHz) & -20dBm (12.5 kHz).

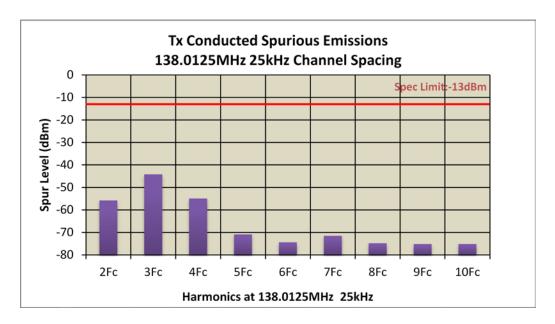


Figure 6F-1: 54 W Harmonic of Carrier 138.0125 MHz, Analog 25 kHz Channel Spacing (Not for FCC Review)

Figure 6F-2: 54 W Harmonic of Carrier 158.55 MHz, Analog 25 kHz Channel Spacing (Part 22, 80)

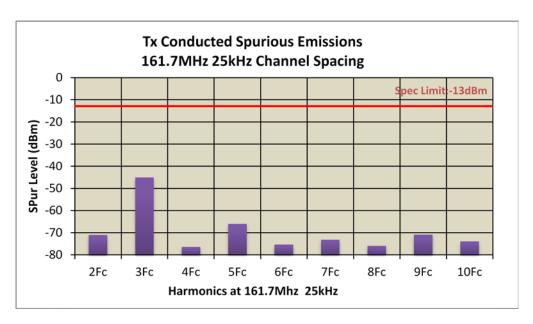
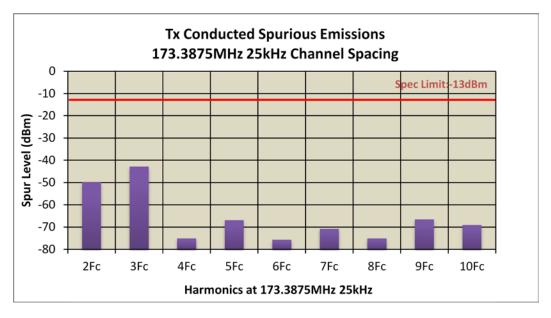



Figure 6F-3: 54 W Harmonic of Carrier 161.7 MHz, Analog 25 kHz Channel Spacing (Part 74)

Figure 6F-4: 54 W Harmonic of Carrier 173.3875 MHz, Analog 25 kHz Channel Spacing (Not for FCC Review)

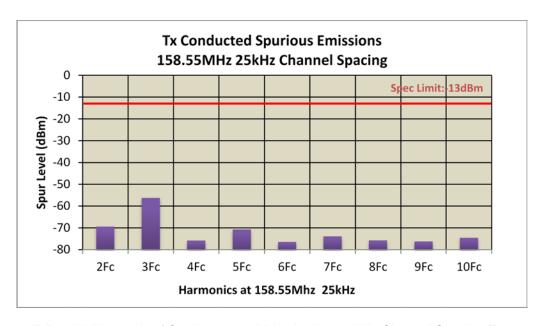


Figure 6F-5: 25W Harmonic of Carrier 158.55 MHz, Analog 25 kHz Channel Spacing (Part 22, 80)

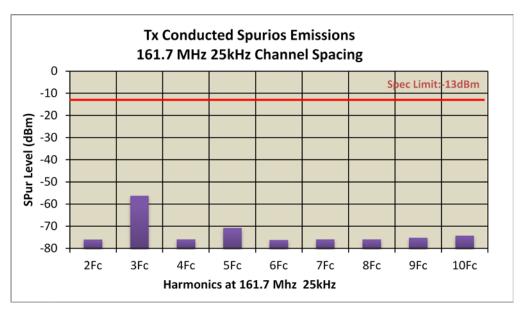


Figure 6F-6: 25W Harmonic of Carrier 161.7 MHz, Analog 25 kHz Channel Spacing (Part 74)

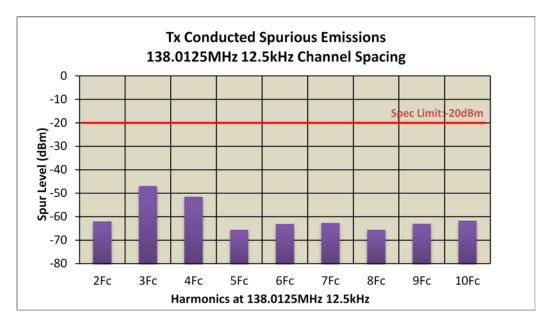


Figure 6F-7: 54 W Harmonic of Carrier 138.0125 MHz, Digital 12.5 kHz Channel Spacing (Not for FCC Review)

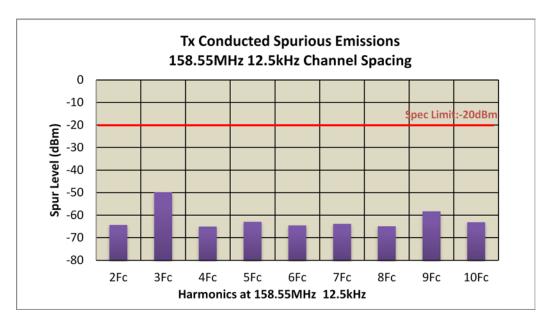


Figure 6F-8: 54 W Harmonic of Carrier 158.55 MHz, Digital 12.5 kHz Channel Spacing

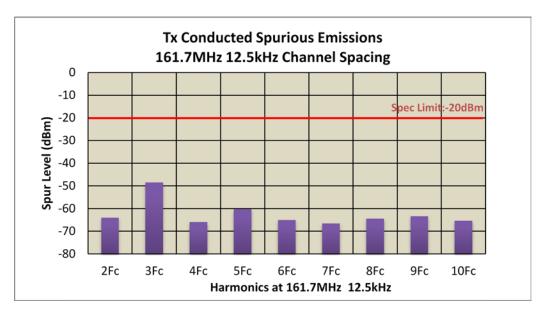


Figure 6F-9: 54 W Harmonic of Carrier 161.7 MHz, Digital 12.5 kHz Channel Spacing

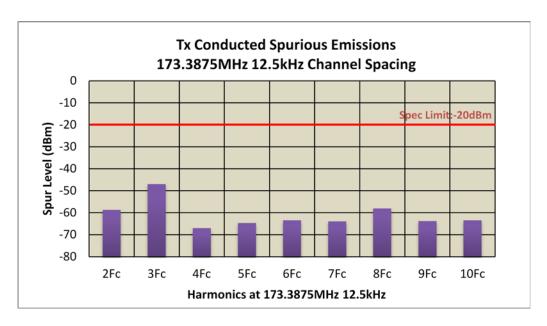


Figure 6F-10: 54 W Harmonic of Carrier 173.3875 MHz, Digital 12.5 kHz Channel Spacing

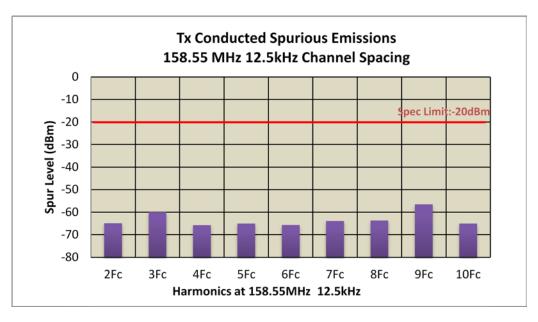


Figure 6F-11: 25W Harmonic of Carrier 158.55 MHz, Digital 12.5 kHz Channel Spacing

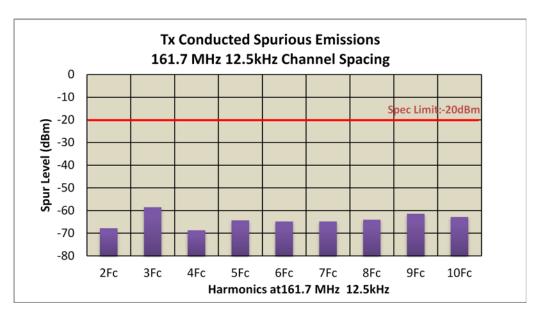


Figure 6F-12: 25W Harmonic of Carrier 161.7 MHz, Digital 12.5 kHz Channel Spacing

EXHIBIT 6G

Transmitter Radiated Spurious Emissions

FCC ID: AZ492FT7081 Motorola Solutions. IC ID: 109U-92FT7081

TRANSMITTER RADIATED SPURIOUS EMISSIONS: BALI REFRESH MOBILE 136-174MHZ 1-25W TX ANALOG MODEL #: XPR 5550e Audio Accy (PPT) - RMN5127C

02809-EMC-00002			
138.0125 MHz	25 kHz	54 Watt(s)/Max Power	S/N: 11TRP5901

138.012	5 MHZ		25 kHz		54 W	att(s)/Max	Power		S/N:	11TRP5901	
Freque (MH	ency z)		FCC Failin Limit	g		Horizontal Measured Emission Equiv Pwr Into Ideal Dipole (dBm)			Vertical Measured Emission Ed Pwr Into Ideal Dipole (dBm		
276.0	250		-13			***				xx	
414.0			-13			***				**	
552.0	500		-13			***				**	
690.0	625		-13			***				**	
828.0	750		-13			**				**	
966.0	875		-13			***				**	
1104.1	1000		-13			**				**	
1242.1	125		-13			**				**	
1380.1	250		-13			**				**	
		\top									
				DADI	ATED SPUR	IOHE EMIC	eione				
≘ 0 ⊤				IVADIA	AILD SFOR	IOU3 EMIS	310143			■Horizontal Measured	
<u>8</u>										Emission Equiv Pwr Int Ideal Dipole (dBm)	
5	-	-	-	-	-	-	-	-	-		
9 -20 -											
1										Vertical Measured Emission Equiv Pwr Into	
· -40							, ,			Ideal Dipole (dBm)	
92	220	414.0375	552.0500	690,0625	828.0750	966.0875	8	125	820		
Ē	Ö	9	2	0.0	8.0	90.9	1104.1000	1242.1125	1380.1250	=FCC Falling	
Emission Level (dBm) -20 -	9	-4	2.2								
Ē	276.0250	4	55	69	82	96	Ę	2	5	Limit	

The data presented here was taken using the substitution method as found in the TIA/EIA-603 document.

Motorola Penang EMC Lab - Test Performed by: Qawiman/Nazrin

September 10, 2015

FCC Registration: 772092

Industry Canada: 109AK

Remarks:** Indicates the spurious emission could not be detected due to noise limitations or ambients. *Pursuant to CFR 47 Part 2.1057 (c), emissions attenuated more than 20 dB below the permissible limit are not reported

Temp(Deg): 23.3 Hum(%RH): 69.8

Passed Results Marginal Results

Failed Results

6G-1 – 54 Watts, 138.0125 MHz, Analog 25 kHz Channel Spacing (Not for FCC Review)

FCC ID: AZ492FT7081

Motorola Solutions.

IC ID: 109U-92FT7081

TRANSMITTER RADIATED SPURIOUS EMISSIONS: BALI REFRESH MOBILE 136-174MHZ 1-25W

MODEL #: XPR 5550e

02809-EMC-00002

TX ANALOG

Audio Accy (PPT) - RMN5127C

1	158.55	MHz	25 kHz 54 Watt(s)/Max Power							S/N: 1	11TRP5901	
	Freque (MH	ency z)		FCC Failir Limit	ng	Horizontal Measured Emissi Equiv Pwr Into Ideal Dipole (d			n) Eq	Vertical Measured Emis Equiv Pwr Into Ideal Dipole		
	317.10	000		-13			**				**	
	475.6			-13			**				**	
	634.20	000		-13			**				**	
	792.7	500		-13			**				**	
	951.30	000		-13			**				**	
	1109.8	500		-13			**					
	1268.4	000		-13			**				**	
	1426.9	500		-13			**				**	
	1585.5	000		-13			**				**	
									_			
									_			
									_			
									_			
			+						_			
									_			
			+						_			
			+						_			
			+						_			
			+						_			
			+						_			
			+						_			
			+						_			
			+						_			
			+						_			
					RADIA	TED SPUR	IOUS EMIS	SIONS			■Horizontal Measured	
Emission Level (dBm)	0 -	_	_	_	_	_	_	_		_	Emission Equiv Pwr Into Ideal Dipole (dBm)	
<u>=</u>	-20 -	_	_	_	_	_	_	_	_	-		
ě											□ Vertical Measured	
l e											Emission Equiv Pwr Into Ideal Dipole (dBm)	
80	-40 -	0	•	0		, ,		•	•	-		
E		8	89	200	792.7500	300	88	8	86	200	FCC Falling	
		317.1000	475.6500	634.2000	792.	951.3000	1109.8500	1268.4000	1426.9500	1585.5000	Limit	
		**	•	-	-		⊢ ncy (MHz)	¥	7	=		
						rrequer	icy (miriz)					

The data presented here was taken using the substitution method as found in the TIA/EIA-603 document. Motorola Penang EMC Lab - Test Performed by: Qawiman/Nazrin

FCC Registration: 772092 Industry Canada: 109AK September 10, 2015

Remarks:** Indicates the spurious emission could not be detected due to noise limitations or ambients.

*Pursuant to CFR 47 Part 2.1057 (c), emissions attenuated more than 20 dB below the permissible limit are not reported

Temp(Deg): 23.3 Hum(%RH): 69.8 Marginal Results Failed Results Passed Results Remarks:

6G-2 - 54 Watts, 158.55 MHz, Analog 25 kHz Channel Spacing (Part 22, 80)

FCC ID: AZ492FT7081 IC ID: 109U-92FT7081

> FCC Failing Limit

Motorola Solutions.

TRANSMITTER RADIATED SPURIOUS EMISSIONS: BALI REFRESH MOBILE 136-174MHZ 1-25W

MODEL #: XPR 5550e TX ANALOG 02809-EMC-00002

Audio Accy (PPT) - RMN5127C

161.7 MHz	25 kHz	54 Watt(s)/Max Power	S/N: 11TRP5901
Frequency (MHz)	FCC Failing Limit	Horizontal Measured Emission Equiv Pwr Into Ideal Dipole (dBm)	Vertical Measured Emission Equiv Pwr Into Ideal Dipole (dBm
323.4000	-13	**	**
485.1000	-13	**	**
646.8000	-13	**	**
808.5000	-13	**	**
970.2000	-13	**	**
1131.9000	-13	**	**
1293.6000	-13	**	**
1455.3000	-13	**	23
1617.0000	-13		
0	RAD	NATED SPURIOUS EMISSIONS	■Horizontal Measured Emission Equiv Pwr Into Ideal Dipole (dBm)
-20			Vertical Measured Emission Equity Per Into

The data presented here was taken using the substitution method as found in the TIA/EIA-603 document.

Motorola Penang EMC Lab - Test Performed by: Qawiman/Nazrin September 10, 2015
FCC Registration: 772092 Industry Canada: 109AK
Remarks:** Indicates the spurious emission could not be detected due to noise limitations or ambients.

*Pursuant to CFR 47 Part 2.1057 (c), emissions attenuated more than 20 dB below the permissible limit are not reported

Temp(Deg): 23.3 Hum(%RH): 69.8

Frequency (MHz)

1131,9000

Marginal Results

6G-3 - 54 Watts, 161.7 MHz, Analog 25 kHz Channel Spacing (Part 74)

Passed Results

Remarks:

FCC ID: AZ492FT7081 IC ID: 109U-92FT7081

Motorola Solutions. IC ID: 109U-9
TRANSMITTER RADIATED SPURIOUS EMISSIONS: BALI REFRESH MOBILE 136-174MHZ 1-25W

MODEL #: XPR 5550e TX ANALOG 02809-EMC-00002

Audio Accy (PPT) - RMN5127C

	75 MHz		25 kHz		ĺ		x Power	T		: 11TRP5901
	uency IHz)		FCC Faili Limit	ng			red Emissio I Dipole (dB			Measured Emission nto Ideal Dipole (dBr
346	.7750		-13			**				**
520	.1625		-13			**				**
693	.5500		-13			**				**
866	.9375		-13			**				**
).3250		-13			**				**
1213	3.7125		-13			**				**
1387	7.1000		-13			**				**
1560).4875		-13			**				**
1733	3.8750		-13			**		_		**
		_						+		
								_		
		+						+		
		+						_		
								\perp		
		_						_		
		_						\dashv		
								+		
								_		
								+		
								_		
				BADI	ATED SPUR	IOUE EMIS	eione			
Ê O	Т			IOADII	AIED SFOR	IOO3 EMII3	SIONS			■Hortzontal Measured Emission Equiv Pwr Into
8	_	-	-	-	_	-	-	_	_	ideal Dipole (dBm)
Emission Level (dBm)	1									□Vertical Measured
-40	 									Emission Equiv Pwr Into Ideal Dipole (dBm)
Si	750	625	200	866.9375	1040.3250	125	8	87.5	750	
<u>.</u>	346.7750	520.1625	893.5500	6.9	0.3	213.7125	1387.1000	1560,4875	733.8750	=FCC Falling
	8	52	59	88	-	-	138	156	113	Limit
					Frequer	ncy (MHz)				
e data pre	sented here	was take	n usina th	e substit	ution metho	d as found	d in the TIA/	EIA-60	3 documen	t.
_	nang EMC L						a article Tity		o documen	September 10, 20
	ation: 77209			-	Industry (

6G-4 - 54 Watts, 173.3875 MHz, Analog 25 kHz Channel Spacing (Not for FCC Review)

Passed Results

*Pursuant to CFR 47 Part 2.1057 (c), emissions attenuated more than 20 dB below the permissible limit are not reported

Marginal Results

Temp(Deg): 23.3 Hum(%RH): 69.8

Motorola Solutions.

FCC ID: AZ492FT7081 IC ID: 109U-92FT7081

TRANSMITTER RADIATED SPURIOUS EMISSIONS: BALI REFRESH MOBILE 136-174MHZ 1-25W

MODEL #: XPR 5550e 02809-EMC-00002 TX ANALOG

Audio Accy (PPT) - RMN5127C

158.55 MHz	ſ	25 kHz		25 W	/att(s)/Lov	v Power		S/N	: 11TRP5901
Frequency (MHz)	FC	CC Failing Limit	9		tal Measure r Into Ideal				Measured Emission nto Ideal Dipole (dBm
317.1000	1	-13			**		\top		**
475.6500		-13			**				**
634.2000		-13			**				**
792.7500		-13			**				**
951.3000		-13			**				**
1109.8500		-13			**				**
1268.4000		-13			**				**
1426.9500		-13			**				**
1585.5000		-13			**				**
							_		
							-		
							_		
							_		
							-		
							_		
							_		
							_		
							_		
							-		
			RADIA	TED SPURI	OUS EMIS	SIONS			
0						-			■Horizontal Measured Emission Equiv Pwr Into
-20 -									Ideal Dipole (dBm)
-20 -	-	-	_	_	-	-	_	-	
									EVertical Measured Emission Equiv Pwr Into Ideal Dipole (dBm)
-40 +	•	•	•		•	•	•	٠.	-1
317.1000	475.6500	634.2000	792.7500	951.3000	1109.8500	1268.4000	1426.9500	1585.5000	=FCC Failing
7	175	25	.85	5	60	89	126	85	Limit
**	*	-	100			#	4	#	
				rrequen	icy (MHz)				

The data presented here was taken using the substitution method as found in the TIA/EIA-603 document. Motorola Penang EMC Lab - Test Performed by: Qawiman/Nazrin

FCC Registration: 772092

Industry Canada: 109AK

Remarks:** Indicates the spurious emission could not be detected due to noise limitations or ambients.

*Pursuant to CFR 47 Part 2.1057 (c), emissions attenuated more than 20 dB below the permissible limit are not reported

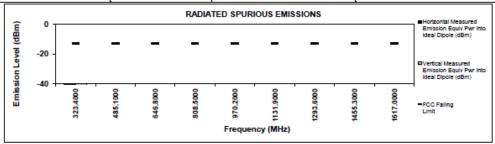
Temp(Deg): 23.3 Hum(%RH): 69.8

Remarks: Passed Results Marginal Results Failed Results

6G-5 - 25 Watts, 158.55 MHz, Analog 25 kHz Channel Spacing (Part 22, 80)

September 10, 2015

FCC ID: AZ492FT7081 IC ID: 109U-92FT7081


Motorola Solutions.

TRANSMITTER RADIATED SPURIOUS EMISSIONS: BALI REFRESH MOBILE 136-174MHZ 1-25W

TX ANALOG MODEL #: XPR 5550e Audio Accy (PPT) - RMN5127C

02809-EMC-00002 161.7 MHz

161.7 MHz	25 kHz	25 Watt(s)/Low Power	S/N: 11TRP5901
Frequency (MHz)	FCC Failing Limit	Horizontal Measured Emission Equiv Pwr Into Ideal Dipole (dBm)	Vertical Measured Emission Equiv Pwr Into Ideal Dipole (dBm)
323.4000	-13	**	**
485.1000	-13	**	**
646.8000	-13	**	**
808.5000	-13	**	**
970.2000	-13	**	**
1131.9000	-13	**	**
1293.6000	-13	**	**
1455.3000	-13	**	**
1617.0000	-13	**	11
	RAD	DIATED SPURIOUS EMISSIONS	

The data presented here was taken using the substitution method as found in the TIA/EIA-603 document. Motorola Penang EMC Lab - Test Performed by: Qawiman/Nazrin September 10, 2015

FCC Registration: 772092 Industry Canada: 109AK Remarks:** Indicates the spurious emission could not be detected due to noise limitations or ambients.

*Pursuant to CFR 47 Part 2.1057 (c), emissions attenuated more than 20 dB below the permissible limit are not reported

Temp(Deg): 23.3 Hum(%RH): 69.8

6G-6 – 25 Watts, 161.7 MHz, Analog 25 kHz Channel Spacing (Part 74)

FCC ID: AZ492FT7081

Motorola Solutions

IC ID: 109U-92FT7081

TRANSMITTER RADIATED SPURIOUS EMISSIONS: BALI REFRESH MOBILE 136-174MHZ 1-25W

MODEL #: XPR 5550e 02809-EMC-00002 TX DIGITAL

Audio Accy (PPT) - RMN5127C

138.0125 M		12.5 kHz		54 W	att(s)/Max	Power	,	S/N: 1	1TRP5901
Frequency (MHz)	,	FCC Failing Limit				d Emission Dipole (dBm)	Ver	tical Measu Pwr Into Id	red Emission Equiv eal Dipole (dBm)
276.0250		-20	\rightarrow		**		_		**
414.0375		-20			**				**
552.0500		-20			**		 		**
690.0625		-20			**				**
828.0750		-20			***				**
966.0875		-20			**				**
1104.1000		-20			**				**
1242.1125		-20			**				**
1380.1250		-20			**				××
							-		
			_				\vdash		
							+		
							\vdash		
							 		
							 		
							_		
							\vdash		
			DADIA	TED SPURI	OHE FMIE	CIONC	•		
<u>®</u> 0 ⊤			RADIA	IED SFURI	OUS EMIS	ai/Na			Horizontal Measured Emission Equiv Pwr Into Ideal Dipole (dBm)
S -20 -		_	_	_	_	_	_	_	
on Le									□Vertical Measured Emission Equiv Pwr Inti Ideal Dipole (dBm)
'ड़ं -40 — इ.इ. ≅	414.0375	552.0500	690.0625	828.0750	966.0875	104.1000	242.1125	380.1250	
	5 5	292	90	828	996	2	242	380	FCC Falling

The data presented here was taken using the substitution method as found in the TIA/EIA-603 document.

Motorola Penang EMC Lab - Test Performed by: Qawiman/Nazrin Se

FCC Registration: 772092 Industry Canada: 109AK

September 10, 2015

Remarks:** Indicates the spurious emission could not be detected due to noise limitations or ambients.

*Pursuant to CFR 47 Part 2.1057 (c), emissions attenuated more than 20 dB below the permissible limit are not reported

Temp(Deg): 23.3 Hum(%RH): 69.8

Remarks: Passed Results Marginal Results Failed Results

6G-7 – 54 Watts, 138.0125 MHz Digital 12.5 kHz Channel Spacing (Not for FCC Review)

Frequency (MHz)

Motorola Solutions.

FCC ID: AZ492FT7081 IC ID: 109U-92FT7081

toroia solutions. IC ID: 1090-9
TRANSMITTER RADIATED SPURIOUS EMISSIONS: BALI REFRESH MOBILE 136-174MHZ 1-25W

MODEL #: XPR 5550e 02809-EMC-00002 TX DIGITAL

Audio Accy (PPT) - RMN5127C

	158.55	MHz		12.5 kHz	Z	54 V	Vatt(s)/Ma	x Power		S/N:	11TRP5901
	Freque (MH	ency z)		FCC Failir Limit	ng	Horizon Equiv Pw	ital Measure r Into Ideal	ed Emission Dipole (dBn	n) Equ	Vertical Me uiv Pwr Int	easured Emission o Ideal Dipole (dBm)
	317.1	000		-20			**				**
	475.6			-20			**				
	634.2	000		-20			**				**
	792.7	500		-20			**				
	951.3	000		-20			**				**
	1109.8	500		-20			**				**
	1268.4	000		-20			**				
	1426.9	500		-20			**				
	1585.5	6000		-20			**				11
									_		
									_		
									-		
									-		
									_		
<u> </u>											
(dBm)	0 -				RADIA	NIED SPUR	IOUS EMIS	SIONS			Horizontal Measured Emission Equiv Pwr Into Ideal Dipole (dBm)
Emission Level (dBm)	-20 -	-	-	-	-	-	-	-	-	-	☐Vertical Measured Emission Equiv Pwr Into Ideal Dipole (dBm)
Emissi	-40 -	317.1000	475.6500	634.2000	792.7500	951.3000	1109.8500	1268.4000	1426.9500	1585,5000	-FCC Falling Limit
						Freque	ncy (MHz)				

The data presented here was taken using the substitution method as found in the TIA/EIA-603 document.

Motorola Penang EMC Lab - Test Performed by: Qawiman/Nazrin September 10, 2015

FCC Registration: 772092 Industry Canada: 109AK

istry Canada: 109AK

Remarks:** Indicates the spurious emission could not be detected due to noise limitations or ambients.
*Pursuant to CFR 47 Part 2.1057 (c), emissions attenuated more than 20 dB below the permissible limit are not reported

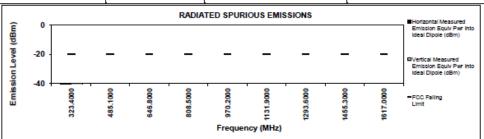
Temp(Deg): 23.3 Hum(%RH): 69.8

Remarks: Passed Results Marginal Results Failed Results

6G-8 - 54 Watts, 158.55 MHz, Digital 12.5 kHz Channel Spacing

Motorola Solutions.

FCC ID: AZ492FT7081 IC ID: 109U-92FT7081


TRANSMITTER RADIATED SPURIOUS EMISSIONS: BALI REFRESH MOBILE 136-174MHZ 1-25W

MODEL #: XPR 5550e 02809-EMC-00002

TX DIGITAL

Audio Accy (PPT) - RMN5127C

161.7 MHz	12.5 kHz	54 Watt(s)/Max Power	S/N: 11TRP5901
Frequency (MHz)	FCC Failing Limit	Horizontal Measured Emission Equiv Pwr Into Ideal Dipole (dBm)	Vertical Measured Emission Equiv Pwr Into Ideal Dipole (dBm
323.4000	-20	**	**
485.1000	-20	**	**
646.8000	-20	**	**
808.5000	-20	**	**
970.2000	-20	**	**
1131.9000	-20	**	**
1293.6000	-20	**	**
1455.3000	-20	**	**
1617.0000	-20	**	

The data presented here was taken using the substitution method as found in the TIA/EIA-603 document. Motorola Penang EMC Lab - Test Performed by: Qawiman/Nazrin September 10, 2015

FCC Registration: 772092 Industry Canada: 109AK

Remarks:** Indicates the spurious emission could not be detected due to noise limitations or ambients.

*Pursuant to CFR 47 Part 2.1057 (c), emissions attenuated more than 20 dB below the permissible limit are not reported

Temp(Deg): 23.3 Hum(%RH): 69.8 Remarks: Marginal Results Failed Results

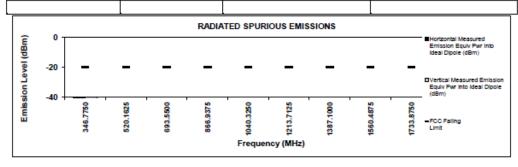
Passed Results

6G-9 - 54 Watts, 161.7 MHz, Digital 12.5 kHz Channel Spacing

FCC ID: AZ492FT7081

Motorola Solutions.

IC ID: 109U-92FT7081


TRANSMITTER RADIATED SPURIOUS EMISSIONS: BALI REFRESH MOBILE 136-174MHZ 1-25W

TX DIGITAL MODEL #: XPR 5550e

Audio Accy (PPT) - RMN5127C

00000	 0	00	$\alpha \alpha$
02809			

173.3875 MHz	12.5 kHz	54 Watt(s)/Max Power	S/N: 11TRP5901
Frequency (MHz)	FCC Failing Limit	Horizontal Measured Emission Equiv Pwr Into Ideal Dipole (dBm)	Vertical Measured Emission Equiv Pwr Into Ideal Dipole (dBm)
346.7750	-20	**	**
520.1625	-20	**	**
693.5500	-20	**	**
866.9375	-20	**	**
1040.3250	-20	**	**
1213.7125	-20	**	**
1387.1000	-20	**	**
1560.4875	-20	**	**
1733.8750	-20	**	**

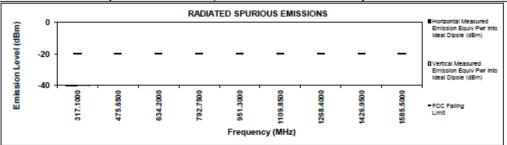
The data presented here was taken using the substitution method as found in the TIA/EIA-603 document. Motorola Penang EMC Lab - Test Performed by: Qawiman/Nazrin September 10, 2015 FCC Registration: 772092 Industry Canada: 109AK Remarks:** Indicates the spurious emission could not be detected due to noise limitations or ambients.

*Pursuant to CFR 47 Part 2.1057 (c), emissions attenuated more than 20 dB below the permissible limit are not reported

Temp(Deg): 23.3 Hum(%RH): 69.8

Passed Results Marginal Results Faile 6G-10 – 54 Watts, 173.3875 MHz, Digital 12.5 kHz Channel Spacing Remarks:

Motorola Solutions.


FCC ID: AZ492FT7081 IC ID: 109U-92FT7081

TRANSMITTER RADIATED SPURIOUS EMISSIONS: BALI REFRESH MOBILE 136-174MHZ 1-25W

MODEL #: XPR 5550e 02809-EMC-00002 TX DIGITAL Audio Accy (PPT) - RMN5127C

2009-EMC-00002			
158.55 MHz	12.5 kHz	25 Watt(s)/Low Power	S/N: 11TRP5901

100100 111112	1210 KHZ	25 Watt(S)/LOW POWER	5/N: 111KF9901
Frequency (MHz)	FCC Failing Limit	Horizontal Measured Emission Equiv Pwr Into Ideal Dipole (dBm)	Vertical Measured Emission Equiv Pwr Into Ideal Dipole (dBm)
317.1000	-20	**	**
475.6500	-20	**	**
634.2000	-20	**	**
792.7500	-20	**	**
951.3000	-20	**	**
1109.8500	-20	**	**
1268.4000	-20	**	**
1426.9500	-20	**	**
1585.5000	-20	**	**
		+	
		+	
		+	
	 		
	<u>l</u>		L

The data presented here was taken using the substitution method as found in the TIA/EIA-603 document.

Motorola Penang EMC Lab - Test Performed by: Qawiman/Nazrin September 10, 2015

FCC Registration: 772092 Industry Canada: 109AK

Remarks:** Indicates the spurious emission could not be detected due to noise limitations or ambients.

*Pursuant to CFR 47 Part 2.1057 (c), emissions attenuated more than 20 dB below the permissible limit are not reported

Remarks: Passed Results Marginal Results Failed Results

6G-11 - 25 Watts, 158.55 MHz, Digital 12.5 kHz Channel Spacing

-40

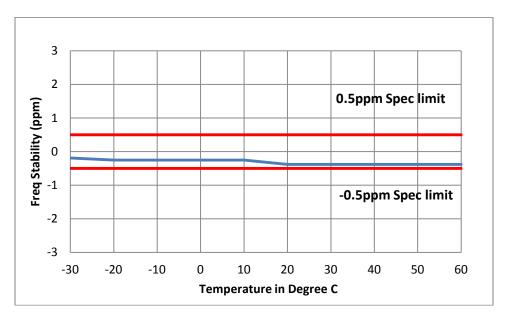
FCC ID: AZ492FT7081

FCC Falling Limit

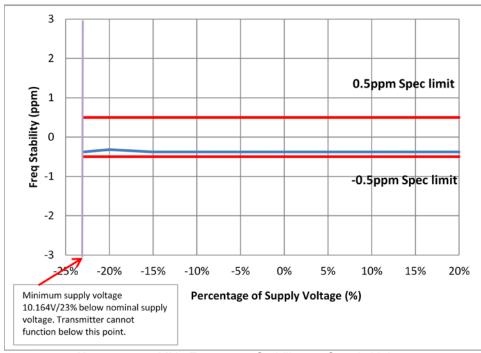
Motorola Solutions. IC ID: 109U-92FT7081 TRANSMITTER RADIATED SPURIOUS EMISSIONS: BALI REFRESH MOBILE 136-174MHZ 1-25W

MODEL #: XPR 5550e TX DIGITAL Audio Accy (PPT) - RMN5127C

02809-EMC-00002 12.5 kHz 161.7 MHz 25 Watt(s)/Low Power S/N: 11TRP5901 FCC Failing Vertical Measured Emission Equiv Pwr Into Ideal Dipole (dBm) Horizontal Measured Emission Frequency (MHz) Equiv Pwr Into Ideal Dipole (dBm) Limit 323.4000 -20 485.1000 -20 646,8000 -20 ** ** 808.5000 -20 ** 970.2000 -20 ** 1131.9000 -20 ** ** 1293.6000 -20 1455.3000 -20 1617.0000 -20 RADIATED SPURIOUS EMISSIONS Emission Level (dBm) -20 Vertical Measured
 Emission Equiv Pwr Into
Ideal Dipole (dBm)

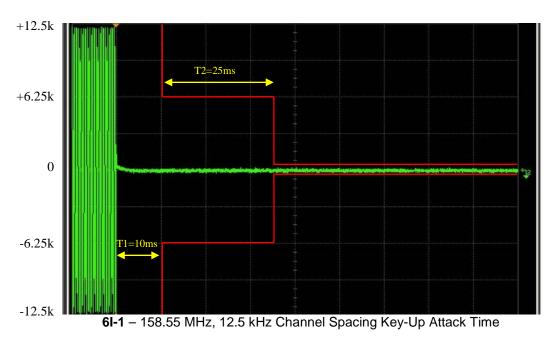

Frequency (MHz) The data presented here was taken using the substitution method as found in the TIA/EIA-603 document. Motorola Penang EMC Lab - Test Performed by: Qawiman/Nazrin September 10, 2015 FCC Registration: 772092 Industry Canada: 109AK Remarks:** Indicates the spurious emission could not be detected due to noise limitations or ambients. *Pursuant to CFR 47 Part 2.1057 (c), emissions attenuated more than 20 dB below the permissible limit are not reported

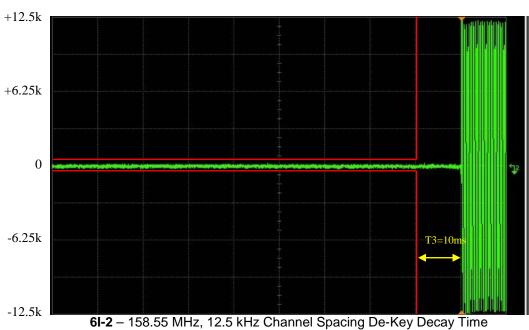
970.2000

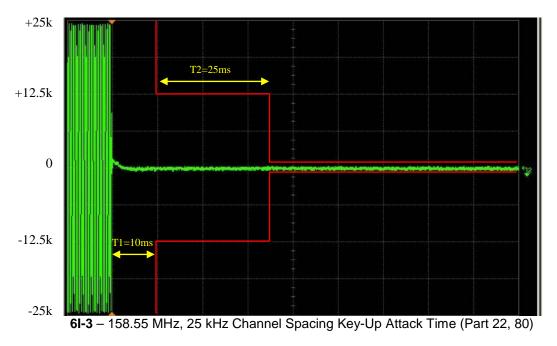

808.5000

Temp(Deg): 23.3 Hum(%RH): 69.8 Marginal Results Remarks: 6G-12 - 25 Watts, 161.7 MHz, Digital 12.5 kHz Channel Spacing

EXHIBIT 6H - Frequency Stability




6H-1 - 158.55 MHz Frequency Stability vs. Temperature



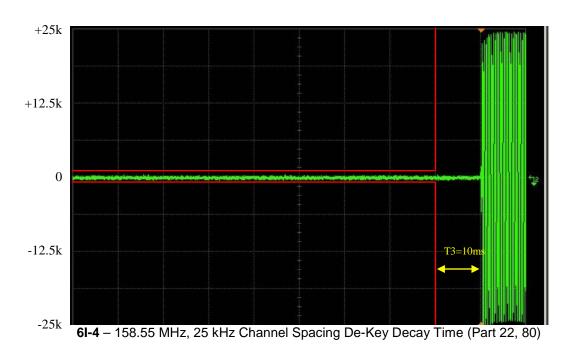

6H-2 - 158.55 MHz Frequency Stability vs. Supply Voltage

EXHIBIT 6I – Transient Frequency Behavior

