



# **TEST REPORT**

Application No.: Applicant: Address of Applicant: EUT Description:



### TOYS SERIES

Y626,Y625,Y628,Y629,Y325,Y327,Y328,Y329,Y625P,Y626P,Y628P, Y629P,Y325P,Y327P,Y328P,Y329P,Y635,Y636,Y638,Y639,Y335,Y 338,Y337,Y339,Y635P,Y636P,Y638P,Y639P,Y335P,Y337P,Y337K, Y338P,Y339P,Y615,Y616,Y618,Y619,Y315,Y318,Y319,Y5G,Y5,Y5P RO,Y5MAX,Y5P,Y5K,Y9G,Y9,Y9Pro,Y9MAX,Y9P,Y9K,Y107,Y107P, Y101,Y101P,Y11,Y12,Y37,Y40,Y55,Y58,Y59,Y59P,Y01,Y02,Y03,Y2 20,Y230,Y10,Y15G,Y15,Y18,Y19,Y20,Y22,Y28,Y29,Y30,Y33,Y33S, Y33P,Y33A,Y33X,Y35,Y35A,Y39,Y39S,Y66,Y68,Y69,Y81,Y81P,Y87 ,Y87P,Y88,Y89,Y89P,Y99,Y99P,E88,E88D,E88S,E88P,E88K,E99, E99D,E99S,E99P,E99K,X1,X1S,X2P,X2K,X2,X2S,X2P,X2K,X3. X3P,X3S,X3K,X3G,X3T,X5,X5S,X5P,X5K,X6,X6S,X6P,X6K,X7,X7S, X7P,X7K,X8,X8S,X8P,X8K,X9,X9S,X9P,X9K,X50,X51,X52,X53,X55 ,X56,X57,X58,X59,X30,X30S,X30P,X30K,X60,X60S,X60P,X60K,X8 0,X80S,X80P,X80K,X90,X90S,X90P,X90K.

#### 2BOQE-Y626YYRC

Remoter control: DC 4.5V From AAA Battery; Aircraft:Input:DC 5V & DC 3.7V From Battery

47 CFR FCC Part 2, Subpart J 47 CFR Part 15, Subpart C ANSI C63.10: 2013 2025/03/15 2025/03/16 to 2025/04/08 2025/04/28 PASS

#### Dongguan DN Testing Co., Ltd.

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com

 Tel:+86-769-88087383

 E-mail: <a href="mailto:service@dn-testing.com">service@dn-testing.com</a>

FCC ID:

Model No.:

**Power Supply** 

Trade Mark:

### Standards:

Date of Receipt: Date of Test: Date of Issue: Test Result:



1)adine

encils che

Date: April 28, 2025

Page: 2/32

**Prepared By: Reviewed By:** 

Approved By:

(Testing Engineer) (Project Engineer) (Manager)



Note: If there is any objection to the regults in this report, please submit a written inquiry to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp, and is issued by the company in accordance with the requirements of the "Conditions of Issuance of Test Reports" printed in the attached page. Unless otherwise stated, the results presented in this report only apply to the samples tested this time. Partial reproduction of this report is not allowed unless approved by the company in writing.

in

#### **Report Revise Record**

| Report Version | Revise Time | Issued Date  | Valid Version | Notes           |
|----------------|-------------|--------------|---------------|-----------------|
| V2.0           |             | Apr.28, 2025 | Valid         | Original Report |



Date: April 28, 2025

Page: 3/32

# 1 Test Summary

| Test Item                                    | Standard Section                                      | Test Result |
|----------------------------------------------|-------------------------------------------------------|-------------|
| Antenna Requirement                          | 15.203                                                | PASS        |
| 20dB Occupied Bandwidth                      | 15.215                                                | PASS        |
| Duty Cycle                                   | N/A                                                   | PASS        |
| Field Strength                               | 15.249(a)                                             | PASS        |
| Radiated Spurious Emissions<br>And Band Edge | 15.205,<br>15.209,<br>15.249(a)(c)(d)(e),<br>15.35(b) | PASS        |
| AC Power Line Conducted<br>Emissions         | 15.207                                                | N/A         |



Report No.: DNT2503100051R1873-03398 Date: April 28, 2025

# Contents

| 1 | 1 Test Summary                                     |            |          |       | <br>3  |
|---|----------------------------------------------------|------------|----------|-------|--------|
| 2 | 2 General Information                              |            |          |       | 5      |
|   | 2.1 Test Location                                  |            |          |       | <br>5  |
|   | 2.2 General Description of EUT                     |            |          |       | <br>6  |
|   | 2.3 Power Setting of Test Software                 |            |          |       | 7      |
|   | 2.4 Test Environment and Mode                      |            |          |       |        |
|   | 2.5 Channel List                                   |            |          |       | <br>7  |
|   | 2.6 Description of Support Units                   |            |          |       | 7      |
|   | 2.7 Test Facility                                  |            |          |       |        |
|   | 2.8 Measurement Uncertainty (95% confidence levels | s, k=2)    |          |       | <br>8  |
|   | 2.9 Equipment List                                 |            |          |       | 9      |
|   | 2.10 Assistant equipment used for test             |            |          |       | <br>10 |
| 3 | 3 Test results and Measurement Data                |            |          |       | <br>11 |
|   | 3.1 Antenna requirements                           |            |          |       | 11     |
|   | 3.2 20dB Occupied Bandwidth                        |            |          | ····· | <br>12 |
|   | 3.3 Duty Cycle                                     |            |          |       | <br>12 |
|   | 3.4 Field Strength of Fundamental                  |            |          |       | 16     |
|   | 3.5 Radiated Spurious Emissions                    |            |          |       |        |
|   | 3.6 AC Power Line Conducted Emissions              | <u>, (</u> | <u>.</u> |       | <br>31 |
|   |                                                    |            |          |       |        |



Report No.: DNT2503100051R1873-03398 Date: April 28, 2025

# 2 General Information

# 2.1 Test Location

| Company:       | Dongguan DN Testing Co., Ltd                                                                                 |
|----------------|--------------------------------------------------------------------------------------------------------------|
| Address:       | No. 1, West Fourth Street, South Xinfa Road, Wusha Liwu, Chang ' an Town, Dongguan City, Guangdong P.R.China |
| Test engineer: | Wayne Lin                                                                                                    |



Date: April 28, 2025

Page: 6/32

# 2.2 General Description of EUT

| Manufacturer:            | Shantou Yuanchu Intelligent Technology Co. LTD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Address of Manufacturer: | Xingda Industrial Zone, Tou Fen Village, Batou Town, Fengxiang Street,<br>Chenghai District, Shantou City, Guangdong Province, China                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| EUT Description:         | TOYS SERIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Test Model No.:          | Y626                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Additional Model(s):     | Y625,Y628,Y629,Y325,Y327,Y328,Y329,Y625P,Y626P,Y628P,Y629P,<br>Y325P,Y327P,Y328P,Y329P,Y635,Y636,Y638,Y639,Y335,Y338,Y337,Y339,<br>Y635P,Y636P,Y638P,Y639P,Y335P,Y337P,Y337K,Y338P,Y339P,Y615,Y616,<br>Y618,Y619,Y315,Y318,Y319,Y5G,Y5,Y5PRO,Y5MAX,Y5P,Y5K,Y9G,Y9,<br>Y9Pro,Y9MAX,Y9P,Y9K,Y107,Y107P,Y101,Y101P,Y11,Y12,Y37,Y40,Y55,Y58,<br>Y59,Y59P,Y01,Y02,Y03,Y220,Y230,Y10,Y15G,Y15,Y18,Y19,Y20,Y22,Y28,<br>Y29,Y30,Y33,Y33S,Y33P,Y33A,Y33X,Y35,Y35A,Y39,Y39S,Y66,Y68,Y69,Y81,<br>Y81P,Y87,Y87P,Y88,Y89,Y89P,Y99,Y99P,E88,E88D,E88S,E88P,E88K,E99,<br>E99D,E99S,E99P,E99K,X1,X1S,X2P,X2K,X2,X2S,X2P,X2K,X3,X3P,X3S,X3K,<br>X3G,X3T,X5,X5S,X5P,X5K,X6,X6S,X6P,X6K,X7,X7S,X7P,X7K,X8,X8S,X8P,<br>X8K,X9,X9S,X9P,X9K,X50,X51,X52,X53,X55,X56,X57,X58,X59,X30,X30S,<br>X30P,X30K,X60,X60S,X60P,X60K,X80,X80S,X80P,X80K,X90,X90S,X90P,<br>X90K. |  |  |  |  |
| Power Supply             | Remoter control: DC 4.5V From AAA Battery;<br>Aircraft:Input:DC 5V & DC 3.7V From Battery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Chip Type:               | 6230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Serial number:           | PR2503100051R1873                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Trade Mark:              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Hardware Version:        | V1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Software Version:        | V1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Operation Frequency:     | 2449MHz-2475MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Type of Modulation:      | GFSK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Sample Type:             | Prototype production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Antenna Type:            | □ External, ⊠ Integrated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Antenna Ports            | 🖂 Ant 1, 🗌 Ant 2, 🗌 Ant 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Antenna Gain*:           | <ul> <li>Provided by applicant</li> <li>OdBi</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|                          | Provided by applicant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| RF Cable*:               | 0.5dB(0.6~1GHz); 0.8dB(1.4~2GHz); 1.0dB(2.1~2.7GHz); 1.5dB(3~4GHz);<br>1.8dB(4.4~6GHz);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |

### Remark:

\*All models are just color differences, motherboard, PCB circuit board, chip, electronic components,

appearance is all the same.

\*Since the above data and/or information is provided by the applicant relevant results or conclusions of this report are only made for these data and/or information , DNT is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion

\*The remote control can only transmit, and the aircraft can only receive.



Date: April 28, 2025

# 2.3 Power Setting of Test Software

| Software Name  | <u> </u> | N/A     | <u> </u> |
|----------------|----------|---------|----------|
| Frequency(MHz) | 2449     | 2462    | 2475     |
| Setting        | Default  | Default | Default  |

# 2.4 Test Environment and Mode

| <b>Operating Environment:</b> |                                                                                          |
|-------------------------------|------------------------------------------------------------------------------------------|
| Temperature:                  | 20~25.0 °C                                                                               |
| Humidity:                     | 45~56 % RH                                                                               |
| Atmospheric Pressure:         | 101.0~101.30 KPa                                                                         |
| Test mode:                    |                                                                                          |
| Transmitting mode:            | Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate. |

# 2.5 Channel List

|         | Operation Frequency of each channel |         |                    |         |                   |               |           |  |  |
|---------|-------------------------------------|---------|--------------------|---------|-------------------|---------------|-----------|--|--|
| Channel | Frequency<br>(MHz)                  | Channel | Frequency<br>(MHz) | Channel | Frequency         | Channel       | Frequency |  |  |
| 1       | 2449                                | 11      | 2459               | 21      | 2469              |               |           |  |  |
| 2 📈     | 2450                                | 12      | 2460               | 22 📈    | 2470              | ~             | ~         |  |  |
| 3       | 2451                                | 13      | 2461               | 23      | 2471              | ~             | 2 2       |  |  |
| 4       | 2452                                | 14      | 2462               | 24      | 2472              | $\sim$        |           |  |  |
| 5       | 2453                                | 15      | 2463               | 25      | 2473              |               |           |  |  |
| 6       | 2454                                | 16      | 2464               | 26      | 2474              |               |           |  |  |
| 7       | 2455                                | 17      | 2465               | 27      | 2475              | $\sim$        |           |  |  |
| 8       | 2456                                | 18      | 2466               | ~~~     |                   | ~~~~          |           |  |  |
| 9       | 2457                                | 19      | 2467               | $\sim$  | $\mathbf{\nabla}$ | $O$ $\langle$ |           |  |  |
| 10      | 2458                                | 20      | 2468               |         |                   |               |           |  |  |

# 2.6 Description of Support Units

The EUT has been tested independent unit.



Report No.: DNT2503100051R1873-03398 Da

Date: April 28, 2025

## 2.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

- Lab A:
- FCC, USA

Designation Number: CN1348

### A2LA (Certificate No. 7050.01)

DONGGUAN DN TESTING CO., LTD.

### Innovation, Science and Economic Development Canada

DONGGUAN DN TESTING CO., LTD. EMC Laboratory has been recognized by ISED as an accredited testing laboratory. CAB identifier is CN0149. IC#: 30755.

### 2.8 Measurement Uncertainty (95% confidence levels, k=2)

| No. | Item                        | Measurement Uncertainty |  |  |
|-----|-----------------------------|-------------------------|--|--|
| 1   | Total RF power, conducted   | ±0.41dB                 |  |  |
| 2   | RF power density, conducted | ±1.96dB                 |  |  |

| No. | ltem                | Measurement Uncertainty   |
|-----|---------------------|---------------------------|
| 1   | Conduction Emission | ± 3.0dB (150kHz to 30MHz) |
|     |                     | ± 4.8dB (Below 1GHz)      |
|     | Dedicted Emission   | ± 4.8dB (1GHz to 6GHz)    |
| 2   | Radiated Emission   | ± 4.5dB (6GHz to 18GHz)   |
|     |                     | ± 5.02dB (Above 18GHz)    |



Date: April 28, 2025

Page: 9/32

# 2.9 Equipment List

| For Connect EUT Antenna Terminal Test |              |                |               |            |            |  |  |
|---------------------------------------|--------------|----------------|---------------|------------|------------|--|--|
| Description                           | Manufacturer | Model          | Serial Number | Cal date   | Due date   |  |  |
| Signal Generator                      | Keysight     | N5181A-6G      | MY48180415    | 2024-10-23 | 2025-10-22 |  |  |
| Signal Generator                      | Keysight     | N5182B         | MY57300617    | 2024-10-23 | 2025-10-22 |  |  |
| Power supply                          | Keysight     | E3640A         | ZB2022656     | 2024-10-23 | 2025-10-22 |  |  |
| Spectrum<br>Analyzer                  | Aglient      | N9010A         | MY52221458    | 2024-10-23 | 2025-10-22 |  |  |
| BT/WIFI Test<br>Software              | Tonscend     | JS1120 V3.1.83 | NA            | NA         | NA         |  |  |
| RF Control Unit                       | Tonscend     | JS0806-2       | 22F8060581    | NA         | NA         |  |  |
| temperature and humidity box          | SCOTEK       | SCD-C40-80PRO  | 6866682020008 | 2024-10-23 | 2025-10-22 |  |  |

| $\sim \sim$                                                    | Test Equipment for Conducted Emission |           |              |            |            |  |  |  |  |
|----------------------------------------------------------------|---------------------------------------|-----------|--------------|------------|------------|--|--|--|--|
| Description Manufacturer Model Serial Number Cal Date Due Date |                                       |           |              |            |            |  |  |  |  |
| Receiver                                                       | R&S                                   | ESCI3     | 101152       | 2024-10-23 | 2025-10-22 |  |  |  |  |
| LISN                                                           | R&S                                   | ENV216    | 102874       | 2024-10-23 | 2025-10-22 |  |  |  |  |
| ISN                                                            | R&S                                   | ENY81-CA6 | 1309.8590.03 | 2024-10-23 | 2025-10-22 |  |  |  |  |

| Test E                                  | quipment for I | Radiated Emi               | ssion(below   | 1000MHz    |            |  |
|-----------------------------------------|----------------|----------------------------|---------------|------------|------------|--|
| Description                             | Manufacturer   | Model                      | Serial Number | Cal Date   | Due Date   |  |
| Receiver                                | R&S            | ESR7                       | 102497        | 2024-10-23 | 2025-10-22 |  |
| Test Software                           | ETS-LINDGREN   | TILE-FULL                  | NA            | NA         | NA         |  |
| RF Cable                                | ETS-LINDGREN   | RFC-NMS-100-<br>NMS-350-IN | NA            | 2024-10-23 | 2025-10-22 |  |
| Log periodic antenna                    | ETS-LINDGREN   | VULB 9168                  | 01475         | 2022-11-28 | 2025-11-27 |  |
| Pre-amplifier                           | Schwarzbeck    | BBV9743B                   | 00423         | 2024-10-23 | 2025-10-22 |  |
| Single ring magnetic field ring antenna | ETS-LINDGREN   | 6502                       | 6502          | 2024-10-23 | 2025-10-22 |  |



Date: April 28, 2025

Page: 10 / 32

| Test E                             | quipment for I | Radiated Emi               | ssion(Above   | 1000MHz    |            |  |
|------------------------------------|----------------|----------------------------|---------------|------------|------------|--|
| Description                        | Manufacturer   | Model                      | Serial Number | Cal Date   | Due Date   |  |
| Frequency analyser                 | Keysight       | N9010A                     | MY52221458    | 2024-10-23 | 2025-10-22 |  |
| RF Cable                           | ETS-LINDGREN   | RFC-NMS-100-<br>NMS-350-IN | NA            | 2024-10-23 | 2025-10-22 |  |
| Horn Antenna                       | ETS-LINDGREN   | 3117                       | 00252567      | 2022-11-28 | 2025-11-27 |  |
| Double ridged<br>waveguide antenna | ETS-LINDGREN   | 3116C                      | 00251780      | 2022-11-28 | 2025-11-27 |  |
| Test Software                      | ETS-LINDGREN   | TILE-FULL                  | NA            | NA         | NA         |  |
| Pre-amplifier                      | ETS-LINDGREN   | 3117-PA                    | 252567        | 2024-10-23 | 2025-10-22 |  |
| Pre-amplifier                      | ETS-LINDGREN   | 3116C-PA                   | 251780        | 2024-10-23 | 2025-10-22 |  |

# 2.10 Assistant equipment used for test

| Code | Equipment | Manufacturer | Model No. | Equipment No. |
|------|-----------|--------------|-----------|---------------|
|      |           |              |           | 21            |



Report No.: DNT2503100051R1873-03398 Date: April 28, 2025

Page: (11 / 32

#### Test results and Measurement Data 3

### 3.1 Antenna requirements

#### Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

The antenna is welded on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.



Date: April 28, 2025

# 3.2 20dB Occupied Bandwidth

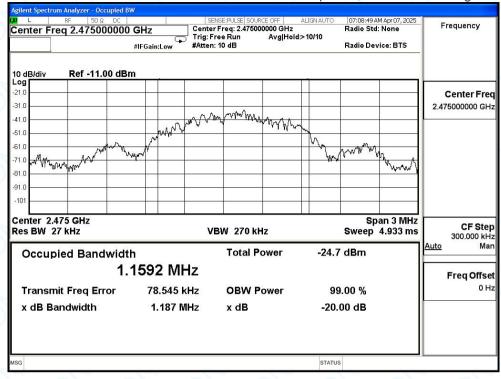
| 0.2 ZUGB Occupica      |                                                       |                         |
|------------------------|-------------------------------------------------------|-------------------------|
| Test Requirement:      | 47 CFR Part 15C Section 15.215                        | Ť                       |
| Test Method:           | ANSI C63.10:2013 Section 7.8.7                        |                         |
| Test Setup:            | Spectrum Analyzer<br>E.U.T<br>Non-Conducted Table     | 1. On On On             |
|                        | Ground Reference Plane                                |                         |
| Instruments Used:      | Refer to section 2.9 for details                      |                         |
| Exploratory Test Mode: | Transmitting with all kind of modulations, data rates | ~                       |
| Final Test Mode:       | Through Pre-scan, find the worst case                 | $\overline{\mathbf{N}}$ |
| Limit:                 | no wider than 0.25% of the center frequency           |                         |
| Test Results:          | Pass                                                  | -                       |

### Test Data:

| Test Frequency<br>(MHz) | 20dB Bandwidth<br>(MHz) | Result |
|-------------------------|-------------------------|--------|
| 2449                    | 1.179                   | Pass   |
| 2462                    | 1.207                   | Pass   |
| 2475                    | 1.187                   | Pass   |
|                         |                         |        |



#### **Test Graphs**




| 10 dB/div Ref -11.00 dBm<br>Log                     | Gain:Low                               | Trig: Free<br>#Atten: 10 | ) dB                    | Avg Hold:  | ha contraction of the second s | Radio Dev  |         | Center F<br>2.462000000           |  |
|-----------------------------------------------------|----------------------------------------|--------------------------|-------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|-----------------------------------|--|
| og                                                  |                                        | And And And              | Man Mary Long           | Art North  | had                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | why        |         |                                   |  |
| 31.0<br>41.0<br>51.0<br>71.0<br>81.0<br>91.0<br>101 | m.m.m.m.m.m.m.m.m.m.m.m.m.m.m.m.m.m.m. | And and and a            | M <sup>arne</sup> ry    | alar where | had                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | w. AA      | M       |                                   |  |
| 51.0<br>51.0<br>71.0<br>31.0<br>31.0<br>101<br>101  | vanim <sub>w</sub> r <sup>r</sup>      | And and a second         | N <sup>4Mmbor</sup> lay | Artyr-va   | had                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | white      | My why  |                                   |  |
| 1.0<br>31.0<br>                                     |                                        |                          |                         |            | had                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ᠁᠕ᠰᠬ       | M       |                                   |  |
| 31.0                                                |                                        |                          |                         |            | ሆላ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A.A. M. J. | Why why |                                   |  |
|                                                     |                                        |                          |                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | ~~~~    |                                   |  |
|                                                     |                                        |                          |                         |            | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |         |                                   |  |
| enter 2.462 GHz<br>tes BW 27 kHz                    |                                        | VBW 270 kHz              |                         |            | Span 3 MHz<br>Sweep 4.933 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |         | CF Step<br>300.000 kH<br>Auto Mar |  |
| Occupied Bandwidth                                  | . and the statement                    |                          | Total P                 | ower       | -33.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dBm        |         | Auto                              |  |
| 1.14                                                | 17 MH:                                 | Z                        |                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |         | Freq Off                          |  |
| Transmit Freq Error                                 | 75.744 kH                              | z                        | OBW P                   | ower       | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00 %     |         |                                   |  |
| x dB Bandwidth                                      | 1.207 MH                               | z                        | x dB                    |            | -20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00 dB      |         |                                   |  |
|                                                     |                                        |                          |                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |         |                                   |  |

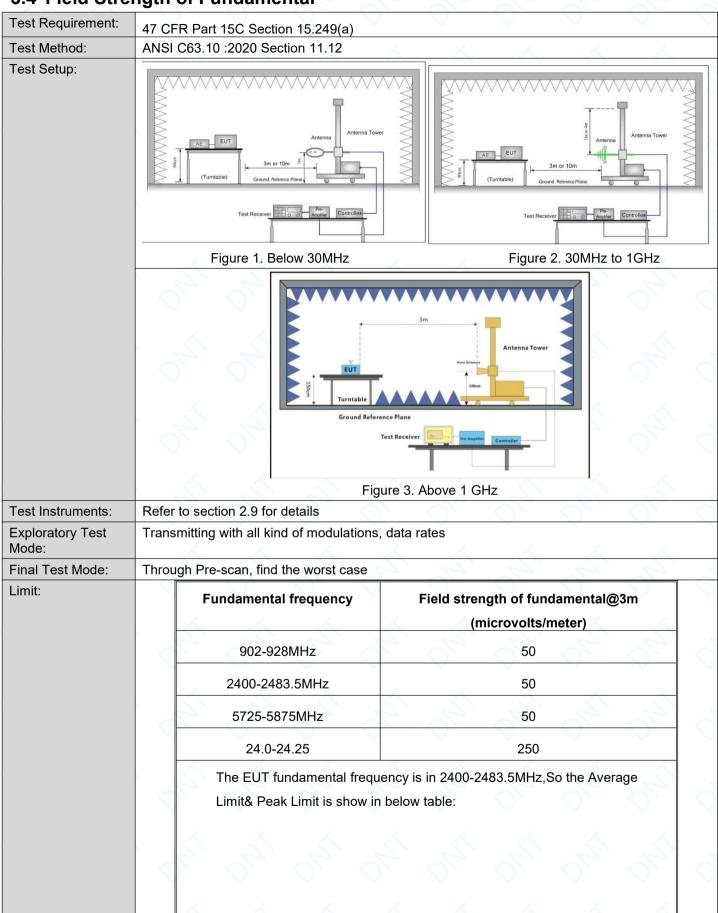


Date: April 28, 2025

Page: (14 / 32






# 3.3 Duty Cycle

Limit :N/A

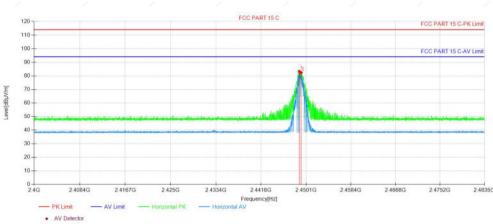
| Agilent Spectrum Analyzer - Swept SA                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                 |                 |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|-----------------|
| XI L RF 50 Ω DC                                                                                                                      | SENSE:PULSE SOURC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E OFF ALIGN AUTO                 | 07:13:43 AM Apr 07, 2025        |                 |
| Marker 3 Δ 8.04000 ms                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avg Type: Log-Pwr                | TRACE 1 2 3 4 5 6               | Marker          |
| PNO: Fast ↔<br>IFGain:Low                                                                                                            | Trig: Free Run<br>Atten: 10 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  | TYPE WWWWWWW<br>DET N N N N N N | Marker Table    |
|                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Δ                                | Mkr3 8.040 ms                   | On Off          |
| 10 dB/div Ref -15.00 dBm                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25                               | -0.01 dB                        |                 |
|                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | 3∆1                             |                 |
| -25.0                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                 | Marker Count    |
| -35.0                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                 | [Off]           |
| -45.0                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                 |                 |
| -55.0                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                 | Couple          |
| -65.0                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                 | Markers         |
|                                                                                                                                      | I ALLER AND A CAMERINA AND A REAL PROPERTY OF A DESCRIPTION OF A DESCRIPTI |                                  | مارية وراهية أرقاقه والالبارية  | On <u>Off</u>   |
|                                                                                                                                      | les mainte annual aite aitea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | فالهادا بالبطيط كعرار فكالمالطوا |                                 |                 |
| -85.0                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                 |                 |
| -95.0 mar site in the state in the second state of the state                                                                         | alder starte alle a bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | troop i in and aid in            | անների դեպես                    |                 |
|                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a l'hibi bi bi an a li aine      | אין ודית אודייי ואוריי          |                 |
|                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                 |                 |
| Center 2.475000000 GHz                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                               | Span 0 Hz                       |                 |
| Res BW 1.0 MHz #VB                                                                                                                   | V 3.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sweep 1                          | 0.00 ms (1001 pts)              |                 |
| MKR MODE TRC SCL X                                                                                                                   | Y FUNC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TION FUNCTION WIDTH              | FUNCTION VALUE                  |                 |
| 1         N         1         t         1.140 ms           2         Δ1         1         t         (Δ)         200.0 μs         (Δ) | -28.20 dBm<br>-0.18 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |                                 |                 |
| $2 \Delta 1 + t (\Delta) = 200.0 \ \mu s (\Delta)$<br>$3 \Delta 1 + t (\Delta) = 8.040 \ ms (\Delta)$                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                 |                 |
| 4                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                 | All Markers Off |
| 5                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                 |                 |
| 6 7                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                 |                 |
| 8                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                 | More            |
| 9                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                 | 2 of 2          |
| 11                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | ~                               |                 |
| <                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                 |                 |
| MSG                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STATUS                           |                                 |                 |



### 3.4 Field Strength of Fundamental

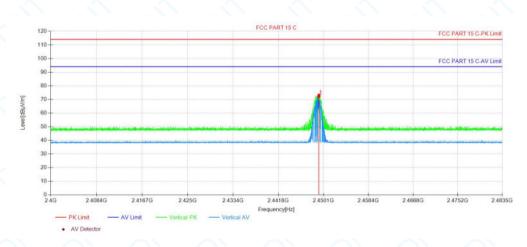





Date: April 28, 2025

Page: (17 / 32

|                     | Fundamental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Field strength of funda                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | amental@3m (dBµV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                     | frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Average Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Peak Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                     | 2400-2483.5MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 114                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | μV/m)=20×log[1000×Field Strer<br>m)= Average Limit (dBμV/m)+2                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Test Configuration: | <ul> <li>RBW: ≥OBW</li> <li>VBW: 3XRBW</li> <li>Start frequency: 2400MHz</li> <li>Stop frequency: 2483.5MHz</li> <li>Sweep Time: Auto</li> <li>Detector: PEAK/AVG</li> <li>Trace Mode: Max Hold</li> <li>a. the EUT was placed on the top of a rotating table 1 meters above the ground at a 3 m</li> </ul>                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Test Procedure:     | <ul> <li>semi-anechoic camber. The highest radiation</li> <li>b. The EUT was set 3 meter mounted on the top of a varie of the maximum value of the antenna are set to make the</li> <li>d. For each suspected emission was tuned to heights from antenna was tuned to height from antenna was tuned to height from antenna was tuned to height from the test-receiver system with Maximum Hold Mode.</li> <li>f. If the emission level of the E testing could be stopped an emissions that did not have peak or average method as</li> <li>g. The radiation measurement</li> </ul> | e table was rotated 360 degrees<br>ars away from the interference<br>iable-height antenna tower.<br>d from one meter to four meter<br>field strength. Both horizontal<br>e measurement.<br>on, the EUT was arranged to its<br>1 meter to 4 meters(for the test<br>ints 1 meter) and the rotatable<br>maximum reading.<br>ras set to Peak Detect Function<br>EUT in peak mode was 10dB loo<br>d the peak values of the EUT w<br>10dB margin would be re-test<br>specified and then reported in a | s to determine the position of the<br>e-receiving antenna, which was<br>s above the ground to determine<br>and vertical polarizations of the<br>worst case and then the antenna<br>t frequency of below 30MHz, the<br>table was turned from 0 degrees<br>on and Specified Bandwidth with<br>ower than the limit specified, then<br>would be reported. Otherwise the<br>ed one by one using peak, quasi-<br>a data sheet.<br>axis positioning for Transmitting |  |  |  |  |  |
|                     | r. Repeat above procedures u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ntil all frequencies measured w                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | as complete.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| Test Results:       | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | O, O, O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ) O O O C                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |

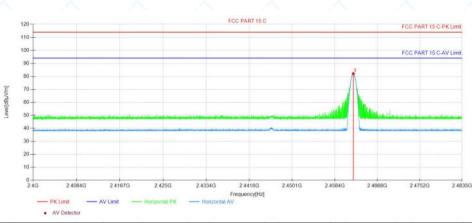



## Test Data 2449MHz Horizontal:



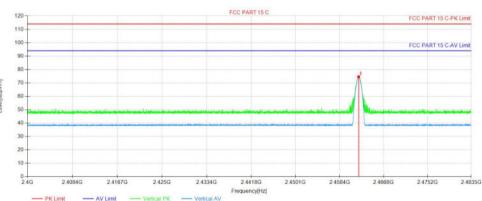
| NC | Freq.<br>[MHz] | Reading<br>Level<br>[dBµV] | Correct<br>Factor<br>[dB/m] | Result<br>Level<br>[dBµV/m] | Limit<br>[dB<br>µ V/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Remark |
|----|----------------|----------------------------|-----------------------------|-----------------------------|------------------------|----------------|----------------|--------------|--------|
| 1  | 2448.84        | 83.73                      | -0.45                       | 83.28                       | 114.00                 | 30.72          | 150            | 52           | PK     |
| 2  | 2449.19        | 82.76                      | -0.45                       | 82.31                       | 94.00                  | 11.69          | 150            | 52           | AV     |

#### Vertical:




| NO. | Freq.<br>[MHz] | Reading<br>Level<br>[dBµV] | Correct<br>Factor<br>[dB/m] | Result<br>Level<br>[dBµV/m] | Limit<br>[dB<br>µ V/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Remark |
|-----|----------------|----------------------------|-----------------------------|-----------------------------|------------------------|----------------|----------------|--------------|--------|
| 1   | 2449.25        | 73.59                      | -0.45                       | 73.14                       | 114.00                 | 40.86          | 150            | 115          | PK     |
| 2   | 2449.25        | 72.48                      | -0.45                       | 72.03                       | 94.00                  | 21.97          | 150            | 115          | AV     |




Page: (19 / 32

### **2462MHz** Horizontal:



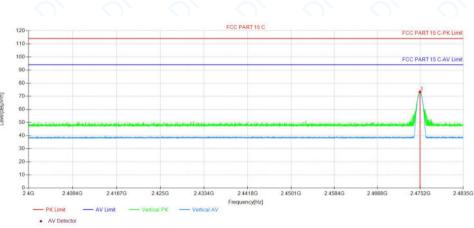
| NO. | Freq.<br>[MHz] | Reading<br>Level<br>[dBµV] | Correct<br>Factor<br>[dB/m] | Result<br>Level<br>[dBµV/m] | Limit<br>[dB<br>µ V/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Remark |
|-----|----------------|----------------------------|-----------------------------|-----------------------------|------------------------|----------------|----------------|--------------|--------|
| 1   | 2462.07        | 82.57                      | -0.40                       | 82.17                       | 114.00                 | 31.83          | 150            | 60           | PK     |
| 2   | 2462.09        | 82.39                      | -0.40                       | 81.99                       | 94.00                  | 12.01          | 150            | 60           | AV     |

Vertical:



PK Limit
 AV Detector

| NO. | Freq.<br>[MHz] | Reading<br>Level<br>[dBµV] | Correct<br>Factor<br>[dB/m] | Result<br>Level<br>[dBµV/m] | Limit<br>[dB<br>µ V/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Remark |
|-----|----------------|----------------------------|-----------------------------|-----------------------------|------------------------|----------------|----------------|--------------|--------|
| 1   | 2462.06        | 75.01                      | -0.40                       | 74.61                       | 114.00                 | 39.39          | 150            | 132          | PK     |
| 2   | 2462.09        | 74.69                      | -0.40                       | 74.29                       | 94.00                  | 19.71          | 150            | 132          | AV     |




### **2475MHz** Horizontal:



| NO. | Freq.<br>[MHz] | Reading<br>Level<br>[dBµV] | Correct<br>Factor<br>[dB/m] | Result<br>Level<br>[dBµV/m] | Limit<br>[dB<br>µ V/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Remark |
|-----|----------------|----------------------------|-----------------------------|-----------------------------|------------------------|----------------|----------------|--------------|--------|
| 1   | 2475.07        | 82.38                      | -0.33                       | 82.05                       | 114.00                 | 31.95          | 150            | 64           | PK     |
| 2   | 2475.09        | 82.22                      | -0.33                       | 81.89                       | 94.00                  | 12.11          | 150            | 64           | AV     |

Vertical:



| NO. | Freq.<br>[MHz] | Reading<br>Level<br>[dBµV] | Correct<br>Factor<br>[dB/m] | Result<br>Level<br>[dBµV/m] | Limit<br>[dB<br>µ V/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Remark |
|-----|----------------|----------------------------|-----------------------------|-----------------------------|------------------------|----------------|----------------|--------------|--------|
| 1   | 2475.07        | 73.65                      | -0.33                       | 73.32                       | 114.00                 | 40.68          | 150            | 148          | PK     |
| 2   | 2475.08        | 73.29                      | -0.33                       | 72.96                       | 94.00                  | 21.04          | 150            | 148          | AV     |

### Note

The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including LISN Factor and the Cable Factor etc.), The basic equation is as follows:
 Result Level= Reading Level + Correct Factor(including Ant.Factor ,Cable Factor etc.)



Report No.: DNT2503100051R1873-03398 Date: /

# 3.5 Radiated Spurious Emissions

| CFR Part 15C Sectio<br>CFR Part 15C Sectio<br>SI C63.10 :2020 Sec<br>asurement Distance:<br>Frequency<br>009MHz-0.090MHz<br>009MHz-0.090MHz<br>009MHz-0.110MHz<br>110MHz-0.490MHz<br>110MHz-0.490MHz<br>110MHz-0.490MHz<br>30MHz-1GHz<br>Above 1GHz<br>Frequency                                                                                                                                                                                                                                                                                        | in 15.205<br>tion 11.12<br>3m or 10m (Semi-/<br>Detector<br>Peak<br>Average<br>Quasi-peak<br>Quasi-peak<br>Quasi-peak<br>Quasi-peak<br>Peak<br>15.209 <b>Radiated</b><br>Field strength        | RBW10kHz10kHz10kHz10kHz10kHz10kHz10kHz10kHz10kHz10kHz120kHz1MHz                                                                                                                                                                                                                                          | VBW<br>30kHz<br>30kHz<br>30kHz<br>30kHz<br>30kHz<br>30kHz<br>300kHz<br>300kHz<br>3MHz                                                                                                                                                                                                                                                                                                      | Remark<br>Peak<br>Average<br>Quasi-peak<br>Average<br>Quasi-peak<br>Quasi-peak<br>Peak                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| SI C63.10 :2020 Sec<br>asurement Distance:<br>Frequency<br>.009MHz-0.090MHz<br>.009MHz-0.090MHz<br>.009MHz-0.110MHz<br>.10MHz-0.490MHz<br>.110MHz-0.490MHz<br>.110MHz-0.490MHz<br>.30MHz-1GHz<br>Above 1GHz<br>Frequency                                                                                                                                                                                                                                                                                                                                | tion 11.12<br>3m or 10m (Semi-/<br>Detector<br>Peak<br>Average<br>Quasi-peak<br>Peak<br>Average<br>Quasi-peak<br>Quasi-peak<br>Quasi-peak<br>15.209 <b>Radiated</b><br>Field strength          | RBW10kHz10kHz10kHz10kHz10kHz10kHz10kHz10kHz10kHz10kHz120kHz1MHz                                                                                                                                                                                                                                          | VBW<br>30kHz<br>30kHz<br>30kHz<br>30kHz<br>30kHz<br>30kHz<br>300kHz<br>300kHz<br>3MHz                                                                                                                                                                                                                                                                                                      | Peak<br>Average<br>Quasi-peak<br>Peak<br>Average<br>Quasi-peak<br>Quasi-peak                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| asurement Distance:<br>Frequency<br>009MHz-0.090MHz<br>009MHz-0.090MHz<br>090MHz-0.110MHz<br>110MHz-0.490MHz<br>110MHz-0.490MHz<br>0.490MHz -30MHz<br>30MHz-1GHz<br>Above 1GHz<br>Frequency                                                                                                                                                                                                                                                                                                                                                             | 3m or 10m (Semi-/<br>Detector<br>Peak<br>Average<br>Quasi-peak<br>Peak<br>Average<br>Quasi-peak<br>Quasi-peak<br>Peak<br>15.209 <b>Radiated</b><br>Field strength                              | RBW10kHz10kHz10kHz10kHz10kHz10kHz10kHz10kHz10kHz10kHz120kHz1MHz                                                                                                                                                                                                                                          | VBW<br>30kHz<br>30kHz<br>30kHz<br>30kHz<br>30kHz<br>30kHz<br>300kHz<br>300kHz<br>3MHz                                                                                                                                                                                                                                                                                                      | Peak<br>Average<br>Quasi-peak<br>Peak<br>Average<br>Quasi-peak<br>Quasi-peak                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| Frequency<br>009MHz-0.090MHz<br>009MHz-0.090MHz<br>090MHz-0.110MHz<br>110MHz-0.490MHz<br>110MHz-0.490MHz<br>0.490MHz -30MHz<br>30MHz-1GHz<br>Above 1GHz<br>Frequency                                                                                                                                                                                                                                                                                                                                                                                    | Detector<br>Peak<br>Average<br>Quasi-peak<br>Peak<br>Average<br>Quasi-peak<br>Quasi-peak<br>Peak<br>15.209 <b>Radiated</b><br>Field strength                                                   | RBW10kHz10kHz10kHz10kHz10kHz10kHz10kHz10kHz10kHz10kHz120kHz1MHz                                                                                                                                                                                                                                          | VBW<br>30kHz<br>30kHz<br>30kHz<br>30kHz<br>30kHz<br>30kHz<br>300kHz<br>300kHz<br>3MHz                                                                                                                                                                                                                                                                                                      | Peak<br>Average<br>Quasi-peak<br>Peak<br>Average<br>Quasi-peak<br>Quasi-peak                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| 009MHz-0.090MHz<br>009MHz-0.090MHz<br>090MHz-0.110MHz<br>110MHz-0.490MHz<br>110MHz-0.490MHz<br>0.490MHz -30MHz<br>30MHz-1GHz<br>Above 1GHz<br>Frequency                                                                                                                                                                                                                                                                                                                                                                                                 | Peak<br>Average<br>Quasi-peak<br>Peak<br>Average<br>Quasi-peak<br>Quasi-peak<br>Peak<br>15.209 <b>Radiated</b><br>Field strength                                                               | 10kHz<br>10kHz<br>10kHz<br>10kHz<br>10kHz<br>10kHz<br>120kHz<br>1MHz                                                                                                                                                                                                                                     | 30kHz<br>30kHz<br>30kHz<br>30kHz<br>30kHz<br>30kHz<br>300kHz<br>3MHz                                                                                                                                                                                                                                                                                                                       | Peak<br>Average<br>Quasi-peak<br>Peak<br>Average<br>Quasi-peak<br>Quasi-peak                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| 009MHz-0.090MHz<br>090MHz-0.110MHz<br>110MHz-0.490MHz<br>110MHz-0.490MHz<br>0.490MHz -30MHz<br>30MHz-1GHz<br>Above 1GHz<br>Frequency                                                                                                                                                                                                                                                                                                                                                                                                                    | Average<br>Quasi-peak<br>Peak<br>Average<br>Quasi-peak<br>Quasi-peak<br>Peak<br>15.209 <b>Radiated</b><br>Field strength                                                                       | 10kHz<br>10kHz<br>10kHz<br>10kHz<br>10kHz<br>120kHz<br>1MHz                                                                                                                                                                                                                                              | 30kHz<br>30kHz<br>30kHz<br>30kHz<br>30kHz<br>300kHz<br>3MHz                                                                                                                                                                                                                                                                                                                                | Average<br>Quasi-peak<br>Peak<br>Average<br>Quasi-peak<br>Quasi-peak                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| 090MHz-0.110MHz<br>110MHz-0.490MHz<br>110MHz-0.490MHz<br>0.490MHz -30MHz<br>30MHz-1GHz<br>Above 1GHz<br>Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                       | Quasi-peak<br>Peak<br>Average<br>Quasi-peak<br>Quasi-peak<br>Peak<br>15.209 <b>Radiated</b><br>Field strength                                                                                  | 10kHz<br>10kHz<br>10kHz<br>10kHz<br>120kHz<br>1MHz                                                                                                                                                                                                                                                       | 30kHz<br>30kHz<br>30kHz<br>30kHz<br>300kHz<br>3MHz                                                                                                                                                                                                                                                                                                                                         | Quasi-peak<br>Peak<br>Average<br>Quasi-peak<br>Quasi-peak                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| 110MHz-0.490MHz<br>110MHz-0.490MHz<br>0.490MHz -30MHz<br>30MHz-1GHz<br>Above 1GHz<br>Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Peak<br>Average<br>Quasi-peak<br>Quasi-peak<br>Peak<br>15.209 <b>Radiated</b><br>Field strength                                                                                                | 10kHz<br>10kHz<br>10kHz<br>120kHz<br>1MHz                                                                                                                                                                                                                                                                | 30kHz<br>30kHz<br>30kHz<br>300kHz<br>3MHz                                                                                                                                                                                                                                                                                                                                                  | Peak<br>Average<br>Quasi-peak<br>Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| 110MHz-0.490MHz<br>0.490MHz -30MHz<br>30MHz-1GHz<br>Above 1GHz<br>Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Average<br>Quasi-peak<br>Quasi-peak<br>Peak<br>15.209 <b>Radiated</b><br>Field strength                                                                                                        | 10kHz<br>10kHz<br>120kHz<br>1MHz                                                                                                                                                                                                                                                                         | 30kHz<br>30kHz<br>300kHz<br>3MHz                                                                                                                                                                                                                                                                                                                                                           | Average<br>Quasi-peak<br>Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| 0.490MHz -30MHz<br>30MHz-1GHz<br>Above 1GHz<br>Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quasi-peak<br>Quasi-peak<br>Peak<br>15.209 <b>Radiated</b><br>Field strength                                                                                                                   | 10kHz<br>120kHz<br>1MHz                                                                                                                                                                                                                                                                                  | 30kHz<br>300kHz<br>3MHz                                                                                                                                                                                                                                                                                                                                                                    | Quasi-peak<br>Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| 30MHz-1GHz<br>Above 1GHz<br>Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Quasi-peak<br>Peak<br>15.209 <b>Radiated</b><br>Field strength                                                                                                                                 | 120kHz<br>1MHz                                                                                                                                                                                                                                                                                           | 300kHz<br>3MHz                                                                                                                                                                                                                                                                                                                                                                             | Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| Above 1GHz<br>Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Peak<br>15.209 <b>Radiated</b><br>Field strength                                                                                                                                               | 1MHz                                                                                                                                                                                                                                                                                                     | 3MHz                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15.209 <b>Radiated</b><br>Field strength                                                                                                                                                       |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                            | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Field strength                                                                                                                                                                                 | l emission l                                                                                                                                                                                                                                                                                             | imits                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                | 15.209 Radiated emission limits                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (microvolt/meter)                                                                                                                                                                              | Limit<br>(dBuV/m)                                                                                                                                                                                                                                                                                        | Remark                                                                                                                                                                                                                                                                                                                                                                                     | Measuremen<br>distance (m)                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| .009MHz-0.490MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2400/F(kHz)                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                   | 300                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| .490MHz-1.705MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24000/F(kHz)                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                          | 30                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| 1.705MHz-30MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30                                                                                                                                                                                             | -2                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                          | 30                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| 30MHz-88MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100                                                                                                                                                                                            | 40.0                                                                                                                                                                                                                                                                                                     | Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| 88MHz-216MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 150                                                                                                                                                                                            | 43.5                                                                                                                                                                                                                                                                                                     | Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| 216MHz-960MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200                                                                                                                                                                                            | 46.0                                                                                                                                                                                                                                                                                                     | Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| 960MHz-1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 500                                                                                                                                                                                            | 54.0                                                                                                                                                                                                                                                                                                     | Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 500                                                                                                                                                                                            | 54.0                                                                                                                                                                                                                                                                                                     | Average                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| Remark:Unless otherwise specified, the limit on peak radio frequency<br>emissions is 20dB above the maximum permitted average emission limit<br>applicable to the equipment under test. This peak limit applies to the total peak<br>emission level radiated by the device.<br>The limits on the field strength of the spurious emissions in the below table are based<br>on the fundamental frequency of the intentional radiator. Spurious emissions shall be<br>attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Above 1GHz<br>mark:Unless otherwis<br>issions is 20dB above<br>licable to the equipm<br>ission level radiated b<br>e limits on the field sta<br>the fundamental freq<br>enuated to the average | Above 1GHz500mark:Unless otherwise specified, the limassions is 20dB above the maximum perblicable to the equipment under test. Thisassion level radiated by the device.e limits on the field strength of the spuriothe fundamental frequency of the intentionenuated to the average (or, alternatively, | Above 1GHz50054.0mark:Unless otherwise specified, the limit on peak ratesassions is 20dB above the maximum permitted averageblicable to the equipment under test. This peak limit assion level radiated by the device.e limits on the field strength of the spurious emissionsthe fundamental frequency of the intentional radiator.enuated to the average (or, alternatively, CISPR quast | Above 1GHz50054.0Averagemark:Unless otherwise specified, the limit on peak radio frequency<br>issions is 20dB above the maximum permitted average emission limit<br>blicable to the equipment under test. This peak limit applies to the to<br>ission level radiated by the device.e limits on the field strength of the spurious emissions in the below t<br>the fundamental frequency of the intentional radiator. Spurious emission |  |  |  |  |  |  |



Date: April 28, 2025 🛛 🗸 P

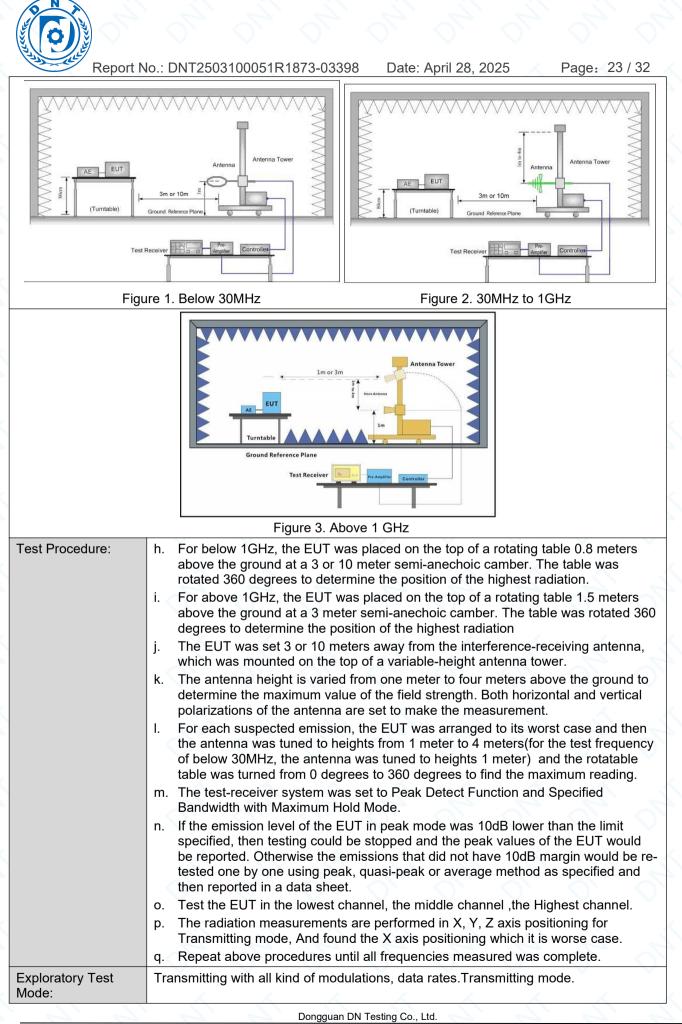
Page: 22 / 32

| Fundamental frequency | Field strength of harmonics@3m<br>(microvolts/meter) |  |  |  |  |  |
|-----------------------|------------------------------------------------------|--|--|--|--|--|
| 902-928MHz            | 500                                                  |  |  |  |  |  |
| 2400-2483.5MHz        | 500                                                  |  |  |  |  |  |
| 5725-5875MHz          | 500                                                  |  |  |  |  |  |
| 24.0-24.25            | 2500                                                 |  |  |  |  |  |

The EUT fundamental frequency is 2400-2483.5MHz,So the Average Limit& Peak Limit is show in below table:

| Fundamental frequency | Field strength of spurious emission@3m (dBµV/m) |            |  |  |  |  |  |
|-----------------------|-------------------------------------------------|------------|--|--|--|--|--|
| (MHz)                 | Average Limit                                   | Peak Limit |  |  |  |  |  |
| 2400-2483.5           | 54                                              | 74         |  |  |  |  |  |

Note:


1.Average Limit (dBµV/m)=20×log[1000×Field Strength (mV/m)].

2.Peak Limit (dBµV/m)= Average Limit (dBµV/m)+20dB

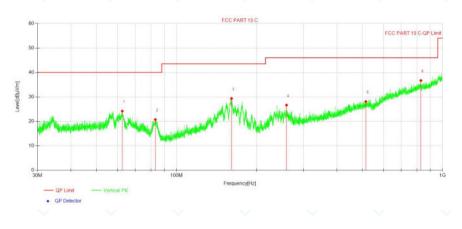
#### 15.205 Restricted frequency band

| MHz                        | MHz                   | MHz             | GHz              |
|----------------------------|-----------------------|-----------------|------------------|
| 0.090 - 0.110              | 16.42 - 16.423        | 399.9 - 410     | 4.5 - 5.15       |
| <sup>1</sup> 0.495 - 0.505 | 16.69475 - 16.69525   | 608 - 614       | 5.35 - 5.46      |
| 2.1735 - 2.1905            | 16.80425 - 16.80475   | 960 - 1240      | 7.25 - 7.75      |
| 4.125 - 4.128              | 25.5 - 25.67          | 1300 - 1427     | 8.025 - 8.5      |
| 4.17725 - 4.17775          | 37.5 - 38.25          | 1435 - 1626.5   | 9.0 - 9.2        |
| 4.20725 - 4.20775          | 73 - 74.6             | 1645.5 - 1646.5 | 9.3 - 9.5        |
| 6.215 - 6.218              | 74.8 - 75.2           | 1660 - 1710     | 10.6 - 12.7      |
| 6.26775 - 6.26825          | 108 - 121.94          | 1718.8 - 1722.2 | 13.25 - 13.4     |
| 6.31175 - 6.31225          | 123 - 138             | 2200 - 2300     | 14.47 - 14.5     |
| 8.291 - 8.294              | 149.9 - 150.05        | 2310 - 2390     | 15.35 - 16.2     |
| 8.362 - 8.366              | 156.52475 - 156.52525 | 2483.5 - 2500   | 17.7 - 21.4      |
| 8.37625 - 8.38675          | 156.7 - 156.9         | 2690 - 2900     | 22.01 - 23.12    |
| 8.41425 - 8.41475          | 162.0125 - 167.17     | 3260 - 3267     | 23.6 - 24.0      |
| 12.29 - 12.293             | 167.72 - 173.2        | 3332 - 3339     | 31.2 - 31.8      |
| 2.51975 - 12.52025         | 240 - 285             | 3345.8 - 3358   | 36.43 - 36.5     |
| 2.57675 - 12.57725         | 322 - 335.4           | 3600 - 4400     | ( <sup>2</sup> ) |
|                            |                       |                 |                  |

Test Setup:

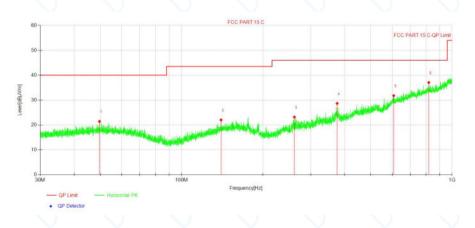





 Report No.: DNT2503100051R1873-03398
 Date: April 28, 2025
 Page: 24 / 32

| Final Test Mode:  | Pretest the EUT at Transmitting mode.<br>Through Pre-scan, find the worst case. |
|-------------------|---------------------------------------------------------------------------------|
| Instruments Used: | Refer to section 2.9 for details                                                |
| Test Results:     | Pass                                                                            |
|                   |                                                                                 |




#### For 30-1000MHz TX

Vertical:

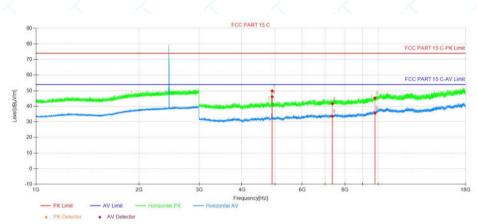


| 2 | NO. | Freq.<br>[MHz] | Reading<br>Level<br>[dBµV] | Correct<br>Factor<br>[dB/m] | Result<br>Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Remark |
|---|-----|----------------|----------------------------|-----------------------------|-----------------------------|-------------------|----------------|----------------|--------------|--------|
|   | 1   | 62.48          | 33.24                      | -9.04                       | 24.20                       | 40.00             | 15.80          | 100            | 48           | QP     |
|   | 2   | 83.23          | 34.03                      | -13.29                      | 20.74                       | 40.00             | 19.26          | 100            | 300          | QP     |
|   | 3   | 160.97         | 37.14                      | -7.81                       | 29.33                       | 43.50             | 14.17          | 100            | 108          | QP     |
|   | 4   | 259.14         | 35.29                      | -8.64                       | 26.65                       | 46.00             | 19.35          | 100            | 50           | QP     |
|   | 5   | 514.90         | 29.51                      | -1.40                       | 28.11                       | 46.00             | 17.89          | 100            | 44           | QP     |
|   | 6   | 829.82         | 31.99                      | 4.71                        | 36.70                       | 46.00             | 9.30           | 100            | 101          | QP     |

Horizontal:

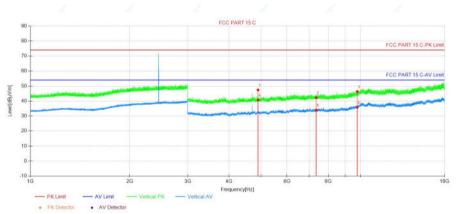


| NO. | Freq.<br>[MHz] | Reading<br>Level<br>[dBµV] | Correct<br>Factor<br>[dB/m] | Result<br>Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Remark |
|-----|----------------|----------------------------|-----------------------------|-----------------------------|-------------------|----------------|----------------|--------------|--------|
| 1   | 49.71          | 29.53                      | -8.07                       | 21.46                       | 40.00             | 18.54          | 100            | 356          | QP     |
| 2   | 139.90         | 30.54                      | -8.49                       | 22.05                       | 43.50             | 21.45          | 100            | 198          | QP     |
| 3   | 261.15         | 31.76                      | -8.56                       | 23.20                       | 46.00             | 22.80          | 100            | 84           | QP     |
| 4   | 375.94         | 33.63                      | -4.94                       | 28.69                       | 46.00             | 17.31          | 100            | 90           | QP     |
| 5   | 608.43         | 30.85                      | 0.93                        | 31.78                       | 46.00             | 14.22          | 100            | 216          | QP     |
| 6   | 820.27         | 32.28                      | 4.79                        | 37.07                       | 46.00             | 8.93           | 100            | 230          | QP     |


Dongguan DN Testing Co., Ltd.



#### For above 1GHz TX


#### 2449MHz

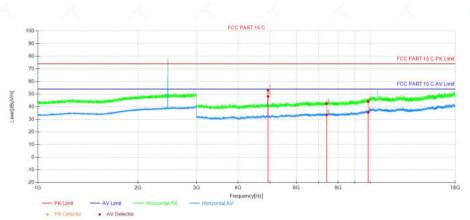
Horizontal:



| NO. | Freq.<br>[MHz] | Reading<br>Level<br>[dBµV] | Correct<br>Factor<br>[dB/m] | Result Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Remark |
|-----|----------------|----------------------------|-----------------------------|--------------------------|-------------------|----------------|----------------|--------------|--------|
| 1   | 4898.34        | 54.66                      | -4.74                       | 49.92                    | 74.00             | 24.08          | 150            | 59           | PK     |
| 2   | 7346.47        | 43.12                      | -1.43                       | 41.69                    | 74.00             | 32.31          | 150            | 4            | PK     |
| 3   | 9795.34        | 43.52                      | 1.81                        | 45.33                    | 74.00             | 28.67          | 150            | 141          | PK     |
| 4   | 4899.09        | 50.86                      | -4.74                       | 46.12                    | 54.00             | 7.88           | 150            | 59           | AV     |
| 5   | 7346.47        | 35.09                      | -1.43                       | 33.66                    | 54.00             | 20.34          | 150            | 127          | AV     |
| 6   | 9795.34        | 33.80                      | 1.81                        | 35.61                    | 54.00             | 18.39          | 150            | 253          | AV     |

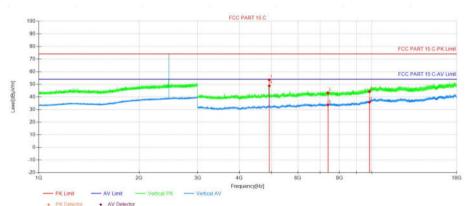
Vertical:




| NC | Freq.<br>[MHz] | Reading<br>Level<br>[dBµV] | Correct<br>Factor<br>[dB/m] | Result Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Remark |
|----|----------------|----------------------------|-----------------------------|--------------------------|-------------------|----------------|----------------|--------------|--------|
| 1  | 4898.34        | 52.14                      | -4.74                       | 47.40                    | 74.00             | 26.60          | 150            | 130          | PK     |
| 2  | 7346.47        | 43.69                      | -1.43                       | 42.26                    | 74.00             | 31.74          | 150            | 117          | PK     |
| 3  | 9795.34        | 44.53                      | 1.81                        | 46.34                    | 74.00             | 27.66          | 150            | 103          | PK     |
| 4  | 4899.09        | 45.45                      | -4.74                       | 40.71                    | 54.00             | 13.29          | 150            | 160          | AV     |
| 5  | 7346.47        | 35.37                      | -1.43                       | 33.94                    | 54.00             | 20.06          | 150            | 60           | AV     |
| 6  | 9795.34        | 34.09                      | 1.81                        | 35.90                    | 54.00             | 18.10          | 150            | 160          | AV     |
|    |                |                            |                             |                          |                   |                |                |              |        |

Dongguan DN Testing Co., Ltd.



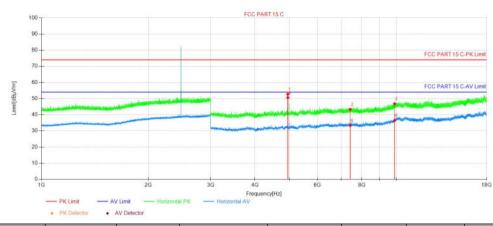

#### 2462MHz

Horizontal:



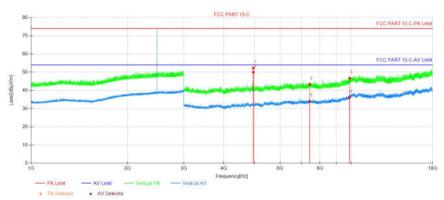
| NO. | Freq.<br>[MHz] | Reading<br>Level<br>[dBµV] | Correct<br>Factor<br>[dB/m] | Result Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Remark |
|-----|----------------|----------------------------|-----------------------------|--------------------------|-------------------|----------------|----------------|--------------|--------|
| 1   | 4924.60        | 57.72                      | -4.79                       | 52.93                    | 74.00             | 21.07          | 150            | 330          | PK     |
| 2   | 7386.22        | 43.80                      | -1.32                       | 42.48                    | 74.00             | 31.52          | 150            | 87           | PK     |
| 3   | 9850.09        | 41.98                      | 2.00                        | 43.98                    | 74.00             | 30.02          | 150            | 32           | PK     |
| 4   | 4924.60        | 52.98                      | -4.79                       | 48.19                    | 54.00             | 5.81           | 150            | 315          | AV     |
| 5   | 7386.22        | 34.70                      | -1.32                       | 33.38                    | 54.00             | 20.62          | 150            | 187          | AV     |
| 6   | 9850.09        | 33.40                      | 2.00                        | 35.40                    | 54.00             | 18.60          | 150            | 46           | AV     |

Vertical:




| NO. | Freq.<br>[MHz] | Reading<br>Level<br>[dBµV] | Correct<br>Factor<br>[dB/m] | Result Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Remark |
|-----|----------------|----------------------------|-----------------------------|--------------------------|-------------------|----------------|----------------|--------------|--------|
| 1   | 4923.85        | 58.28                      | -4.79                       | 53.49                    | 74.00             | 20.51          | 150            | 228          | PK     |
| 2   | 7386.22        | 44.54                      | -1.32                       | 43.22                    | 74.00             | 30.78          | 150            | 284          | PK     |
| 3   | 9850.09        | 42.18                      | 2.00                        | 44.18                    | 74.00             | 29.82          | 150            | 314          | PK     |
| 4   | 4924.60        | 53.61                      | -4.79                       | 48.82                    | 54.00             | 5.18           | 150            | 228          | AV     |
| 5   | 7386.22        | 34.97                      | -1.32                       | 33.65                    | 54.00             | 20.35          | 150            | 74           | AV     |
| 6   | 9850.09        | 33.86                      | 2.00                        | 35.86                    | 54.00             | 18.14          | 150            | 355          | AV     |

Dongguan DN Testing Co., Ltd.

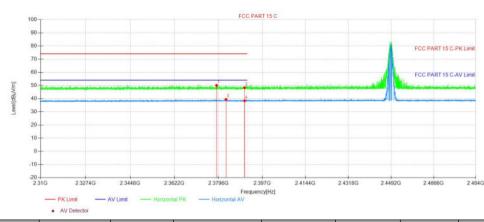



### **2475MHz** Horizontal:



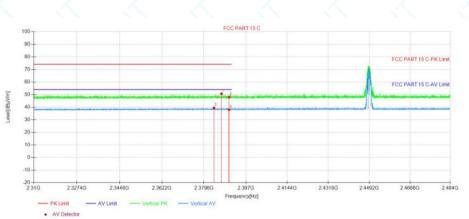
|           | NO. | Freq.<br>[MHz] | Reading<br>Level<br>[dBµV] | Correct<br>Factor<br>[dB/m] | Result Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Remark |
|-----------|-----|----------------|----------------------------|-----------------------------|--------------------------|-------------------|----------------|----------------|--------------|--------|
|           | 1   | 4950.10        | 57.51                      | -4.85                       | 52.66                    | 74.00             | 21.34          | 150            | 75           | PK     |
|           | 2   | 7425.22        | 44.64                      | -1.32                       | 43.32                    | 74.00             | 30.68          | 150            | 88           | PK     |
|           | 3   | 9899.59        | 44.65                      | 2.19                        | 46.84                    | 74.00             | 27.16          | 150            | 3            | PK     |
| $\langle$ | 4   | 4950.85        | 55.44                      | -4.85                       | 50.59                    | 54.00             | 3.41           | 150            | 329          | AV     |
|           | 5   | 7425.22        | 34.65                      | -1.32                       | 33.33                    | 54.00             | 20.67          | 150            | 273          | AV     |
|           | 6   | 9899.59        | 34.23                      | 2.19                        | 36.42                    | 54.00             | 17.58          | 150            | 244          | AV     |

Vertical:




| NO. | Freq.<br>[MHz] | Reading<br>Level<br>[dBµV] | Correct<br>Factor<br>[dB/m] | Result Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Remark |
|-----|----------------|----------------------------|-----------------------------|--------------------------|-------------------|----------------|----------------|--------------|--------|
| 1   | 4950.10        | 57.17                      | -4.85                       | 52.32                    | 74.00             | 21.68          | 150            | 232          | PK     |
| 2   | 7425.22        | 44.62                      | -1.32                       | 43.30                    | 74.00             | 30.70          | 150            | 274          | PK     |
| 3   | 9899.59        | 44.55                      | 2.19                        | 46.74                    | 74.00             | 27.26          | 150            | 117          | PK     |
| 4   | 4950.85        | 54.84                      | -4.85                       | 49.99                    | 54.00             | 4.01           | 150            | 232          | AV     |
| 5   | 7425.22        | 35.30                      | -1.32                       | 33.98                    | 54.00             | 20.02          | 150            | 360          | AV     |
| 6   | 9899.59        | 33.94                      | 2.19                        | 36.13                    | 54.00             | 17.87          | 150            | 174          | AV     |
|     |                |                            |                             |                          |                   |                |                |              |        |

Dongguan DN Testing Co., Ltd.




### **2449MHz** Horizontal:

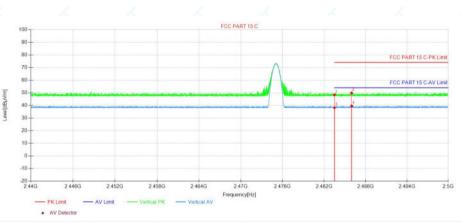


| NO. | Freq.<br>[MHz] | Reading<br>Level<br>[dBµV] | Correct<br>Factor<br>[dB/m] | Result Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Remark |
|-----|----------------|----------------------------|-----------------------------|--------------------------|-------------------|----------------|----------------|--------------|--------|
| 1   | 2378.88        | 50.88                      | -0.84                       | 50.04                    | 74.00             | 23.96          | 150            | 98           | PK     |
| 2   | 2390.01        | 49.11                      | -0.80                       | 48.31                    | 74.00             | 25.69          | 150            | 141          | PK     |
| 3   | 2382.63        | 40.21                      | -0.83                       | 39.38                    | 54.00             | 14.62          | 150            | 141          | AV     |
| 4   | 2390.01        | 39.19                      | -0.80                       | 38.39                    | 54.00             | 15.61          | 150            | 260          | AV     |





| $\langle$ | NO. | Freq.<br>[MHz] | Reading<br>Level<br>[dBµV] | Correct<br>Factor<br>[dB/m] | Result Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Remark |
|-----------|-----|----------------|----------------------------|-----------------------------|--------------------------|-------------------|----------------|----------------|--------------|--------|
|           | 1   | 2386.86        | 51.52                      | -0.81                       | 50.71                    | 74.00             | 23.29          | 150            | 259          | PK     |
|           | 2   | 2390.01        | 48.70                      | -0.80                       | 47.90                    | 74.00             | 26.10          | 150            | 275          | PK     |
|           | 3   | 2383.75        | 40.24                      | -0.82                       | 39.42                    | 54.00             | 14.58          | 150            | 4            | AV     |
|           | 4   | 2390.01        | 38.85                      | -0.80                       | 38.05                    | 54.00             | 15.95          | 150            | 304          | AV     |




### **2475MHz** Horizontal:



| NO. | Freq.<br>[MHz] | Reading<br>Level<br>[dBµV] | Correct<br>Factor<br>[dB/m] | Result Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Remark |
|-----|----------------|----------------------------|-----------------------------|--------------------------|-------------------|----------------|----------------|--------------|--------|
| 1   | 2483.51        | 48.33                      | -0.29                       | 48.04                    | 74.00             | 25.96          | 150            | 146          | PK     |
| 2   | 2485.21        | 50.05                      | -0.27                       | 49.78                    | 74.00             | 24.22          | 150            | 0            | PK     |
| 3   | 2483.51        | 38.88                      | -0.29                       | 38.59                    | 54.00             | 15.41          | 150            | 324          | AV     |
| 4   | 2486.34        | 39.89                      | -0.26                       | 39.63                    | 54.00             | 14.37          | 150            | 202          | AV     |





| NO. | Freq.<br>[MHz] | Reading<br>Level<br>[dBµV] | Correct<br>Factor<br>[dB/m] | Result Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Remark |
|-----|----------------|----------------------------|-----------------------------|--------------------------|-------------------|----------------|----------------|--------------|--------|
| 1   | 2483.50        | 48.57                      | -0.29                       | 48.28                    | 74.00             | 25.72          | 150            | 231          | PK     |
| 2   | 2485.98        | 50.10                      | -0.27                       | 49.83                    | 74.00             | 24.17          | 150            | 105          | PK     |
| 3   | 2483.50        | 38.45                      | -0.29                       | 38.16                    | 54.00             | 15.84          | 150            | 4            | AV     |
| 4   | 2485.99        | 39.83                      | -0.27                       | 39.56                    | 54.00             | 14.44          | 150            | 173          | AV     |

#### Note:

- 1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:
  - Measurement Level= Reading Level + Correct Factor(including LISN Factor ,Cable Factor etc. )
- 2. Average Level=Peak Level + 20log(Duty cycle)
- 3. The amplitude of 9KHz to 30MHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.



Report No.: DNT2503100051R1873-03398 Date: April 28, 2025

# 3.6 AC Power Line Conducted Emissions

| Test Requirement:      | 47 CFR Part 15C Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:           | ANSI C63.10: 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Test Frequency Range:  | 150kHz to 30MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2' A' 5                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Limit:                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (dBuV)                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        | Frequency range (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                        | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 66 to 56*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 56 to 46*                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        | 0.5-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                        | 5-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                        | * Decreases with the logar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ithm of the frequency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Test Procedure:        | <ol> <li>The mains terminal distroom.</li> <li>The EUT was connected Impedance Stabilization N impedance. The power cat a second LISN 2, which we plane in the same way as multiple socket outlet strip single LISN provided the r.</li> <li>The tabletop EUT was ground reference plane. A placed on the horizontal grid.</li> <li>The test was performed of the EUT shall be 0.4 m vertical ground reference plane. The LISN unit under test and bonded mounted on top of the group between the closest points the EUT and associated e In order to find the maximute equipment and all of the im ANSI C63.10 2013 on con</li> </ol> | ed to AC power source the<br>letwork) which provides a<br>bles of all other units of the<br>as bonded to the ground<br>the LISN 1 for the unit be<br>was used to connect mu<br>ating of the LISN was not<br>placed upon a non-metal<br>nd for floor-standing arra<br>round reference plane,<br>d with a vertical ground re-<br>from the vertical ground re-<br>from the vertical ground re-<br>plane was bonded to the<br>1 1 was placed 0.8 m from<br>d to a ground reference p<br>und reference plane. This<br>is of the LISN 1 and the El-<br>quipment was at least 0.8<br>un emission, the relative<br>iterface cables must be c | rough a LISN 1 (Line<br>$50\Omega/50\mu$ H + $5\Omega$ linear<br>the EUT were connected to<br>reference<br>ing measured. A<br>Itiple power cables to a<br>texceeded.<br>It table 0.8m above the<br>ingement, the EUT was<br>reference plane. The rear<br>reference plane. The rear<br>reference plane. The<br>horizontal ground<br>in the boundary of the<br>lane for LISNs<br>is distance was<br>UT. All other units of<br>B m from the LISN 2.<br>positions of |
| Test Setup:            | Shielding Room                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AE<br>USN2<br>Ground Reference Plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Test Receiver                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Exploratory Test Mode: | Transmitting with all kind of highest channel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | of modulations, data rates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | at lowest, middle and                                                                                                                                                                                                                                                                                                                                                                                                                                            |



Report No.: DNT2503100051R1873-03398 Date: April 28, 2025 Page: 32 / 32

|                   | Charge + Transmitting mode.                                                                      |
|-------------------|--------------------------------------------------------------------------------------------------|
| Final Test Mode:  | Through Pre-scan, find the 6.5Mbps of rate of 802.11n(HT20) at lowest channel is the worst case. |
|                   | Charge + Transmitting mode.                                                                      |
|                   | Only the worst case is recorded in the report.                                                   |
| Instruments Used: | Refer to section 2.9 for details                                                                 |
| Test Results:     | N/a                                                                                              |

---END REPORT---