

FCC TEST REPORT FCC ID: 2AQTM-STERILIZERBOX

Product	:	Multi-Function Portable UV Light Sterilizer
Model Name	:	PS-426
Brand	:	Power System
Report No.	:	PTC20062402901E-FC01
		Prepared for
	Power S	System Electronic Technology Co., Ltd.
No.1 Shangbian Road,	Puxin Ind	ustrial District, Shipai Town, Dongguan City, Guangdong, China
		Prepared by
	Pred	sise Testing & Certification Co., Ltd.
Building 1, No. 6	, Tongxin	Road, Dongcheng Street, Dongguan, Guangdong, China

1 TEST RESULT CERTIFICATION

Applicant's name : Power System Electronic Technology Co., Ltd.

Address No.1 Shangbian Road, Puxin Industrial District, Shipai Town, Dongguan City,

Guangdong, China

Manufacture's name : Power System Electronic Technology Co., Ltd.

Address No.1 Shangbian Road, Puxin Industrial District, Shipai Town, Dongguan City,

Guangdong, China

Product name : Multi-Function Portable UV Light Sterilizer

Model name : PS-426

Standards : FCC Part15 Subpart C

Test procedure : ANSI C63.10:2013

Test Date : Jun 30, 2020 to Jul 20, 2020

Date of Issue : Jul 20, 2020

Test Result : Pass

This device described above has been tested by PTC, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of PTC, this document may be altered or revised by PTC, personal only, and shall be noted in the revision of the document.

Test Engineer:

Leo Yang / Engineer

Leo Jang

Technical Manager:

Chris Du / Manager

Contents

	Page
1 TEST RESULT CERTIFICATION	2
2 TEST SUMMARY	4
3 GENERAL INFORMATION	5
3.1 GENERAL DESCRIPTION OF E.U.T.	5
3.2 DESCRIPTION OF TEST MODES	6
3.3 TEST SITE	7
4 EQUIPMENT DURING TEST	8
4.1 EQUIPMENTS LIST	8
4.2 MEASUREMENT UNCERTAINTY	9
5 TEST STANDARD AND LIMIT	10
5.1 TEST SETUP	10
5.2 Test Procedure	10
5.3. TEST DATA	11
6 RADIATION SPURIOUS EMISSION AND BAND EDGE	13
6.1 Test Standard and Limit	13
6.2 TEST SETUP	14
6.3 Test Procedure	
6.4 TEST DATA	
7 ANTENNA REQUIREMENT	19
7.1 TEST STANDARD AND REQUIREMENT	19
7.2 ANTENNA CONNECTED CONSTRUCTION	19
APPENDIX I TEST SETUP PHOTOGRAPH	20
ADDENDIY II EYTERNAL PHOTOGRAPH	22

2 Test Summary

Standard Section	Test Item	Result
FCC Part 15, Paragraph 15.207	Conducted Emission Test	PASS
FCC Part 15, Paragraph 15.209(a)(f)	Spurious Emission	PASS
Part 15.203	Antenna Requirement	PASS

3 General Information

3.1 General Description of E.U.T.

Product Name	-	Multi-Function Portable UV Light Sterilizer
Model Name	:	PS-426
Operation Frequency	:	110.1-205KHz
Type of Modulation	:	ASK
Antenna installation	:	Inductive loop coil Antenna
Antenna Gain	:	0 dBi
Power supply	-	Input: 100-240V~ 50/60Hz, 0.8A Output: DC 5V, 3A/DC 9V, 2.66A/DC12V, 2A
Hardware Version	:	N/A
Software Version	:	N/A

3.2 Description of Test Modes

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	Full load, Wireless charger module

For Conducted Emission					
Final Test Mode	Description				
Mode 1	Full load, Wireless charger module				

For Radiated Emission					
Final Test Mode	Description				
Mode 1	Full load, Wireless charger module				

Note: (1)Test channel is 0.1250MHz.

(2)All the situation(full load, half load and empty load) has been tested,only the worst situation (full load) was recorded in the report.

(3)5W/7.5W/10W All modes have been tested. This report only show the test result of the worst case(Full load 10W).

3.3 Test Site


Precise Testing & Certification Co., Ltd.

Building 1, No. 6, Tongxin Road, Dongcheng Street, Dongguan, Guangdong, China

FCC Registration Number: 790290

A2LA Certificate No.: 4408.01

IC Registration Number: 12191A-1

4 Equipment During Test

4.1 Equipments List

RF Conducted Test

Name of Equipment	Manufacturer	Model	Serial No.	Characteristics	Calibration Due
MXG Signal Analyzer	Agilent	N9020A	MY56070279	10Hz-30GHz	Aug. 21, 2020
Coaxial Cable	CDS	79254	46107086	10Hz-30GHz	Aug. 21, 2020

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

Name of Equipment	Manufacturer	Model	Serial No.	Characteristics	Calibration Due
EMI Test Receiver	Rohde&Schwarz	ESCI	101417	9KHz-3GHz	Aug. 21, 2020
Loop Antenna	Schwarzbeck	FMZB 1519	012	9 KHz -30MHz	Aug. 21, 2020
Bilog Antenna	SCHWARZBECK	VULB9160	9160-3355	25MHz-2GHz	Aug. 21, 2020
Preamplifier (low frequency)	SCHWARZBECK	BBV 9475	9745-0013	1MHz-1GHz	Aug. 21, 2020
Cable	Schwarzbeck	PLF-100	549489	9KHz-3GHz	Aug. 21, 2020
Spectrum Analyzer	Agilent	E4407B	MY45109572	9KHz-40GHz	Aug. 21, 2020
Horn Antenna	SCHWARZBECK	9120D	9120D-1246	1GHz-18GHz	Aug. 21, 2020
Power Amplifier	LUNAR EM	LNA1G18-40	J10100000081	1GHz-26.5GHz	Aug. 21, 2020
Cable	H+S	CBL-26	N/A	1GHz-26.5GHz	Aug. 21, 2020

Conducted Emissions

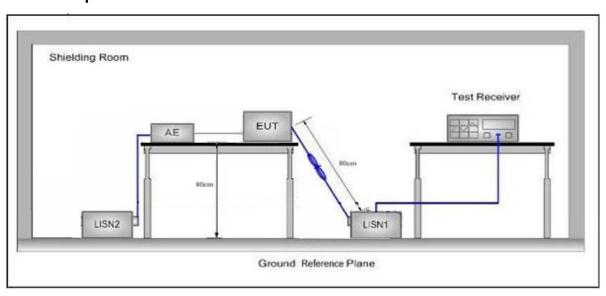
Name of Equipment	Manufacturer	Model	Serial No.	Characteristics	Calibration Due
EMI Test Receiver	Rohde&Schwarz	ESCI	101417	9KHz-3GHz	Aug. 21, 2020
Artificial Mains Network	Rohde&Schwarz	L2-16B	000WX31025	9KHz-300MHz	Aug. 21, 2020
Artificial Mains Network	Rohde&Schwarz	ENV216	101342	9KHz-300MHz	Aug. 21, 2020

4.2 Measurement Uncertainty

Radiation Uncertainty		Ur = 3.9 dB (Horizontal)			
		Ur = 3.8 dB (Vertical)			
Conduction Uncertainty	:	Uc = 3.4 dB			

4.3 Description of Support Units

Equipment	Model No.	Series No.
iPhone 11	Input:5W/7.5W/10W	N/A


5 Test Standard and Limit

Test Standard	FCC Part15 Section 15.207						
	Frequency	Maximum RF Line Voltage (dBuV)					
		Quasi-peak Level	Average Level				
Test Limit	150kHz~500kHz	66 ~ 56 *	56 ~ 46 *				
	500kHz~5MHz	56	46				
	5MHz~30MHz	60	50				

Remark: (1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequency.

5.1 Test Setup

5.2 Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.10-2013 on Conducted Emission Measurement.

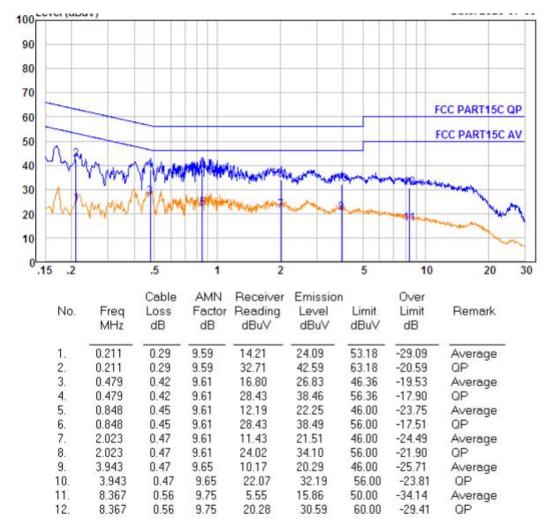
The bandwidth of test receiver (ESCI) set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

5.3. Test Data

Please to see the following pages

Note: During the test, pre-scan 120Vac/60Hz and 240Vac/60Hz of the Power supply, found 120Vac/60Hz was worse case, mode, the report only reflects the worst mode.

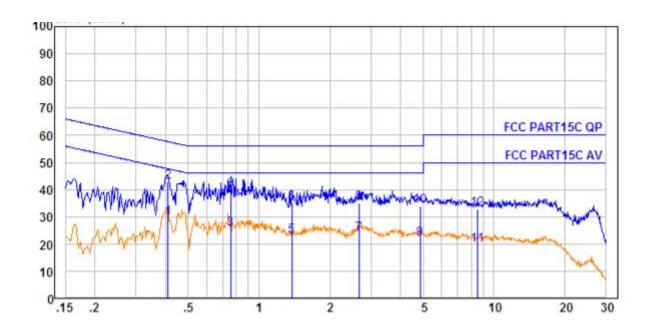

Conducted Emission Test Data

Operating Condition: Mode 1

Test Specification: AC 120V, 60Hz for adapter

Comment: Live Line

Tem.: 22℃ Hum.: 51%


Conducted Emission Test Data

Operating Condition: Mode 1

Test Specification: AC 120V, 60Hz for adapter

Comment: Neutral Line

Tem.: 22℃ Hum.: 51%

No.	Freq MHz	Cable Loss dB	AMN Factor dB	Receiver Reading dBuV	Emission Level dBuV	Limit dBuV	Over Limit dB	Remark
1.	0.410	0.41	9.63	19.42	29.46	47.64	-18.18	Average
2.	0.410	0.41	9.63	32.87	42.91	57.64	-14.73	QP
3.	0.759	0.44	9.64	15.42	25.50	46.00	-20.50	Average
4.	0.759	0.44	9.64	30.58	40.66	56.00	-15.34	QP
5.	1.381	0.46	9.64	12.76	22.86	46.00	-23.14	Average
6.	1.381	0.46	9.64	24.84	34.94	56.00	-21.06	QP
7.	2.664	0.47	9.65	13.42	23.54	46.00	-22.46	Average
8.	2.664	0.47	9.65	24.99	35.11	56.00	-20.89	QP
9.	4.848	0.50	9.70	11.41	21.61	46.00	-24.39	Average
10.	4.848	0.50	9.70	23.74	33.94	56.00	-22.06	QP
11.	8.546	0.56	9.79	9.22	19.57	50.00	-30.43	Average
12.	8.546	0.56	9.79	22.54	32.89	60.00	-27.11	QP

6 Radiation Spurious Emission and Band Edge

6.1 Test Standard and Limit

Test Standard	FCC Part15 C Section 15.209 and 15.205							
	Frequency	Field strength	Limit	Remark	Measurement			
	(MHz)	(microvolt/meter)	(dBuV/m)	Remark	distance (m)			
	0.009MHz~0.490MHz	2400/F(kHz)	-	-	300			
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30			
	1.705MHz-30MHz	30	-	-	30			
Test Limit	30MHz~88MHz	100	40.0	Quasi-peak	3			
	88MHz~216MHz	150	43.5	Quasi-peak	3			
	216MHz~960MHz	200	46.0	Quasi-peak	3			
	960MHz~1000MHz	500	54.0	Quasi-peak	3			
	Above 1000MHz	500	54.0	Average	3			
		-	74.0	Peak	3			

Remark:

⁽¹⁾The lower limit shall apply at the transition frequency.

^{(2) 15.35(}b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

6.2 Test Setup

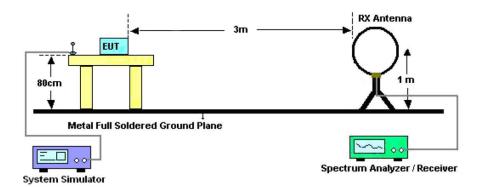


Figure 1. Below 30MHz

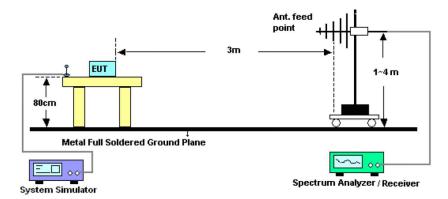


Figure 2. 30MHz to 1GHz

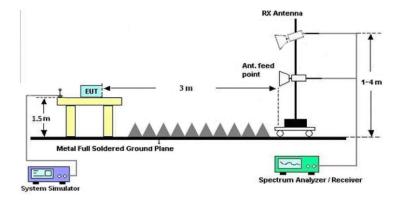


Figure 3. Above 1 GHz

6.3 Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane.

For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane.

The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Rotated the EUT through three orthogonal axes to determine the maximum emissions, both horizontal and vertical polarization of the antenna are set on test. The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW = 200Hz, VBW =1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW = 9KHz, VBW =30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

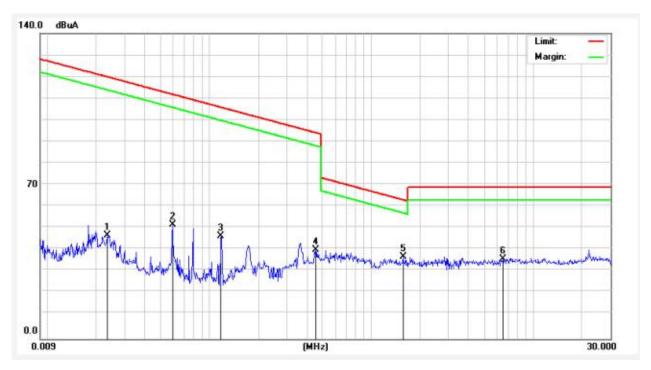
For 30MHz to 1000MHz, Set the spectrum analyzer as:

RBW = 100kHz, VBW =300kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

6.4 Test Data

PASS

Note: The data is in TX mode, and this is the worst mode.


Test Results (9K~30MHz)

Test Mode: Mode 1

Power Source: AC 120V, 60Hz for adapter

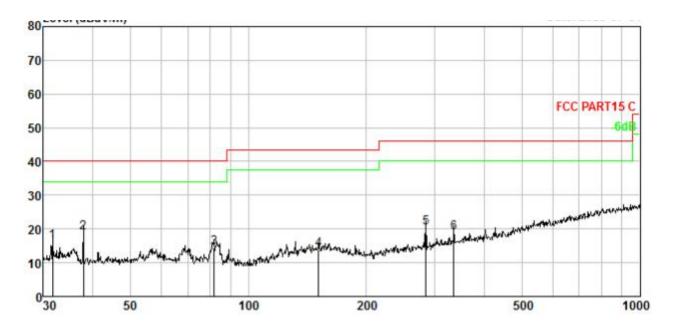
Temp.(°C)/Hum.(%RH): 24.7°C/51%RH

Distance: 3m

No.	Freq. (MHz)	Reading (dBuA)	Factor (dB)	Result (dBuA)	Limit dBuA	Over Limit (dB)	Detector
1	0.0234	4.68	42.66	47.34	120.07	-72.73	QP
2	0.0592	14.36	38.09	52.45	112.05	-59.60	QP
3	0.1184	13.95	33.27	47.22	106.07	-58.85	QP
4	0.4540	5.76	34.93	40.69	94.46	-53.77	QP
5	1.5700	8.27	29.44	37.71	63.69	-25.98	QP
6	6.5259	7.47	29.07	36.54	69.54	-33.00	QP

Remark: According to FCC PART 15.209 (d), the emission limits for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz, Radiated emission limits in these three bands are based on measurements employing an average detector.

Test Results (30~1000MHz)


Test Mode: Mode 1

Power Source: AC 120V, 60Hz for adapter

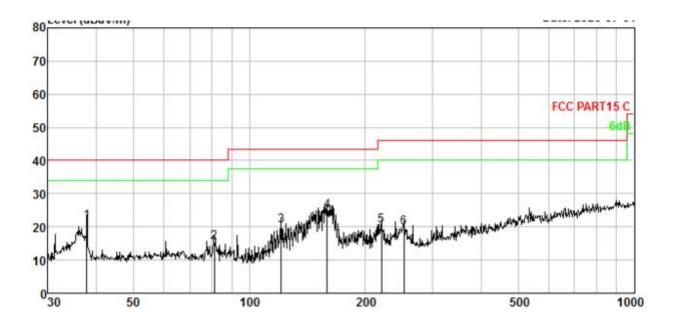
Polarization: Vertical

Temp.(℃)/Hum.(%RH): 24.3℃/54%RH

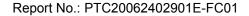
Distance: 3m

No.	Freq MHz	Cable Loss dB	ANT Factor dB/m	Receiver Reading dBuV	Preamp Factor dB	Emission Level dBuV/m	Limit dBuV/m	O∨er Limit dB	Remark
1.	31.620	1.29	11.87	33.08	29.89	16.35	40.00	-23.65	QP
2.	37.945	1.61	12.14	35.10	29.90	18.95	40.00	-21.05	QP
3.	81.783	2.93	8.89	32.59	29.97	14.44	40.00	-25.56	QP
4.	151.067	3.98	13.76	26.13	30.02	13.85	43.50	-29.65	QP
5.	283.979	5.07	12.99	32.65	30.28	20.43	46.00	-25.57	QP
6.	334.859	5.35	14.06	30.08	30.47	19.02	46.00	-26.98	QP

Test Results (30~1000MHz)


Test Mode: Mode 1

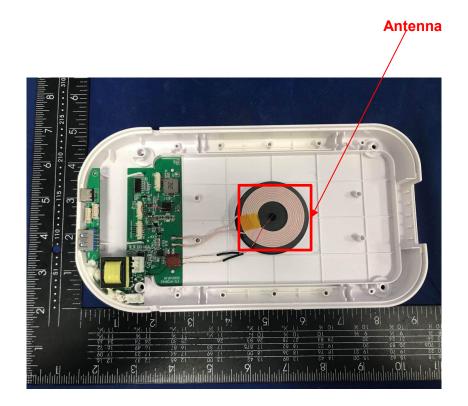
Power Source: AC 120V, 60Hz for adapter


Polarization: Horizontal

Temp.(℃)/Hum.(%RH): 24.3℃/54%RH

Distance: 3m

No.	Freq MHz	Cable Loss dB	ANT Factor dB/m	Receiver Reading dBuV	Preamp Factor dB	Emission Level dBuV/m	Limit dBuV/m	Over Limit dB	Remark
1.	37.812	1.60	12.14	37.72	29.90	21.56	40.00	-18.44	QP
2.	81.212	2.92	8.93	33.48	29.97	15.36	40.00	-24.64	QP
3.	121.123	3.61	12.08	34.62	30.00	20.31	43.50	-23.19	QP
4.	159.225	4.07	14.07	36.73	30.02	24.85	43.50	-18.65	QP
5.	220.617	4.63	11.66	34.31	30.11	20.49	46.00	-25.51	QP
6.	252.063	4.86	12.53	32.69	30.20	19.88	46.00	-26.12	QP


7 Antenna Requirement

7.1 Test Standard and Requirement

Test Standard	FCC Part15 Section 15.203
Requirement	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

7.2 Antenna Connected Construction

The antenna is a Inductive loop coil Antenna which permanently attached, and the best case gain of the antenna is 0 dBi. It complies with the standard requirement.

APPENDIX I -- TEST SETUP PHOTOGRAPH

Photo of Conducted Emission Measurement

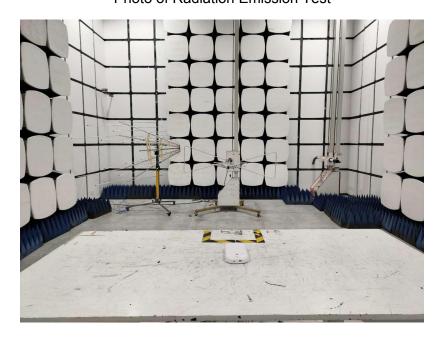
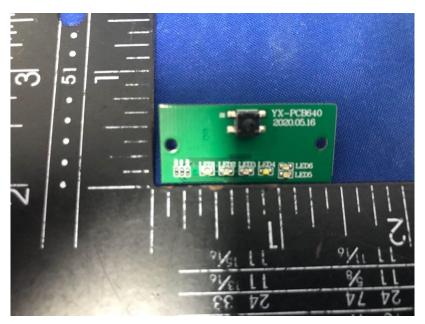
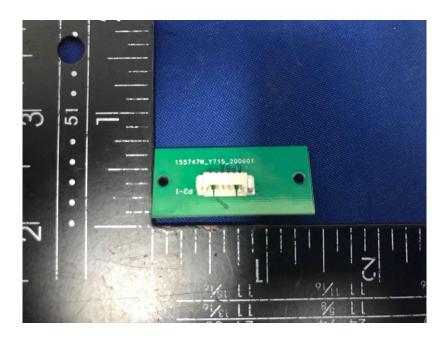
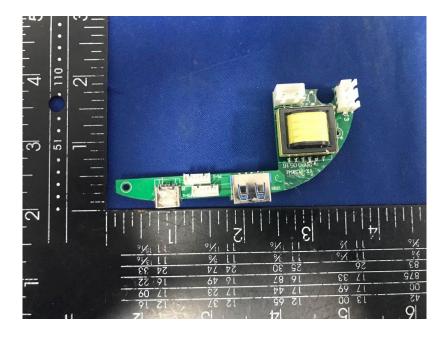



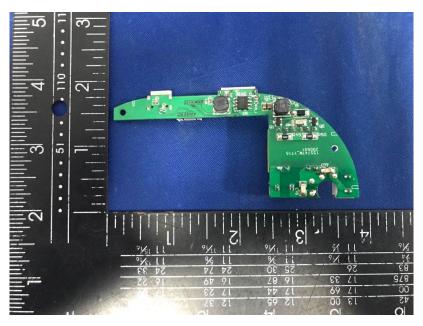
Photo of Radiation Emission Test

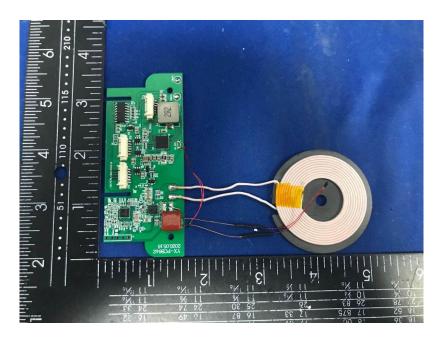
APPENDIX II -- EXTERNAL PHOTOGRAPH

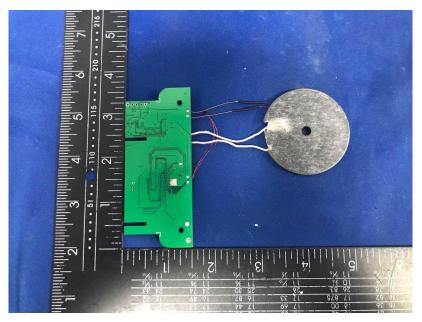












*****THE END REPORT*****