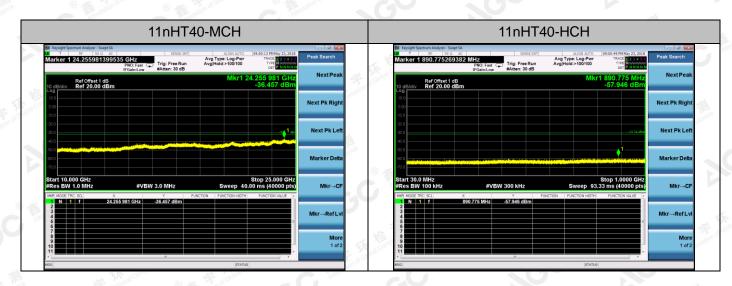
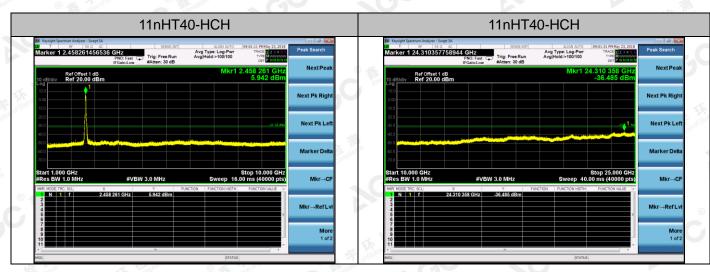

A G C [®] 鑫 宇 环 检 测 Attestation of Global Compliance

Report No.:AGC00552180405FE04 Page 26 of 47





AGC[®]鑫 宇 环 检 测 Attestation of Global Compliance

Report No.:AGC00552180405FE04 Page 27 of 47

11nHT40-MCH		11nHT40-MCH						
Ref offset 1 dB to uBfully Ref offset 1 dB to uBfully Ref offset 1 dB to uBfully Ref offset 1 dB to uBfully <th< th=""><th>Peak Search Next Peak</th><th>In Stranged Section Andreifer - Sent 3. Col 2 (and 1) Col 2 (and 1)</th></th<>	Peak Search Next Peak	In Stranged Section Andreifer - Sent 3. Col 2 (and 1)						
	Next Pk Right	Log trip att						
300	Next Pk Left	300						
	Marker Delta	400						
Start 30.0 MHz Stop 1.0000 GHz #Res BW 100 kHz £VBW 300 kHz Sweep 93.33 ms (40000 pts) way Mode Tric Sci, x Y Function	Mkr→CF	Start 1.000 GHz Stop 10.000 GHz #Res BW 1.0 MHz ⊈VBW 3.0 MHz Sweep 16.000 ons (10000 pts) More Note First Start x y Function Functionaute -						
1 N 1 f 922.059 MHz -59.406 dBm 2	Mkr→RefLvl	N 1 f 2.433 511 GHz 5.307 dBm Z 3 3 511 GHz 5.307 dBm Mkr→RefLv						
	More 1 of 2	More 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
MSG STATUS	mpiles	MSG STATUS						

AGC[®]鑫宇环检测 Attestation of Global Compliance

Report No.:AGC00552180405FE04 Page 28 of 47

10. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY 10.1 MEASUREMENT PROCEDURE

- (1). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- (2). Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- (3). Set SPA Trace 1 Max hold, then View.

Note: The method of AVGPSD in the KDB 558074 item 10.3 was used in this testing.

10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

Refer To Section 8.2.

10.3 MEASUREMENT EQUIPMENT USED

Refer To Section 6.

Report No.: AGC00552180405FE04 Page 29 of 47

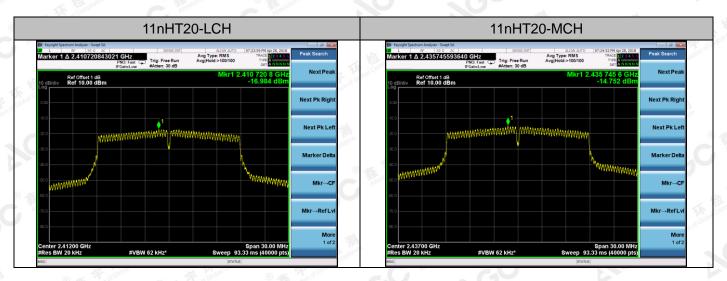
10.4 LIMITS AND MEASUREMENT RESULT

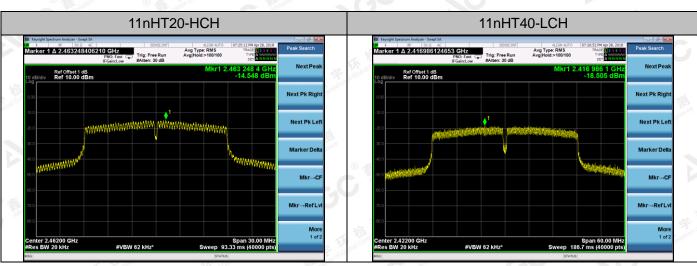
Mode	Channel	PSD [dBm/3kHz]	Limit[dBm/3kHz]	Verdict
He compliance	LCH	-11.215	8	PASS
11b	MCH	-11.139	8	PASS
	НСН	-10.991	8	PASS
15 PA	LCH	-17.140	6 5 mar 8	PASS
11g	MCH	-15.102	8	PASS
	НСН	-14.701	8	PASS
S	LCH	-16.984	8	PASS
11nHT20	MCH	-14.752	8	PASS
	HCH	-14.548	8	PASS
C.C	LCH	-18.505	8	PASS
11NHT40	МСН	-18.148	8	PASS
	НСН	-17.279	8	PASS



Report No.:AGC00552180405FE04 Page 30 of 47

Test Graph







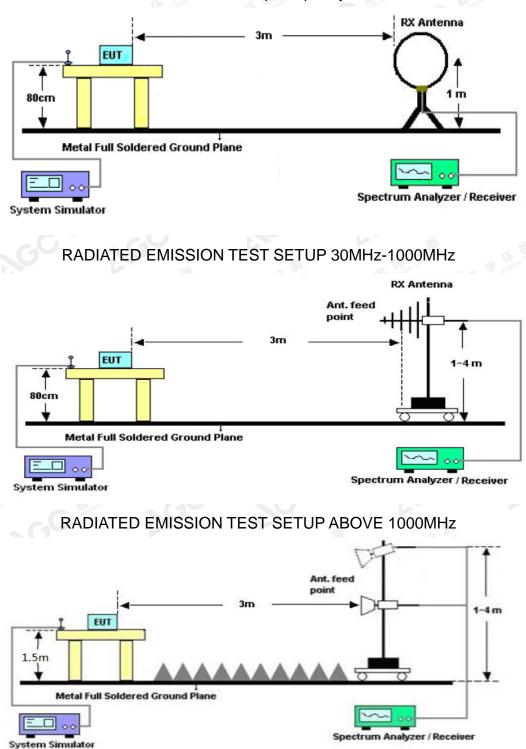
Report No.:AGC00552180405FE04 Page 31 of 47

Report No.:AGC00552180405FE04 Page 32 of 47

11. RADIATED EMISSION

11.1. MEASUREMENT PROCEDURE

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.



ACC [®]鑫 宇 环 检 测 Attestation of Global Compliance

Report No.:AGC00552180405FE04 Page 33 of 47

11.2. TEST SETUP

Radiated Emission Test-Setup Frequency Below 30MHz

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attraction.

Attestation of Global Compliance

11.3. LIMITS AND MEASUREMENT RESULT

15.209(a) Limit in the below table has to be followed

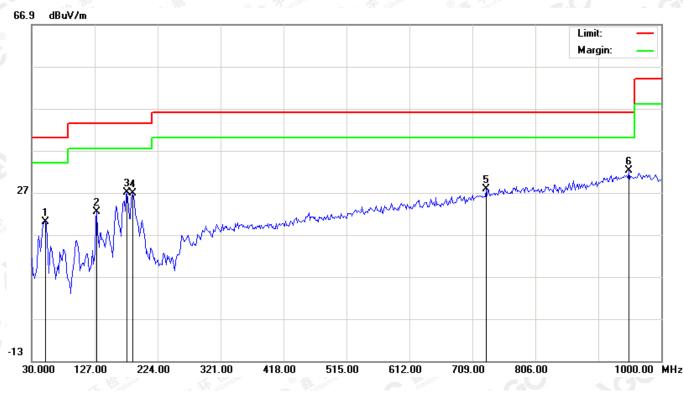
Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)			
0.009~0.490	2400/F(KHz)	300			
0.490~1.705	24000/F(KHz)	30			
1.705~30.0	30	G 30			
30~88	100	3			
88~216	150	3			
216~960	200	3			
Above 960	500	3			

Note: All modes were tested For restricted band radiated emission,

the test records reported below are the worst result compared to other modes.

AGC Attestation of Global Compliance

Report No.:AGC00552180405FE04 Page 35 of 47

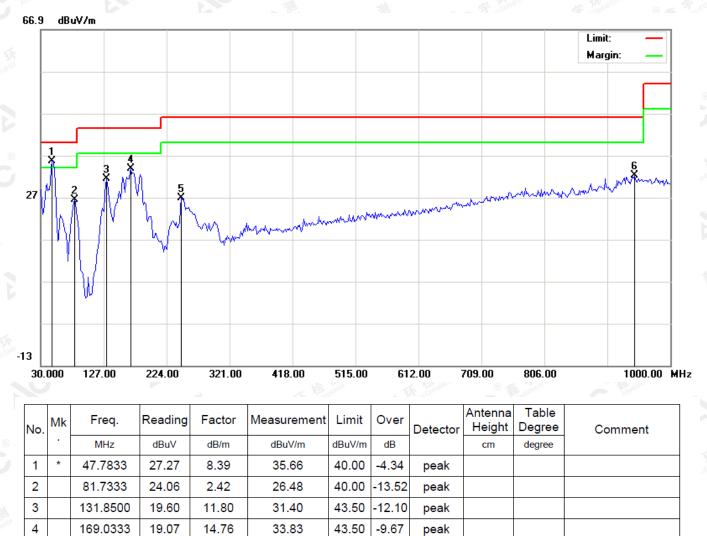

11.4. TEST RESULT

RADIATED EMISSION BELOW 30MHZ

No emission found between lowest internal used/generated frequencies to 30MHz.

RADIATED EMISSION BELOW 1GHZ

RADIATED EMISSION TEST- (30MHZ-1GHZ) -HORIZONTAL



No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		51.0167	9.91	10.15	20.06	40.00	-19.94	peak			
2		130.2333	11.74	10.64	22.38	43.50	-21.12	peak			
3		177.1167	16.07	10.96	27.03	43.50	-16.47	peak			
4		185.2000	15.47	11.31	26.78	43.50	-16.72	peak			
5		730.0167	1.69	26.07	27.76	46.00	-18.24	peak			
6	*	949.8833	2.26	30.00	32.26	46.00	-13.74	peak			

RESULT: PASS

AGC [®]鑫 宇 环 检 测 Attestation of Global Compliance

Report No.:AGC00552180405FE04 Page 36 of 47

RADIATED EMISSION TEST- (30MHZ-1GHZ) -VERTICAL

RESULT: PASS

246.6333

945.0333

13.14

2.39

5

6

Note: 1. Factor=Antenna Factor + Cable loss, Margin= Result -Limit.

13.57

29.86

26.71

32.25

2. The "Factor" value can be calculated automatically by software of measurement system.

3. All test modes had been pre-tested. The 802.11b at low channel is the worst case and recorded in

46.00

46.00

-19.29

-13.75

peak

peak

the report.

GC a 宇环检测 Attestation of Global Compliance

RADIATED EMISSION ABOVE 1GHZ

Frequency	Emission Level	Limits	Margin	Detector	Comment	
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	Туре		
a Conn		Hz	No h			
4824	46.13	74	-27.87	Pk	Horizontal	
4824	40.10	54	-13.9	AV	Horizontal	
7236	51.13	74	-22.87	pk	Horizontal	
7236	39.11	54	-14.89	AV	Horizontal	
4824	51.15	74	-22.85	Pk 🚽	Vertical	
4824	40.15	54	-13.85	AV	Vertical	
7236	52.12	74	-21.88	Pk	Vertical	
7236	39.65	54	-14.35	AV	Vertical	
		TX 11b 2437M	Ηz	The Compliance	E Global Compliant	
4874	51.14	74	-22.86	Pk	Horizontal	
4874	39.55	54	-14.45	AV	Horizontal	
7311	52.33	74	-21.67	Pk 👘	Horizontal	
7311	39.46	54	-14.54	AV	Horizontal	
4874	49.57	74	-24.43	Pk	Vertical	
4874	37.49	54	-16.51	AV	Vertical	
7311	50.16	74	-23.84	Pk	Vertical	
7311	39.46	54	-14.54	AV	Vertical	
1 A	Allance II Completion	TX 11b 2462M	Hz	CC Aller	500	
4924	52.33	74	-21.67	Pk	Horizontal	
4924	40.26	54	-13.74	AV	Horizontal	
7386	49.66	74	-24.34	Pk	Horizontal	
7386	39.45	54	-14.55	AV C	Horizontal	
4924	51.11	74	-22.89	Pk	Vertical	
4924	39.64	54	-14.36	AV	Vertical	
7386	50.15	74	-23.85	₀ Pk	Vertical	
7386	37.59	54	-16.41	AV	Vertical	

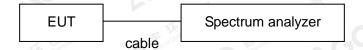
RESULT: PASS

Note:

1. Margin = Emission Leve - Limit

2.1GHz-25GHz(All test modes had been pre-tested. The 802.11b mode is the worst case and recorded in the report. No recording in the test report at least have 20dB margin).

12. BAND EDGE EMISSION


12.1. MEASUREMENT PROCEDURE

- 1)Radiated restricted band edge measurements
- The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting
- 2)Conducted Emissions at the bang edge
 - a)The transmitter output was connected to the spectrum analyzer
 - b)Set RBW=100kHz,VBW=300kHz
 - c)Suitable frequency span including 100kHz bandwidth from band edge

12.2. TEST SET-UP

Radiated same as 11.2

Conducted set up

12.3. RADIATED TEST RESULT

					30 . Com 2		
Frequency	Emission Level	Limits	Margin	Detector	Comment		
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	Туре			
e Frodelood	Coming Contraction	TX 11b	2412MHz				
2399.9	53.66	74	-20.34	pk	Horizontal		
2399.9	37.49	54	-16.51	AV	Horizontal		
2400	52.46	74	-21.54	pk	Horizontal		
2400	38.98	54	-15.02	AV	Horizontal		
2399.9	53.03	74	-20.97	pk 👘	Vertical		
2399.9	39.65	54	-14.35	AV	Vertical Vertical		
2400	51.22	74	-22.78	pk			
2400	39.99	54	-14.01	AV	Vertical		
		TX 11b :	2462MHz	The Compliance	F Goost Comp		
2483.5	48.59	74	-25.41	pk	Horizontal		
2483.5	38.66	54	-15.34	AV	Horizontal		
2483.6	48.66	74	-25.34	pk	Horizontal		
2483.6	39.46	54	-14.54	AV	Horizontal		
2483.5	45.55	74	-28.45	pk pk	Vertical		
2483.5	39.59	54	-14.41	AV	Vertical		
2483.6	50.14	74	-23.86	🔬 pk	Vertical		
2483.6	39.84	54	-14.16	AV	Vertical		

RESULT: PASS

Note: Scan with 11b,11g,11n, the worst case is 11b Mode Margin= Emission Level -Limit.

Report No.:AGC00552180405FE04 Page 40 of 47

Next Pk Le

Marker De

Mkr→C

Mkr→RefL

Mor 1 of:

Stop 2.51000

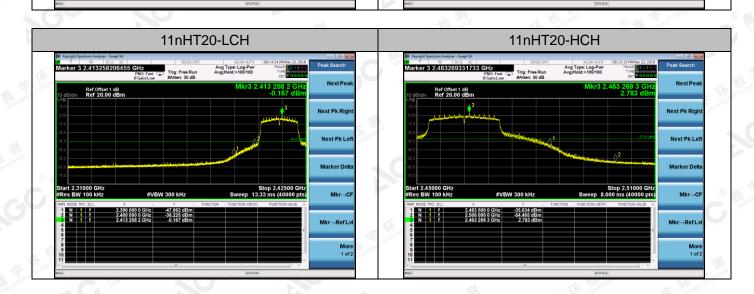
12.4. CONDUCTED TEST RESULT

Test Graph

2.31000 GH

N 1

2.390 000 0 GHz 2.400 000 0 GHz 2.413 266 8 GHz -50.305 dBm -35.599 dBm

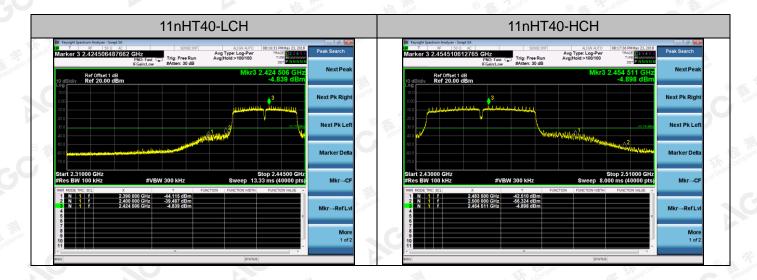

Next Pk Le

Marker De

Mkr→C

Mkr→RefLv

Mor 1 of



The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

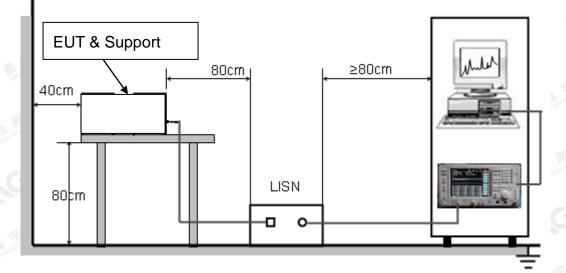
2.483 500 0 GHz 2.500 000 0 GHz 2.463 264 8 GHz -39.569 dBn -54.929 dBn 2.248 dBn

Report No.:AGC00552180405FE04 Page 41 of 47

AGC[®]鑫 宇 环 检 测 Attestation of Global Compliance

13. LINE CONDUCTED EMISSION TEST

13.1. LIMITS OF LINE CONDUCTED EMISSION TEST


F	Maximum RF Line Voltage								
Frequency	Q.P.(dBuV)	Average(dBuV)							
150kHz~500kHz	66-56	56-46							
500kHz~5MHz	56	46							
5MHz~30MHz	60	50							

Note:

1. The lower limit shall apply at the transition frequency.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

13.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

AGC [®] 鑫 宇 环 检 测 Attestation of Global Compliance

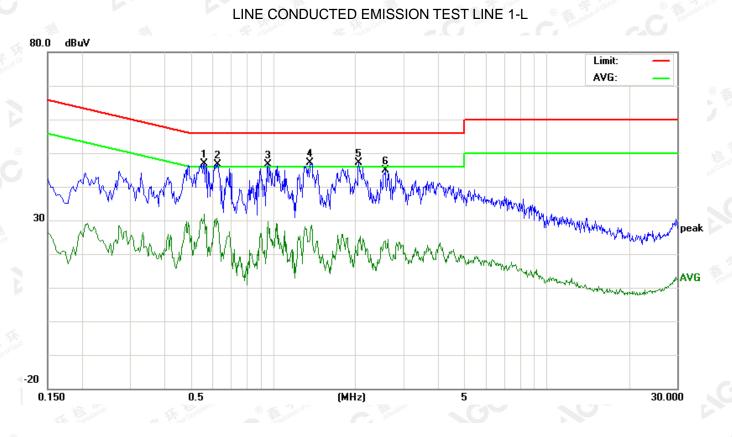
Report No.:AGC00552180405FE04 Page 43 of 47

13.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

- The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipments received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received charging voltage by adapter which received 120V/60Hzpower by a LISN..
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

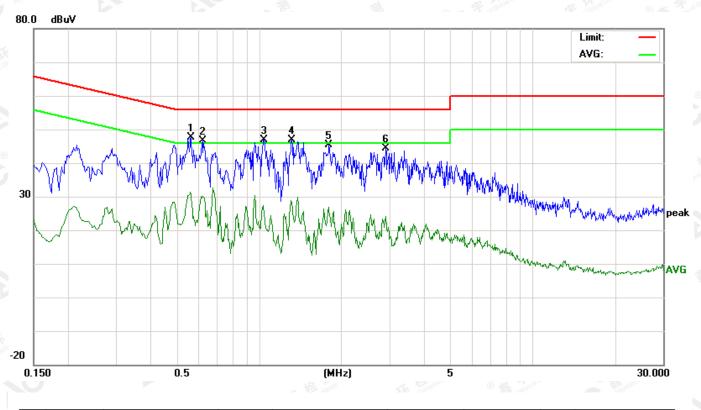
13.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST


- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

GC[®]鑫宇环检测 Attestation of Global Compliance

Report No.:AGC00552180405FE04 Page 44 of 47

13.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

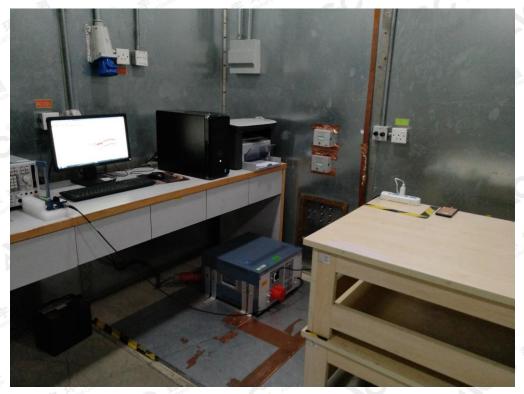


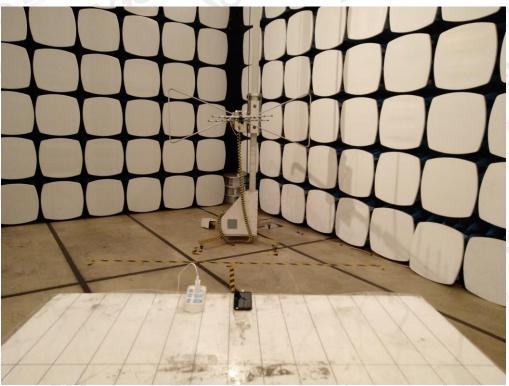
No.	No. Freq.		Reading_Level (dBuV)			Measurement (dBuV)			Limit (dBuV)		Margin (dB)		P/F	Comment
	(MHz)	Peak	QP	AVG	dB	Peak	QP	AVG	QP	AVG	QP	AVG	• • •	
1	0.5581	36.56		19.82	10.35	46.91		30.17	56.00	46.00	-9.09	-15.83	Р	
2	0.6300	36.24		19.32	10.32	46.56		29.64	56.00	46.00	-9.44	-16.36	Р	
3	0.9618	36.20		19.21	10.39	46.59		29.60	56.00	46.00	-9.41	-16.40	Р	
4	1.3700	36.84		15.26	10.38	47.22		25.64	56.00	46.00	-8.78	-20.36	Р	
5	2.0619	36.94		13.84	10.25	47.19		24.09	56.00	46.00	-8.81	-21.91	Р	
6	2.5698	34.51		13.46	10.45	44.96		23.91	56.00	46.00	-11.04	-22.09	Р	

Report No.:AGC00552180405FE04 Page 45 of 47

Line Conducted Emission Test Line 2-N

No.	No. Freq.		Reading_Level (dBuV)		Correct Factor			Limit Margin (dBuV) (dB)		P/F	Comment			
	(MHz)	Peak	QP	AVG	dB	Peak	QP	AVG	QP	AVG	QP	AVG		
1	0.5658	37.17		20.31	10.34	47.51		30.65	56.00	46.00	-8.49	-15.35	Р	
2	0.6219	36.22		19.50	10.32	46.54		29.82	56.00	46.00	-9.46	-16.18	Р	
3	1.0460	36.63		15.20	10.37	47.00		25.57	56.00	46.00	-9.00	-20.43	Р	
4	1.3220	36.60		17.95	10.38	46.98		28.33	56.00	46.00	-9.02	-17.67	Р	
5	1.8020	35.00		15.27	10.28	45.28		25.55	56.00	46.00	-10.72	-20.45	Р	
6	2.9020	33.83		13.70	10.53	44.36		24.23	56.00	46.00	-11.64	-21.77	Р	




Report No.:AGC00552180405FE04 Page 46 of 47

APPENDIX A: PHOTOGRAPHS OF TEST SETUP

LINE CONDUCTED EMISSION TEST SETUP

RADIATED EMISSION TEST SETUP

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attraction.

Attestation of Global Compliance

Report No.:AGC00552180405FE04 Page 47 of 47

RADIATED EMISSION ABOVE 1G TEST SETUP

----END OF REPORT----

