

TEST REPORT

FCC LTE B48 Test for SM-S721U Certification

APPLICANT SAMSUNG Electronics Co., Ltd.

REPORT NO. HCT-RF-2407-FC016

DATE OF ISSUE July 19, 2024

> **Tested by** Jae Ryang Do

Technical Manager Jong Seok Lee

F-TP22-03(Rev.06)

The report shall not be (partly) reproduced except in full without approval of the laboratory. HCT CO., LTD. 2-6, 73, 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 645 6300 Fax. +82 31 645 6401

HCT CO.,LTD.

2-6, 73, 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 645 6300 Fax. +82 31 645 6401

T E S T R E P O R T	REPORT NO. HCT-RF-2407-FC016 DATE OF ISSUE July 19, 2024 Additional Model SM-S721U1		
Applicant	SAMSUNG Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea		
Product Name Model Name	Mobile Phone SM-S721U		
Date of Test	May 16, 2024 ~ July 19, 2024		
FCC ID	A3LSMS721U		
Location of Test	■ Permanent Testing Lab □ On Site Testing (Address: 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi- do, 17383 Republic of Korea)		
FCC Classification:	Citizens Band End User Devices (CBE)		
Test Standard Used	FCC Rule Part: §96		
Test Results	PASS		

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	July 19, 2024	Initial Release

Notice

Content

The measurements shown in this report were made in accordance with the procedures specified in CFR47 section § 2.947. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

The results shown in this test report only apply to the sample(s), as received, provided by the applicant, unless otherwise stated.

The test results have only been applied with the test methods required by the standard(s).

The laboratory is not accredited for the test results marked *. Information provided by the applicant is marked **. Test results provided by external providers are marked ***.

When confirmation of authenticity of this test report is required, please contact www.hct.co.kr

The test results in this test report are not associated with the ((KS Q) ISO/IEC 17025) accreditation by KOLAS (Korea Laboratory Accreditation Scheme) / A2LA (American Association for Laboratory Accreditation) that are under the ILAC (International Laboratory Accreditation Cooperation) Mutual Recognition Agreement (MRA).

CONTENTS

1. GENERAL INFORMATION
1.1. MAXIMUM OUTPUT POWER6
2. INTRODUCTION
2.1. DESCRIPTION OF EUT7
2.2. MEASURING INSTRUMENT CALIBRATION7
2.3. TEST FACILITY
3. DESCRIPTION OF TESTS
3.1 TEST PROCEDURE
3.2 RADIATED POWER9
3.3 RADIATED SPURIOUS EMISSIONS10
3.4 PEAK- TO- AVERAGE RATIO 11
3.5 OCCUPIED BANDWIDTH13
3.6 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL14
3.7 CHANNEL EDGE
3.8 Adjacent Channel Leakage Ratio16
3.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE17
3.10 End User Device Additional Requirement (CBSD Protocol)18
3.11 WORST CASE(RADIATED TEST)
3.12 WORST CASE(CONDUCTED TEST)
4. LIST OF TEST EQUIPMENT
5. MEASUREMENT UNCERTAINTY
6. SUMMARY OF TEST RESULTS
7. SAMPLE CALCULATION
8. TEST DATA
8.1 EQUIVALENT ISOTROPIC RADIATED POWER27
8.2 RADIATED SPURIOUS EMISSIONS
8.3 PEAK-TO-AVERAGE RATIO
8.4 OCCUPIED BANDWIDTH
8.5 CONDUCTED SPURIOUS EMISSIONS
8.6 CHANNEL EDGE
8.7 Adjacent Channel Leakage Ratio(ACLR)38
8.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE
8.9 End User Device Additional Requirements (CBSD Protocol)51
9. TEST PLOTS
10. ANNEX A_ TEST SETUP PHOTO

MEASUREMENT REPORT

1. GENERAL INFORMATION

Applicant Name:	SAMSUNG Electronics Co., Ltd.			
Address:	129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea			
FCC ID:	A3LSMS721U			
Application Type:	Certification			
FCC Classification:	Citizens Band End User Devices (CBE)			
FCC Rule Part(s):	§ 96			
EUT Type:	Mobile phone			
Model(s):	SM-S721U			
Additional Model(s)	SM-S721U1			
	3552.5 – 3697.5 : 5 MHz			
T. F	3555.0 – 3695.0 : 10 MHz			
Tx Frequency:	3557.5 – 3692.5 : 15 MHz			
	3560.0 – 3690.0 : 20 MHz			
Date(s) of Tests:	May 16, 2024 ~ July 19, 2024			
	Radiated : R3CX506MEDA			
Serial number:	Conducted : R3CX40SV75R			
	CBSD Protocol : R3CX40SV7FA			

1.1. MAXIMUM OUTPUT POWER

				EI	EIRP	
Mode (MHz)	Tx Frequency (MHz)	Emission Designator	Modulation	Max. Power (W)	Max. Power (dBm/10 MHz)	
		4M50G7D	QPSK	0.063	18.00	
LTE Dand 49 (E)	3552.5 - 3697.5	4M49W7D	16QAM	0.050	16.97	
LTE – Band 48 (5)	5552.5 - 5691.5	4M45W7D	64QAM	0.041	16.12	
		4M48W7D	256QAM	0.021	13.13	
	3555.0 – 3695.0	8M99G7D	QPSK	0.064	18.03	
ITE Dand $10(10)$		8M97W7D	16QAM	0.052	17.16	
LTE – Band 48 (10)		8M85W7D	64QAM	0.040	16.07	
		8M89W7D	256QAM	0.022	13.36	
		13M5G7D	QPSK	0.069	18.37	
ITE Dand $10(1E)$	3557.5 - 3692.5	13M4W7D	16QAM	0.057	17.55	
LTE – Band 48 (15)	5557.5 - 5692.5	13M5W7D	64QAM	0.044	16.44	
		13M5W7D	256QAM	0.022	13.33	
		17M9G7D	QPSK	0.070	18.43	
\mathbf{LTE} Dend $\mathbf{IO}(20)$	3560.0 - 3690.0	17M9W7D	16QAM	0.058	17.63	
LTE – Band 48 (20)	2200.0 - 2020.0	17M9W7D	64QAM	0.045	16.57	
		17M8W7D	256QAM	0.023	13.54	

2. INTRODUCTION

2.1. DESCRIPTION OF EUT

The EUT was a Mobile Phone with GSM/GPRS/EGPRS/UMTS and LTE, Sub 6, mmWave. It also supports IEEE 802.11 a/b/g/n/ac/ax (20/40/80/160 MHz), Bluetooth(iPA, ePA), BT LE(iPA, ePA), NFC, WPT, WIFI 6E.

2.2. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.3. TEST FACILITY

The Fully-anechoic chamber and conducted measurement facility used to collect the radiated data are located at the **74**, **Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.**

3. DESCRIPTION OF TESTS

3.1 TEST PROCEDURE

Test Description	Test Procedure Used
	- KDB 971168 D01 v03r01 – Section 4.3
Occupied Bandwidth	- ANSI C63.26-2015 – Section 5.4.4
	- KDB 940660 D01 v01
	- KDB 971168 D01 v03r01 – Section 6.0
Channel Edge/ ACLR	- ANSI C63.26-2015 – Section 5.7
	- KDB 940660 D01 v01
	- KDB 971168 D01 v03r01 – Section 6.0
Spurious and Harmonic Emissions at	- ANSI C63.26-2015 – Section 5.7
Antenna Terminal	- KDB 940660 D01 v01
Conducted Output Power	- N/A (See SAR Report)
	- KDB 971168 D01 v03r01 – Section 5.7
Peak- to- Average Ratio	- ANSI C63.26-2015 – Section 5.2.3.4
	- KDB 940660 D01 v01
	- ANSI C63.26-2015 – Section 5.6
Frequency stability	- KDB 940660 D01 v01
	- KDB 971168 D01 v03r01 – Section 5.2 & 5.8
Effective Radiated Power/	- ANSI/TIA-603-E-2016 – Section 2.2.17
Effective Isotropic Radiated Power	- KDB 940660 D01 v01
	- KDB 971168 D01 v03r01 – Section 6.2
Radiated Spurious and Harmonic Emissions	- ANSI/TIA-603-E-2016 – Section 2.2.12
	- KDB 940660 D01 v01
End User Device Additional Requirement	- KDB 940660 D01 v01
(CBSD Protocol)	- WINNF-TS-0122 V1.0.2

3.2 RADIATED POWER

Test Overview

Radiated tests are performed in the Fully-anechoic chamber.

The equipment under test is placed on a non-conductive table 3-meters away from the receive antenna in accordance with ANSI/TIA-603-E-2016 Clause 2.2.17.

Test Settings

- 1. Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
- 2. RBW = 1 5% of the expected OBW, not to exceed 1 MHz
- 3. VBW \geq 3 x RBW
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points > 2 x span / RBW
- 6. Detector = RMS

7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto".

8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation.

9. Trace mode = trace averaging (RMS) over 100 sweeps

10. The trace was allowed to stabilize

Test Note

- 1. The turntable is rotated through 360 degrees, and the receiving antenna scans in order to determine the level of the maximized emission.
- 2. A half wave dipole is then substituted in place of the EUT. For emissions above 1 GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The power is calculated by the following formula;

 P_{d} (dBm) = Pg (dBm) - cable loss (dB) + antenna gain (dB)

Where: P_d is the dipole equivalent power and P_g is the generator output power into the substitution antenna.

3. The maximum value is calculated by adding the forward power to the calibrated source plus its appropriate gain value.

These steps are repeated with the receiving antenna in both vertical and horizontal polarization. the difference between the gain of the horn and an isotropic antenna are taken into consideration

- 4. The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
- 5. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

3.3 RADIATED SPURIOUS EMISSIONS

Test Overview

Radiated tests are performed in the Fully-anechoic chamber.

Radiated Spurious Emission Measurements at 3 meters by Substitution Method according to ANSI/TIA-603-E-2016.

Test Settings

- 1. RBW = 100 kHz for emissions below 1 GHz and 1 MHz for emissions above 1 GHz
- 2. VBW \geq 3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = Peak
- 6. Trace mode = Max Hold
- 7. The trace was allowed to stabilize
- 8. Test channel : Low/ Middle/ High
- 9. Frequency range : We are performed all frequency to 10th harmonics from 9 kHz.

Test Note

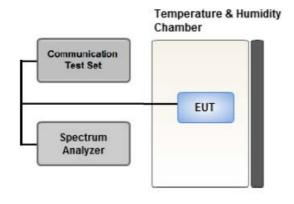
 Measurements value show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

2. The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the test data

3. For spurious emissions above 1 GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The spurious emissions is calculated by the following formula;

Result (dBm) = Pg (dBm) - cable loss (dB) + antenna gain (dBi)


Where: P_g is the generator output power into the substitution antenna.

If the fundamental frequency is below 1 GHz, RF output power has been converted to EIRP.

EIRP (dBm) = ERP (dBm) + 2.15

3.4 PEAK- TO- AVERAGE RATIO

Test setup

① CCDF Procedure for PAPR

Test Settings

- 1. Set resolution/measurement bandwidth \geq signal's occupied bandwidth;
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 3. Set the measurement interval as follows:
 - .- for continuous transmissions, set to 1 ms,
 - .- or burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
- 4. Record the maximum PAPR level associated with a probability of 0.1 %.

② Alternate Procedure for PAPR

Use one of the procedures presented in 5.2(ANSI C63.26-2015) to measure the total peak power and record as as P $_{Pk}$.

Use one of the applicable procedures presented 5.2(ANSI C63.26-2015) to measure the total average power and record as P_{Avg} . Determine the P.A.R. from:

P.A.R (dB) = P Pk (dBm) - P Avg (dBm) (P Avg = Average Power + Duty cycle Factor)

F-TP22-03 (Rev. 06)

Test Settings(Peak Power)

The measurement instrument must have a RBW that is greater than or equal to the OBW of the

signal to be measured and a VBW \geq 3 × RBW.

- 1. Set the RBW \geq OBW.
- 2. Set VBW \geq 3 × RBW.
- 3. Set span \geq 2 × OBW.
- 4. Sweep time \geq 10 × (number of points in sweep) × (transmission symbol period).
- 5. Detector = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the peak marker function to determine the peak amplitude level.

Test Settings(Average Power)

- 1. Set span to $2 \times to 3 \times the OBW$.
- 2. Set RBW \geq OBW.
- 3. Set VBW \geq 3 × RBW.
- 4. Set number of measurement points in sweep \geq 2 × span / RBW.
- 5. Sweep time:

Set \geq [10 × (number of points in sweep) × (transmission period)] for single sweep

(automation-compatible) measurement. The transmission period is the (on + off) time.

- 6. Detector = power averaging (rms).
- 7. Set sweep trigger to "free run."
- 8. Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. (To accurately determine the average power over the on and off period of the transmitter, it can be necessary to increase the number of traces to be averaged above 100 or, if using a manually configured sweep time, increase the sweep time.)
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. Add [10 log (1/duty cycle)] to the measured maximum power level to compute the average power during continuous transmission. For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is a constant 25 %.

3.5 OCCUPIED BANDWIDTH.

Test setup

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission. The EUT makes a call to the communication simulator.

The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth

Test Settings

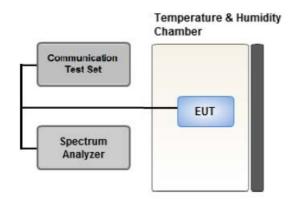
- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99 % occupied bandwidth and the 26 dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5 % of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
 - 1-5~% of the 99 % occupied bandwidth observed in Step 7

Communication Test Set EUT Spectrum Analyzer

3.6 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic.


All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Settings

- 1. RBW = 1 MHz
- 2. VBW \geq 3 MHz
- 3. Detector = RMS
- 4. Trace Mode = trace average
- 5. Sweep time = auto
- 6. Number of points in sweep \geq 2 x Span / RBW

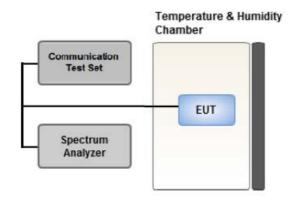
3.7 CHANNEL EDGE

Test setup

Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. Within 1 MHz of the channel edge the RBW should be 2 % of EBW, then 1 MHz after that.
- 4. VBW > 3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points \geq 2 x Span/RBW
- 7. Trace mode = trace average
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Notes


The conducted power of any emission outside the fundamental emission (whether in or outside of the authorized band) shall not exceed -13 dBm/MHz within 0-10 megahertz above the upper SAS-assigned channel edge and within 0-10 megahertz below the lower SAS-assigned channel edge. At all frequencies greater than 10 megahertz above the upper SAS assigned channel edge and less than 10 MHz below the lower SAS assigned channel edge, the conducted power of any emission shall not exceed -25 dBm/MHz.

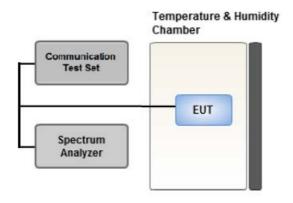
The conducted power of any emissions below 3530 MHz or above 3720 MHz shall not exceed -40 dBm/Mhz

Where Margin < 1 dB the emission level is either corrected by 10 log(1 MHz/ RB) or the emission is integrated over a 1 MHz bandwidth to determine the final result. When using the integration method the integration window is either centered on the emission or, for emissions at the band edge, centered by an offset of 500 kHz from the block edge so that the integration window is the 1 MHz adjacent to the block edge.

3.8 Adjacent Channel Leakage Ratio

Test setup

Test Settings


- 1. Use ACP measurement function of Spectrum analyzer to measure adjacent channel leakage ratio
- 2. Integ BW = Assigned channel bandwidth
- 5. Detector = RMS
- 6. Number of sweep points \geq 2 x Span/RBW
- 7. Trace mode = trace average
- 8. Sweep time = 1 s
- 9. The trace was allowed to stabilize

Test Notes

the Adjacent Channel Leakage Ratio for End User Devices shall be at least 30 dB.

3.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

Test setup

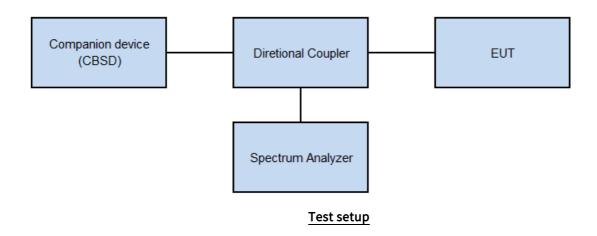
Test Overview

Frequency stability testing is performed in accordance with the guidelines of ANSI C63.26-2015.

The frequency stability of the transmitter is measured by:

1. Temperature:

The temperature is varied from -30 °C to +50 °C in 10 °C increments using an environmental chamber.


- 2. Primary Supply Voltage:
 - .- Unless otherwise specified, vary primary supply voltage from 85 % to 115 % of the nominal value for other than hand carried battery equipment.
 - .- For hand carried, battery powered equipment, reduce the primary ac or dc supply voltage to the battery operating end point, which shall be specified by the manufacturer.

Test Settings

- 1. The carrier frequency of the transmitter is measured at room temperature (20 °C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10 °C intervals ranging from -30 °C to +50 °C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

3.10 End User Device Additional Requirement (CBSD Protocol)

Test Overview

End user device additional requirements (CBSD Protocol) are tested per the test procedures listed below. During testing, the EUT is connected to a certified CBSD (FCC ID: 2AS48SC-220) as a companion device to show compliance with Part 96.47.

End User Devices may operate only if they can positively receive and decode an authorization signal transmitted by a CBSD, including the frequencies and power limits for their operation.

Test Settings

- a. Setup companion device with 3570 MHz & 3610 MHz.
- b. Enable AP service from companion device.
- c. EUT is connected to a companion device.
- c. Check EUT Tx frequency and power.
- d. Disable AP service from companion device and check EUT stop transmission within 10 s.

3.11 WORST CASE(RADIATED TEST)

- The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
- All modes of operation were investigated and the worst case configuration results are reported.
 Mode : Stand alone, Stand alone + External accessories (Earphone, AC adapter, etc)
 Worst case : Stand alone
- All simultaneous transmission scenarios of operation were investigated, and the test results showed no additional significant emissions relative to the least restrictive limit were observed.
- Therefore, only the worst case(stand-alone) results were reported.
- The worst case is reported with the EUT positioning, modulations, and paging service configurations
- shown in the test data
- Please refer to the table below.
- SM-S721U & additional models were tested and the worst case results are reported. (Worst case : SM-S721U)

Test Description	Modulation	RB size	RB offset	Axis		
	QPSK,	See Section 8.1		Х		
Effective Isotropic Radiated Power	16QAM,					
	64QAM,					
	256QAM					
Radiated Spurious and Harmonic Emissions	QPSK	See Se	ction 8.2	Z		

[Worst case]

3.12 WORST CASE(CONDUCTED TEST)

- All modes of operation were investigated and the worst case configuration results are reported.

- SM-S721U & additional models were tested and the worst case results are reported.

(Worst case : SM-S721U)

	[Wo	rst case]			
Test Description	Modulation	Bandwidth (MHz)	Frequency	RB size	RB offset
	QPSK,				
	16QAM,	E 10 1E 00	Mid		
Occupied Bandwidth	64QAM,	5, 10, 15, 20		Full RB	0
	256QAM				
	QPSK,				
	16QAM,	E 10 1E 00			0
Peak-To-Average Radio	64QAM,	5, 10, 15, 20	Mid	Full RB	
	256QAM				
		5	Low	1	0
			High	1	24
		10	Low	1	0
			High	1	49
		15	Low	1	0
Channel Edge	QPSK		High	1	74
		20	Low	1	0
			High	1	99
			Low,		
		5, 10, 15, 20	Mid,	Full RB	0
			High		
			Low,		
Spurious and Harmonic Emissions at	QPSK	5, 10, 15, 20	Mid,	1	0
Antenna Terminal			High		

4. LIST OF TEST EQUIPMENT

Equipment	Model	Manufacturer	Serial No.	Due to Calibration	Calibration Interval
RF Switching System	FBSR-02B(1.2G HPF+LNA)	T&M SYSTEM	F1L1	12/11/2024	Annual
RF Switching System	FBSR-02B(3.3G HPF+LNA)	T&M SYSTEM	F1L2	12/11/2024	Annual
Power Splitter(DC ~ 26.5 GHz)	11667B	Hewlett Packard	5001	04/17/2025	Annual
DC Power Supply	E3632A	Agilent	KR01009150	04/18/2025	Annual
Dipole Antenna	UHAP	Schwarzbeck	557	03/09/2025	Biennial
Dipole Antenna	UHAP	Schwarzbeck	558	03/09/2025	Biennial
Chamber	SU-642	ESPEC	93008124	02/19/2025	Annual
Horn Antenna(1 ~ 18 GHz)	BBHA 9120D	Schwarzbeck	147	08/17/2025	Biennial
Horn Antenna(1 ~ 18 GHz)	BBHA 9120D	Schwarzbeck	9120D-1298	09/11/2025	Biennial
Horn Antenna(15 ~ 40 GHz)	BBHA 9170	Schwarzbeck	BBHA9170342	09/29/2024	Biennial
Horn Antenna(15 ~ 40 GHz)	BBHA 9170	Schwarzbeck	BBHA9170124	03/28/2025	Biennial
Signal Analyzer(10 Hz ~ 26.5 GHz)	N9020A	Agilent	MY52090906	04/19/2025	Annual
ATTENUATOR(20 dB)	8493C	Hewlett Packard	17280	04/17/2025	Annual
Spectrum Analyzer(10 Hz ~ 40 GHz)	FSV40	REOHDE & SCHWARZ	100931	08/17/2024	Annual
Base Station	8960 (E5515C)	Agilent	MY48360800	08/10/2024	Annual
Loop Antenna(9 kHz ~ 30 MHz)	FMZB1513	Schwarzbeck	1513-333	03/07/2026	Biennial
Trilog Broadband Antenna	VULB9168	Schwarzbeck	895	09/16/2024	Biennial
Trilog Broadband Antenna	VULB9168	Schwarzbeck	1135	09/16/2024	Biennial
Wideband Radio Communication Tester	MT8821C	Anritsu Corp.	6262094331	11/17/2024	Annual
Wideband Radio Communication Tester	MT8820C	Anritsu Corp.	6201026545	12/11/2024	Annual
SIGNAL GENERATOR (100 kHz ~ 40 GHz)	SMW200A	REOHDE & SCHWARZ	100988	02/26/2025	Annual
Signal Analyzer(5 Hz ~ 40.0 GHz)	N9030B	KEYSIGHT	MY55480167	05/17/2025	Annual
FCC LTE Mobile Conducted RF Automation Test Software	-	HCT CO., LTD.,	-	-	-

Note:

1. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

2. Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

5. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4:2014.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (±dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.98 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (9 kHz ~ 30 MHz)	4.36 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (30 MHz ~ 1 GHz)	5.70 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (1 GHz ~ 18 GHz)	5.52 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (18 GHz ~ 40 GHz)	5.66 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (Above 40 GHz)	5.58 (Confidence level about 95 %, <i>k</i> =2)

6. SUMMARY OF TEST RESULTS

6.1 Test Condition: Conducted Test

Test Description	FCC Part Section(s)	Test Limit	Test Result
Occupied Bandwidth	§ 2.1049	N/A	PASS
Band Edge / Spurious and Harmonic Emissions at Antenna Terminal.	§ 2.1051, § 96.41(e)		
Adjacent Channel Leakage Ratio	§ 96.41(e)	At least 30 dB.	PASS
Conducted Output Power	§2.1046	N/A	See Note1
Frequency stability / variation of ambient temperature	§ 2.1055,	Emission must remain in band	PASS
Peak- to- Average Ratio	§ 96.41	<13 dB	PASS
End User Device Additional Requirements (CBSD Protocol)	§ 96.47	End User Devices may operate only if they can positively receive and decode an authorization signal transmitted by a CBSD, including the frequencies and power limits for their operation. An End User Device must discontinue operations, change frequencies, or change its operational power level within 10 seconds of receiving instructions from its associated CBSD.	PASS

Note:

1. See SAR Report

2. The EUT is an End User Device

F-TP22-03 (Rev. 06)

6.2 Test Condition: Radiated Test

Test Description	FCC Part Section(s)	Test Limit	Test Result
Equivalent Isotropic Radiated Power	§ 96.41(b)	23 dBm/10 MHz	PASS
Radiated Spurious and	§ 2.1053,		PASS
Harmonic Emissions	§96.41(e)	-40 dBm/MHz	PASS

7. SAMPLE CALCULATION

7.1 ERP Sample Calculation

Ch./ Freq.		Measured Substitute		Ant. Gain	<u> </u>	Del	ERP		
channel	Freq.(MHz)	Level (dBm)	Level (dBm)	(dBd)	C.L	Pol.	w	dBm	
128	824.20	-21.37	38.40	-10.61	0.95	Н	0.483	26.84	

ERP = Substitute LEVEL(dBm) + Ant. Gain – CL(Cable Loss)

1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.

- 2) During the test, the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of effective radiated power.

7.2 EIRP Sample Calculation

Ch.	Ch./ Freq. Measured Substitute		Substitute	Ant. Gain	C 1	Del	EIRP		
channel	Freq.(MHz)	Level (dBm)	Level (dBm)	(dBi)	C.L	Pol.	w	dBm	
20175	1,732.50	-15.75	18.45	9.90	1.76	Н	0.456	26.59	

EIRP = Substitute LEVEL(dBm) + Ant. Gain – CL(Cable Loss)

1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.

- 2) During the test, the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of equivalent isotropic radiated power.

7.3. Emission Designator

GSM Emission Designator

Emission Designator = 249KGXW GSM BW = 249 kHz G = Phase Modulation X = Cases not otherwise covered W = Combination (Audio/Data)

EDGE Emission Designator

Emission Designator = 249KG7W GSM BW = 249 kHz G = Phase Modulation 7 = Quantized/Digital Info W = Combination (Audio/Data)

WCDMA Emission Designator

Emission Designator = 4M17F9W WCDMA BW = 4.17 MHz F = Frequency Modulation 9 = Composite Digital Info W = Combination (Audio/Data)

QPSK Modulation

Emission Designator = 4M48G7D LTE BW = 4.48 MHz G = Phase Modulation 7 = Quantized/Digital Info D = Data transmission; telemetry; telecommand

<u>QAM Modulation</u> Emission Designator = 4M48W7D LTE BW = 4.48 MHz W = Amplitude/Angle Modulated 7 = Quantized/Digital Info D = Data transmission; telemetry; telecommand

8. TEST DATA

8.1 EQUIVALENT ISOTROPIC RADIATED POWER

Freq	Donduidth	Madulation	Measured	Substitute	Ant.	<u></u>	Del	EIRP	Limit		RB
(MHz)	Bandwidth	Modulation	Level (dBm)	Level (dBm)	Gain(dBi)	C.L	Pol	dBm/1	L0 MHz	Size	Offset
		QPSK	-31.28	7.42	12.34	3.23	Н	16.53			
		16-QAM	-32.23	6.47	12.34	3.23	Н	15.58		1	24
3552.5		64-QAM	-33.15	5.55	12.34	3.23	Н	14.66		1	24
		256-QAM	-36.20	2.50 12.34 3.23		Н	11.61				
	-	QPSK	-29.82	8.74	12.32	3.22	Н	17.84			
2625.0	LTE B48/	16-QAM	-30.75	7.81	12.32	3.22	Н	16.91	22.0	1	0
3625.0	5 MHz	64-QAM	-31.66	6.90	12.32	3.22	Н	16.00	23.0	1	PB Offset 24 0 0 0
		256-QAM	-34.71	3.85	12.32	3.22	Н	12.95			
		QPSK	-29.89	8.84	12.29	3.13	Н	18.00			
2607 5		16-QAM	-30.92	7.81	12.29	3.13	Н	16.97			•
3697.5		64-QAM	-31.77	6.96	12.29	3.13	Н	16.12		1	Offset 24 0
		256-QAM	-34.76	3.97	12.29	3.13	Н	13.13			

Freq	Danduuidth	Madulation	Measured	Substitute	Ant.	C.L	Del	EIRP	Limit		RB
(MHz)	Bandwidth	Modulation	Level (dBm)	Level (dBm)	Gain(dBi)		Pol	dBm/10 MHz		Size	Offset
		QPSK	-31.07	7.46	12.34	3.24	Н	16.56			
		16-QAM	-31.99	6.54	12.34	3.24	Н	15.64		1	40
3555.0		64-QAM	-32.92	5.61	12.34	3.24	Н	14.71		1	49
		256-QAM	-35.72	2.81	12.34	3.24	Н	11.91			
		QPSK	-29.91	8.65	12.32	3.22	Н	17.75			
2625.0	LTE B48/	16-QAM	-30.70	7.86	12.32	3.22	Н	16.96	22.0		0
3625.0	10 MHz	64-QAM	-31.77	6.79	12.32	3.22	Н	15.89	23.0	1	
		256-QAM	-34.60	3.96	12.32	3.22	Н	13.06			
		QPSK	-30.05	8.87	12.29	3.13	Н	18.03			
2005 0		16-QAM	-30.92	8.00	12.29	3.13	Н	17.16			0
3695.0		64-QAM	-32.01	6.91	12.29	3.13	Н	16.07		1	49 0
		256-QAM	-34.72	4.20	12.29	3.13	Н	13.36			

Freq	Dan duui dah	Madulatian	Measured	Substitute	Ant.	<u></u>	Del	EIRP	Limit	l	RB
(MHz)	Bandwidth	Modulation	Level (dBm)	Level (dBm)	Gain(dBi)	C.L	Pol	dBm/1	L0 MHz	Size	Offset
		QPSK	-31.07	7.29	12.34	3.24	Н	16.39			
		16-QAM	-31.90	6.46	12.34	3.24	Н	15.56		1	74
3557.5		64-QAM	-32.97	5.39	12.34	3.24	Н	14.49		1	74
		256-QAM	-36.16	2.20	12.34	3.24	Н	11.30			
		QPSK	-29.85	8.71	12.32	3.22	Н	17.81			
2625.0	LTE B48/	16-QAM	-30.66	7.90	12.32	3.22	Н	17.00	22.0	1	0
3625.0	15 MHz	64-QAM	-31.67	6.89	12.32	3.22	Н	15.99	23.0	1	0
		256-QAM	-34.83	3.73	12.32	3.22	Н	12.83			
		QPSK	-29.90	9.21	12.29	3.13	Н	18.37			
2002 5		16-QAM	-30.72	8.39	12.29	3.13	Н	17.55		1	0
3692.5		64-QAM	-31.83	7.28	12.29	3.13	Н	16.44		1	0
		256-QAM	-34.94	4.17	12.29	3.13	Н	13.33			

Freq	Donduuidth	Madulation	Measured	Substitute	Ant.	C 1	Del	EIRP	Limit		RB
(MHz)	Bandwidth	Modulation	Level (dBm)	Level (dBm)	Gain(dBi)	C.L	Pol	dBm/10 MHz		Size	Offset
		QPSK	-30.99	7.37	12.34	3.24	Н	16.47			
2560.0		16-QAM	-31.82	6.54	12.34	3.24	Н	15.64			00
3560.0		64-QAM	A -32.90	5.46	12.34	3.24	Н	14.56	-	1	99
		256-QAM	-35.91	2.45	12.34	3.24 H 11.55					
		QPSK	-29.81	8.75	12.32	3.22	Н	17.85			
2625.0	LTE B48/	16-QAM	-30.52	8.04	12.32	3.22	Н	17.14	22.0	1	0
3625.0	20 MHz	64-QAM	-31.71	6.85	12.32	3.22	Н	15.95	23.0	1	0
		256-QAM	-34.64	3.92	12.32	3.22	Н	13.02	-		
		QPSK	-29.84	9.27	12.29	3.13	Н	18.43	-		
2000.0		16-QAM	-30.64	8.47	12.29	3.13	Н	17.63	-		
3690.0		64-QAM	-31.70	7.41	12.29	3.13	Н	16.57	1	1	0
		256-QAM	-34.73	4.38	12.29	3.13	Н	13.54			

F-TP22-03 (Rev. 06)

8.2 RADIATED SPURIOUS EMISSIONS

MODE:	LTE B48
MODULATION SIGNAL:	<u>5 MHz QPSK</u>
DISTANCE:	1 meters

Ch		Measured	Ant.	Substitute	<u> </u>	Del	Result	Limit	Datastan		RB
Ch	Freq (MHz)	Level (dBm)	Gain (dBd)	Level (dBm)	C.L	Pol	(dBm)	(dBm)	Detector	Size	Offset
	7 105.00	-58.37	10.87	-58.61	4.59	V	-52.32	-40.00	Peak		
55265 (3552.5)	10 657.50	-59.90	11.32	-55.36	5.62	Н	-49.66	-40.00	Peak	1	24
(3332.3)	14 210.00	-63.98	11.88	-53.02	6.76	Н	-47.90	-40.00	Average		
	7 250.00	-56.42	10.74	-58.35	4.64	V	-52.25	-40.00	Peak		
55990 (3625.0)	10 875.00	-60.74	11.04	-53.79	5.72	Н	-48.47	-40.00	Peak	1	0
(3023.0)	14 500.00	-59.18	11.45	-47.99	6.81	Н	-43.35	-40.00	Peak		
	7 395.00	-59.34	10.81	-59.31	4.68	Н	-53.18	-40.00	Peak		
56715 (3697.5)	11 092.50	-61.28	11.06	-56.64	5.92	Н	-51.50	-40.00	Peak	1	0
(3091.3)	14 790.00	-61.97	11.30	-50.86	6.89	Н	-46.45	-40.00	Peak	-	

MODE:	LTE B48
MODULATION SIGNAL:	10 MHz QPSK
DISTANCE:	1 meters

Ch		Measured	Ant.	Substitute	C 1	Del	Result	Limit	Datastan		RB
Ch	Freq (MHz)	Level (dBm)	Gain (dBd)	Level (dBm)	C.L	Pol	(dBm)	(dBm)	Detector	Size	Offset
	7 110.00	-58.75	10.86	-58.84	4.58	Н	-52.56	-40.00	Peak		
55290 (3555.0)	10 665.00	-60.55	11.33	-56.22	5.65	V	-50.54	-40.00	Peak	1	49
(5555.0)	14 220.00	-64.10	11.86	-53.12	6.75	Н	-48.01	-40.00	Average		
	7 250.00	-58.87	10.74	-60.80	4.64	Н	-54.70	-40.00	Peak		
55990 (3625.0)	10 875.00	-60.81	11.04	-53.86	5.72	V	-48.54	-40.00	Peak	1	0
(3023.0)	14 500.00	-63.25	11.45	-52.06	6.81	Н	-47.42	-40.00	Average		
	7 390.00	-60.01	10.81	-59.97	4.67	Н	-53.83	-40.00	Peak		
56690 (3695.0)	11 085.00	-61.00	11.05	-56.36	5.90	Н	-51.20	-40.00	Peak	1	0
(3033.0)	14 780.00	-62.47	11.30	-51.20	6.88	Н	-46.78	-40.00	Peak		

MODE:	LTE B48
MODULATION SIGNAL:	15 MHz QPSK
DISTANCE:	1 meters

Ch		Measured	Ant.	Substitute	C 1	Del	Result		Detector	RB	
Ch	Freq (MHz)	Level (dBm)	Gain (dBd)	Level (dBm)	C.L	Pol	(dBm)	(dBm)	Detector	Size	Size
	7 115.00	-58.18	10.85	-58.34	4.58	Н	-52.07	-40.00	Peak		
55315 (3557.5)	10 672.50	-59.86	11.33	-55.75	5.67	Н	-50.09	-40.00	Peak	1	1
(3337.3)	14 230.00	-62.46	11.84	-51.38	6.75	Н	-46.29	-40.00	Peak		
	7 250.00	-58.50	10.74	-60.43	4.64	Н	-54.33	-40.00	Peak		
55990 (3625.0)	10 875.00	-61.08	11.04	-54.13	5.72	Н	-48.81	-40.00	Peak	1	1
(3023.0)	14 500.00	-61.00	11.45	-49.81	6.81	Н	-45.17	-40.00	Peak		
	7 385.00	-59.06	10.81	-59.05	4.67	Н	-52.91	-40.00	Peak		
56665 (3692.5)	11 077.50	-60.97	11.04	-56.32	5.87	V	-51.15	-40.00	Peak	1	1
(0002.0)	14 770.00	-62.01	11.30	-50.65	6.86	Н	-46.21	-40.00	Peak		

MODE:	LTE B48
MODULATION SIGNAL:	20 MHz QPSK
DISTANCE:	1 meters

Ch	Freq (MHz)	Measured	Ant. Gain (dBd)	Substitute Level (dBm)	C.L	Del	Result (dBm)	Limit	Detector	RB	
		Level (dBm)				Pol		(dBm)		Size	Size
55340 (3560.0)	7 120.00	-55.50	10.84	-55.73	4.57	V	-49.46	-40.00	Peak		
	10 680.00	-58.85	11.34	-55.00	5.72	Н	-49.38	-40.00	Peak	1	1
	14 240.00	-62.89	11.82	-51.84	6.75	Н	-46.77	-40.00	Average		
55990 (3625.0)	7 250.00	-55.55	10.74	-57.48	4.64	Н	-51.38	-40.00	Peak		
	10 875.00	-55.71	11.04	-48.76	5.72	V	-43.44	-40.00	Peak	1	1
	14 500.00	-62.00	11.45	-50.81	6.81	Н	-46.17	-40.00	Average		
56640 (3690.0)	7 380.00	-56.22	10.81	-56.24	4.67	V	-50.10	-40.00	Peak		
	11 070.00	-56.39	11.03	-51.68	5.81	Н	-46.46	-40.00	Peak	1	1
	14 760.00	-60.59	11.30	-49.32	6.87	V	-44.89	-40.00	Peak		

8.3 PEAK-TO-AVERAGE RATIO

Band	Band Width	Frequency (MHz)	Modulation	Resource Block Size	Resource Block Offset	Data (dB)
			QPSK			6.01
			16-QAM	25		7.05
	5 MHz		64-QAM	25	0	7.11
			256-QAM			7.41
			QPSK	- 50		5.99
	10 1411-		16-QAM			6.52
	10 MHz		64-QAM			7.03
40			256-QAM			7.20
48		3625.0	QPSK	- 75		5.85
	15 1411-		16-QAM			6.49
	15 MHz		64-QAM			7.14
			256-QAM			6.87
			QPSK			5.92
	20 МШ-		16-QAM	- 100		6.60
	20 MHz		64-QAM			6.73
			256-QAM			6.94

Note:

1. Plots of the EUT's Peak- to- Average Ratio are shown Page 70 \sim 85.

8.4 OCCUPIED BANDWIDTH

Band	Band Width	Frequency (MHz)	Modulation	Resource Block Size	Resource Block Offset	Data (MHz)
			QPSK			4.4973
	5 Mil		16-QAM	25		4.4845
	5 MHz		64-QAM		0	4.4495
			256-QAM			4.4750
			QPSK	- 50		8.9929
	10 1411-		16-QAM			8.9743
	10 MHz		64-QAM			8.8526
48			256-QAM			8.8931
48			QPSK	- 75		13.450
	15 1411-		16-QAM			13.368
	15 MHz		64-QAM			13.462
			256-QAM			13.519
			QPSK			17.893
	20 MH-		16-QAM	100		17.852
	20 MHz	Z	64-QAM	100		17.863
			256-QAM			17.822

Note:

1. Plots of the EUT's Occupied Bandwidth are shown Page 54 ~ 69.

8.5 CONDUCTED SPURIOUS EMISSIONS

Band	Band Width (MHz)	Frequency (MHz)	Frequency of Maximum Harmonic (GHz)	Factor (dB)	Measurement Maximum Data (dBm)	Result (dBm)	Limit (dBm)	
		3552.5	36.8632	30.131	-73.470	-43.339		
	5	3625.0	36.2570	30.131	-73.389	-43.258	-	
		3697.5	36.8452	30.131	-73.379	-43.248		
	10	3555.0	36.1261	30.131	-73.153	-43.022		
		3625.0	35.9789	30.131	30.131 -73.433			
40		3695.0	36.3632	30.131	-73.633	-43.502	40.00	
48	15	3557.5	36.9406	30.131	-73.379	-43.248	40.00	
		15	3625.0	36.6157	30.131	-73.206	-43.075	
		3692.5	36.1702	30.131	-73.642	-43.511		
	20	3560.0	36.9240	30.131	-73.643	-43.512		
		3625.0	35.7845	30.131	-73.620	-43.489		
		3690.0	36.4123	30.131	-73.430	-43.299		

Note:

1. Plots of the EUT's Conducted Spurious Emissions are shown Page 144 ~ 167.

2. Conducted Spurious Emissions was Tested QPSK Modulation, Resource Block Size 1 and Resource Block Offset 0

3. Result (dBm) = Measurement Maximum Data (dBm) + Factor (dB)

4. Factor (dB) = Cable Loss + Attenuator + Power Splitter

Frequency Range (GHz)	Factor [dB]
0.03 - 1	25.270
1 – 5	27.976
5 - 10	28.591
10 - 15	29.116
15 - 20	29.489
Above 20(26.5)	30.131

8.6 CHANNEL EDGE

(MHz)		Freq. (MHz)	Outside of the authorized band (dBm)							
	RB		Lower Side(MHz)				Upper Side(MHz)			
	(Size/ Offset)		Below 3530 MHz	-[B]MHz ~ 3530 MHz	-1 MHz ~ -[B]MHz	0 MHz ~ -1 MHz	0 MHz ~ +1 MHz	1 MHz ~ +[B]MHz	+[B]MHz ~ 3720 MHz	Above 3720 MHz
		3552.5	-46.40	-33.50	-27.64	-25.02	-24.46	-27.63	-34.65	-
5	25/0	3625.0	-	-33.96	-24.15	-24.72	-25.65	-24.76	-34.87	-
		3697.5	-	-34.30	-22.71	-24.90	-25.47	-22.46	-34.89	-45.91
		3555.0	-44.79	-37.78	-29.35	-28.39	-28.10	-29.23	-39.01	-
10	50/0	3625.0	-	-38.52	-25.99	-28.38	-29.17	-26.13	-38.96	-
		3695.0	-	-38.52	-24.60	-27.94	-29.18	-24.59	-38.75	-45.53
		3557.5	-41.19	-34.04	-30.40	-30.28	-31.25	-31.38	-40.35	-
15	75/0	3625.0	-	-38.48	-27.12	-29.42	-30.77	-27.24	-40.41	-
		3692.5	-	-38.67	-25.68	-29.49	-30.09	-25.57	-33.39	-43.46
		3560.0	-41.14	-34.24	-30.96	-33.53	-33.91	-33.13	-42.13	-
20	100/0	3625.0	-	-41.18	-28.14	-31.63	-31.86	-28.28	-41.64	-
		3690.0	-	-41.09	-26.24	-31.10	-30.19	-26.67	-31.17	-41.86
	Limit (dBm)		-40.00	-25.00	-13.00	-13.00	-13.00	-13.00	-25.00	-40.00

Note:

1. C.E = Channel Edge

2. Plots of the EUT's Channel Edge are shown Page 98 ~ 143.

			Outside of the authorized band (dBm)							
				Lower S	ide(MHz)		Upper Side(MHz)			
BW RB (MHz) (Size/ Offset)	Freq. (MHz)	Below 3530 MHz	-[B]MHz ~ 3530 MHz	-1 MHz ~ -[B]MHz	0 MHz ~ -1 MHz	0 MHz ~ +1 MHz	1 MHz ~ +[B]MHz	+[B]MHz ~ 3720 MHz	Above 3720 MHz	
	Lower Side: 1/0	3552.5	-46.44	-34.46	-27.10	-21.75	-21.18	-26.41	-36.30	-
5	Upper Side:	3625.0	-	-35.11	-26.94	-21.89	-21.08	-26.77	-36.54	-
	1/24	3697.5	-	-35.87	-26.79	-21.76	-21.44	-26.80	-36.75	-45.92
	Lower Side: 1/0	3555.0	-47.12	-40.80	-28.75	-28.79	-29.71	-30.44	-42.24	-
10	Upper Side: 1/49	3625.0	-	-41.53	-28.37	-27.02	-28.51	-30.50	-41.95	-
		3695.0	-	-41.77	-28.14	-30.49	-29.57	-29.38	-42.56	-46.01
	Lower Side: 1/0	3557.5	-43.39	-37.49	-29.35	-23.17	-23.06	-28.83	-42.88	-
15	Upper Side:	3625.0	-	-39.94	-28.58	-23.54	-24.08	-29.59	-42.60	-
	1/74	3692.5	-	-39.94	-28.64	-23.71	-24.14	-29.06	-40.33	-44.57
	Lower Side: 1/0	3560.0	-43.03	-37.25	-30.55	-31.42	-31.30	-31.17	-45.44	-
20	Upper Side:	3625.0	-	-43.20	-30.66	-33.18	-31.93	-30.75	-44.41	-
	1/99	3690.0	-	-42.84	-30.03	-32.68	-31.43	-30.67	-40.44	-44.67
	Limit (dBm)		-40.00	-25.00	-13.00	-13.00	-13.00	-13.00	-25.00	-40.00

Note:

1. C.E = Channel Edge

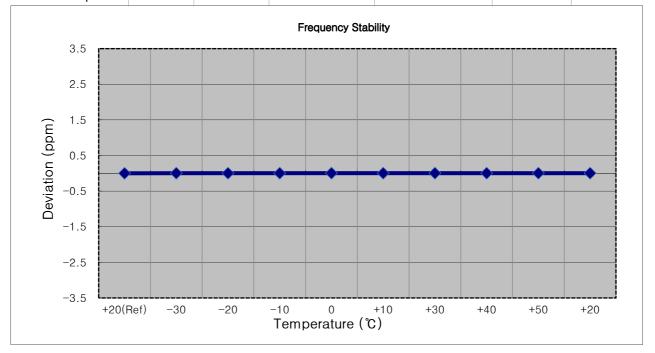
2. Plots of the EUT's Channel Edge are shown Page 98 \sim 143.

8.7 Adjacent Channel Leakage Ratio(ACLR)

Band	RB	Frequency	Adjacent Channel Leakage Ratio(dB)				
(Siz Width	(Size/ Offset)	(MHz)	Lower Side	Upper Side			
		3552.5	41.15	42.18			
5 MHz	25/0	3625.0	39.57	40.30			
		3697.5	38.57	39.26			
	.0 MHz 50/0		3555.0	43.69	43.93		
10 MHz		3625.0	40.96	41.59			
		3695.0	39.84	39.92			
			3557.5	43.92	45.56		
15 MHz	75/0	3625.0	41.43	41.71			
		3692.5	40.07	40.32			
		3560.0	434.30	46.05			
20 MHz	100/0	3625.0	41.53	41.64			
		3690.0	40.24	40.11			
	Limit (dB)	ACLR > 30 dB	ACLR > 30 dB			

Note:

- 1. Duty Cycle factor already applied on the factor.
- Duty Cycle factor(dB) = 3.979
- Factor(dB) = Duty Cycle factor + Cable Loss + Ext. Attenuator + Power Splitter
- 2. Plots of the EUT's Adjacent Channel Leakage Ratio(ACLR) are shown Page 86 ~ 97.

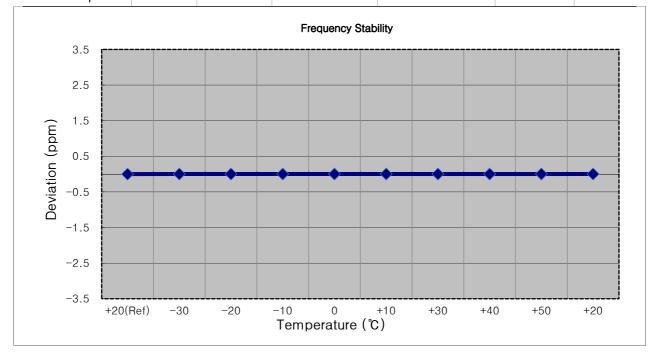

8.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

- OPERATING FREQUENCY:
- BANDWIDTH:

3,552,500,000 Hz

- 5 MHz
- REFERENCE VOLTAGE:
- 3.880 VDC
- DEVIATION LIMIT: Emission must remain in band

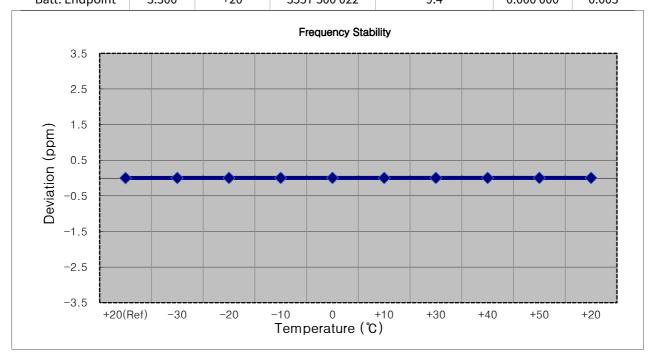
Voltage	Power	Temp.	Frequency	Frequency Error	Deviation	
(%)	(VDC)	(°C)	(Hz)	(Hz)	(%)	ppm
100 %		+20(Ref)	3552 500 010	0.0	0.000 000	0.000
100 %	-	-30	3552 500 021	10.9	0.000 000	0.003
100 %		-20	3552 500 020	9.8	0.000 000	0.003
100 %		-10	3552 500 020	10.1	0.000 000	0.003
100 %	3.880	0	3552 500 022	12.5	0.000 000	0.004
100 %	_	+10	3552 500 022	12.1	0.000 000	0.003
100 %	_	+30	3552 500 024	14.2	0.000 000	0.004
100 %		+40	3552 500 020	10.1	0.000 000	0.003
100 %		+50	3552 500 021	11.0	0.000 000	0.003
Batt. Endpoint	3.300	+20	3552 500 021	11.1	0.000 000	0.003



OPERATING FREQUENCY:	3,555,000,000 Hz
----------------------	------------------

- BANDWIDTH: <u>10 MHz</u>
- REFERENCE VOLTAGE: <u>3.880 VDC</u>
- DEVIATION LIMIT:

<u>3.880 VDC</u> Emission must remain in band


Voltage	Power	Temp.	Frequency	Frequency Error	Deviation	
(%)	(VDC)	(°C)	(Hz)	(Hz)	(%)	ppm
100 %		+20(Ref)	3555 000 010	0.0	0.000 000	0.000
100 %		-30	3555 000 020	10.2	0.000 000	0.003
100 %	_	-20	3555 000 020	10.1	0.000 000	0.003
100 %		-10	3555 000 019	9.8	0.000 000	0.003
100 %	3.880	0	3555 000 020	10.2	0.000 000	0.003
100 %		+10	3555 000 019	9.4	0.000 000	0.003
100 %		+30	3555 000 021	11.1	0.000 000	0.003
100 %		+40	3555 000 020	10.2	0.000 000	0.003
100 %		+50	3555 000 019	9.8	0.000 000	0.003
Batt. Endpoint	3.300	+20	3555 000 020	10.2	0.000 000	0.003

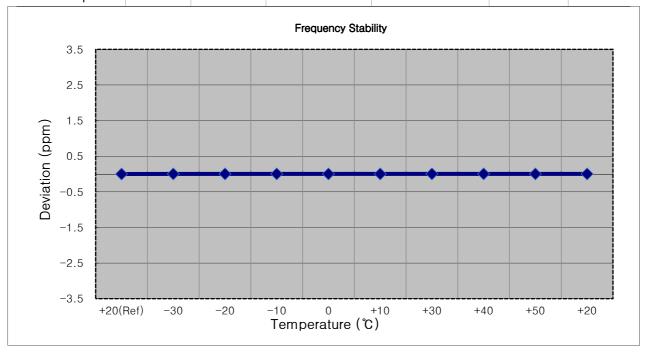
OPERATING FREQUENCY:	<u>3,557,500,000 Hz</u>
BANDWIDTH:	<u>15 MHz</u>
REFERENCE VOLTAGE:	3.880 VDC
DEVIATION LIMIT:	Emission must remain in band

Voltage	Power	Temp.	Frequency	Frequency Error	Deviation	
(%)	(VDC)	(°C)	(Hz)	(Hz)	(%)	ppm
100 %		+20(Ref)	3557 500 013	0.0	0.000 000	0.000
100 %		-30	3557 500 021	8.4	0.000 000	0.002
100 %	3.880	-20	3557 500 023	10.7	0.000 000	0.003
100 %		-10	3557 500 023	10.7	0.000 000	0.003
100 %		0	3557 500 026	13.0	0.000 000	0.004
100 %		+10	3557 500 020	7.8	0.000 000	0.002
100 %		+30	3557 500 022	9.5	0.000 000	0.003
100 %		+40	3557 500 023	10.5	0.000 000	0.003
100 %		+50	3557 500 025	12.5	0.000 000	0.004
Batt. Endpoint	3.300	+20	3557 500 022	9.4	0.000 000	0.003

F-TP22-03 (Rev. 06)

Page 41 of 168

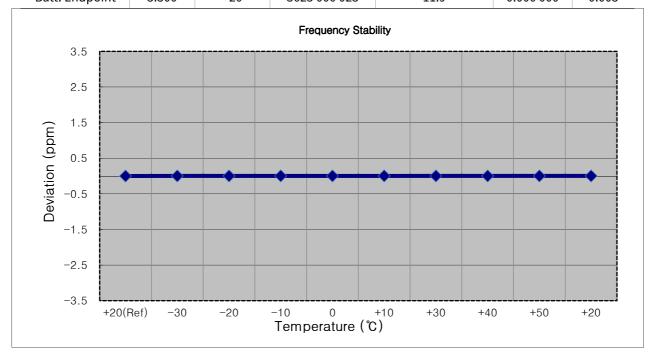
 OPERATING FREQUENCY:
 3,560,000,000 Hz


 BANDWIDTH:
 20 MHz

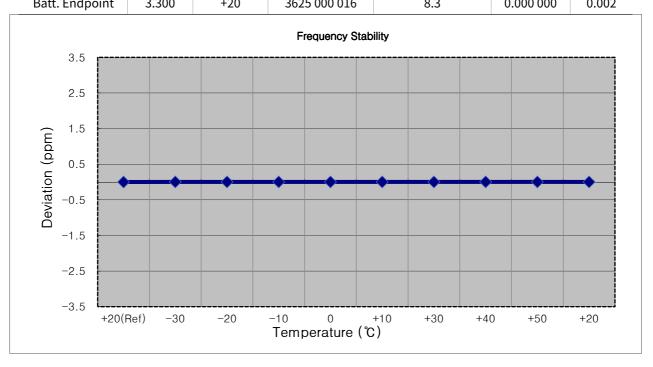
REFERENCE VOLTAGE:

DEVIATION LIMIT:

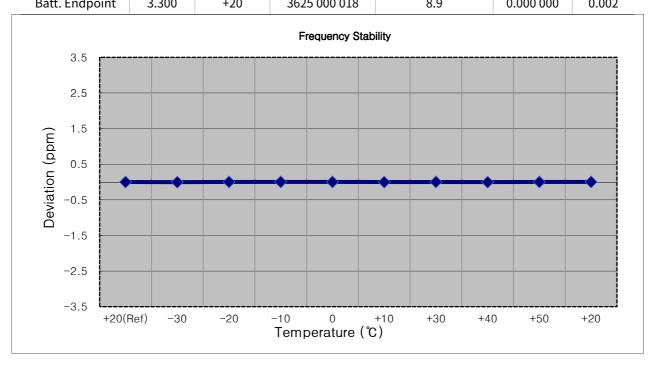
20 MHz 3.880 VDC Emission must remain in band


Voltage	Power	Temp.	Frequency	Frequency Error	Deviation	
(%)	(VDC)	(°C)	(Hz)	(Hz)	(%)	ppm
100 %		+20(Ref)	3560 000 011	0.0	0.000 000	0.000
100 %		-30	3560 000 021	10.5	0.000 000	0.003
100 %		-20	3560 000 021	10.1	0.000 000	0.003
100 %		-10	3560 000 023	12.2	0.000 000	0.003
100 %	3.880	0	3560 000 022	11.4	0.000 000	0.003
100 %		+10	3560 000 022	10.8	0.000 000	0.003
100 %		+30	3560 000 024	13.5	0.000 000	0.004
100 %		+40	3560 000 026	15.5	0.000 000	0.004
100 %		+50	3560 000 022	11.7	0.000 000	0.003
Batt. Endpoint	3.300	+20	3560 000 023	11.9	0.000 000	0.003

OPERATING FREQUENCY:	3,625,000,000 Hz
BANDWIDTH:	5 MHz
REFERENCE VOLTAGE:	3.880 VDC
DEVIATION LIMIT:	Emission must remain in band

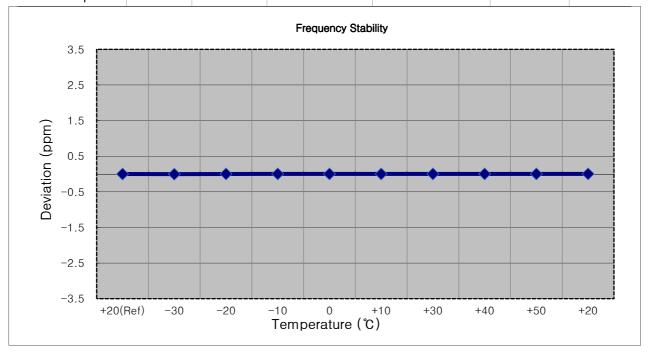

Power Temp. Frequency **Frequency Error** Deviation Voltage ppm (%) (VDC) (°C) (Hz) (Hz) (%) 100 % +20(Ref) 3625 000 011 0.0 0.000 000 0.000 100 % -30 3625 000 022 11.5 0.000 000 0.003 100 % -20 3625 000 022 11.4 0.000 000 0.003 100 % -10 3625 000 023 12.3 0.000 000 0.003 100 % 3.880 0 9.9 0.000 000 0.003 3625 000 021 100 % 0.003 +10 3625 000 023 12.4 0.000 000 100 % +30 3625 000 021 9.8 0.000 000 0.003 +40 0.003 100 % 3625 000 020 9.1 0.000 000 100 % +50 14.2 3625 000 025 0.000 000 0.004 Batt. Endpoint 3.300 +20 3625 000 023 11.9 0.000 000 0.003

OPERATING FREQUENCY: <u>3,625,000,000 Hz</u>
 BANDWIDTH: <u>10 MHz</u>
 REFERENCE VOLTAGE: <u>3.880 VDC</u>
 DEVIATION LIMIT: Emission must remain in band


Voltage	Power	Temp.	Frequency	Frequency Error	Deviation	
(%)	(VDC)	(°C)	(Hz)	(Hz)	(%)	ppm
100 %		+20(Ref)	3625 000 008	0.0	0.000 000	0.000
100 %		-30	3625 000 018	10.5	0.000 000	0.003
100 %		-20	3625 000 018	9.6	0.000 000	0.003
100 %		-10	3625 000 018	10.0	0.000 000	0.003
100 %	3.880	0	3625 000 017	9.2	0.000 000	0.003
100 %		+10	3625 000 017	9.3	0.000 000	0.003
100 %		+30	3625 000 017	9.0	0.000 000	0.002
100 %		+40	3625 000 019	11.1	0.000 000	0.003
100 %		+50	3625 000 020	12.1	0.000 000	0.003
Batt. Endpoint	3.300	+20	3625 000 016	8.3	0.000 000	0.002

DEVIATION LIMIT:	Emission must remain in band
REFERENCE VOLTAGE:	3.880 VDC
BANDWIDTH:	<u>15 MHz</u>
OPERATING FREQUENCY:	3,625,000,000 Hz

Voltage	Power	Temp.	Frequency	Frequency Error	Deviation	
(%)	(VDC)	(°C)	(Hz)	(Hz)	(%)	ppm
100 %		+20(Ref)	3625 000 009	0.0	0.000 000	0.000
100 %		-30	3624 999 994	-15.2	0.000 000	-0.004
100 %	-	-20	3625 000 020	11.2	0.000 000	0.003
100 %		-10	3625 000 019	9.7	0.000 000	0.003
100 %	3.880	0	3625 000 018	9.0	0.000 000	0.002
100 %		+10	3625 000 001	-7.6	0.000 000	-0.002
100 %		+30	3625 000 019	10.4	0.000 000	0.003
100 %		+40	3624 999 996	-12.9	0.000 000	-0.004
100 %		+50	3625 000 016	7.3	0.000 000	0.002
Batt. Endpoint	3.300	+20	3625 000 018	8.9	0.000 000	0.002



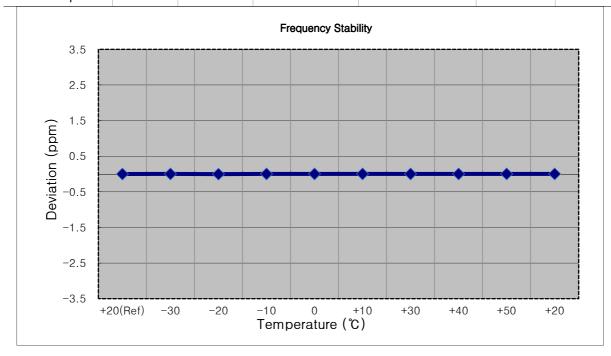
OPERATING FREQUENCY: 3,625,000,000 Hz BANDWIDTH: 20 MHz REFERENCE VOLTAGE: 3.880 VDC

DEVIATION LIMIT:

Emission must remain in band

Voltage	Power	Temp.	Frequency	Frequency Error	Deviation	
(%)	(VDC)	(°C)	(Hz)	(Hz)	(%)	ppm
100 %		+20(Ref)	3624 999 989	0.0	0.000 000	0.000
100 %		-30	3624 999 976	-12.4	0.000 000	-0.003
100 %		-20	3624 999 997	8.4	0.000 000	0.002
100 %		-10	3624 999 999	9.7	0.000 000	0.003
100 %	3.880	0	3624 999 998	9.5	0.000 000	0.003
100 %		+10	3624 999 998	8.9	0.000 000	0.002
100 %		+30	3625 000 000	11.3	0.000 000	0.003
100 %		+40	3625 000 000	11.6	0.000 000	0.003
100 %		+50	3624 999 999	9.9	0.000 000	0.003
Batt. Endpoint	3.300	+20	3625 000 001	12.4	0.000 000	0.003

 OPERATING FREQUENCY:
 3,697,500,000 Hz

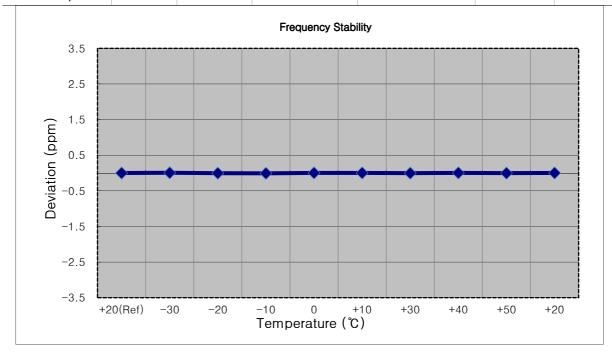

 BANDWIDTH:
 5 MHz

REFERENCE VOLTAGE:

DEVIATION LIMIT:

<u>3.880 VDC</u> Emission must remain in band

Voltage	Power	Temp.	Frequency	Frequency Error	Deviation		
(%)	(VDC)	(°C)	(Hz)	(Hz)	(%)	ppm	
100 %		+20(Ref)	3697 499 986	0.0	0.000 000	0.000	
100 %		-30	3697 499 997	11.6	0.000 000	0.003	
100 %		-20	3697 499 974	-11.7	0.000 000	-0.003	
100 %		-10	3697 499 998	12.2	0.000 000	0.003	
100 %	3.880	0	3697 499 995	9.7	0.000 000	0.003	
100 %		+10	3697 499 998	11.9	0.000 000	0.003	
100 %		+30	3697 499 995	9.5	0.000 000	0.003	
100 %		+40	3697 499 994	8.3	0.000 000	0.002	
100 %		+50	3697 499 996	10.2	0.000 000	0.003	
Batt. Endpoint	3.300	+20	3697 499 997	11.4	0.000 000	0.003	


- OPERATING FREQUENCY: <u>3,695,000,000 Hz</u>
- BANDWIDTH:

REFERENCE VOLTAGE:

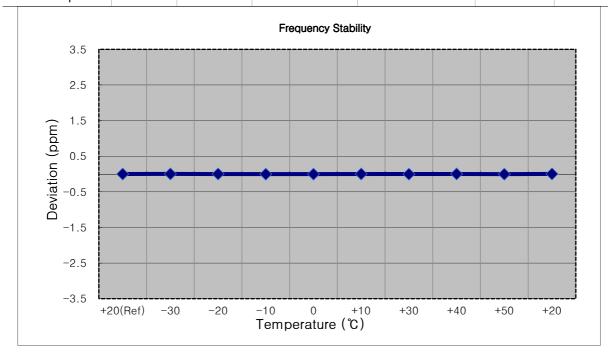
DEVIATION LIMIT:

<u>10 MHz</u> <u>3.880 VDC</u> Emission must remain in band

Voltage	Power	Temp.	Frequency	Frequency Error	Deviation	
(%)	(VDC)	(°C)	(Hz)	(Hz)	(%)	ppm
100 %		+20(Ref)	3694 999 989	0.0	0.000 000	0.000
100 %		-30	3695 000 015	26.1	0.000 001	0.007
100 %		-20	3694 999 971	-17.9	0.000 000	-0.005
100 %		-10	3694 999 957	-31.6	-0.000 001	-0.009
100 %	3.880	0	3694 999 999	10.0	0.000 000	0.003
100 %		+10	3694 999 997	8.4	0.000 000	0.002
100 %		+30	3694 999 978	-11.1	0.000 000	-0.003
100 %		+40	3695 000 002	13.1	0.000 000	0.004
100 %		+50	3694 999 978	-10.4	0.000 000	-0.003
Batt. Endpoint	3.300	+20	3694 999 995	6.4	0.000 000	0.002

F-TP22-03 (Rev. 06)

Page 48 of 168



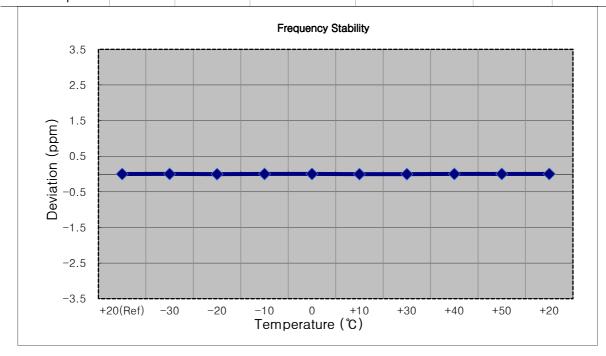
OPERATING FREQUENCY: <u>3,692,500,000 Hz</u>
 BANDWIDTH: <u>15 MHz</u>
 REFERENCE VOLTAGE: <u>3.880 VDC</u>

DEVIATION LIMIT:

<u>15 MHz</u> <u>3.880 VDC</u> Emission must remain in band

Voltage	Power	Temp.	Frequency	Frequency Error	Deviation		
(%)	(VDC)	(°C)	(Hz)	(Hz)	(%)	ppm	
100 %		+20(Ref)	3692 499 985	0.0	0.000 000	0.000	
100 %		-30	3692 499 997	11.6	0.000 000	0.003	
100 %		-20	3692 499 992	6.8	0.000 000	0.002	
100 %		-10	3692 499 971	-14.4	0.000 000	-0.004	
100 %	3.880	0	3692 499 973	-11.8	0.000 000	-0.003	
100 %		+10	3692 499 994	8.9	0.000 000	0.002	
100 %		+30	3692 499 973	-12.3	0.000 000	-0.003	
100 %		+40	3692 499 997	11.9	0.000 000	0.003	
100 %		+50	3692 499 972	-13.4	0.000 000	-0.004	
Batt. Endpoint	3.300	+20	3692 499 995	10.2	0.000 000	0.003	

 OPERATING FREQUENCY:
 3,690,000,000 Hz


 BANDWIDTH:
 20 MHz

REFERENCE VOLTAGE:

DEVIATION LIMIT:

20 MHz 3.880 VDC Emission must remain in band

Voltage	Power	Temp.	Frequency	Frequency Error	Deviation	
(%)	(VDC)	(°C)	(Hz)	(Hz)	(%)	ppm
100 %		+20(Ref)	3690 000 007	0.0	0.000 000	0.000
100 %		-30	3690 000 018	11.9	0.000 000	0.003
100 %		-20	3689 999 994	-13.0	0.000 000	-0.004
100 %		-10	3690 000 016	9.4	0.000 000	0.003
100 %	3.880	0	3690 000 016	9.2	0.000 000	0.002
100 %		+10	3689 999 995	-11.5	0.000 000	-0.003
100 %		+30	3689 999 995	-11.5	0.000 000	-0.003
100 %		+40	3690 000 016	9.3	0.000 000	0.003
100 %		+50	3690 000 014	7.9	0.000 000	0.002
Batt. Endpoint	3.300	+20	3690 000 015	8.2	0.000 000	0.002

8.9 End User Device Additional Requirements (CBSD Protocol)

Test#1.			<u> </u>						
Spectrum Ar Occupied B		+					4	Frequenc	y y 👫
->	HT Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) NFE: Adaptive	Atten: 10 dB Preamp: Off	Trig: Free Run Gate: Off #IF Gain: Low	Center Freq: 3.61 Avg Hold: 30/30 Radio Std: None	0000000 GHz	The second second second	Frequency 00000 GHz	Settings
LN 1 Graph	•	NFL. Adaptive					Span 40.000	MHz	
Scale/Div 1	0.0 dB		Ref Value 1.00) dBm			CF Step		
-9.00		Martin to see						, 00 MHz	
-19.0 -29.0 -39.0		Cupa Parka	Inder and a second field	panenn pictor AMN			Aut Ma		
-49.0							Freq Off	set	1
-79.0	have been approved	nnqd			tawnpar	Mannenn	0 Hz		
-89.0									
Center 3.61 Res BW 390			Video BW 4.00	00 MHz	Sweep	Span 40 Mi 1.00 ms (1001 pt			
2 Metrics	×								
Oc	cupied Bandwidth								
		43 MHz		Total Power		0.25 dBm			
	ansmit Freq Error dB Bandwidth	-77.776 k 18.88 M		% of OBW Pov x dB	ver	99.00 % -26.00 dB			
15	6 1	Jul 16, 2024 10:08:01 AM	QA			N - X			
	i a sa Ada al a						3		

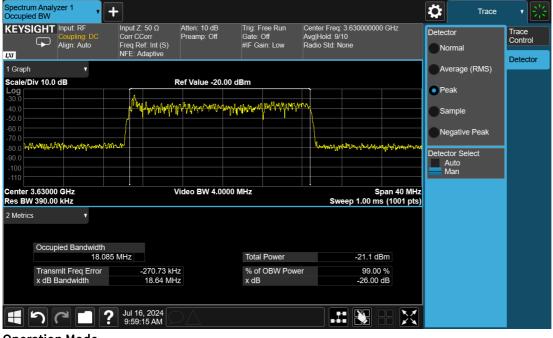
Test#1: 3610 MHz(BW: 20 MHz)

Operation Mode

Stop Operation Within 10 s

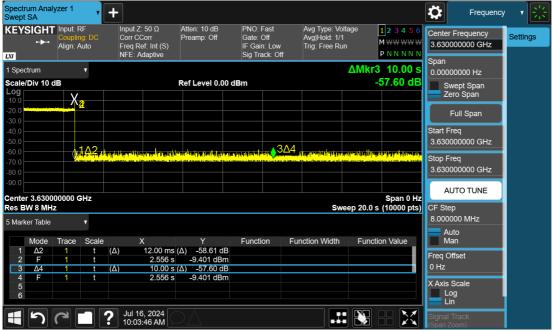
Spect Swep	trum Anal t SA	yzer 1	,	+									Frequency	· • 淡
KEY	′SIGH1 ·≁·	Input: F Couplin Align: A	ng: DC	C Fi	put Z: 50 Ω orr CCorr req Ref: Int (S) FE: Adaptive	Atten: 20 dB Preamp: Off			Avg Type: Vo Avg Hold: 1/ Trig: Free Ri		1 2 3 4 5 6 M WW WW W P N N N N N		Frequency 00000 GHz	Settings
1 Spe	ectrum		•							ΔMkr	3 10.00 s		0000 Hz	
Scale	e/Div 10 (dB	X			Ref Level 10.0	00 dBm				-58.54 dB		ept Span ro Span	
-10.0 -20.0												F	[:] ull Span	
-30.0 -40.0			1	Δ2					804.			Start Fr 3.6100	eq 00000 GHz	
-50.0 -60.0 -70.0 -80.0			YIN			THE REAL PROPERTY OF THE REAL PROPERTY OF	in the state				eren en fan die seren en f General en fan die seren e	Stop Fr 3.6100	eq 00000 GHz	
	er 3.6100 3W 8 MH		GHz						Sv	veep 20.0	Span 0 Hz s (10000 pts)			
5 Mar	ker Table		•									1	00 MHz	
	Mode	Trace	Scale		Х	Y	Funct	ion Fu	nction Width	Func	tion Value	Au Ma		
1	Δ2	1	t	(Δ)	56.01 ms							Freq Of	fset	
2	F Δ4	1	t	(Δ)	3.508 s 10.00 s							0 Hz		
4 5 6	F	1	t		3.508 s							X Axis S Lo	g	
	5	6			Jul 16, 2024 10:09:56 AM							Signal T (Span Zo		

Note:


Marker 2: CBSD sends instructions to discontinue LTE operations.

Marker 1 \triangle 2: EUT discontinues operation. (3.508 s)

Marker 3 \triangle 4: 10 seconds elapsed time from CBSD sending instructions to EUT.(10.0 s)



Test#1: 3630 MHz(BW: 20 MHz)

Operation Mode

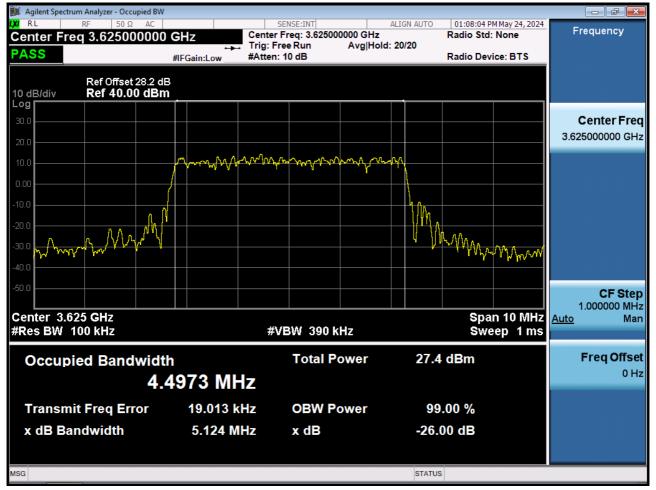
Stop Operation Within 10 s

Note:

Marker 2: CBSD sends instructions to discontinue LTE operations.

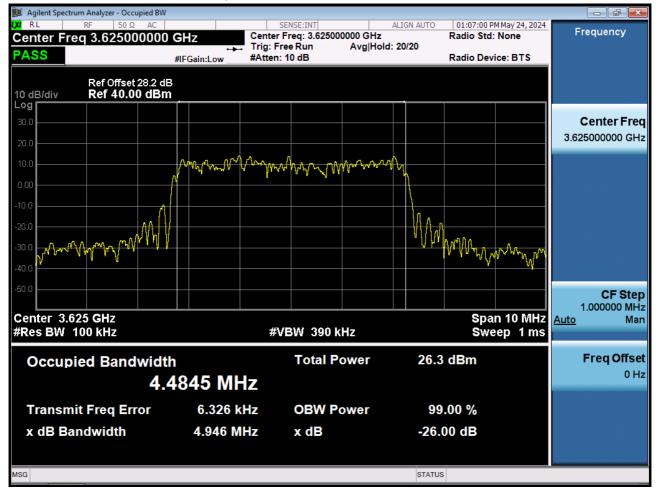
Marker 1 \triangle 2: EUT discontinues operation. (2.556 s)

Marker $3\triangle 4$: 10 seconds elapsed time from CBSD sending instructions to EUT.(10.0 s)

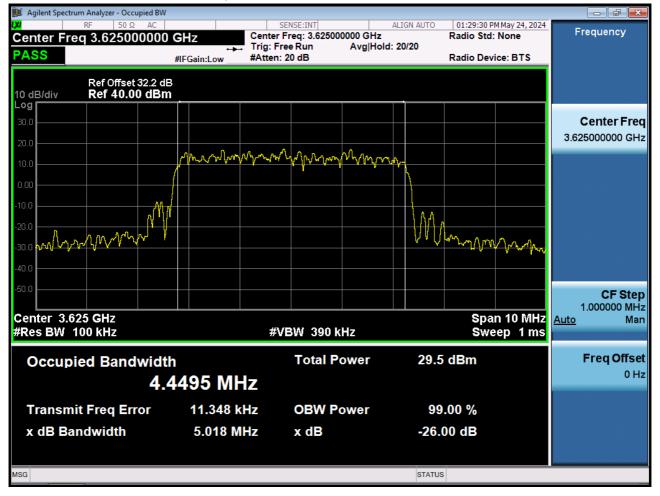


Report No. HCT-RF-2407-FC016

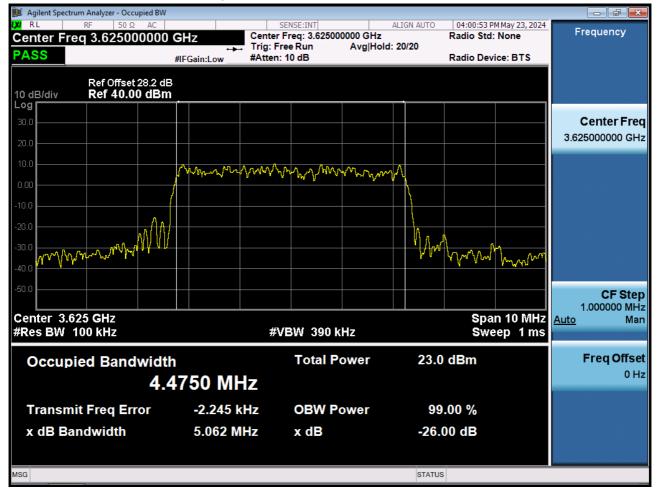
9. TEST PLOTS



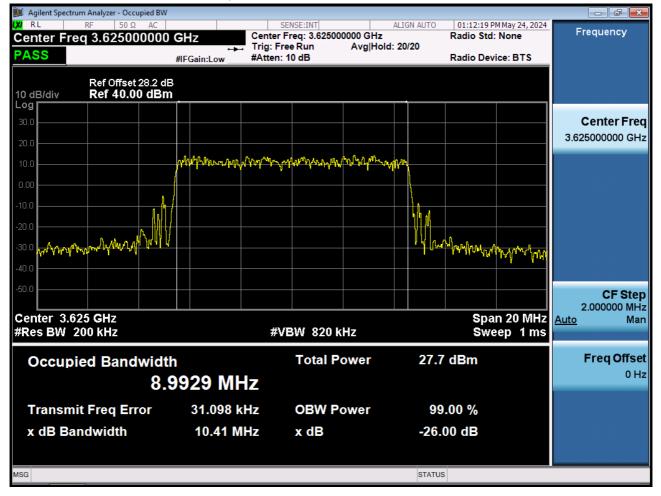
BAND 48. Occupied Bandwidth Plot (5 MHz Ch.55990 QPSK RB 25)



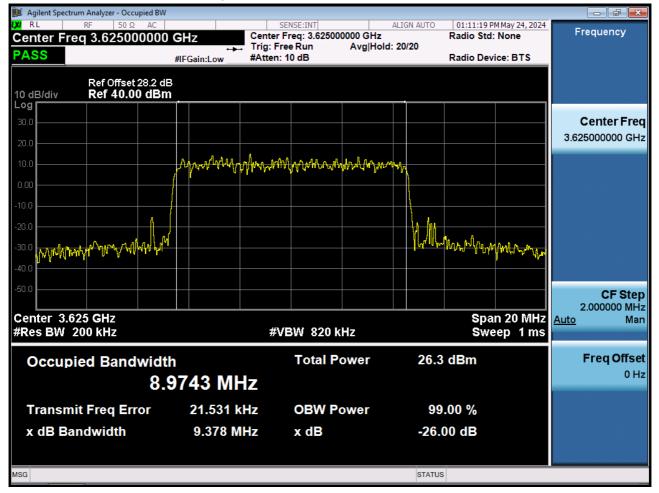
BAND 48. Occupied Bandwidth Plot (5 MHz Ch.55990 16-QAM RB 25)

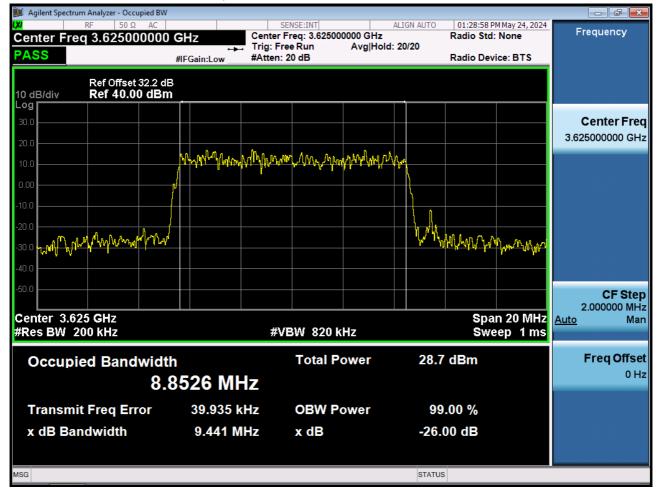


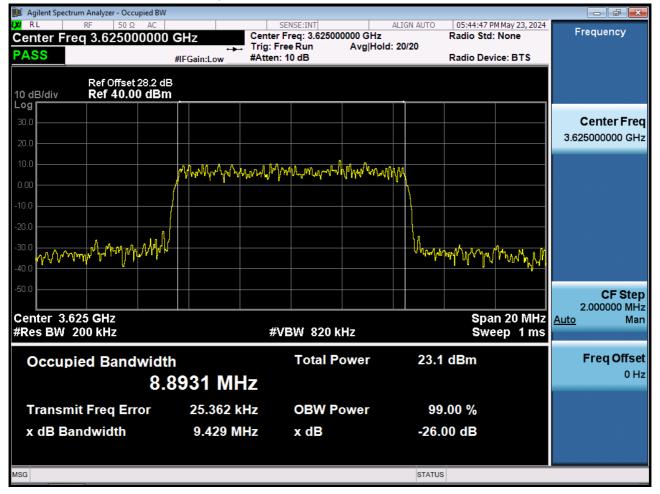
BAND 48. Occupied Bandwidth Plot (5 MHz Ch.55990 64-QAM RB 25)

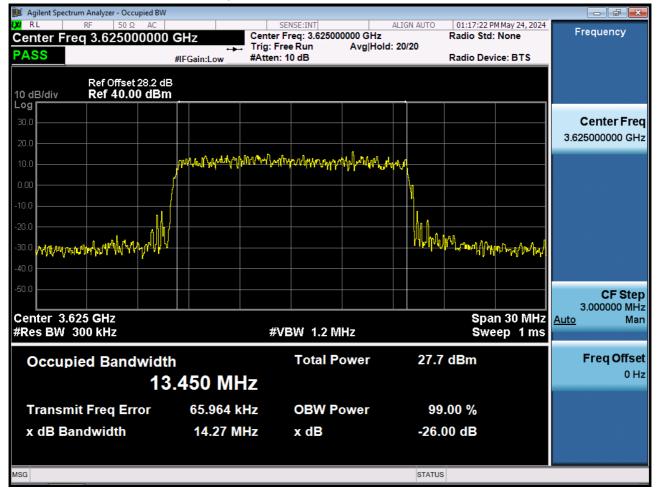


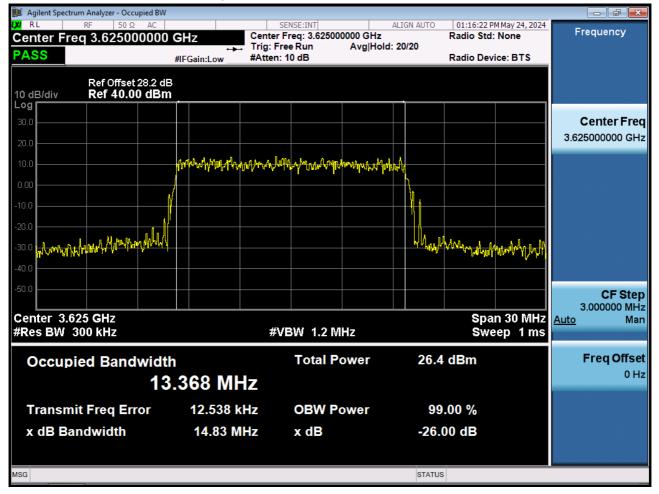
BAND 48. Occupied Bandwidth Plot (5 MHz Ch.55990 256-QAM RB 25)

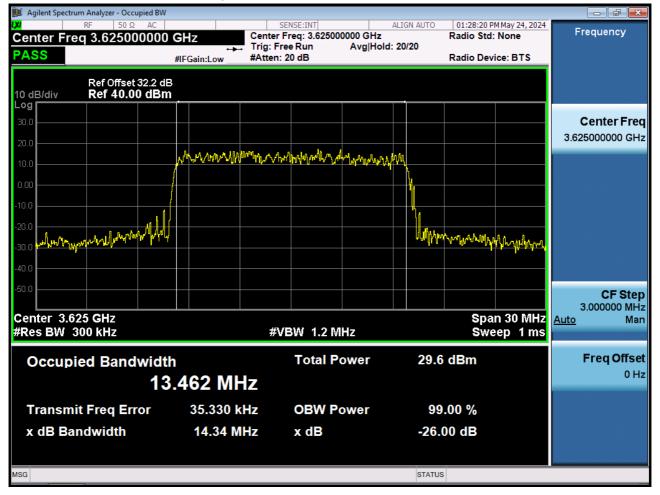


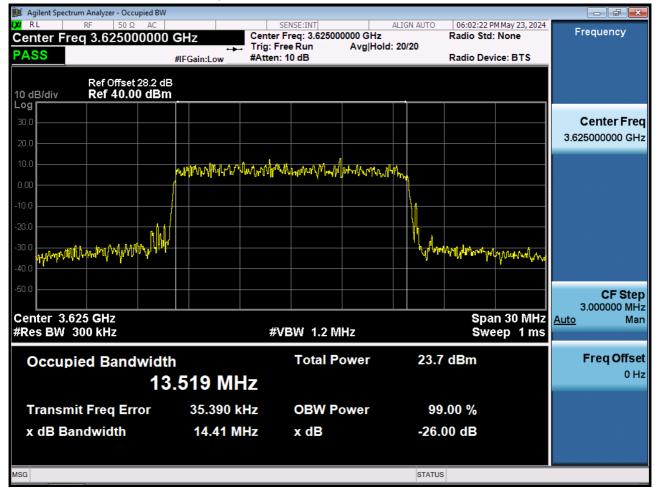

BAND 48. Occupied Bandwidth Plot (10 MHz Ch.55990 QPSK RB 50)

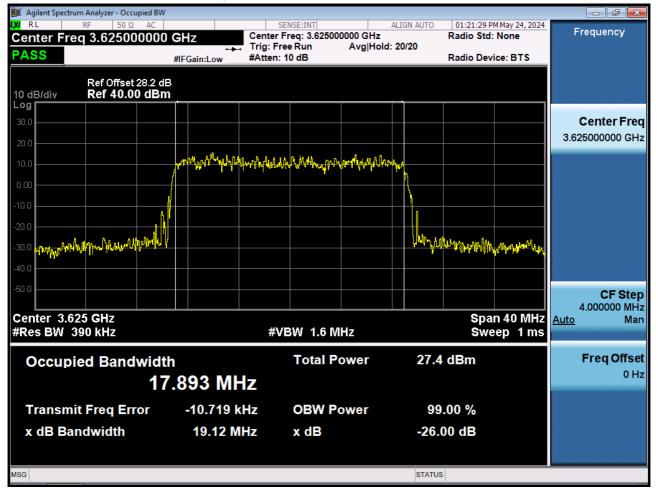

BAND 48. Occupied Bandwidth Plot (10 MHz Ch.55990 16-QAM RB 50)


BAND 48. Occupied Bandwidth Plot (10 MHz Ch.55990 64-QAM RB 50)

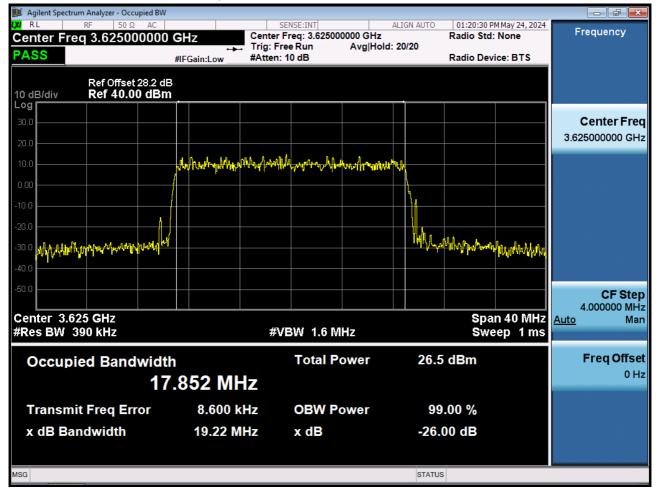

BAND 48. Occupied Bandwidth Plot (10 MHz Ch.55990 256-QAM RB 50)


BAND 48. Occupied Bandwidth Plot (15 MHz Ch.55990 QPSK RB 75)

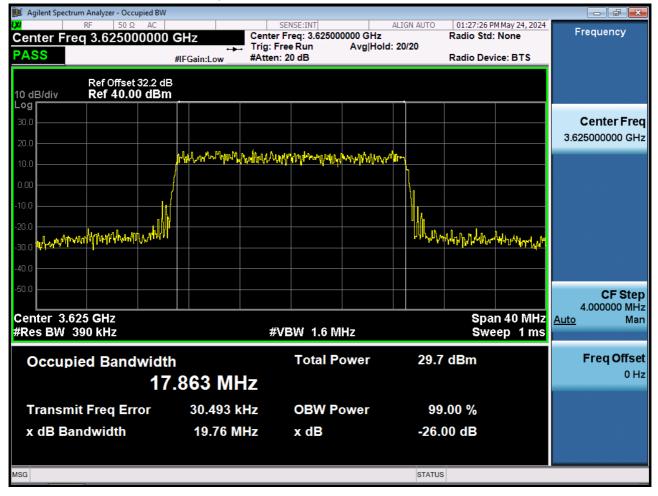

BAND 48. Occupied Bandwidth Plot (15 MHz Ch.55990 16-QAM RB 75)


BAND 48. Occupied Bandwidth Plot (15 MHz Ch.55990 64-QAM RB 75)

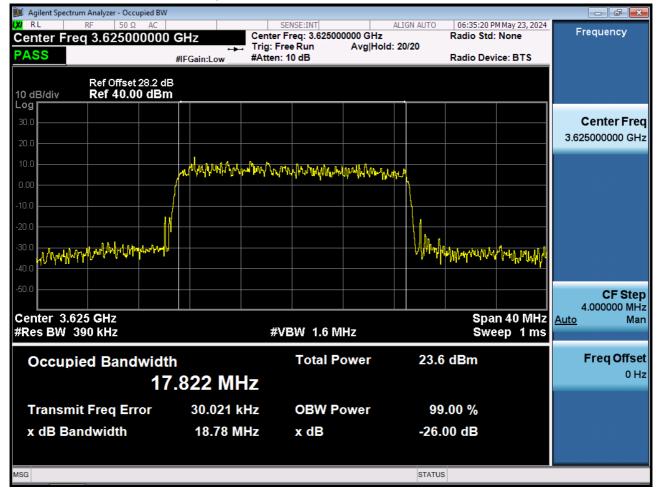
BAND 48. Occupied Bandwidth Plot (15 MHz Ch.55990 256-QAM RB 75)



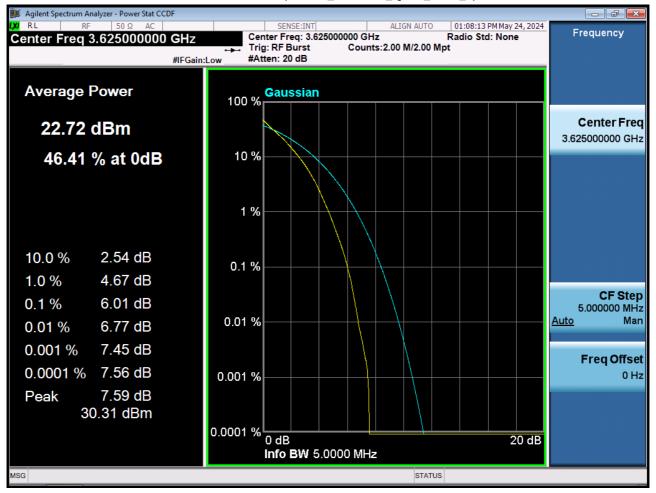
BAND 48. Occupied Bandwidth Plot (20 MHz Ch.55990 QPSK RB 100)



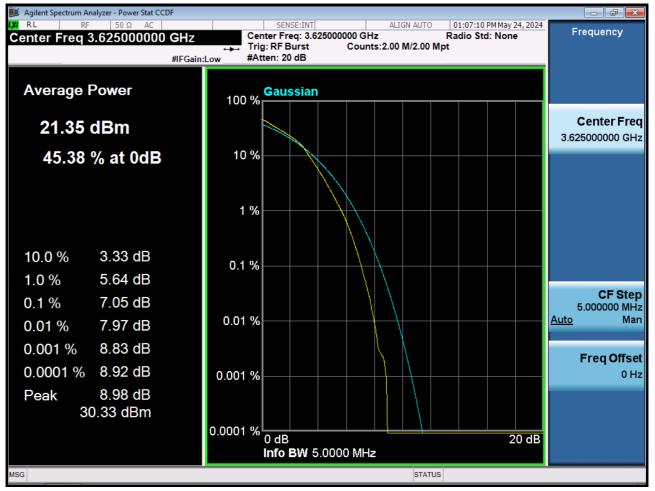
BAND 48. Occupied Bandwidth Plot (20 MHz Ch.55990 16-QAM RB 100)



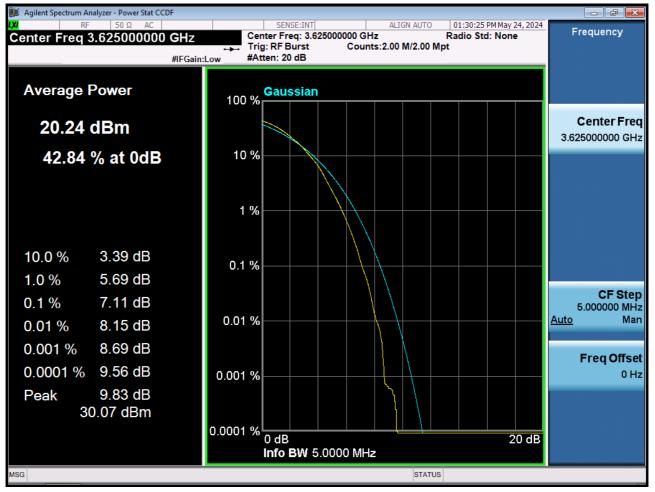
BAND 48. Occupied Bandwidth Plot (20 MHz Ch.55990 64-QAM RB 100)



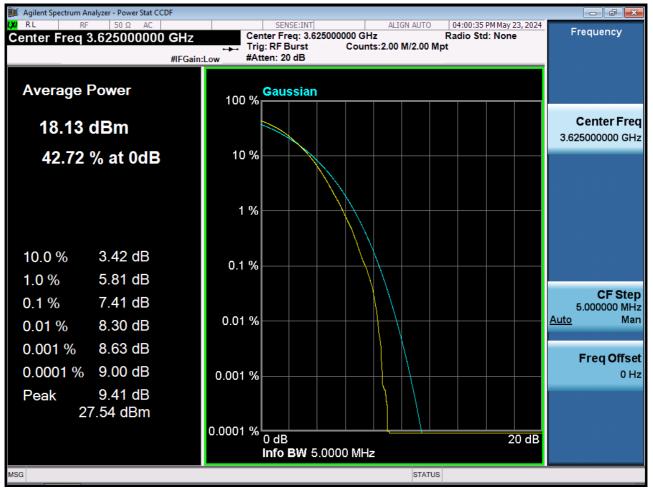
BAND 48. Occupied Bandwidth Plot (20 MHz Ch.55990 256-QAM RB 100)



BAND 48. PAR Plot (5 M BW_Ch.55990_QPSK_RB25_0)

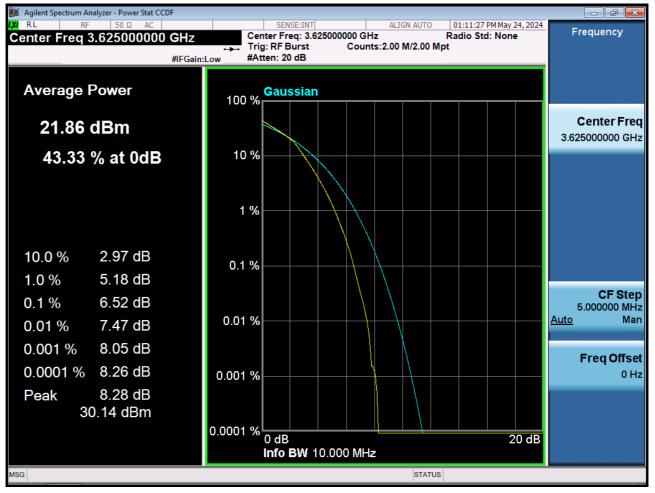


BAND 48. PAR Plot (5 M BW_Ch.55990_16QAM_RB25_0)

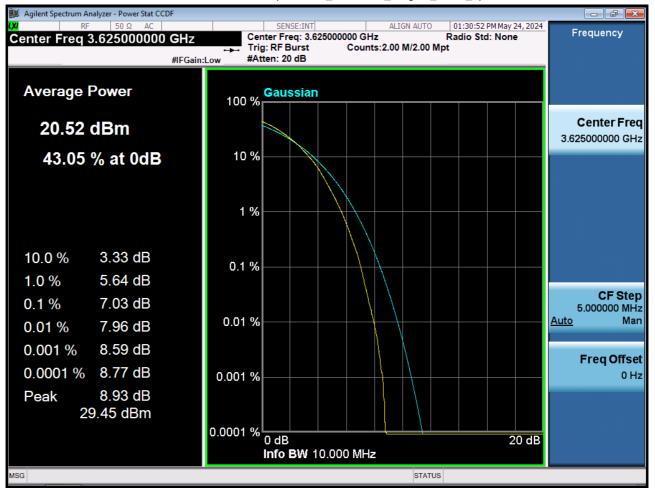


BAND 48. PAR Plot (5 M BW_Ch.55990_64QAM_RB25_0)

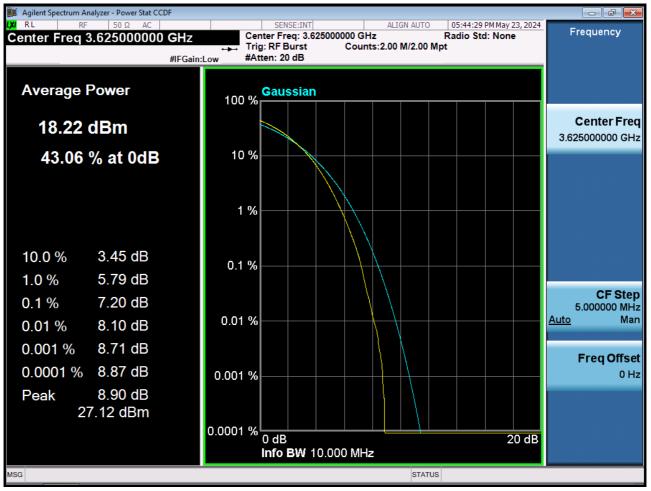
BAND 48. PAR Plot (5 M BW_Ch.55990_256QAM_RB25_0)



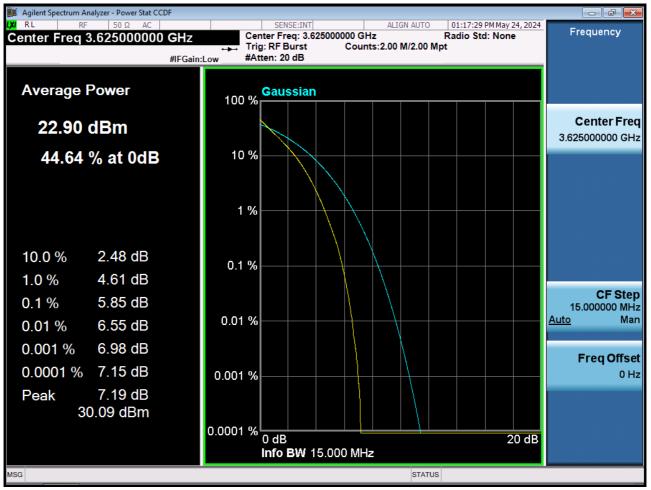
BAND 48. PAR Plot (10 M BW_Ch.55990_QPSK_RB50_0)



BAND 48. PAR Plot (10 M BW_Ch.55990_16QAM_RB50_0)



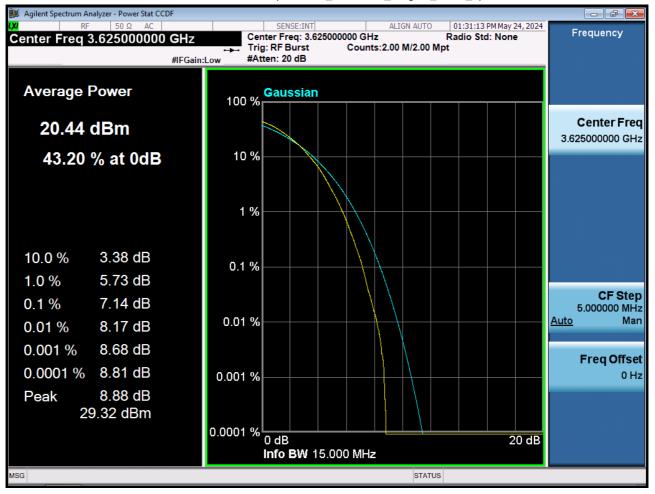
BAND 48. PAR Plot (10 M BW_Ch.55990_64QAM_RB50_0)



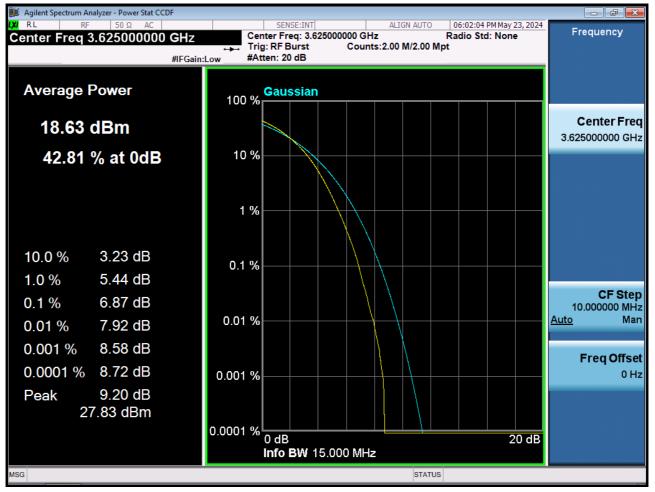
BAND 48. PAR Plot (10 M BW_Ch.55990_256QAM_RB50_0)



BAND 48. PAR Plot (15 M BW_Ch.55990_QPSK_RB75_0)

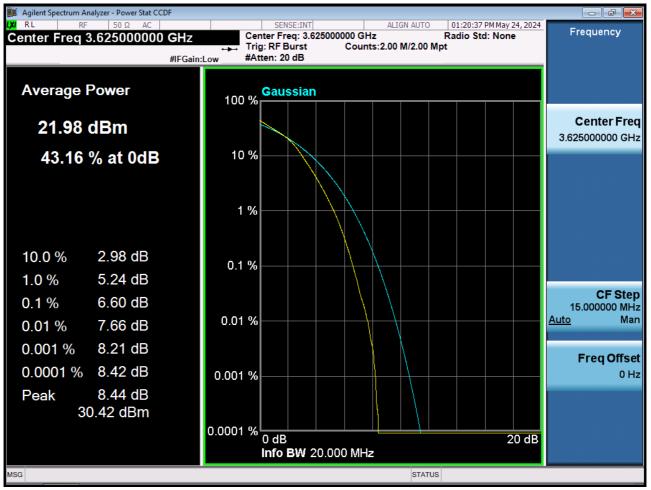


BAND 48. PAR Plot (15 M BW_Ch.55990_16QAM_RB75_0)

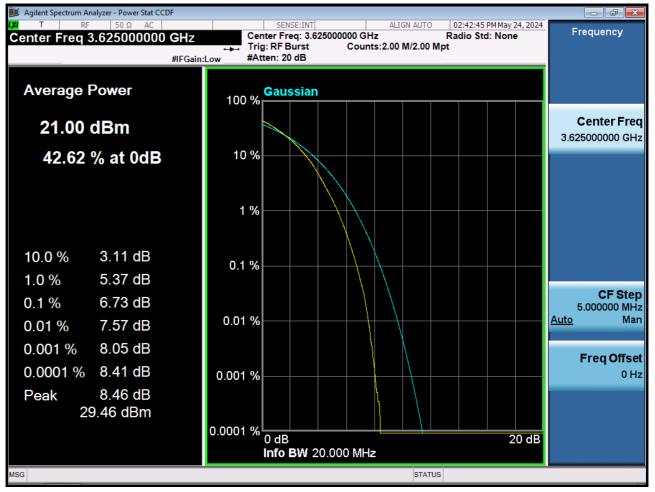


BAND 48. PAR Plot (15 M BW_Ch.55990_64QAM_RB75_0)

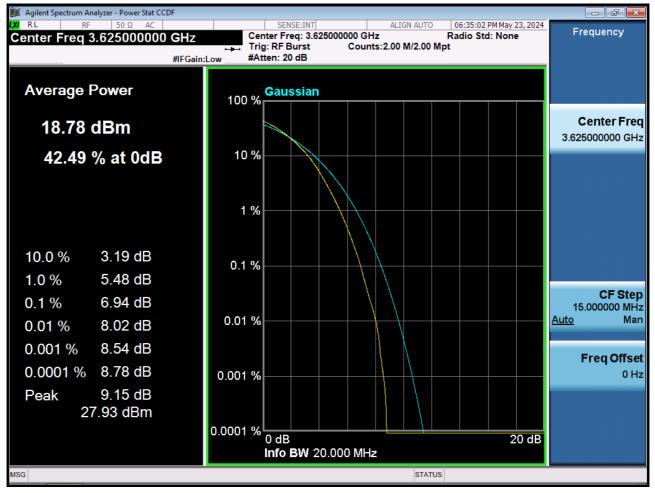
BAND 48. PAR Plot (15 M BW_Ch.55990_256QAM_RB75_0)



BAND 48. PAR Plot (20 M BW_Ch.55990_QPSK_RB100_0)



BAND 48. PAR Plot (20 M BW_Ch.55990_16QAM_RB100_0)



BAND 48. PAR Plot (20 M BW_Ch.55990_64QAM_RB100_0)

BAND 48. PAR Plot (20 M BW_Ch.55990_256QAM_RB100_0)

	rum Analyzer - ACP)							
LXI RL	RF 50 Ω			NSE:INT		ALIGN AUT		28 PM May 24, 2024	Frequency
Center Fr	eq 3.55250	00000 GHz		eq: 3.55250			Radio	Std: None	Frequency
PASS			Trig: Free		Avg Ho	old: 10/10	De dia 1		
FASS		IFGain:L	_ow #Atten: 1	0 dB			Radio	Device: BTS	
	-	00.40.10							
	Ref Offset								
10 dB/div Log	Ref 30.0	U aBm							
20.0									
20.0	44.4 -		22.9	dBm	-		40.0 -		Center Freq
10.0	-41.1 dE	3C	AMMANIN MANANA MANANANAN	MUUMUUU	MANA AN		-42.2 dB	С	3.552500000 GHz
0.00			1		η α πτη η				
0.00					1				
-10.0					\				
-20.0									
-20.0		// ا				L			
-30.0						'ц _{и.}			
10.0	****	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA				MULLINGAGA		Average	
-40.0	ALL DUDDULLAR ANALAS						AN AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		
-50.0									
-60.0									
Center 3.5							\$	pan 15 MHz	CF Step
Res BW 1	50 kHz		#VE	SW 620 k	Hz			#Sweep 1s	
								•	1.500000 MHZ
Total Carri	er Power	22.912 dBm/ 5.	00 MHz	ACP-I	BW				<u>Auto</u> Man
		F 10				.ower	Uppe		
Carrier Po	wer	Filter	Offset Freq	Integ BW	dBc	dBm	dBc (dBm Filter	Freq Offset
1 22.9	12 dBm / 5.00	0 MHz OFF	5.000 MHz	5.000 MHz	-41.15	-18.23	-42.18 -1	9.27 OFF	0 Hz
									0112
MSG						STA	TUS		

BAND 48. Adjacent Channel Leakage Ratio(ACLR) Plot (5 MHz Ch.55265 QPSK RB 25, Offset 0)

	ım Analyzer - ACP)											
LXI RL	RF 50 Ω				NSE:INT			ALIGN AUT			M May 24, 2024		requency
Center Fre	q 3.62500	00000 GHz			req: 3.62500				F	Radio Std:	None	- F	requency
PASS						Avg H	lold:	10/10			D.T.C		
FASS		IFGain	:Low	#Atten: 1	0 dB				•	Radio Dev	ice: BTS		
	Ref Offset												
10 dB/div	Ref 30.0	U dBm											
20.0			-										
20.0	-39.6 dt			22.6	dBm				4	D.3 dBc			Center Freq
10.0	-39.6 dt	BC	MAAAMAA			ANNAMAA.			-41	ла авс		3.6	25000000 GHz
0.00					in beller (11 second	, and the second							
						1							
-10.0		<u> </u>	}			<u>├</u>							
-20.0													
		- MA	1				^ъ и.						
-30.0		DOD & & ADADDOD AND WALKY					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	WWWWWWW	i canàidi la		Average		
-40.0	www.www.www.	19944046646							aa dhaa aa ah	ANNA ANA ANA ANA ANA ANA ANA ANA ANA AN	WALKAMINYANA		
											Average		
-50.0													
-60.0													
Center 3.6	25 GHz									Sna	n 15 MHz		
Res BW 15				#\/E	3W 620 k	Hz				#C1	weep 1s		CF Step
Kes Dw T				#VL	544 020 K	ΠZ				#0	weep 15		1.500000 MHz
Total Carrie		22.567 dBm/ 5	5 00 MHz		ACP-	R\//						<u>Auto</u>	Man
i otal Came	Fower	22.001 dbm/d	5.00 WITH2		ACF-								
							Low	/er		Upper			
Carrier Pov	ver	Filter	Offset	t Freq	Integ BW	dB	С	dBm	dB		n Filter		Freq Offset
1 22.56	7 dBm / 5 00	0 MHz OFF	5.000	MHz	5.000 MHz	-39.5	7.	-17.00	-40.30) -17.73	OFF		0 Hz
1 22.00									10101				0 112
									_				
MSG								ST	ATUS				
							-						

BAND 48. Adjacent Channel Leakage Ratio(ACLR) Plot (5 MHz Ch.55990 QPSK RB 25, Offset 0)

	rum Analyzer - ACP)									
LXI RL	RF 50 Ω			NSE:INT		ALIGN AU			May 24, 2024	F	requency
Center Fr	eq 3.69750	00000 GHz		eq: 3.69750			F	Radio Std:	None		requeries
PASS			→→ Trig: Free ow #Atten: 1		AvgiH	old: 10/10	-	Radio Devi	AN PTS		
1400		IFGain:L	ow #Atten: 1	0 0 0				cadio Devi	CE. DIS		
	D-608	20.40 -10									
10 dB/div	Ref Offset Ref 30.0										
Log	Kel Ju.u				1						
20.0											o
20.0	-38.6 dE		22.4	dBm			20	9.3 dBc			Center Freq
10.0	-30.0 UL		MITTINMITTIN	awaranna a	www.ww		-53	9.5 UDC		3.69	7500000 GHz
0.00			1								
			(1						
-10.0											
-20.0					'						
						The second					
-30.0	NTANAN ANTALANA ANTALANA	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM				. THERE I AND A A A A A A A A A A A A A A A A A A		Mohatara	Average		
-40.0	TO WANTER A SALE OF THE SALE O							A A A A A A A A A A A A A A A A A A A	WWYYYYWAA		
WALLAN.									"WYTTYWY		
-50.0											
-60.0											
Center 3.0	698 GH7	· · · · · ·						Spa	n 15 MHz		
Res BW 1			#\/F	SW 620 k	Hz			#Su	veep 1s		CF Step
Kes DW I	JU KHZ		#VL	DWW UZUK	Π 2			#01	veep 15		1.500000 MHz
Total Carri	ior Powor	22.361 dBm/ 5.0	0 MHz	ACP-I						Auto	Man
Total Call		22.001 GBIN 0.0									
						lower		Upper			
Carrier Po	wer	Filter	Offset Freq	Integ BW	dBo	c dBm	dB	c dBm	Filter		Freq Offset
1 22.3	61 dBm / 5.00			5.000 MHz	-38.57	-16.21	-39.26	6 -16.89	OFF		•
22.3	5- dDin - 5.00		0.000 11112	0.000 11112	00.01	10.21	00.20	10.00	011		0 Hz
			,								
MSG						S	TATUS				
										_	

BAND 48. Adjacent Channel Leakage Ratio(ACLR) Plot (5 MHz Ch.56715 QPSK RB 25, Offset 0)

🗾 Agilent Spectrur										_	- 6 🔀
LXI RL	RF 50 Ω	AC		ENSE:INT		ALIGN AU			May 24, 2024	Fre	quency
Center Fre	q 3.55500	0000 GHz	Trig: Fre	Freq: 3.55500		ld: 10/10	ка	dio Std: N	vone		4
PASS		IFGain:Lo			Argino	iu. 10/10	Ra	dio Devic	e: BTS		
	Ref Offset 3										
10 dB/div	Ref 30.00	dBm									
20.0		-		a						-	
	-43.7 dB	c	22.	9 dBm			_43 (9 dBc			enter Freq
10.0	-10.1 GD	<u> </u>	panan and and and and and and and and and				10.0			3.555	000000 GHz
0.00					<u> </u>						
-10.0					\						
-20.0		/									
-30.0					`	X					
-40.0	*******	Asherer and a second and				New York	-	*******	Average		
-50.0									100 C		
-60.0											
Center 3.55	55 GHz	i						Snan	30 MHz		
Res BW 27			#V	BW 1.1 M	Hz			3pan #Sw	eep 1 s		CF Step
Res DW Zr	O KHZ			Da 1. 1 141	112			#314	eep is		000000 MHz
Total Carrie	r Power	22.888 dBm/ 10.	00 MHz	ACP-I	BW					<u>Auto</u>	Man
						ower		pper			
Carrier Pow	/er	Filter	Offset Freq	Integ BW	dBc	dBm	dBc	dBm	Filter	=	req Offset
	3 dBm / 10.00		10.00 MHz	10.00 MHz	-43.69	-20.81		-21.04	OFF	- F	
1 22.000		MHZ OFF	10.00 10112		-45.09	-20.01	-40.80	-21.04	OFF		0 Hz
MSG						ST	ATUS				

BAND 48. Adjacent Channel Leakage Ratio(ACLR) Plot (10 MHz Ch.55290 QPSK RB 50, Offset 0)

M RL RF 50 Ω AC SENSE:INT ALIGN AUTO 01:12:48 PM May 24, 2024 Center Freq 3.625000000 GHz Center Freq: 3.625000000 GHz Radio Std: None PASS IEGain: I ow #Atten: 10 dB Radio Device: BTS	
Trig: Free Run Avg Hold: 10/10	ency
PASS IFGain: Low #Atten: 10 dB Radio Device: BTS	
Ref Offset 32.18 dB	
10 dB/div Ref 30.00 dBm	
	_
	ter Freq
	000 GHz
-30.0 -40.0	
Center 3.625 GHz Span 30 MHz	
Boc BW 270 kHz #\$Woop 1 c	CF Step
3.000	000 MHz
Total Carrier Power 22.678 dBm/ 10.00 MHz ACP-IBW Auto	Man
Lower Upper	
	Offset
1 22.678 dBm / 10.00 MHz OFF 10.00 MHz 10.00 MHz 40.96 -18.29 -41.59 -18.91 OFF	-
	0 Hz
MSG STATUS	

BAND 48. Adjacent Channel Leakage Ratio(ACLR) Plot (10 MHz Ch.55990 QPSK RB 50, Offset 0)

	ım Analyzer - ACP	1											
LXI RL	RF 50 Ω				NSE:INT			ALIGN AU			M May 24, 2024	E	requency
Center Fre	q 3.69500	00000 GHz			reg: 3.69500					Radio Std:	None	F	requeitcy
PASS	-			Trig: Free #Atten: 1		Avg F	lold:	10/10			DTC		
TASS		IFGain	:Low	#Atten: 1	UdB					Radio Dev	ICE: BIS		
	D-605	20.40 -10											
10 dB/div	Ref Offset Ref 30.0												
	Rel 30.0	UUBIII	+				+						
20.0							-						
20.0	-39.8 dE			22.3	dBm					39.9 dBc			Center Freq
10.0	-39.0 UE		·/////	*******	www.www.	AAAAAAAAAA				9.9 UDC		3.69	5000000 GHz
0.00			A		111110000000000000000000000000000000000	11111111111							
			Į –			լ կ							
-10.0													
-20.0			/			L 1							
			1				h						
-30.0		MATTAN AND A MANAGED T					"YVYY	maaaa	muhaadu	Thinks	Average		
-40.0	ANA ALLANDARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	MATTANNA MATTANNA MATTAN								In MARIE LAND	Average		
WWWWW.											TIMANA		
-50.0													
-60.0													
Center 3.6	95 GHz									Spa	n 30 MHz		
Res BW 27				#\/F	3W 1.1 M	Hz				#\$	weep 1s		CF Step
	VINIE					112					neep 15		3.000000 MHz
Total Carrie	r Power	22.331 dBm/ 1	0.00 MH	z	ACP-	RW						<u>Auto</u>	Man
							Low			Upper			
Carrier Pov	ver	Filter	Offs	et Freq	Integ BW	dB	С	dBm	dl	Bc dBm	n Filter		Freq Offset
1 22.33	1 dBm / 10 0	0 MHz OFF	10.0	0 MHz	10.00 MHz	-39.84	4	-17.51	-39.9	92 -17.59	OFF		0 Hz
													0112
MSG								ST	ATUS				
		1											

BAND 48. Adjacent Channel Leakage Ratio(ACLR) Plot (10 MHz Ch. 56690 QPSK RB 50, Offset 0)

🎉 Agilent Spectrun	•										
IXI RL	RF 50 Ω			ENSE:INT	0000 011-	ALIGN AUT		1:15:50 PM dio Std:	May 24, 2024	F	requency
Center Free	q 3.55750	00000 GHz	Trig: Fre	Freq: 3.55750 ee Run		: old: 10/10	ка	alo Sta: I	None		,,
PASS		IFGain:Lo	-				Ra	dio Devid	e: BTS		
,											
	Ref Offset										
10 dB/div Log	Ref 30.0										
20.0		-		8 dBm							Center Freq
10.0	-43.9 dE	3c	22.				-45.6	∂dBc			-
			/ dama and a second	in minen i i meinen	1 mm					3.55	7500000 GHz
0.00											
-10.0		 									
-20.0		j			Y						
-30.0											
		The second s				h h h h h h h h h h h h h h h h h h h			Average		
-40.0 memoration	astronome in the trans-					, MALLANDING	n nin hinn	, thuy and the	Think the second		
-50.0											
-60.0											
Center 3.55								Span	n 45 MHz		CF Step
Res BW 430	0 kHz		#V	BW 1.8 M	Hz			#Sw	/eep 1s		4.500000 MHz
Tatal Carrier	. D	22.840 dBm/ 15		ACP-						Auto	Man
Total Carrier	rPower	22.040 ubm/ 13.		ACP-I							
						ower		pper			
Carrier Pow	er	Filter	Offset Freq	Integ BW	dBc		dBc	dBm	Filter		Freq Offset
1 22.840	dBm / 15.0	0 MHz OFF	15.00 MHz	15.00 MHz	-43.92	-21.08	-45.56	-22.72	OFF		0 Hz
MSG						STA	TUS				
								_		_	

BAND 48. Adjacent Channel Leakage Ratio(ACLR) Plot (15 MHz Ch.55315 QPSK RB 75, Offset 0)

🗾 Agilent Spectrum Anal	•									- 6 🗙
LXIRL RF		AC		SENSE:INT		ALIGN AUTO		M May 24, 2024	Ere	equency
Center Freq 3.	.6250000)00 GHz		r Freq: 3.62500 Free Run	0000 GHz Avg Hol	d: 10/10	Radio Std	: None		queriey
PASS		IFGain:L		: 10 dB	Avginoi	a. 10/10	Radio Dev	vice: BTS		
		IF Galli.L					rtudio Doi			
Re	of Offset 32.	.18 dB								
10 dB/div Re	ef 30.00 d									
Log		1			L İ					
20.0			2	2.6 dBm					С	enter Freg
10.0	-41.4 dBc			www.	All Lines		-41.7 dBc		3.625	000000 GHz
0.00				***********************	117WWWWW				0.010	
			[
-10.0		/								
-20.0					<u> </u>					
-30.0					Ma					
-30.0	MANNA MANNA	WWWWWWW				ANNAN MANANANA	WWWWWWWWWW	Average		
-30.0 -40.0							MULTIN AND AND AND AND AND AND AND AND AND AN	MAMMAR WANNAM		
-50.0										
-60.0										
-00.0										
Center 3.625 G	Hz				*		Sna	in 45 MHz		
Res BW 430 kH			#	VBW 1.8 M	Hz			weep 1s		CF Step
Kes DW 450 Ki	12		"	VDV 1.014	112		<i>"</i>	weep 13	4.	500000 MHz
Total Carrier Po	wer 22	2.643 dBm/ 15	.00 MHz	ACP-	IBW				<u>Auto</u>	Man
							l la a a a			
Carrier Power		Filter				ower	Upper			
			Offset Freq	Integ BW	dBc	dBm	dBc dBr		F	req Offset
1 22.643 dBn	n/ 15.00 M	IHz OFF	15.00 MHz	15.00 MHz	-41.43	-18.78 -4	1.71 -19.0	6 OFF		0 Hz
MSG			-			STAT	115			
mod						STAT	00			

BAND 48. Adjacent Channel Leakage Ratio(ACLR) Plot (15 MHz Ch.55990 QPSK RB 75, Offset 0)

	rum Analyzer - ACP										
LXI RL	RF 50 Ω			ENSE:INT		ALIGN AU			May 24, 2024	E	requency
Center Fr	eq 3.69250)0000 GHz		req: 3.69250			Rad	lio Std:	None	F	requeitcy
PASS	-		Low #Atten:		Avg Ho	old: 10/10		lin David			
1 400		IFGain:	Low #Atten:	10 dB			Rad	lio Devid	ce: BTS		
	-										
10 dB/div	Ref Offset Ref 30.0										
	Rel 30.0				+				,		
20.0											
20.0	-40.1 dE		22.	3 dBm			-40.3	dDo			Center Freq
10.0	-40.1 uc		ATTIMAN TYTUMANTYTUMA	1/////////////////////////////////////	WWINDAAAA		-40.5			3.69	2500000 GHz
0.00			}		LI I YYYYYY						
					1						
-10.0											
-20.0											
-30.0	hhhhananan	WWW.MANAGAMANA WY			ľ	MANNY MANY		1000	Average		
-40.0	wwwwwwwwwwww							ALL	Average		
									hannaka		
-50.0											
-60.0											
Center 3.6	03 CH7							Snar	145 MHz		
Res BW 4			#\/	BW 1.8 M	U -7			#Cu	veep 1 s		CF Step
Res DW 4			#V	DVV 1.0 IVI	пг			#31	reep is		4.500000 MHz
Total Carri	or Dowor	22.330 dBm/ 1	5.00 MHz	ACP-						Auto	Man
Total Call	errower	22.000 dbm/ 10	0.00 11112								
					L	ower	U	oper			
Carrier Po	wer	Filter	Offset Freq	Integ BW	dBc	dBm	dBc	dBm	Filter		Freq Offset
1 22.30	30 dBm / 15.0		15.00 MHz	15.00 MHz	-40.07	-17.74	-40 32	-17.99	OFF		0 Hz
	50 abitr 15.0		10.00 10112	10.00-11112	10.07		10.02	11.00			0 HZ
MSG						ST	ATUS				

BAND 48. Adjacent Channel Leakage Ratio(ACLR) Plot (15 MHz Ch.56665 QPSK RB 75, Offset 0)

Dilent Spectrur	m Analyzer - ACP										- 6 💌
LXI RL	RF 50 Ω			SENSE:INT		ALIGN AUT			May 24, 2024	Fre	quency
Center Free	q 3.56000	00000 GHz		Freq: 3.56000 ree Run		ld: 10/10	Ra	dio Std: I	None	110	queriey
PASS		IFGain:L		10 dB	Avgino	IG. 10/10	Ra	dio Devic	e: BTS		
		ii ouiiiz									
	Ref Offset										
10 dB/div	Ref 30.0	0 dBm									
20.0										_	
20.0	-44.3 dE		22	2.8 dBm	-		16.1	l dBc		C C	enter Freq
10.0	-44.5 UL						-40.1	ubc -		3.560	000000 GHz
0.00			{		<u> </u>						
-10.0					$ \rangle$						
-20.0											
-30.0					<u> </u>						
-40.0		Provide local and the second			· · · · · · · · · · · · · · · · · · ·		-	The second	Average		
-50.0									and the second second		
-60.0											
Center 3.56								Span	60 MHz		CF Step
Res BW 56	U KHZ		#\	/BW 2.2 M	HZ			#SW	eep 1s	6.	000000 MHz
Total Carrie	r Dowor	22.847 dBm/ 20	00 MHz	ACP-						Auto	Man
Total Came	rFower	EE.OTT GDTW EO	.00 10112	ACF							
		F :14				ower		pper			
Carrier Pow	/er	Filter	Offset Freq	Integ BW	dBc	dBm	dBc	dBm	Filter	F	req Offset
1 22.847	'dBm/ 20.0	0 MHz OFF	20.00 MHz	20.00 MHz	-44.30	-21.45 -	46.05	-23.21	OFF		0 Hz
MSG						STA	TUS				
						5114					

BAND 48. Adjacent Channel Leakage Ratio(ACLR) Plot (20 MHz Ch.55340 QPSK RB 100, Offset 0)

🇾 Agilent Spectrum Analyzer - ACP				
LXI RE 50Ω AC	SENSE:INT	ALIGN AUTO	01:21:58 PM May 24, 2024	Frequency
Center Freq 3.625000000 GHz	Center Freq: 3.6250	Avg Hold: 10/10	Radio Std: None	
PASS IFGain:L		Avginola. Torre	Radio Device: BTS	
Ref Offset 32.18 dB 10 dB/div Ref 30.00 dBm				
Log				
20.0	22.6 dBm		-41.6 dBc	Center Freq
10.0	MWMALLANNIA RELEASING AND			3.625000000 GHz
0.00				
-10.0				
-20.0				
-30.0				
and and the second s		"Manhamana	Averag	8
-40.0				•
-50.0				
-60.0				
Center 3.625 GHz			Enon 60 MHz	
Res BW 560 kHz	#VBW 2.2	/Hz	Span 60 MHz #Sweep 1 s	Cr Step
			"oncep i s	6.000000 MHz
Total Carrier Power 22.616 dBm/ 20	.00 MHz ACP	-IBW		<u>Auto</u> Man
		Lower	Upper	
Carrier Power Filter	Offset Freq Integ BW	dBc dBm	dBc dBm Filter	Freq Offset
1 22.616 dBm / 20.00 MHz OFF	20.00 MHz 20.00 MHz	z -41.53 -18.91 -41	.64 -19.02 OFF	0 Hz
MSG		STATU		
		STATU	5	

BAND 48. Adjacent Channel Leakage Ratio(ACLR) Plot (20 MHz Ch.55990 QPSK RB 100, Offset 0)

	um Analyzer - ACP	1									- F X
LXI RL	RF 50 Ω			NSE:INT		ALIGN AUT			May 24, 2024	Fred	uency
Center Fre	eq 3.69000)0000 GHz		req: 3.69000			Radi	o Std:	None	1109	acticy
PASS		IFGain:	→→ Trig: Free		Avgino	old: 10/10	Radi	o Devir	ce: BTS		
		IFGain:	Low #Attent	U U D			Ruu	O Devi			
	Ref Offset	32 18 dB									
10 dB/div	Ref 30.0										
Log					l i				ī		
20.0			22.3	dBm						Ce	nter Freg
10.0	-40.2 dE	3c I					-40.1 (:Bc			00000 GHz
			ANN MARKAN ANN ANN ANN ANN ANN ANN ANN ANN ANN	www.www.www.www	MANNAN .					3.69000	JUUUU GHZ
0.00			{		Ļ						
-10.0			{		\{						
20.0											
-20.0					l l						
-30.0	WWWWWWWWWWWW	MINING AND				WWWWWWWWWWWWWWW	WWWWWWWWW		Augroge		
-40.0	\$\$\$\$\$JUTYIYYYYYYYYYYYYYYYYYYYYYYYYYYY							NAMANANA	WWW		
WWWW									NAM AND		
-50.0											
-60.0											
Center 3.6	9 GHz							Spar	n 60 MHz		
Res BW 5			#VE	3W 2.2 M	Hz			#Sw	veep 1s		CF Step
											0000 MHz
Total Carrie	er Power	22.297 dBm/ 20	0.00 MHz	ACP-I	BW					<u>Auto</u>	Man
						ower	Llo	per			
Carrier Po	wor	Filter						dBm	Filter	_	
l				Integ BW	dBo		dBc			Fre	eq Offset
1 22.29	97 dBm / 20.0	0 MHz OFF	20.00 MHz	20.00 MHz	-40.24	-17.95	-40.11	-17.81	OFF		0 Hz
MSG						ST	ATUS				

BAND 48. Adjacent Channel Leakage Ratio(ACLR) Plot (20 MHz Ch.56640 QPSK RB 100, Offset 0)

	n Analyzer - Spectrum	Emission Mask							- ē 🔀
LXI RL	RF 50 Ω A	-		SENSE:INT	552500000 GH	ALIGN AUT		5:14 PM May 23, 2024 Std: None	Frequency
	q 3.5525000	00 GHZ		g: Free Run		12 100.00% of 10		Std. None	
PASS		IFGain:Lo		tten: 10 dB			Radio	Device: BTS	
	Ref Offset 32.								
10 dB/div	Ref 30.0 dB								
Log								According Limit	
20.0									Center Freq
10.0									3.552500000 GHz
0.00				in the second					
0.00									
-10.0									
-20.0									
-30.0									
-30.0									
-40.0				\downarrow	helm.				
-50.0				'	harden and a standard and a standard and a standard and a standard a standard a standard a standard a standard				
-60.0						Munum		Spectrum	
-80.0									CF Step
Center 3.55	3 GHz						e	Span 85 MHz	8.500000 MHz
Genter 0.00	O ONZ								<u>Auto</u> Man
T-4-1 D	D -5 00 7								
Total Power	Ref 22.70	0 dBm / 5 M	MHz						Freq Offset
				Lower	د-	Peak ->	Upper		0 Hz
Start Freq	Stop Freq	Integ BW	dBm	∆Lim(dB)	Freq (Hz)		۵Lim(dB)	Freq (Hz)	0 H2
2.500 MHz	3.500 MHz	51.00 kHz	-25.02	(-12.02)	-2.500 M		()	^	
3.500 MHz	7.500 MHz	1.000 MHz	-27.64	(-14.64)	-3.500 M		()	=	
12.50 MHz	22.50 MHz	1.000 MHz	-37.39	(-12.39)	-12.75 M		()		
22.50 MHz	42.50 MHz	1.000 MHz	-46.40	(-6.40)	-22.60 M		()		
7.500 MHz	12.50 MHz	1.000 MHz	-33.50	(-8.50)	-7.525 M		()		
MSG						STA	TUS		

BAND 48. 5 M BandEdge(Lower)_Low_3552.5 MHz_QPSK_Full RB

	Analyzer - Spectrum									
Center Freq	RF 50 Ω A	-	Cer	SENSE:INT		00 GHz	ALIGN AU		5:49 PM May 23, 2024 Std: None	Frequency
	3.3323000	OU GHZ	- Trig	g: Free Run		Avg: 100	.00% of	10		
PASS		IFGain:Lo	w #At	ten: 10 dB				Radio	Device: BTS	
10 dB/div	Ref Offset 32.7 Ref 30.0 dB									
Log									Relative Limit	
20.0										Center Fred
10.0										3.552500000 GHz
0.00			1	www.www.www.www.	1					
					ļ					
-10.0										
-20.0			<i>_</i>						Absolute Limit	
-30.0					1					
-40.0							a and a second	The Read of Lot		
		MAN MANANAMANA	www.		N			a state of the	Spectrum Spectrum	
-50.0	INTER CONTRACTOR	Madematicity and an extent								
-50.0 -60.0										
										CF Step
Center 3.553	B GHz							!	Span 40 MHz	4.000000 MHz
										<u>Auto</u> Mar
Total Power	Ref 22.72	2 dBm / 51	MHz							
										Freq Offset
0	01 F		15	Lower	- (<- Pe		Upper	5 (11)	0 Hz
Start Freq	Stop Freq	Integ BW	dBm	ΔLim(dB)	Freq (dBm	ΔLim(dB)	Freq (Hz)	
2.500 MHz	3.500 MHz	51.00 kHz		()			-24.46	(-11.46)	2.505 M	
3.500 MHz 7.500 MHz	7.500 MHz 20.00 MHz	1.000 MHz 1.000 MHz		() ()			-27.63 -34.65	(-14.63) (-9.65)	3.500 M ≡ 7.625 M	
4.000 MHz	8.000 MHz	1.000 MHz		() ()			-34.03	(-9.03) ()	7.02510	
8.000 MHz	12.50 MHz	1.000 MHz		()				()		
MSG							c.	TATUS	-	
mod							5	14103		

BAND 48. 5 M_BandEdge(Upper)_Low_3552.5 MHz_QPSK_Full RB

	n Analyzer - Spectrum								
	RF 50 Ω A 3.5525000	-		SENSE:INT Inter Freq: 3. ig: Free Run	552500000 GH	ALIGN AU Iz 100.00% of 1	Radio	:23 PM May 23, 2024 Std: None	Frequency
PASS		IFGain:Lo		tten: 10 dB				Device: BTS	
10 dB/div	Ref Offset 32. Ref 30.0 dE								
Log								Assessione luinnt	
20.0									Center Freq 3.552500000 GHz
0.00									
-10.0									
-20.0									
-30.0									
-40.0			Marine Commence						
-50.0				"Munit	Andrew the				
-60.0					Contraction of Astronomy	TUNA AND AND AND AND AND AND AND AND AND A		Spectrum	
									CF Step
Center 3.55	3 GHz							Span 85 MHz	8.500000 MHz <u>Auto</u> Man
Total Power	Ref 23.9	0 dBm / 5 M	MHz						
									Freq Offset
Start Freq	Stop Freq	Integ BW	dBm	Lower ∆Lim(dB)	< Freq (Hz)	Peak -> dBm	Upper ∆Lim(dB)	Freq (Hz)	0 Hz
2.500 MHz	3.500 MHz	51.00 kHz	-21.75	(-8.75)	-2.505 M		()		
3.500 MHz	7.500 MHz	1.000 MHz	-27.10	(-14.10)	-3.520 M		()	=	
12.50 MHz	22.50 MHz	1.000 MHz	-38.14	(-13.14)	-12.60 M		()		
22.50 MHz	42.50 MHz	1.000 MHz	-46.44	(-6.44)	-22.60 M		()		
7.500 MHz	12.50 MHz	1.000 MHz	-34.46	(-9.46)	-8.375 M		()		
MSG						ST	ATUS		

BAND 48. 5 M_BandEdge(Lower)_Low_3552.5 MHz_QPSK_1RB

	Analyzer - Spectrum								
X/ RL Center Fred	RF 50Ω A	-	Ce	SENSE:INT nter Freq: 3.	697500000 GH	ALIGN A		7:44 PM May 23, 2024 Std: None	Frequency
PASS	0.001.0000	IFGain:Lo		g: Free Run tten: 10 dB	Avg: 1	100.00% of		Device: BTS	
10 dB/div	Ref Offset 32. Ref 30.0 dB								
Log								Relative Limit	
20.0									Center Freq
10.0									3.697500000 GHz
0.00									
-10.0									
-20.0									
				<u> </u> ,			- -		
-30.0									
-40.0					The second secon	_		Absolute Limit	
-50.0			American	long week				Spectrum	
-60.0									OF Otom
0 + 0 - 0 0 0									CF Step 8.500000 MHz
Center 3.698	8 GHZ							Span 85 MHz	Auto Man
Total Power	Ref 22.70	0 dBm / 5 M	MHz						
									Freq Offset
			dDar.	Lower		Peak ->	Upper		0 Hz
Start Freq	Stop Freq	Integ BW	dBm	∆Lim(dB)	Freq (Hz)	dBm	ΔLim(dB)	Freq (Hz)	
2.500 MHz	3.500 MHz	51.00 kHz		()		-21.44	(-8.44)	2.505 M	
3.500 MHz 12.50 MHz	7.500 MHz 22.50 MHz	1.000 MHz 1.000 MHz		() ()		-26.80 -40.66	(-13.80) (-15.66)	3.520 M 12.55 M	
22.50 MHz	42.50 MHz	1.000 MHz 1.000 MHz		() ()		-40.66 -45.92	(-15.66) (-5.92)	22.80 M	
7.500 MHz	42.50 MHz	1.000 MHz		() ()		-45.92 -36.75	(-3.92) (-11.75)	8.675 M	
	12.00 WHZ	1.000 WHZ							
ISG						S	TATUS		

BAND 48. 5 M_BandEdge(Upper)_Low_3552.5 MHz_QPSK_1RB

	m Analyzer - Spectrum								
Center Free	RF 50 Ω A q 3.6250000				525000000 GH		Radio	2:09 PM May 23, 2024 Std: None	Frequency
PASS	•	IFGain:Lo		g: Free Run tten: 10 dB	Avg:	100.00% of 1		Device: BTS	
10 d <u>B/div</u>	Ref Offset 32. Ref 30.0 dB								
20.0 10.0									Center Freq 3.625000000 GHz
-10.0									
-20.0								Absolute Limit	
-50.0								Spectrum	
Center 3.62	25 GHz						! !	Span 40 MHz	CF Step 4.000000 MHz <u>Auto</u> Man
Total Power	Ref 22.3 [°]	1 dBm / 5 M	ИНz						Freq Offset
Start Freq	Stop Freq	Integ BW	dBm	Lower ∆Lim(dB)	<- Freq (Hz)	Peak -> dBm	Upper ∆Lim(dB)	Freq (Hz)	0 Hz
2.500 MHz 3.500 MHz 7.500 MHz	3.500 MHz 7.500 MHz 20.00 MHz	51.00 kHz 1.000 MHz 1.000 MHz	-24.72 -24.15 -33.96	(-11.72) (-11.15) (-8.96)	-2.505 M -3.500 M -7.563 M	-25.65 -24.76 -34.87	(-12.65) (-11.76) (-9.87)	2.500 M 3.500 M 7.500 M	
4.000 MHz 8.000 MHz	8.000 MHz 12.50 MHz	1.000 MHz 1.000 MHz		() ()			() ()		
MSG						ST	ATUS		

BAND 48. 5 M_BandEdge(Center)_Mid_3625 MHz_QPSK_Full RB

	n Analyzer - Spectrum								
Center Fred	RF 50 Ω A 3.6250000	00 GHz	🛶 Tri	g: Free Run	625000000 GH	ALIGN AU Iz 100.00% of 1	Radio	4:07 PM May 23, 2024 • Std: None	Frequency
PASS		IFGain:Lov	v #A	tten: 10 dB			Radio	Device: BTS	
10 dB/div	Ref Offset 32. Ref 30.0 dB								
Log 20.0								Relative Limit	Center Freq
10.0									3.625000000 GHz
0.00									
-10.0									
-20.0								Absolute Limit	
-30.0		A COLUMN THE OWNER OF THE OWNER	∠¶∫						
-40.0	States and the second s			have the second	A			Spectrum	
-50.0									
									CF Step
Center 3.62	5 GHz							Span 40 MHz	4.000000 MHz <u>Auto</u> Man
Total Power	Ref 23.4	5 dBm / 5 N	ЛНz						
				Lower		Peak ->	Upper		Freq Offset 0 Hz
Start Freq	Stop Freq	Integ BW	dBm	ΔLim(dB)	Freq (Hz)		∆Lim(dB)	Freq (Hz)	0 Hz
2.500 MHz	3.500 MHz	51.00 kHz	-21.89	(-8.89)	-2.505 M	-47.91	(-34.91)	3.100 M 🔶	
3.500 MHz	7.500 MHz	1.000 MHz	-26.94	(-13.94)	-3.520 M	-36.24	(-23.24)	3.960 M ≡	
7.500 MHz	20.00 MHz	1.000 MHz	-35.11	(-10.11)	-8.250 M	-36.67	(-11.67)	9.813 M 🖳	
4.000 MHz 8.000 MHz	8.000 MHz 12.50 MHz	1.000 MHz 1.000 MHz		() ()			() ()		
MSG						ST	ATUS		

BAND 48. 5 M_BandEdge(Lower)_Mid_3625 MHz_QPSK_1RB

	m Analyzer - Spectrum								
Contor Fro	RF 50 Ω A		Ce	SENSE:INT	625000000 GH	ALIGN AU		3:08 PM May 23, 2024 5 Std: None	Frequency
PASS	q 3.0230000		🛶 Tri	g: Free Run		100.00% of 1	10		
FASS		IFGain:Lo	w #A	tten: 10 dB			Radio	Device: BTS	
10 dB/div	Ref Offset 32.′ Ref 30.0 dB								
Log								Relative Limit	
20.0					<u> </u>				Center Freq
10.0									3.625000000 GHz
0.00									
-10.0									
-20.0								Absolute Limit	
-30.0				<u> </u>	$\langle N \rangle$				
	- The second second	And the second s	<u>,</u>	, y					
-40.0	an allow from the second second			and the second sec			Contraction of the owner of	Spectrum	
-50.0			<u>_</u>						
-60.0									
									CF Step
Center 3.62	25 GHz							Span 40 MHz	4.000000 MHz
									<u>Auto</u> Man
Total Powe	r Ref 23.42	2 dBm / 51	MHz						
									Freq Offset
				Lower		Peak ->	Upper		0 Hz
Start Freq	Stop Freq	Integ BW	dBm	∆Lim(dB)	Freq (Hz)		∆Lim(dB)	Freq (Hz)	
2.500 MHz	3.500 MHz	51.00 kHz	-33.31	(-20.31)	-2.580 M	-21.08	(-8.08)	2.500 M 🔶	
3.500 MHz 7.500 MHz	7.500 MHz 20.00 MHz	1.000 MHz	-34.99	(-21.99)	-5.980 M	-26.77	(-13.77)	3.500 M ≡ 8.625 M	
4.000 MHz	20.00 MHZ 8.000 MHZ	1.000 MHz 1.000 MHz	-34.74	(-9.74) ()	-9.813 M	-36.54	(-11.54) ()	6.025 M	
8.000 MHz	12.50 MHz	1.000 MHz		() ()			() ()		
	12.00 10112	1.000 10112						_	
MSG						ST	ATUS		

BAND 48. 5 M_BandEdge(Upper)_Mid_3625 MHz_QPSK_1RB

	n Analyzer - Spectrum								
	RF 50 Ω A	-	Ce	SENSE:INT	697500000 GH	ALIGN AUT		:05 PM May 23, 2024 Std: None	Frequency
Center Fred	1 3.6975000	00 GHZ	🛶 Tri	g: Free Run		100.00% of 1		Sta. None	
PASS		IFGain:Lo	w #A	tten: 10 dB			Radio	Device: BTS	
10 dB/div	Ref Offset 32. ⁻ Ref 30.0 dB								
Log								Assessmenter Lutrant	
20.0									Center Freq
10.0									3.697500000 GHz
0.00									
-10.0									
-20.0									
			/						
-30.0					<u>\</u>				
-40.0	and the second					u			
-50.0					¥	The second s			
								Spectrum	
-60.0									CF Step
O									4.000000 MHz
Center 3.69	8 GHZ							Span 40 MHz	Auto Man
Total Power	Ref 22.18	8 dBm / 5 l	MHz						
									Freq Offset
Start Freq	Stop Freq	Integ BW	dBm	Lower ∆Lim(dB)	<- Freq (Hz)	Peak -> dBm	Upper ∆Lim(dB)	Freq (Hz)	0 Hz
2.500 MHz	3.500 MHz	51.00 kHz	-24.90	(-11.90)	-2.505 M	ubm -	()		
3.500 MHz	7.500 MHz	1.000 MHz	-24.90	(-11.90)	-2.505 M		()		
7.500 MHz	20.00 MHz	1.000 MHz	-34.30	(-9.30)	-7.500 M		()		
4.000 MHz	8.000 MHz	1.000 MHz		(0.00)			()		
8.000 MHz	12.50 MHz	1.000 MHz		()			()		
MSG						et.	ATUS	-	
						31/			

BAND 48. 5 M_BandEdge(Lower)_High_3697.5 MHz_QPSK_Full RB

	m Analyzer - Spectrum				, ,				
Center Fre	RF 50 Ω A q 3.6975000	-	Ce	SENSE:INT nter Freq: 3.	697500000 GH	ALIGN AU		5:50 PM May 23, 2024 Std: None	Frequency
PASS	9 0.007 0000			g: Free Run tten: 10 dB	Avg:	100.00% of 1		Device: BTS	
		IFGain:Lo	w #A1	tten: 10 dB			Radio	Device: B13	
10 d <u>B/div</u>	Ref Offset 32. Ref 30.0 dE								
Log								Relative Limit	
20.0									Center Freq
10.0									3.697500000 GHz
0.00				www.mthh					
-10.0									
-20.0									
-30.0									
-40.0				NOT V				Absolute Limit	
								Spectrum	
-50.0		www	MAN HALL						
-60.0									
									CF Step
Center 3.69	98 GHz							Span 85 MHz	8.500000 MHz Auto Man
									Auto
Total Powe	r Ref 22.23	3 dBm / 5 M	MHz						
									Freq Offset
	Ctor From		dDaa	Lower		Peak ->	Upper		0 Hz
Start Freq	Stop Freq	Integ BW	dBm	$\Delta \text{Lim}(\text{dB})$	Freq (Hz)	dBm	$\Delta \text{Lim}(\text{dB})$	Freq (Hz)	
2.500 MHz 3.500 MHz	3.500 MHz 7.500 MHz	51.00 kHz 1.000 MHz		() ()		-25.47 -22.46	(-12.47) (-9.46)	2.500 M 🔺 3.500 M 😑	
12.50 MHz	22.50 MHz	1.000 MHz		() ()		-22.40 -39.97	(-9.40) (-14.97)	3.500 M ≣ 12.70 M	
22.50 MHz	42.50 MHz	1.000 MHz		()		-45.91	(-5.91)	22.50 M	
7.500 MHz	12.50 MHz	1.000 MHz		()		-34.89	(-9.89)	7.500 M	
MSG						12	ATUS	-	
						31	100		

BAND 48. 5 M_BandEdge(Upper)_High_3697.5 MHz_QPSK_Full RB

🗾 Agilent Spectrum		Emission Mask							- 6 💌
	RF 50Ω A		C ~	SENSE:INT	697500000 GH	ALIGN AUT		:26 PM May 23, 2024 Std: None	Frequency
Center Freq	3.6975000	00 GHZ		g: Free Run		12 100.00% of 10		Sta: None	
PASS		IFGain:Lo		tten: 10 dB			Radio	Device: BTS	
	Ref Offset 32.	18 dB							
10 d <u>B/div</u>	Ref 30.0 dB								
Log								Asicessileter Luismit	
20.0			r				_		Center Freq
10.0									3.697500000 GHz
0.00									
-10.0									
-20.0									
-30.0			51		ł				
-40.0	a start of the sta	Party of the second							
-50.0				- THE WARDER	And the Assessment	La AA			
					to it the feldensi	many make hat	YNWWW WARAN WHICH	Spectrum	
-60.0									CF Step
Center 3.69									4.000000 MHz
Center 5.098	5 GHZ							Span 40 MHz	Auto Man
Total Power	Ref 23.2 [°]	1 dBm / 5 l	MHz						
									Freq Offset
Start Freq	Stop Freq	Integ BW	dBm	Lower ∆Lim(dB)		Peak -> dBm ∆	Upper Lim(dB)	Freq (Hz)	0 Hz
2.500 MHz	3.500 MHz	51.00 kHz	-21.76	(-8.76)	-2.505 M				
2.500 MHz 3.500 MHz	3.500 MHZ 7.500 MHz	51.00 KHZ 1.000 MHz	-21.76	(-8.76) (-13.79)	-2.505 M -3.500 M		() ()		
7.500 MHz	20.00 MHz	1.000 MHz	-20.79	(-10.87)	-8.688 M		()	=	
4.000 MHz	8.000 MHz	1.000 MHz		()	-0.000-101		()		
8.000 MHz	12.50 MHz	1.000 MHz		()			()		
MSG				/		STA		-	
Mou						STA	103		

BAND 48. 5 M_BandEdge(Lower)_High_3697.5 MHz_QPSK_1RB

	Analyzer - Spectrum								- ē <mark>×</mark>
Center Freq	RF 50Ω A	-	Ce	SENSE:INT nter Freg: 3.	697500000 GH	ALIGN A		7:44 PM May 23, 2024 Std: None	Frequency
PASS	3.0373000		🛶 Tri	g: Free Run		100.00% of	10		
FASS		IFGain:Lo	w #At	tten: 10 dB			Radio	Device: BTS	
10 d <u>B/div</u>	Ref Offset 32. Ref 30.0 dB								
Log								Relative Limit	
20.0									Center Freq
10.0									3.697500000 GHz
0.00									
-10.0									
-20.0				<u>}</u> }					
-30.0]		
								Absolute Limit	
-40.0			A					Spectrum	
-50.0			world how we let be	Server Land					
-60.0									
									CF Step
Center 3.698	3 GHz							Span 85 MHz	8.500000 MHz
									<u>Auto</u> Man
Total Power	Ref 22.70	0.dBm / 51	MHz						
									Freq Offset
				Lower		Peak ->	Upper		0 Hz
Start Freq	Stop Freq	Integ BW	dBm	∆Lim(dB)	Freq (Hz)	dBm	∆Lim(dB)	Freq (Hz)	
2.500 MHz	3.500 MHz	51.00 kHz		()		-21.44	(-8.44)	2.505 M 🔶	
3.500 MHz	7.500 MHz	1.000 MHz		()		-26.80	(-13.80)	3.520 M ≡	
12.50 MHz	22.50 MHz	1.000 MHz		()		-40.66	(-15.66)	12.55 M	
22.50 MHz 7.500 MHz	42.50 MHz 12.50 MHz	1.000 MHz 1.000 MHz		() ()		-45.92 -36.75	(-5.92) (-11.75)	22.80 M 8.675 M	
	12.30 MI12			()				0.07.5 M	
MSG						S	TATUS		

BAND 48. 5 M_BandEdge(Upper)_High_3697.5 MHz_QPSK_1RB

	m Analyzer - Spectrum								
IXI RL	RF 50 Ω A q 3.5550000	-	Ce	SENSE:INT	555000000 GI	ALIGN AL		2:41 PM May 23, 2024 Std: None	Frequency
	q 3.3550000		🛶 Tri	ig: Free Run		100.00% of	10		
PASS		IFGain:Lov	<u>v</u> #A	tten: 10 dB			Radio	Device: BTS	
	Ref Offset 32.								
10 dB/div Log	Ref 30.0 dB	sm						Akesukte Umt	
20.0									Center Freq
									3.555000000 GHz
10.0				MANAGER STATE					3.333000000 GHZ
0.00									
-10.0									
20.0									
-20.0									
-30.0									
-40.0			/						
-50.0					م محدود المراجع	Webbar Lacon			
						The second second	maderichan	Spectrum	
-60.0									CE Otom
Center 3.5	55 00-							Shop 00 MHz	CF Step 9.000000 MHz
Center 3.5:	DO GHZ							Span 90 MHz	Auto Man
Total Powe	r Ref 22.70	6 dBm / 10 M	ИНz						
				Lower		- Peak ->	Upper		Freq Offset
Start Freg	Stop Freq	Integ BW	dBm	∆Lim(dB)	Freq (Hz)	dBm	∆Lim(dB)	Freq (Hz)	0 Hz
5.000 MHz	6.000 MHz	100.0 kHz	-28.39	(-15.39)	-5.010 M		()	^	
6.000 MHz	15.00 MHz	1.000 MHz	-29.35	(-16.35)	-6.045 M		()	E	
15.00 MHz	25.00 MHz	1.000 MHz	-37.78	(-12.78)	-15.10 M		()		
25.00 MHz	45.00 MHz	1.000 MHz	-44.79	(-4.79)	-25.70 M		()		
15.00 MHz	15.00 MHz	1.000 MHz		()			()		
MSG						ST	TATUS		

BAND 48. 10 M_BandEdge(Lower)_Low_3555 MHz_QPSK_Full RB

	m Analyzer - Spectrum	Emission Mask							- 6 💌
LXI RL	RF 50 Ω A	-	Conto	SENSE:INT	555000000 GH	ALIGN AU		3:15 PM May 23, 2024 Std: None	Frequency
	q 3.5550000	JUU GHZ		Free Run		12 100.00% of [•]		Stu. None	
PASS		IFGain:Lo		n: 10 dB			Radio	Device: BTS	
	Ref Offset 32.	10 AD							
10 dB/div	Ref 30.0 dE								
Log								Relative Limit	
20.0									Center Freq
10.0									3.555000000 GHz
			هوردراريم موردراريم		ww.m				
0.00									
-10.0									
-20.0								Absolute Limit	
-30.0								Absolute Limit	
-40.0		مورومد بروجون موم	and a state					Spectrum	
-50.0		July and a second se						عدد مع الله	
-60.0									
00.0									CF Step
Center 3.55	i5 GHz							Span 60 MHz	6.000000 MHz
									<u>Auto</u> Man
Total Power		8 dBm / 10 l	MHz						
Total Power	Kei 22.10								Freq Offset
				Lower		Peak ->	Upper		0 Hz
Start Freq	Stop Freq	Integ BW		Lim(dB)	Freq (Hz)	dBm	∆Lim(dB)	Freq (Hz)	0112
5.000 MHz	6.000 MHz	100.0 kHz		()		-28.10	(-15.10)	5.005 M 🔶	
6.000 MHz	15.00 MHz	1.000 MHz		()		-29.23	(-16.23)	6.000 M ≡	
15.00 MHz	30.00 MHz	1.000 MHz		()		-39.01	(-14.01)	15.00 M	
4.000 MHz	8.000 MHz	1.000 MHz		()			()		
8.000 MHz	12.50 MHz	1.000 MHz		()			()		
MSG						ST	TATUS		

BAND 48. 10 M_BandEdge(Upper)_Low_3555 MHz_QPSK_Full RB



	um Analyzer - Spectrum	Emission Mask							- 6 💌
LXI RL	RF 50 Ω A	-		SENSE:INT	555000000 GH	ALIGN AU		4:44 PM May 23, 2024 Std: None	Frequency
	eq 3.5550000	000 GHZ		g: Free Run		12 100.00% of 1		Sta: None	
PASS		IFGain:Lo		tten: 10 dB				Device: BTS	
	Ref Offset 32.	10 AD							
10 dB/div	Ref 30.0 dE								
Log								Azicesularicatius mit	
20.0				1					Center Freq
10.0									3.555000000 GHz
0.00									
-10.0									
-20.0									
-30.0									
			اسا کسیر						
-40.0			I	han a					
-50.0					methyman	b. .		Spectrum	
-60.0						a line of the second se			
									CF Step
Center 3.5	55 GHz							Span 90 MHz	9.000000 MHz
								•	<u>Auto</u> Man
Total Powe	er Ref 23.5	4 dBm / 10 l	MHz						
lotari on	20.0		VII 12						Freq Offset
				Lower		Peak ->	Upper		0 Hz
Start Freq	Stop Freq	Integ BW	dBm	∆Lim(dB)	Freq (Hz)	dBm	∆Lim(dB)	Freq (Hz)	
5.000 MHz		100.0 kHz	-28.79	(-15.79)	-5.040 M		()	^	
6.000 MHz		1.000 MHz	-28.75	(-15.75)	-8.970 M		()	=	
15.00 MHz		1.000 MHz	-40.80	(-15.80)	-15.00 M		()		
25.00 MHz 15.00 MHz		1.000 MHz 1.000 MHz	-47.12	(-7.12)	-25.10 M		()		
	15.00 MHZ			()			()		
MSG						ST	TATUS		

BAND 48. 10 M_BandEdge(Lower)_Low_3555 MHz_QPSK_1RB

BAND 48. 10 M_BandEdge(Upper)_Low_3555 MHz_QPSK_1RB

	m Analyzer - Spectrum	Emission Mask							- 6 -
IXI RL	RF 50 Ω A	-	Car	SENSE:INT	625000000 GH	ALIGN AL		5:03 PM May 23, 2024 Std: None	Frequency
	q 3.6250000	00 GHZ		g: Free Run		12 100.00% of 1		Sta: None	, , , , , , , , , , , , , , , , , , , ,
PASS		IFGain:Lo		ten: 10 dB				Device: BTS	
10 dB/div	Ref Offset 32. Ref 30.0 dB								
Log								Relative Limit	
20.0									Center Freq
40.0									3.625000000 GHz
10.0									
0.00			<mark> ias</mark>	abiles descentible dates	dill.				
-10.0									
-20.0								Absolute Limit	
-30.0									
-40.0					<u> </u>				
								Spectrum	
-50.0									
-60.0									
									CF Step
Center 3.62	25 GHz							Span 60 MHz	6.000000 MHz
									<u>Auto</u> Man
Total Power		3 dBm / 10 l	MHz						
Total Fower			VIFIZ						Freq Offset
				Lower	<-	Peak ->	Upper		0 Hz
Start Freq	Stop Freq	Integ BW	dBm	∆Lim(dB)		dBm	ΔLim(dB)	Freq (Hz)	0 H2
5.000 MHz	6.000 MHz	100.0 kHz	-28.38	(-15.38)	-5.000 M	-29.17	(-16.17)	5.005 M 🔶	
6.000 MHz	15.00 MHz	1.000 MHz	-25.99	(-12.99)	-6.045 M	-26.13	(-13.13)	6.045 M =	
15.00 MHz	30.00 MHz	1.000 MHz	-38.52	(-13.52)	-15.08 M	-38.96	(-13.96)	15.00 M —	
4.000 MHz	8.000 MHz	1.000 MHz		()			()		
8.000 MHz	12.50 MHz	1.000 MHz		()			()		
MSG						ST	TATUS		
	-								

BAND 48. 10 M_BandEdge(Center)_Mid_3625 MHz_QPSK_Full RB

	Analyzer - Spectrum								
Center Fred	RF 50Ω A	-	Ce	SENSE:INT	625000000 GH	ALIGN AL		3:01 PM May 23, 2024 Std: None	Frequency
PASS	3.0230000	IFGain:Lo	🛶 Tri	g: Free Run tten: 10 dB		100.00% of	10	Device: BTS	
		IFGain:Lo	w #A	tten. To ub			Raulo	Device: D13	
10 dB/div	Ref Offset 32.7 Ref 30.0 dB								
Log								Relative Limit	
20.0									Center Freq
10.0									3.625000000 GHz
0.00									
-10.0			f(
-20.0		_						Absolute Limit	
-30.0									
-40.0		hard							
				"Hereit beruch	ي السو		·····	Spectrum	
-50.0									
-60.0									
									CF Step 6.000000 MHz
Center 3.62	5 GHz							Span 60 MHz	Auto Man
Total Power	Ref 23.58	8 dBm / 10 M	MHz						
						D			Freq Offset
Start Freq	Stop Freq	Integ BW	dBm	Lower ∆Lim(dB)	Freq (Hz)	Peak -> dBm	Upper ∆Lim(dB)	Freq (Hz)	0 Hz
5.000 MHz	6.000 MHz	100.0 kHz	-27.02	(-14.02)	-5.000 M	-33.76	(-20.76)	5.065 M 🔶	
6.000 MHz	15.00 MHz	1.000 MHz	-28.37	(-15.37)	-8.610 M	-35.28	(-22.28)	7.395 M ≡	
15.00 MHz	30.00 MHz	1.000 MHz	-41.53	(-16.53)	-15.08 M	-41.83	(-16.83)	15.00 M —	
4.000 MHz	8.000 MHz	1.000 MHz		()			()		
8.000 MHz	12.50 MHz	1.000 MHz		()			()		
MSG						ST	TATUS		

BAND 48. 10 M_BandEdge(Lower)_Mid_3625 MHz_QPSK_1RB

	n Analyzer - Spectrum								- F X
	RF 50 Ω A 3.6250000	-	🛶 Tri	SENSE:INT nter Freq: 3. g: Free Run tten: 10 dB	625000000 GH	ALIGN AL 2 100.00% of	Radio 10	7:02 PM May 23, 2024 5 Std: None 5 Device: BTS	Frequency
10 dB/div	Ref Offset 32. Ref 30.0 dB	18 dB	w mt				Ruur		
20.0 10.0									Center Freq 3.625000000 GHz
0.00 -10.0 -20.0									
-30.0			~~				10-1-1-	Absolute Limit	
-50.0									CF Step
Center 3.62								Span 60 MHz	6.000000 MHz <u>Auto</u> Man
Total Power	Ref 23.43	3 dBm / 10 l	MHz	Lower		Peak ->	Upper		Freq Offset 0 Hz
Start Freq	Stop Freq	Integ BW	dBm	∆Lim(dB)	Freq (Hz)	dBm	∆Lim(dB)	Freq (Hz)	0112
5.000 MHz	6.000 MHz	100.0 kHz	-40.13	(-27.13)	-5.355 M	-28.51	(-15.51)	5.055 M 🔶	
6.000 MHz	15.00 MHz	1.000 MHz	-34.32	(-21.32)	-7.440 M	-30.50	(-17.50)	8.745 M ≡	
15.00 MHz 4.000 MHz 8.000 MHz	30.00 MHz 8.000 MHz 12.50 MHz	1.000 MHz 1.000 MHz 1.000 MHz	-41.26 	(-16.26) () ()	-15.08 M 	-41.95 	(-16.95) () ()	15.00 M 	
MSG						ST	TATUS		

BAND 48. 10 M_BandEdge(Upper)_Mid_3625 MHz_QPSK_1RB

	m Analyzer - Spectrum	Emission Mask							
LXI RL	RF 50 Ω A			SENSE:INT		ALIGN AL		0:01 PM May 23, 2024 Std: None	Frequency
	q 3.6950000	00 GHz		g: Free Run	395000000 GH Ava: 1	12 100.00% of 1		Sta: None	
PASS		IFGain:Lo		ten: 10 dB				Device: BTS	
	Ref Offset 32.	10 48							
10 d <u>B/div</u>	Ref 30.0 dB								
Log								Assessionslumit	
20.0									Center Freq
10.0									3.695000000 GHz
			070		heluk				
0.00									
-10.0									
-20.0									
					l l				
-30.0									
-40.0					and the second second				
-50.0							1. I. I.		
								Spectrum	
-60.0									
									CF Step 6.000000 MHz
Center 3.69	95 GHZ							Span 60 MHz	Auto Man
Total Powe	r Ref 22.30	0 dBm / 10 l	MHz						
									Freq Offset
	Ot 5		-10	Lower		Peak ->	Upper		0 Hz
Start Freq	Stop Freq	Integ BW	dBm	ΔLim(dB)	Freq (Hz)	dBm	ΔLim(dB)	Freq (Hz)	
5.000 MHz	6.000 MHz	100.0 kHz	-27.94	(-14.94)	-5.005 M		()	^	
6.000 MHz	15.00 MHz	1.000 MHz	-24.60	(-11.60)	-6.045 M		()	=	
15.00 MHz	30.00 MHz	1.000 MHz	-38.52	(-13.52)	-15.08 M		()		
4.000 MHz 8.000 MHz	8.000 MHz 12.50 MHz	1.000 MHz 1.000 MHz		() ()			() ()		
	12.30 MHZ			()			``´		
MSG						ST	TATUS		

BAND 48. 10 M_BandEdge(Lower)_High_3695 MHz_QPSK_Full RB

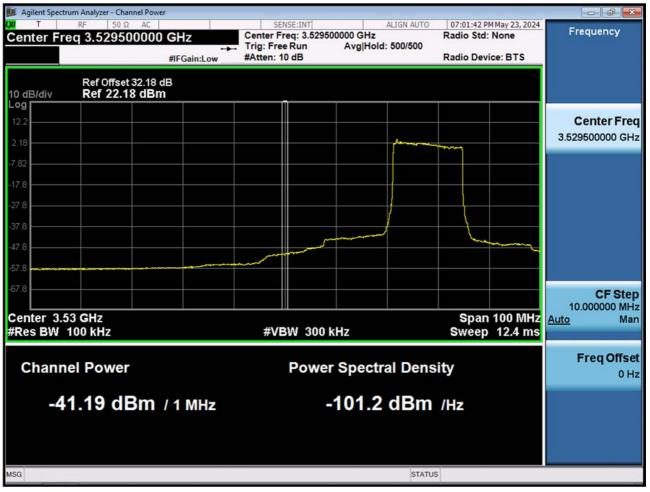
	m Analyzer - Spectrum	Emission Mask							
LXI RL	RF 50 Ω A	-	0	SENSE:INT		ALIGN		50:41 PM May 23, 2024 o Std: None	Frequency
	q 3.6950000	00 GHz		nter Freq: 3.0 g: Free Run		i: 100.00% c		o Sta: None	
PASS		IFGain:Lo		ten: 10 dB				o Device: BTS	
10 dB/div	Ref Offset 32. Ref 30.0 dB								
Log								Relative Limit	
20.0									Center Freq
10.0									3.695000000 GHz
10.0				outota ta anda					
0.00									
-10.0									
-20.0					~				
-30.0			/		\parallel				
-40.0			Tophy application		<u>`</u>			Absolute Limit	
			NH ^{AV}					Spectrum	
-50.0		manna and and and and and and and and and							
-60.0									
									CF Step
Center 3.69	95 GHz							Span 90 MHz	9.000000 MHz
									<u>Auto</u> Man
Total Powe	r Ref 22.33	3 dBm / 10 l	MHz						
									Freq Offset
				Lower		<- Peak ->	Upper		0 Hz
Start Freq	Stop Freq	Integ BW	dBm	∆Lim(dB)	Freq (Hz)	dBm	∆Lim(dB)	Freq (Hz)	
5.000 MHz	6.000 MHz	100.0 kHz		()		29.18	(-16.18)	5.005 M 🔶	
6.000 MHz	15.00 MHz	1.000 MHz		()				6.000 M ≡	
15.00 MHz	25.00 MHz	1.000 MHz		()		00.10		15.00 M —	
25.00 MHz	45.00 MHz	1.000 MHz		()		-45.53		25.20 M	
15.00 MHz	15.00 MHz	1.000 MHz		()			- ()		
мsg 🗼 Alignm	ent Completed						STATUS		

BAND 48. 10 M_BandEdge(Upper)_High_3695 MHz_QPSK_Full RB

	m Analyzer - Spectrun								
LXI RL				SENSE:INT	695000000 GH	ALIGN AU		2:11 PM May 23, 2024 Std: None	Frequency
	q 3.6950000	JUU GHZ		g: Free Run		1z 100.00% of [,]		Sta: None	·····,
PASS		IFGain:Lo		tten: 10 dB				Device: BTS	
10 dB/div	Ref Offset 32. Ref 30.0 dE								
Log								Assessionsturnd	
20.0									Center Freq
10.0									3.695000000 GHz
10.0									
0.00									
-10.0									
-20.0									
-30.0			λ / λ						
-40.0			<u> </u>	↓					
-50.0				"WYTER WITH	and marginal from the	were A.			
-30.0						Why is a way	and a second	Spectrum	
-60.0									
									CF Step 6.000000 MHz
Center 3.69	15 GHZ							Span 60 MHz	Auto Man
Total Power	r Ref 23.0	0 dBm / 10	MHz						
									Freq Offset
			-ID	Lower		Peak ->	Upper		0 Hz
Start Freq	Stop Freq	Integ BW	dBm	$\Delta \text{Lim}(\text{dB})$,	dBm	$\Delta \text{Lim}(\text{dB})$	Freq (Hz)	
5.000 MHz 6.000 MHz	6.000 MHz 15.00 MHz	100.0 kHz 1.000 MHz	-30.49	(-17.49)	-5.005 M		()		
6.000 MHz 15.00 MHz	15.00 MHz 30.00 MHz	1.000 MHZ 1.000 MHz	-28.14 -41.77	(-15.14) (-16.77)	-8.655 M -15.00 M		() ()	=	
4.000 MHz	8.000 MHz	1.000 MHz	-41.77	(-10.77) ()	-15.00 M		() ()		
8.000 MHz	12.50 MHz	1.000 MHz		() ()			()		
				()			```	_	
MSG						ST	TATUS		

BAND 48. 10 M_BandEdge(Lower)_High_3695 MHz_QPSK_1RB

BAND 48. 10 M_BandEdge(Upper)_High_3695 MHz_QPSK_1RB



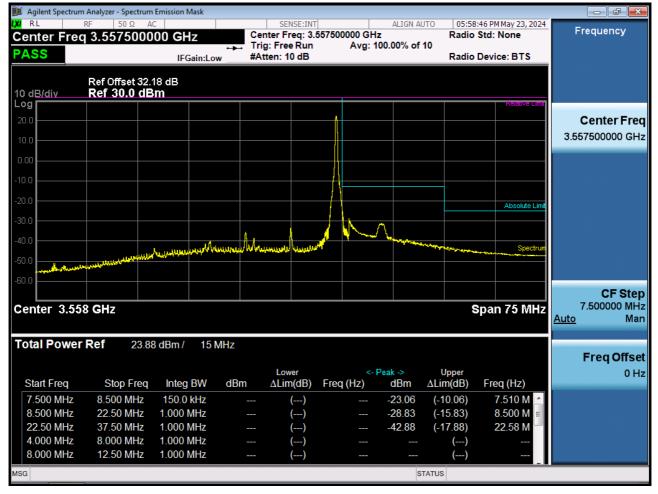
	n Analyzer - Spectrum	n Emission Mask							
	RF 50 Ω A		0	SENSE:INT		ALIGN AU		2:02 PM May 23, 2024 Std: None	Frequency
Center Fred	3.5575000	00 GHZ		g: Free Run	557500000 GH Ava:	12 100.00% of 1		Sta: None	
PASS		IFGain:Lo		tten: 10 dB				Device: BTS	
	B 6 8 8 1 8 8	40.18							
10 dB/div	Ref Offset 32. Ref 30.0 dE								
Log								Assessmentsturmit	
20.0									Center Freq
10.0									3.557500000 GHz
			, with	lless the bill be should be	144A				
0.00									
-10.0									
-20.0									
-30.0									
-40.0			/		Y Martine	1.000			
					A REAL PROPERTY AND A REAL	AND THE REAL PROPERTY OF THE R	MANULUMAL.		
-50.0							and the second second	Spectrum	
-60.0									
									CF Step
Center 3.55	8 GHz						,	Span 95 MHz	9.500000 MHz Auto Man
									Auto
Total Power	Ref 22.6	8 dBm / 15 M	MHz						
									Freq Offset
				Lower		Peak ->	Upper		0 Hz
Start Freq	Stop Freq	Integ BW	dBm	∆Lim(dB)	Freq (Hz)	dBm	∆Lim(dB)	Freq (Hz)	
7.500 MHz	8.500 MHz	150.0 kHz	-31.05	(-18.05)	-7.555 M		()	^	
8.500 MHz	22.50 MHz	1.000 MHz	-30.75	(-17.75)	-8.500 M		()	E	
17.50 MHz	27.50 MHz	1.000 MHz	-33.86	(-8.86)	-17.80 M		()		
27.50 MHz	47.50 MHz	1.000 MHz	-40.12	(-0.12)	-27.50 M		()		
20.00 MHz	20.00 MHz	1.000 MHz		()			()		
MSG						ST	ATUS		

BAND 48. 15 M_BandEdge(Lower)_Low_3557.5 MHz_QPSK_Full RB_1

BAND 48. 15 M_BandEdge(Lower)_Low_3557.5 MHz_QPSK_Full RB_2

	m Analyzer - Spectru								
Center Free			Cer	SENSE:INT	557500000 GH	ALIGN AU		8:04 PM May 23, 2024 Std: None	Frequency
	q 3.337300		Trig	g: Free Run		100.00% of '	10		
PASS		IFGain:Lo	w #At	ten: 10 dB			Radio	Device: BTS	
10 dB/div	Ref Offset 32 Ref 30.0 d								
Log								Relative Limit	
20.0									Center Freq
10.0									3.557500000 GHz
0.00			pum		MANAN				
-10.0									
-20.0								Absolute Limit	
-30.0					<u> </u>			Absolute Linit	
			1		1 million		<u>,</u>		
-40.0		باللجارية مايجعلة بوريوراجو من	and the second s		\		- marine	Spectrum	
-50.0	an interesting the second								
-60.0									
									CF Step
Center 3.55	58 GHz	·						Span 75 MHz	7.500000 MHz
								•	<u>Auto</u> Man
Total Power	r Ref 22	83 dBm / 15	MHz						
Total Total									Freq Offset
				Lower		Peak ->	Upper		0 Hz
Start Freq	Stop Free	q Integ BW	dBm	∆Lim(dB)	Freq (Hz)	dBm	∆Lim(dB)	Freq (Hz)	
7.500 MHz	8.500 MHz			()		-31.25	(-18.25)	7.500 M 🔶	
8.500 MHz	22.50 MHz			()		-31.38	(-18.38)	8.500 M ≡	
22.50 MHz	37.50 MHz	1.000 MHz		()		-40.35	(-15.35)	22.88 M	
4.000 MHz	8.000 MHz			()			()		
8.000 MHz	12.50 MHz	1.000 MHz		()			()		
MSG						ST	TATUS		

BAND 48. 15 M_BandEdge(Upper)_Low_3557.5 MHz_QPSK_Full RB



	ım Analyzer - Spectrum								
LXIRL	RF 50 Ω A	-	Co	SENSE:INT	557500000 GH	ALIGN AL		:34 PM May 23, 2024 Std: None	Frequency
	q 3.5575000	JUU GHZ		ig: Free Run		12 100.00% of		Stu. None	
PASS		IFGain:Lov	v #A	tten: 10 dB			Radio	Device: BTS	
	Ref Offset 32.	10 40							
10 dB/div	Ref 30.0 dE								
Log								Askesalake Urmt	
20.0									Center Freq
10.0									3.557500000 GHz
0.00									
-10.0			<u></u>						
-20.0									
-30.0				K					
-40.0		State State State State State State		MALL N	<u>ا الم</u>				
-50.0				" "What withhat	100 basher of there a	MMM A			
						wowed works	1 marine marine	Spectrum	
-60.0									CF Step
Center 3.5	50 CH7							Span 95 MHz	9.500000 MHz
Genter 3.5								span so minz	<u>Auto</u> Man
Total Powe	r Ref 23.2	1 dBm / 15 N	٨Hz						
									Freq Offset
Start Freq	Stop Freq	Integ BW	dBm	Lower ∆Lim(dB)	<pre>Freq (Hz)</pre>	Peak -> dBm	Upper ΔLim(dB)	Freq (Hz)	0 Hz
7.500 MHz	8.500 MHz	150.0 kHz	-23.17	(-10.17)	-7.500 M		()		
8.500 MHz	22.50 MHz	1.000 MHz	-29.35	(-16.35)	-8.570 M		()		
17.50 MHz	27.50 MHz	1.000 MHz	-37.49	(-12.49)	-18.10 M		()		
27.50 MHz	47.50 MHz	1.000 MHz	-43.39	(-3.39)	-27.50 M		()		
17.50 MHz	17.50 MHz	1.000 MHz		()			()		
MSG						ST	TATUS	-	
	-								

BAND 48. 15 M_BandEdge(Lower)_Low_3557.5 MHz_QPSK_1RB

BAND 48. 15 M_BandEdge(Upper)_Low_3557.5 MHz_QPSK_1RB

	m Analyzer - Spectrum								
LXI RL	RF 50 Ω A	-	Co	SENSE:INT		ALIGN AU		3:38 PM May 23, 2024 Std: None	Frequency
	Trig: Free Run Avg: 100 00% of 10								
PASS		IFGain:Lo		ten: 10 dB			Radio	Device: BTS	
	Ref Offset 32.	18 dB							
10 d <u>B/div</u>	Ref 30.0 dE	3m							
Log								Relative Limit	
20.0									Center Freq
10.0									3.625000000 GHz
0.00									
-10.0									
-20.0								Absolute Limit	
-30.0					1				
		and the second s			N		~~		
-40.0	A CALLER CONTRACTOR OF CONTRACT						and a second second	Spectrum	
-50.0									
-60.0									
									CF Step
Center 3.62	25 GHz							Span 75 MHz	7.500000 MHz
									<u>Auto</u> Man
Total Power		0 dBm / 15 l	MHz						
Total Power	Rei 22.50		VIHZ						Freq Offset
				Lower	<-	Peak ->	Upper		0 Hz
Start Freq	Stop Freq	Integ BW	dBm	∆Lim(dB)			∆Lim(dB)	Freq (Hz)	0 112
7.500 MHz	8.500 MHz	150.0 kHz	-29.42	(-16.42)	-7.515 M	-30.77	(-17.77)	7.510 M 🔺	
8.500 MHz	22.50 MHz	1.000 MHz	-27.12	(-14.12)	-8.500 M	-27.24	(-14.24)	8.500 M 🗉	
22.50 MHz	37.50 MHz	1.000 MHz	-38.48	(-13.48)	-22.50 M	-40.41	(-15.41)	22.58 M	
4.000 MHz	8.000 MHz	1.000 MHz		()			()		
8.000 MHz	12.50 MHz	1.000 MHz		()			()		
MSG						ST	ATUS		
	_								

BAND 48. 15 M_BandEdge(Center)_Mid_3625 MHz_QPSK_Full RB

	Analyzer - Spectrum			-	_				
Center Freq			Ce	SENSE:INT	625000000 GH	ALIGN AL		5:36 PM May 23, 2024 Std: None	Frequency
PASS	0.0200000	IFGain:Lov		g: Free Run tten: 10 dB	Avg: 1	100.00% of		Device: BTS	
		IFGain:Lov	N #1	tten. To ub			Raulo	Device: D13	
10 dB/div	Ref Offset 32. Ref 30.0 dE								
Log								Relative Limit	
20.0			1						Center Freq
10.0			Ì						3.625000000 GHz
0.00									
-10.0	_								
-20.0								Absolute Limit	
-30.0									
-40.0		- Comment	~/ \		1	-			
	- And a state of the state of t		·	man han			A COLORADO	Spectrum	
-50.0									
-60.0									
									CF Step
Center 3.62	5 GHz							Span 75 MHz	7.500000 MHz Auto Man
Total Power	Ref 23.72	2 dBm / 15 M	MHz						
									Freq Offset
Start Freq	Stop Freq	Integ BW	dBm	Lower ∆Lim(dB)	Freq (Hz)	Peak -> dBm	Upper ∆Lim(dB)	Freq (Hz)	0 Hz
7.500 MHz	8.500 MHz	150.0 kHz	-23.54	(-10.54)	-7.505 M	-39.59	(-26.59)	7.610 M 🔶	
8.500 MHz	22.50 MHz	1.000 MHz	-28.58	(-15.58)	-8.500 M	-36.42	(-23.42)	11.86 M ≡	
22.50 MHz	37.50 MHz	1.000 MHz	-39.94	(-14.94)	-22.50 M	-42.33	(-17.33)	22.95 M	
4.000 MHz	8.000 MHz	1.000 MHz		()			()		
8.000 MHz	12.50 MHz	1.000 MHz		()			()		
MSG						ST	TATUS		

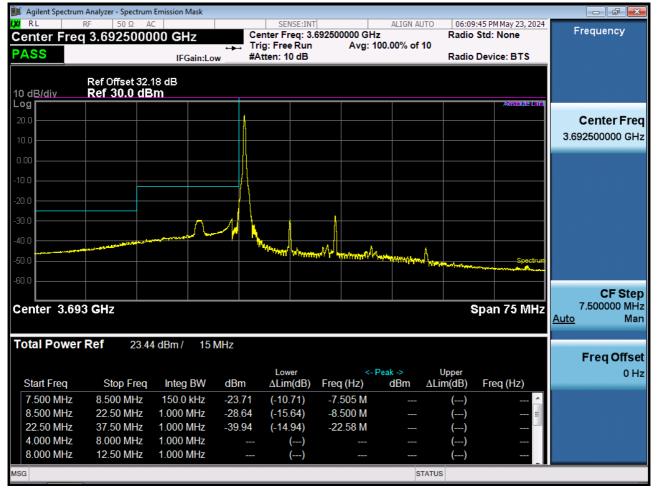
BAND 48. 15 M_BandEdge(Lower)_Mid_3625 MHz_QPSK_1RB

	Analyzer - Spectrum								- # *
Center Freq	RF 50 Ω A	-	Ce	SENSE:INT	625000000 GH	ALIGN AL		4:37 PM May 23, 2024 Std: None	Frequency
PASS	3.0230000		🛶 Tri	g: Free Run tten: 10 dB		100.00% of		Device: BTS	
		IFGain:Lov	w #A	tten: 10 dB			Radio	Device: B15	
10 dB/div	Ref Offset 32. Ref 30.0 dB								
Log								Relative Limit	
20.0									Center Freq
10.0									3.625000000 GHz
0.00									
-10.0									
-20.0								Absolute Limit	
-30.0					h				
-40.0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				Λ_{\perp}			
and a sub-	and the party of the second seco		1 July	man have	<i>, , , , , , , , , ,</i>		and the second second	Spectrum	
-50.0									
-60.0									
									CF Step 7.50000 MHz
Center 3.62	5 GHz							Span 75 MHz	Auto Man
Total Power	Ref 23.52	2 dBm / 15 M	MHz						
									Freq Offset
Start Freq	Stop Freq	Integ BW	dBm	Lower ∆Lim(dB)	<pre>Freq (Hz)</pre>	Peak -> dBm	Upper ∆Lim(dB)	Freq (Hz)	0 Hz
7.500 MHz	8.500 MHz	150.0 kHz	-43.42	(-30.42)	-8.210 M	-24.08	(-11.08)	7.500 M 🔶	
8.500 MHz	22.50 MHz	1.000 MHz	-34.72	(-21.72)	-12.21 M	-29.59	(-16.59)	8.500 M ≡	
22.50 MHz	37.50 MHz	1.000 MHz	-40.15	(-15.15)	-22.50 M	-42.60	(-17.60)	22.58 M	
4.000 MHz	8.000 MHz	1.000 MHz		()			()		
8.000 MHz	12.50 MHz	1.000 MHz		()			()		
MSG						ST	TATUS		

BAND 48. 15 M_BandEdge(Upper)_Mid_3625 MHz_QPSK_1RB

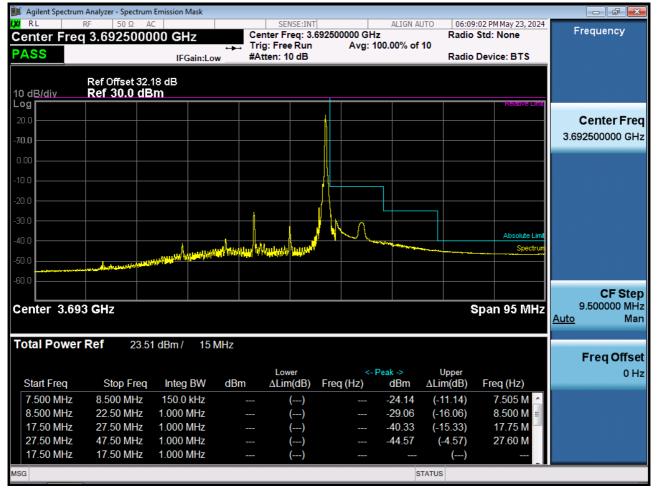
	Analyzer - Spectrum								
Center Fred		c 100 GHz	Ce	SENSE:INT enter Freq: 3.6	92500000 GHz	ALIGN AUTO		:35 PM May 23, 2024 Std: None	Frequency
PASS	010101200000	IFGain:Lo		ig: Free Run tten: 10 dB	Avg: 10	00.00% of 10		Device: BTS	
10 dB/div	Ref Offset 32. Ref 30.0 dE								
Log								Associate Limit	
20.0									Center Freq 3.692500000 GHz
0.00			prom.	*******	KAMA				
-10.0									
-20.0			1						
-30.0					1111111111111111	The second s			
-50.0						C. S.	Kangelen Afreiheren	Spectrum	
-60.0									
									CF Step
Center 3.69	3 GHz						,	Span 75 MHz	7.500000 MHz <u>Auto</u> Man
Total Power	Ref 22.3	3 dBm / 15 M	MHz						
					_				Freq Offset
Start Freq	Stop Freq	Integ BW	dBm	Lower ∆Lim(dB)	<pre>Freq (Hz)</pre>	°eak -> dBm ∆	Upper Lim(dB)	Freq (Hz)	0 Hz
7.500 MHz	8.500 MHz	150.0 kHz	-29.49	(-16.49)	-7.500 M		()	^	
8.500 MHz	22.50 MHz	1.000 MHz	-25.68	(-12.68)	-8.500 M		()	=	
22.50 MHz	37.50 MHz	1.000 MHz	-38.67	(-13.67)	-22.80 M		()		
4.000 MHz	8.000 MHz	1.000 MHz		()			()		
8.000 MHz	12.50 MHz	1.000 MHz		()			()		
MSG						STA	TUS		

BAND 48. 15 M_BandEdge(Lower)_High_3692.5 MHz_QPSK_Full RB



	n Analyzer - Spectrum			-					
IXI RL	RF 50 Ω A q 3.6925000	-	Cer	SENSE:INT	692500000 GI	ALIGN A		8:15 PM May 23, 2024 Std: None	Frequency
PASS	q 5.0925000		Trig	: Free Run		100.00% of	10		
FA33		IFGain:Lo	w #At	ten: 10 dB			Radio	Device: BTS	
10 d <u>B/div</u>	Ref Offset 32. Ref 30.0 dE								
Log								Relative Limit	
20.0									Center Freq
10.0									3.692500000 GHz
0.00				*****	147 4				
-10.0									
-20.0									
-30.0									
-40.0		Sec. 1	A BARAMAN AND A BARAMAN					Absolute Limit	
		Martin Martin						Spectrum	
-50.0									
-60.0									
									CF Step
Center 3.69	3 GHz							Span 95 MHz	9.500000 MHz Auto Man
									Auto
Total Power	r Ref 22.3	8 dBm / 15 l	MHz						
									Freq Offset
Start Freq	Stop Freq	Integ BW	dBm	Lower ∆Lim(dB)		- Peak -> dBm	Upper		0 Hz
7.500 MHz	8.500 MHz	150.0 kHz			Freq (Hz)	-30.09	ΔLim(dB) (-17.09)	Freq (Hz) 7.515 M	
8.500 MHz	8.500 MHZ 22.50 MHz	1.000 MHz		() ()		-30.09 -25.57	(-17.09) (-12.57)	7.515 M ≃ 8.500 M ≡	
17.50 MHz	27.50 MHz	1.000 MHz		()		-33.39	(-8.39)	17.55 M	
27.50 MHz	47.50 MHz	1.000 MHz		()		-43.46	(-3.46)	27.50 M	
17.50 MHz	17.50 MHz	1.000 MHz		()			()		
MSG						s	TATUS	-	

BAND 48. 15 M_BandEdge(Upper)_High_3692.5 MHz_QPSK_Full RB



BAND 48. 15 M_BandEdge(Lower)_High_3692.5 MHz_QPSK_1RB



BAND 48. 15 M_BandEdge(Upper)_High_3692.5 MHz_QPSK_1RB

BAND 48. 20 M_BandEdge(Lower)_Low_3560 MHz_QPSK_Full RB_1