

TEST REPORT

Test report no.: 1-8318-24-01-05_TR1-R01

Testing laboratory

cetecom advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: https://cetecomadvanced.com
e-mail: mail@cetecomadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number:

D-PL-12047-01-00.

ISED Testing Laboratory Recognized Listing Number: DE0001

FCC designation number: DE0002

Applicant

Hormann LLC

450 Airport Road Sparta, TN38583 / USA

Phone: -/-

Contact: Jürgen Heuving e-mail: <u>j.heuving@hormann.us</u>

Manufacturer

Hörmann KG Antriebstechnik

Michaelisstr. 1

33803 Steinhagen / GERMANY Contact: Martin Schmidt

e-mail: m.schmidt.ast@hoermann.de

Test standard/s

FCC - Title 47 CFR Part 15 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio

frequency devices

RSS - 210 Issue 11 Spectrum Management and Telecommunications Radio Standards Specification

- Licence-Exempt Radio Apparatus: Category I Equipment

RSS - Gen Issue 5 incl. Spectrum Management and Telecommunications Radio Standards Specification

Amendment 1 & 2 - General Requirements for Compliance of Radio Apparatus

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Handsender

Model name: HSE1-315-MC

FCC ID: 2BML5HSE4-315

ISED certification number: 4205A-HSE4315

Frequency: 315 MHz; 426 MHz; 469 MHz

Technology tested: Proprietary

Antenna: Integrated antenna

Power supply: 2.5 V to 3.2 V DC by Li battery

Temperature range: 0°C to +60°C

Radio Labs

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:	
Joachim Wolsdorfer	Tobias Wittenmeier	
Lah Manager	Testing Manager	

Radio Labs

Table of contents

1	Table	of contents	2
2	Gene	ral information	3
	2.1 2.2 2.3	Notes and disclaimerApplication details	3
3	Test s	standard/s, references and accreditations	4
4	Repoi	ting statements of conformity – decision rule	5
5	Test e	environment	б
6	Test i	tem	б
	6.1 6.2	General description	
7	Descr	iption of the test setup	7
	7.1 7.2	Shielded semi anechoic chamber	
8	Seque	ence of testing	11
	8.1 8.2 8.3	Sequence of testing radiated spurious 9 kHz to 30 MHz Sequence of testing radiated spurious 30 MHz to 1 GHz Sequence of testing radiated spurious 1 GHz to 12.75 GHz	12
9	Meas	urement uncertainty	14
10	Sur	nmary of measurement results	15
	10.1	Additional comments	16
11	Me	asurement results	17
	11.1 11.2	Field strength of the fundamentalField strength of the harmonics and spurious	
12	Obs	servations	33
13	Glo	ssary	34
14	Doc	sument history	3!

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. cetecom advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of cetecom advanced GmbH.

The testing service provided by cetecom advanced GmbH has been rendered under the current "General Terms and Conditions for cetecom advanced GmbH".

cetecom advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the cetecom advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the cetecom advanced GmbH test report include or imply any product or service warranties from cetecom advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by cetecom advanced GmbH.

All rights and remedies regarding vendor's products and services for which cetecom advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by cetecom advanced GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2024-07-18
Date of receipt of test item: 2024-10-29
Start of test:* 2024-12-17
End of test:* 2024-12-18
Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

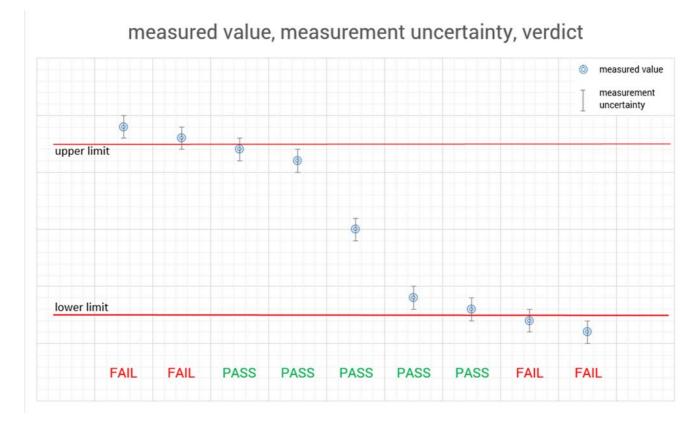
None

© cetecom advanced GmbH Page 3 of 35

^{*}Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

3 Test standard/s, references and accreditations

Test standard	Date	Description
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 210 Issue 11	25.06.202 4	Spectrum Management and Telecommunications Radio Standards Specification - Licence-Exempt Radio Apparatus: Category I Equipment
RSS - Gen Issue 5 incl. Amendment 1 & 2	February 2021	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus
Guidance	Version	Description
ANSI C63.4a-2017 ANSI C63.10-2020	-/-	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices


© cetecom advanced GmbH Page 4 of 35

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

© cetecom advanced GmbH Page 5 of 35

5 Test environment

Temperature	:	T_{nom} T_{max} T_{min}	+22 °C during room temperature tests No tests under extreme conditions required. No tests under extreme conditions required.
Relative humidity content			55 %
Barometric pressure			1021 hpa
Power supply	:	$egin{array}{c} V_{nom} \ V_{max} \ V_{min} \end{array}$	3.0 V DC by Li battery No tests under extreme conditions required. No tests under extreme conditions required.

6 Test item

6.1 General description

Kind of test item :	Handsender
Model name :	HSE1-315-MC
HMN :	-/-
PMN :	HSE1-315-MC
HVIN :	HSE1-315-MC
FVIN :	EE002945-00.ag
S/N serial number :	21050021
Hardware status :	-/-
Software status :	-/-
Firmware status :	-/-
Frequency band :	315 MHz; 426 MHz; 469 MHz
Type of radio transmission: Use of frequency spectrum:	Modulated carrier
Type of modulation :	FSK, OOK
Number of channels :	4
Antenna :	Integrated antenna
Power supply :	2.5 V to 3.2 V DC by Li battery
Temperature range :	0°C to +60°C

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-8318-24-01-01_TR1-A101-R01

1-8318-24-01-01_TR1-A102-R01 1-8318-24-01-01_TR1-A103-R01

© cetecom advanced GmbH Page 6 of 35

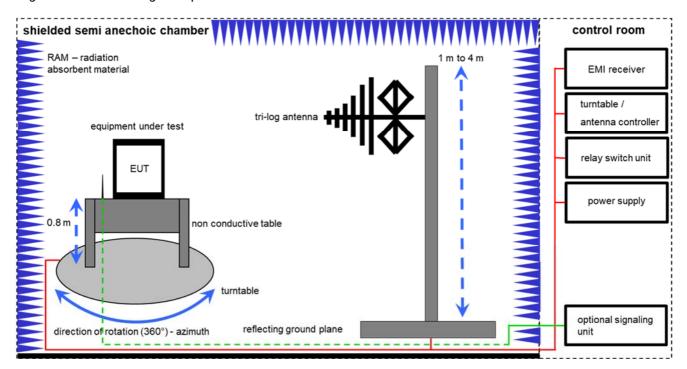
7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Each block diagram listed can contain several test setup configurations. All devices belonging to a test setup are identified with the same letter syntax. For example: Column Setup and all devices with an A.

Agenda: Kind of Calibration


k/cal	calibration / calibrated	EK	limited calibration
Ne/cnn	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical maintenance)
Ev/chk	periodic self verification	izw	internal cyclical maintenance
Ve vlkl!	long-term stability recognized Attention: extended calibration interval	g	blocked for accredited testing
NK! cpu	Attention: not calibrated check prior usage	*)	next calibration ordered / currently in progress

© cetecom advanced GmbH Page 7 of 35

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

EMC32 software version: 10.59.00

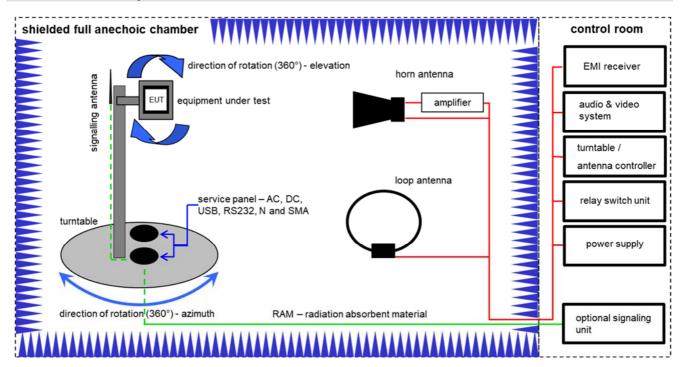
FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \(\mu V/m \))$

© cetecom advanced GmbH Page 8 of 35


Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	А	Semi anechoic chamber	3000023	MWB AG		300000551	ne	-/-	-/-
3	А	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	NK!	-/-	-/-
4	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
5	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
6	Α	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
7	Α	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	318	300003696	vlKI!	31.01.2024	31.01.2026
8	Α	Turntable	2089-4.0	EMCO		300004394	ne	-/-	-/-
9	Α	PC	TecLine	F+W		300004388	ne	-/-	-/-
10	Α	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	06.12.2023	31.12.2024

© cetecom advanced GmbH Page 9 of 35

7.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \(\mu V/m \))$

Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	В	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	vIKI!	10.10.2023	31.10.2025
2	А	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vIKI!	02.08.2023	31.08.2025
3	A,B	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
4	A,B	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
5	В	Highpass Filter	WHKX2.9/18G- 12SS	Wainwright	1	300003492	ev	-/-	-/-
6	A,B	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	11.12.2023	31.12.2024
7	В	Highpass Filter	WHK1.1/15G-10SS	Wainwright	3	300003255	ev	-/-	-/-
8	В	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
9	В	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
10	A,B	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
11	A,B	NEXIO EMV- Software	BAT EMC V2022.0.32.0	Nexio		300004682	ne	-/-	-/-
12	A,B	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	01029	300005379	vlKI!	09.10.2023	31.10.2025

© cetecom advanced GmbH Page 10 of 35

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

© cetecom advanced GmbH Page 11 of 35

^{*)}Note: The sequence will be repeated three times with different EUT orientations.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© cetecom advanced GmbH Page 12 of 35

8.3 Sequence of testing radiated spurious 1 GHz to 12.75 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© cetecom advanced GmbH Page 13 of 35

9 Measurement uncertainty

Measurement uncer	Measurement uncertainty						
Test case Uncertainty							
Occupied bandwidth	± used RBW						
Field strength of the fundamental	± 3 dB						
Field strength of the harmonics and spurious	± 3 dB						
Receiver spurious emissions and cabinet radiations	± 3 dB						
Conducted limits	± 2.6 dB						

© cetecom advanced GmbH Page 14 of 35

10 Summary of measurement results

No deviations from the technical specifications were ascertained
There were deviations from the technical specifications ascertained
This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS 210, Issue 11	Passed	2025-02-19	-/-

Test Specification Clause	Test Case	Temperature Conditions	Power Source Voltages	С	NC	NA	NP	Remark
§ 15.35 (c)/ RSS-GEN	Timing of the transmitter (Duty cycle correction factor)	Nominal	Nominal				\boxtimes	-/-
§ 15.231 (a) (1)/ RSS-210 Issue 11	Switch off time	Nominal	Nominal				\boxtimes	-/-
§ 15.231 (3) (c)/ RSS-210 Issue 11	Emission Bandwidth	Nominal	Nominal				\boxtimes	-/-
§ 15.231 (b)/ RSS-210 Issue11	Fieldstrength of Fundamental	Nominal	Nominal	\boxtimes				-/-
§ 15.209/ RSS-210 Issue 11	Fieldstrength of harmonics and spurious	Nominal	Nominal	\boxtimes				-/-

Note: NA = Not Applicable; NP = Not Performed

© cetecom advanced GmbH Page 15 of 35

10.1 Additional comments

Reference documents: Test Report No. 1-8318-24-01-02_TR1-R01

Special test descriptions: None

Configuration descriptions: None

© cetecom advanced GmbH Page 16 of 35

11 Measurement results

11.1 Field strength of the fundamental

Measurement:

Measurement parameter			
Detector:	Peak / pulse averaging / quasi peak		
Sweep time:	Auto		
Resolution bandwidth:	120 kHz		
Video bandwidth:	3 x RBW		
Span:	Zero		
Trace-Mode:	Max. hold		
Test setup	See chapter 7.1A		
Measurement uncertainty	See chapter 9		

Limits:

FCC			IC			
	Field strength of the fundamental.					
In addition to the provisions of S	ection 15.205, the field s	trength of er	nissions from intentional radiators			
operated	under this Section shall ı	not exceed th	e following:			
Fundamental Frequency (MHz) Field strength of Fundamental (µV/m) Measurement distance (n						
40.66 - 40.70	2,250		3			
70-130	1,250		3			
130-174	1,250 to 3,75	0	3			
174-260	3,750		3			
260-470	3,750 to 12,5	00	3			
Above 470	12,500		3			

Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

- for the band 130-174 MHz, μ V/m at 3 meters = 56.81818(F) 6136.3636;
- for the band 260-470 MHz, μ V/m at 3 meters = 41.6667(F) 7083.3333.

© cetecom advanced GmbH Page 17 of 35

Result:

TEST CONDITIONS		MAXIMUM POWER (dBµV/m at 3 m distance)		m distance)
Frequency		315 MHz 00K	315 MHz 00K	Limit
Mode		Peak	Average	LIIIII
T _{nom}	V _{nom}	76.5	75.4*	75.62

TEST CO	TEST CONDITIONS		MAXIMUM POWER (dBμV/m at 3 m distance)	
Frequency		315 MHz FSK	315 MHz FSK	Limit
Mo	ode	Peak	Average	LIIIII
T _{nom}	V _{nom}	80.7	50.2*	75.62

TEST COI	TEST CONDITIONS		MAXIMUM POWER (dBμV/m at 3 m distance)	
Frequency		426 MHz FSK	426 MHz FSK	Limit
Mo	ode	Peak	Average	LIIIIIL
T _{nom}	V _{nom}	83.7	53.2*	80.56

TEST COI	TEST CONDITIONS		MAXIMUM POWER (dBμV/m at 3 m distance)	
Frequency		469 MHz FSK	469 MHz FSK	Limit
Mo	Mode		Average	LIIIII
T _{nom}	v_{nom}	75.1	44.6*	81.91

^{*} Calculated from 10 meter to 3 meter with 10.46 dB

© cetecom advanced GmbH Page 18 of 35

^{*}Value recalculated from Peak-to-Average correction factor taken from test report No. 1-8318-24-01-02_TR1-R01 $\,$

11.2 Field strength of the harmonics and spurious

Measurement:

Measurement parameter			
Detector:	Peak / average / quasi peak		
Sweep time:	Auto		
Resolution bandwidth:	200 Hz / 9 kHz / 120 kHz		
Video bandwidth:	3 x RBW		
Span:	See plots		
Trace-Mode:	Max. hold		
Test setup	See chapter 7.1A & 7.2A,B		
Measurement uncertainty	See chapter 9		

Limits: Part 15.231

In addition to the provisions of Section 15.205, the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

FCC			IC		
	FCC Part 15.231				
Fundamental Frequency (MHz)	Field strength of s	spurious (µV/m)	Measurement distance (m)		
40.66 - 40.70	225		3		
70-130	125		3		
130-174	125 to 375		3		
174-260	375		3		
260-470	375 to 1,250		3		
Above 470	1,25	50	3		

Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in Section 15.209, whichever limit permits a higher field strength.

FCC						
	FCC Part 15.209					
Frequency (MHz)	Field strength (µV/m)	Measurement distance (m)				
0.009 - 0.490	2400/F(kHz)	300				
0.490 - 1.705	24000/F(kHz)	30				
1.705 – 30	30	30				
30 – 88	100	3				
88 – 216	150	3				
216 - 960	200	3				
above 960	500	3				

	IC	
Frequency	Field strength	Measurement distance
(MHz)	(μA/m)	(m)
0.009 - 0.490	6.37/F (F in kHz)	300
0.490 - 1.705	63.7/F (F in kHz)	30
1.705 – 30	0.08 (-22 dBμA/m)	30

© cetecom advanced GmbH Page 19 of 35

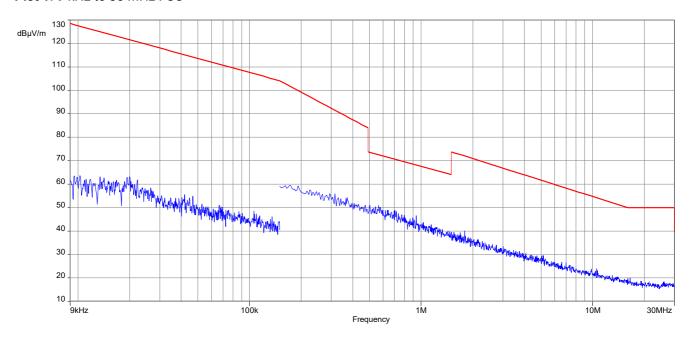
Results: Spurious emissions within the restricted bands (Part15.205 & 15.209)

Fundamental Frequency	Spurious Frequency	Detector	Limit max. allowed [dBµV/m]	Amplitude of emission [dBµV/m]	
315 MHz 00K	All emissions were more than 10 dB below the limit.				
315 MHz FSK	All emissions were more than 10 dB below the limit.				
426 MHz FSK	All emissions were more than 10 dB below the limit.				
469 MHz FSK	All emissions were more than 10 dB below the limit.				

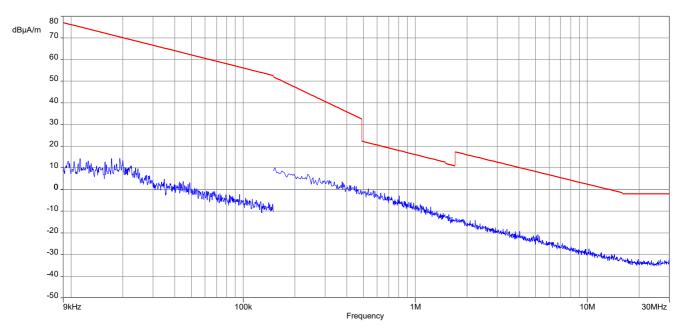
For emissions below 1 GHz, see table below the plots.

Results: Spurious emissions outside the restricted bands (Part15.231)

Fundamental	Spurious	Detector	Limit	Amplitude of emission
Frequency	Frequency		max. allowed [dBµV/m]	[dBµV/m]
All frequencies		All emiss	ons were more than 10 dB below	the limit.

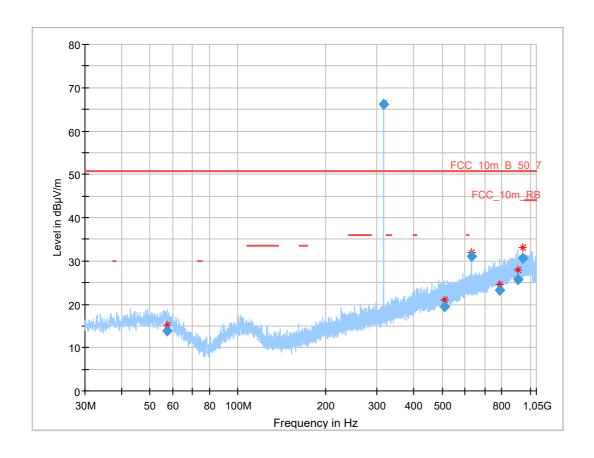

For emissions below 1 GHz, see table below the plots.

© cetecom advanced GmbH Page 20 of 35



Plots 315 MHz 00K:

Plot 1: 9 kHz to 30 MHz FCC


Plot 2: 9 kHz to 30 MHz IC

© cetecom advanced GmbH Page 21 of 35

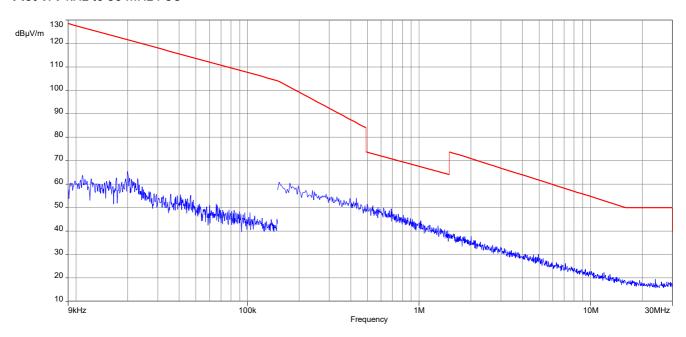
Plot 3: 30 MHz to 1000 MHz, vertical & horizontal polarisation

Final_Result

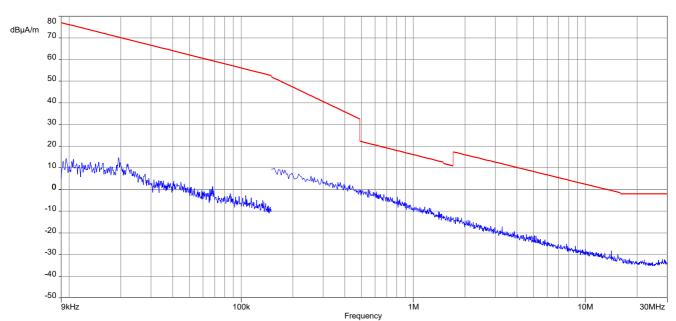
Frequency (MHz)	QuasiPea k (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
57.301	13.84	50.7	36.9	1000	120.0	195.0	V	37	15
509.693	19.35	50.7	31.4	1000	120.0	147.0	Н	88	20
629.998	31.03	50.7	19.7	1000	120.0	142.0	Н	307	22
783.687	23.13	50.7	27.6	1000	120.0	191.0	V	37	23
905.980	25.70	50.7	25.0	1000	120.0	195.0	Н	-28	25
944.992	30.55	50.7	20.2	1000	120.0	108.0	Н	-32	25

© cetecom advanced GmbH Page 22 of 35

Plot 4: 1000 MHz to 5 GHz, vertical & horizontal polarisation

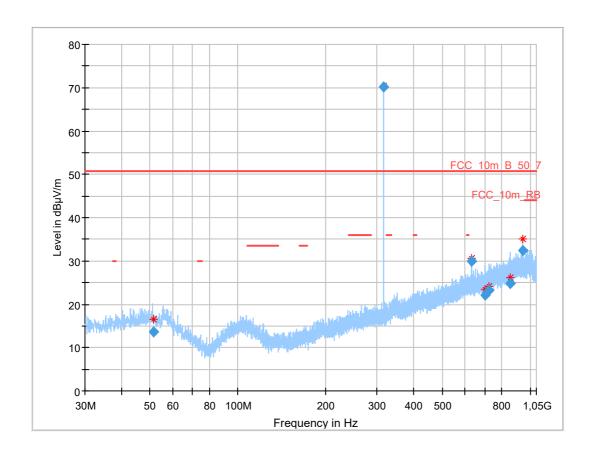


© cetecom advanced GmbH Page 23 of 35



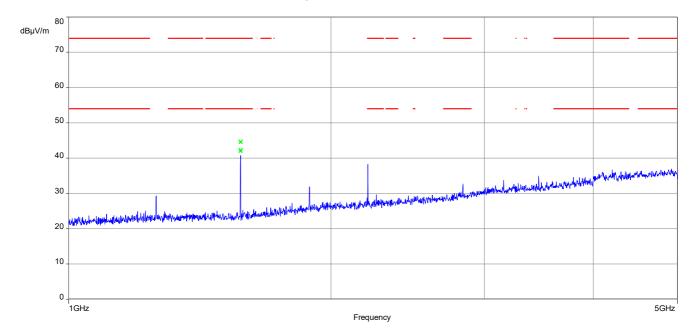
Plots 315 MHz FSK:

Plot 1: 9 kHz to 30 MHz FCC


Plot 2: 9 kHz to 30 MHz IC

© cetecom advanced GmbH Page 24 of 35

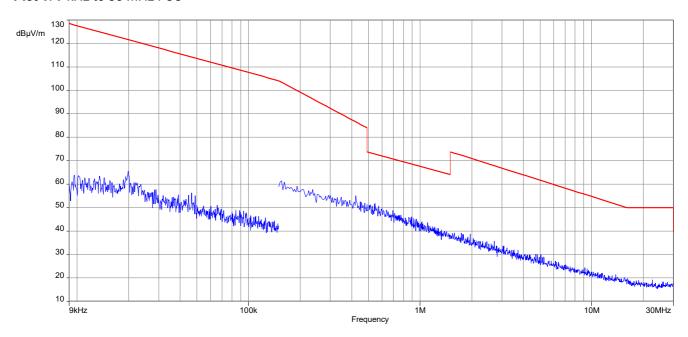
Plot 3: 30 MHz to 1000 MHz, vertical & horizontal polarisation


Final_Result

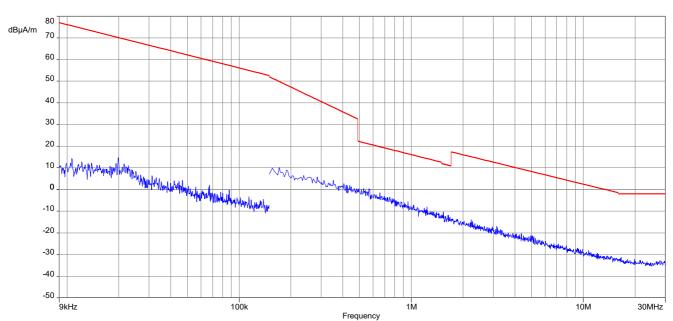
Frequency (MHz)	QuasiPea k (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
51.547	13.53	50.7	37.2	1000	120.0	137.0	V	245	15
630.118	29.88	50.7	20.8	1000	120.0	147.0	Н	217	22
698.907	22.23	50.7	28.5	1000	120.0	195.0	V	-35	22
725.139	23.15	50.7	27.6	1000	120.0	139.0	Н	6	23
855.086	24.89	50.7	25.8	1000	120.0	195.0	V	209	25
944.876	32.51	50.7	18.2	1000	120.0	101.0	Н	72	25

© cetecom advanced GmbH Page 25 of 35

Plot 4: 1000 MHz to 5 GHz, vertical & horizontal polarisation

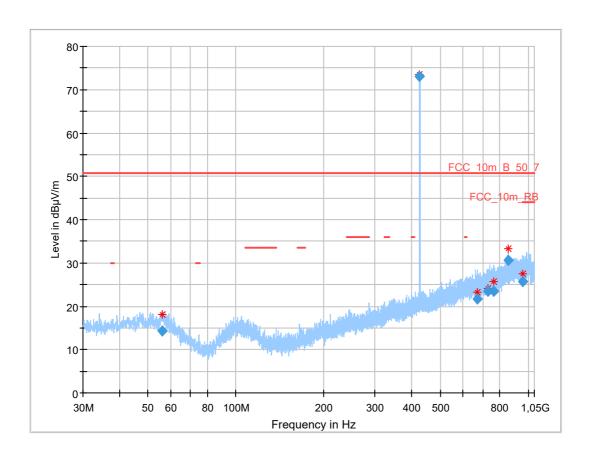


© cetecom advanced GmbH Page 26 of 35



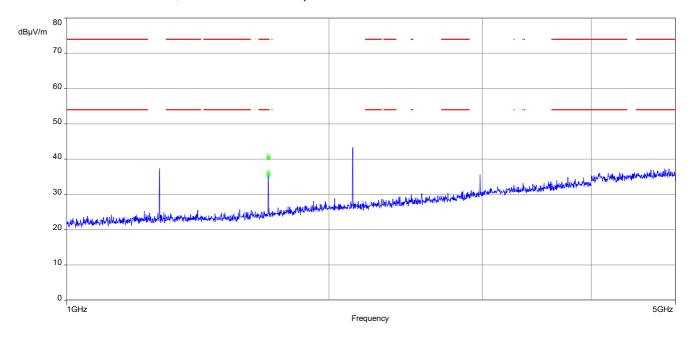
Plots 426 MHz FSK:

Plot 1: 9 kHz to 30 MHz FCC


Plot 2: 9 kHz to 30 MHz IC

© cetecom advanced GmbH Page 27 of 35

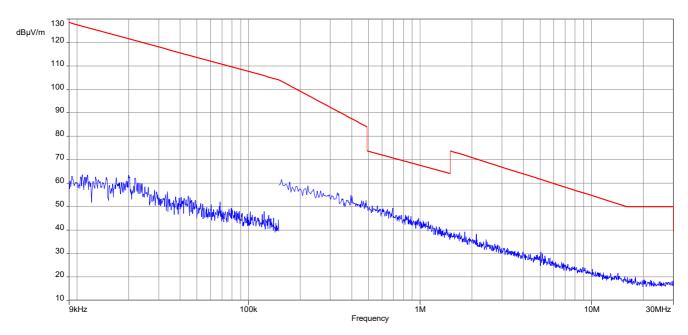
Plot 3: 30 MHz to 1000 MHz, vertical & horizontal polarisation


Final_Result

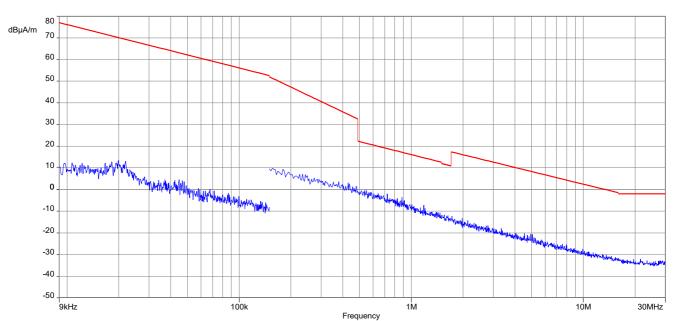
Frequency (MHz)	QuasiPea k (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
55.846	14.32	50.7	36.4	1000	120.0	145.0	V	203	16
671.994	21.77	50.7	28.9	1000	120.0	195.0	V	24	22
728.710	23.41	50.7	27.3	1000	120.0	195.0	Н	267	23
762.110	23.50	50.7	27.2	1000	120.0	105.0	V	-29	24
851.897	30.64	50.7	20.1	1000	120.0	112.0	Н	86	25
958.280	25.64	50.7	25.1	1000	120.0	102.0	Н	167	25

© cetecom advanced GmbH Page 28 of 35

Plot 4: 1000 MHz to 5 GHz, vertical & horizontal polarisation

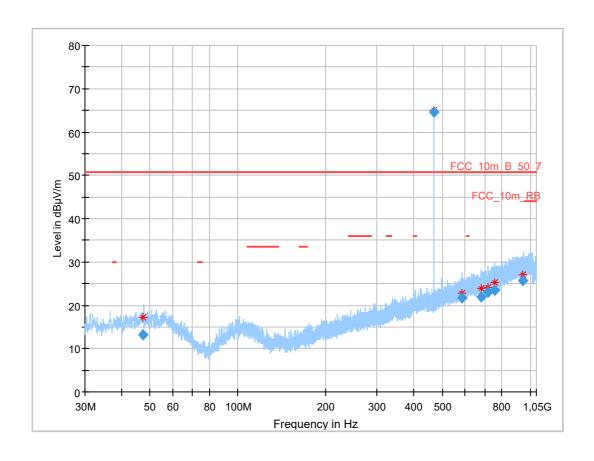


© cetecom advanced GmbH Page 29 of 35



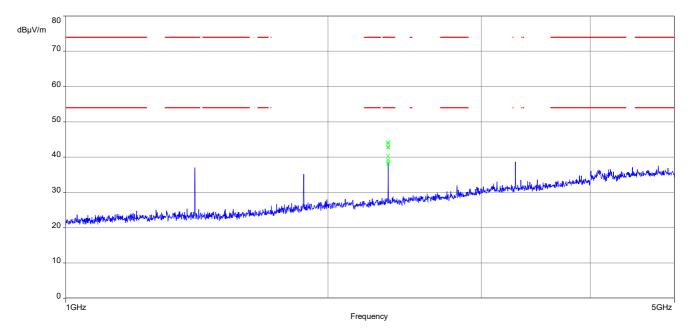
Plots 469 MHz OOK:

Plot 1: 9 kHz to 30 MHz FCC


Plot 2: 9 kHz to 30 MHz IC

© cetecom advanced GmbH Page 30 of 35

Plot 3: 30 MHz to 1000 MHz, vertical & horizontal polarisation


Final_Result

Frequency (MHz)	QuasiPea k (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
47.535	13.24	50.7	37.5	1000	120.0	123.0	V	115	15
582.880	21.66	50.7	29.0	1000	120.0	195.0	Н	-25	21
680.139	21.88	50.7	28.8	1000	120.0	156.0	Н	37	22
718.582	22.93	50.7	27.8	1000	120.0	175.0	Н	-26	22
758.527	23.40	50.7	27.3	1000	120.0	195.0	Н	-1	24
947.305	25.80	50.7	24.9	1000	120.0	195.0	Н	127	25

© cetecom advanced GmbH Page 31 of 35

Plot 4: 1000 MHz to 5 GHz, vertical & horizontal polarisation

© cetecom advanced GmbH Page 32 of 35

12 Observations

No observations except those reported with the single test cases have been made.

© cetecom advanced GmbH Page 33 of 35

13 Glossary

AVG	Average
С	Compliant
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz
CAC	Channel availability check
CW	Clean wave
DC	Duty cycle
DFS	Dynamic frequency selection
DSSS	Dynamic sequence spread spectrum
DUT	Device under test
EN	European Standard
ETSI	European Telecommunications Standards Institute
EMC	Electromagnetic Compatibility
EUT	Equipment under test
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
FHSS	Frequency hopping spread spectrum
FVIN	Firmware version identification number
GNSS	Global Navigation Satellite System
GUE	GNSS User Equipment
HMN	Host marketing name
HVIN	Hardware version identification number
HW	Hardware
IC	Industry Canada
Inv. No.	Inventory number
MC	Modulated carrier
NA	Not applicable
NC	Not compliant
NOP	Non occupancy period
NP	Not performed
OBW	Occupied bandwidth
OC	Operating channel
OCW	Operating channel bandwidth
OFDM	Orthogonal frequency division multiplexing
ООВ	Out of band
OP	Occupancy period
PER	Packet error rate
PMN	Product marketing name
PP	Positive peak
QP	Quasi peak
RLAN	Radio local area network
S/N or SN	Serial number
SW	Software
UUT	Unit under test
WLAN	Wireless local area network

© cetecom advanced GmbH Page 34 of 35

14 Document history

Version	Applied changes	Date of release
R01	Initial release	2025-02-07

© cetecom advanced GmbH Page 35 of 35