Report No. : SF201118C03 Applicant : Verifone, Inc. Address : 1400 West Stanford Ranch Road Suite 200 Rocklin CA 95765 USA Product : Point of Sale Terminal FCC ID : B32V2104G Brand : Verifone Model No. : V210 4G Standards : FCC 47 CFR Part 2 (2.1093), IEEE C95.1:1992, IEEE Std 1528:2013 KDB 865664 D01 v01r04, KDB 865664 D02 v01r02 KDB 447498 D01 v06, KDB 941225 D01 v03r01, KDB 941225 D05 v02r05 Sample Received Date : Nov. 18, 2020 Date of Testing : Nov. 28, 2020 ~ Dec. 11, 2020 Lab Address : No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan Test Location : No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City, Taiwan **CERTIFICATION:** The above equipment have been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch–Lin Kou Laboratories**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's SAR characteristics under the conditions specified in this report. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by TAF or any government agencies. Prepared By : Shelly Hsueh / Specialist Approved By: Gordon Lin / Manager Taf Testing Laboratory 2021 FCC Accredited No.: TW0003 This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. Report Format Version 5.0.0 Page No. : 1 of 35 Report No.: SF201118C03 Issued Date : Jan. 13, 2021 Page No. : 2 of 35 Issued Date : Jan. 13, 2021 ## **Table of Contents** | | elease Control Record | | | | | |----|------------------------------|---|----------------|--|--| | 1. | Summary of Maximum SAR Value | | | | | | 2. | | | | | | | 3. | SAR | Measurement System | 6 | | | | | 3.1 | Definition of Specific Absorption Rate (SAR) | 6 | | | | | 3.2 | SPEAG DASY6 System | 6 | | | | | | 3.2.1 Robot | | | | | | | 3.2.2 Probes | 8 | | | | | | 3.2.3 Data Acquisition Electronics (DAE) | | | | | | | 3.2.4 Phantoms | | | | | | | 3.2.5 Device Holder | | | | | | | 3.2.6 System Validation Dipoles | 10 | | | | | | 3.2.7 Power Source | 10 | | | | | | 3.2.8 Tissue Simulating Liquids | 1 ² | | | | | 3.3 | SAR System Verification | 13 | | | | | 3.4 | SAR Measurement Procedure | | | | | | | 3.4.1 Area Scan and Zoom Scan Procedure | | | | | | | 3.4.2 Volume Scan Procedure | | | | | | | 3.4.3 Power Drift Monitoring | | | | | | | 3.4.4 Spatial Peak SAR Evaluation | | | | | | | 3.4.5 SAR Averaged Methods | | | | | 4. | SAR | Measurement Evaluation | | | | | | 4.1 | EUT Configuration and Setting | | | | | | 4.2 | EUT Testing Position | | | | | | | 4.2.1 Extremity Exposure Conditions | | | | | | 4.3 | Tissue Verification | | | | | | 4.4 | System Validation | | | | | | 4.5 | System Verification | | | | | | 4.6 | Maximum Output Power | | | | | | | 4.6.1 Maximum Target Conducted Power | | | | | | | 4.6.2 Measured Conducted Power Result | | | | | | 4.7 | SAR Testing Results | | | | | | | 4.7.1 SAR Test Reduction Considerations | | | | | | | 4.7.2 SAR Results for Extremity Exposure Condition (Test Separation Distance is 0 mm) | | | | | | | 4.7.3 SAR Measurement Variability | | | | | | | 4.7.4 Simultaneous Multi-band Transmission Evaluation | 32 | | | | 5. | Calib | ration of Test Equipment | 3 | | | | 6. | | urement Uncertainty | | | | | 7. | | mation of the Testing Laboratories | | | | Appendix A. SAR Plots of System Verification Appendix B. SAR Plots of SAR Measurement Appendix C. Calibration Certificate for Probe and Dipole Appendix D. Photographs of EUT and Setup **Appendix E. Maximum Target Conducted Power** **Appendix F. Measured Conducted Power Result** Appendix G. Analysis of Simultaneous Transmission SAR ## **Release Control Record** | Report No. | Reason for Change | Date Issued | |-------------|-------------------|---------------| | SF201118C03 | Initial release | Jan. 13, 2021 | Report Format Version 5.0.0 Page No. : 3 of 35 Report No.: SF201118C03 Issued Date : Jan. 13, 2021 ## 1. Summary of Maximum SAR Value | Equipment
Class | Mode | Highest SAR-10g Scaled
Extremity
(W/kg) | |--------------------|-----------|---| | | GSM850 | 0.41 | | | GSM1900 | 3.20 | | | WCDMA II | 2.56 | | | WCDMA IV | 3.57 | | | WCDMA V | 0.32 | | | LTE 2 | 3.07 | | | LTE 4 | 2.43 | | PCB | LTE 5 | 0.35 | | | LTE 7 | 3.58 | | | LTE 12 | 0.33 | | | LTE 13 | 0.29 | | | LTE 25 | 3.58 | | | LTE 26 | 0.39 | | | LTE 38 | 1.38 | | | LTE 41 | 1.46 | | DTS | 2.4G WLAN | 0.31 | | | 5.3G WLAN | 0.34 | | NII | 5.6G WLAN | 0.37 | | | 5.8G WLAN | 0.38 | | DSS | Bluetooth | 0.00 | | Highest Simultaneous Transmission SAR | Highest SAR-10g Scaled
Extremity
(W/kg) | |---------------------------------------|---| | | 3.96 | #### Note: 1. The SAR criteria (Head & Body: SAR-1g1.6 W/kg, and Extremity: SAR-10g 4.0 W/kg) for general population/uncontrolled exposure is specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992. Report Format Version 5.0.0 Page No. : 4 of 35 Report No.: SF201118C03 Issued Date : Jan. 13, 2021 ## 2. <u>Description of Equipment Under Test</u> | EUT Type | Point of Sale Terminal | |---|--| | FCC ID | B32V2104G | | Brand Name | Verifone | | Model Name | V210 4G | | Tx Frequency Bands
(Unit: MHz) | GSM850: 824.2 ~ 848.8 GSM1900: 1850.2 ~ 1909.8 WCDMA Band II: 1852.4 ~ 1907.6 WCDMA Band IV: 1712.4 ~ 1752.6 WCDMA Band V: 826.4 ~ 846.6 LTE Band 2: 1850.7 ~ 1909.3 (BW: 1.4M, 3M, 5M, 10M, 15M, 20M) LTE Band 4: 1710.7 ~ 1754.3 (BW: 1.4M, 3M, 5M, 10M, 15M, 20M) LTE Band 5: 824.7 ~ 848.3 (BW: 1.4M, 3M, 5M, 10M) LTE Band 7: 2502.5 ~ 2567.5 (BW: 5M, 10M, 15M, 20M) LTE Band 12: 699.7 ~ 715.3 (BW: 1.4M, 3M, 5M, 10M) LTE Band 13: 799.5 ~ 784.5 (BW: 5M, 10M) LTE Band 25: 1850.7 ~ 1914.3 (BW: 1.4M, 3M, 5M, 10M, 15M, 20M) LTE Band 26: 814.7 ~ 848.3 (BW: 1.4M, 3M, 5M, 10M, 15M) LTE Band 38: 2572.5 ~ 2617.5 (BW: 5M, 10M, 15M, 20M) LTE Band 41: 2502.5 ~ 2687.5 (BW: 5M, 10M, 15M, 20M) WLAN: 2412 ~ 2462, 5180 ~ 5240, 5260 ~ 5320, 5500 ~ 5700,5745 ~ 5825 Bluetooth: 2402 ~ 2480 NFC: 13.56 | | Uplink Modulations | GSM & GPRS : GMSK EDGE : 8PSK WCDMA : QPSK LTE : QPSK, 16QAM 802.11b : DSSS 802.11a/g/n/ac : OFDM Bluetooth : GFSK, π/4-DQPSK, 8-DPSK NFC : ASK | | Maximum Tune-up Conducted Power (Unit: dBm) | Please refer to section 4.6.1 of this report | | Antenna Type | WLAN is PIFA and WWAN is Dipole
Peak Antenna Gain : -0.2 dBi for 2.4GHz, 3.4 dBi for 5GHz | | EUT Stage | Identical Prototype | ### Note: 1. The above EUT information is declared by manufacturer and for more detailed features description please refers to the manufacturer's specifications or User's Manual. ## **List of Accessory:** | | Brand Name | Verifone | |---------|--------------|-----------------| | Battery | Model Name | BPK183-001 | | Dallery | Power Rating | 3.7Vdc, 3100mAh | | Туре | Туре | Li-ion | Report Format Version 5.0.0 Page No. : 5 of 35 Report No.: SF201118C03 Issued Date : Jan. 13, 2021 ## 3. SAR Measurement System ## 3.1 Definition of Specific Absorption Rate (SAR) SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general
population/uncontrolled. The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. ## 3.2 SPEAG DASY6 System DASY6 system consists of high precision robot, probe alignment sensor, phantom, robot controller, controlled measurement server and near-field probe. The robot includes six axes that can move to the precision position of the DASY6 software defined. The DASY6 software can define the area that is detected by the probe. The robot is connected to controlled box. Controlled measurement server is connected to the controlled robot box. The DAE includes amplifier, signal multiplexing, AD converter, offset measurement and surface detection. It is connected to the Electro-optical coupler (ECO). The ECO performs the conversion form the optical into digital electric signal of the DAE and transfers data to the PC. Report Format Version 5.0.0 Page No. : 6 of 35 Report No.: SF201118C03 Issued Date : Jan. 13, 2021 Fig-3.1 SPEAG DASY6 System Setup #### 3.2.1 Robot The DASY6 systems use the high precision robots from Stäubli SA (France). For the 6-axis controller system, the robot controller version of CS8c from Stäubli is used. The Stäubli robot series have many features that are important for our application: - High precision (repeatability ±0.035 mm) - · High reliability (industrial design) - · Jerk-free straight movements - Low ELF interference (the closed metallic construction shields against motor control fields) Report Format Version 5.0.0 Page No. : 7 of 35 Report No.: SF201118C03 Issued Date : Jan. 13, 2021 ### 3.2.2 Probes The SAR measurement is conducted with the dosimetric probe. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. | Model | EX3DV4 | | |---------------|--|--| | Construction | Symmetrical design with triangular core. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE). | | | Frequency | 4 MHz to 10 GHz
Linearity: ± 0.2 dB | | | Directivity | ± 0.1 dB in TSL (rotation around probe axis)
± 0.3 dB in TSL (rotation normal to probe axis) | | | Dynamic Range | 10 μW/g to 100 mW/g
Linearity: ± 0.2 dB (noise: typically < 1 μW/g) | | | Dimensions | Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm | | ## 3.2.3 Data Acquisition Electronics (DAE) | Model | DAE3, DAE4 | | |----------------------|---|----------| | Construction | Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop. | | | Measurement Range | -100 to +300 mV (16 bit resolution and two range settings: 4mV, 400mV) | To Tolke | | Input Offset Voltage | < 5µV (with auto zero) | | | Input Bias Current | < 50 fA | | | Dimensions | 60 x 60 x 68 mm | | #### 3.2.4 Phantoms | Model | SAM-Twin Phantom | | |-----------------|---|--| | Construction | The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE Std 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body-mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot. | | | Material | Vinylester, fiberglass reinforced (VE-GF) | | | Shell Thickness | 2 ± 0.2 mm (6 ± 0.2 mm at ear point) | | | Dimensions | Length: 1000 mm
Width: 500 mm
Height: adjustable feet | | | Filling Volume | approx. 25 liters | | Report Format Version 5.0.0 Page No. : 8 of 35 Report No. : SF201118C03 Issued Date : Jan. 13, 2021 | Model | ELI | | |-----------------|---|---| | Construction | The ELI phantom is used for compliance testing of handheld and body-mounted wireless devices. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles. | | | Material | Vinylester, fiberglass reinforced (VE-GF) | | | Shell Thickness | 2.0 ± 0.2 mm (bottom plate) | | | Dimensions | Major axis: 600 mm
Minor axis: 400 mm | SSS E SERVICE DE LA PROPERTIE DE LA PROPE | | Filling Volume | approx. 30 liters | | ## 3.2.5 Device Holder | Model | MD4HHTV5 - Mounting Device for Hand-Held Transmitters | 41 | |--------------|--|----| | Construction | In combination with the Twin SAM or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). | | | Material | Polyoxymethylene (POM) | R | | Model | MDA4WTV5 - Mounting Device Adaptor for Ultra Wide
Transmitters | Back. | |--------------|--|-------| | Construction | An upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm. | | | Material | Polyoxymethylene (POM) | | | Model | MDA4SPV6 - Mounting Device Adaptor for Smart Phones | | |--------------|--|---| | Construction | The solid low-density MDA4SPV6 adaptor assuring no impact on the DUT radiation performance and is conform with any DUT design and shape. | - | | Material | ROHACELL | | Report Format Version 5.0.0 Page No. : 9 of 35 Report No.: SF201118C03 Issued Date : Jan. 13, 2021 | Model | MD4LAPV5 - Mounting Device for Laptops and other Body-Worn Transmitters | | |--------------|--|------| | Construction | In combination with the Twin SAM or ELI phantoms, the Mounting Device (Body-Worn) enables testing of transmitter devices according to IEC 62209-2 specifications. The device holder can be locked for positioning at a flat phantom section. | N OF | | Material | Polyoxymethylene (POM), PET-G, Foam | | ## 3.2.6 System Validation Dipoles | Model | D-Serial | | |------------------|--|--| | Construction | Symmetrical dipole with I/4
balun. Enables measurement of feed point impedance with NWA. Matched for use near flat phantoms filled with tissue simulating solutions. | | | Frequency | 750 MHz to 5800 MHz | | | Return Loss | > 20 dB | | | Power Capability | > 100 W (f < 1GHz), > 40 W (f > 1GHz) | | ## 3.2.7 Power Source | Model | Powersource1 | | |--------------------------|---|-------------| | Signal Type | Continuous Wave | | | Operating
Frequencies | 600 MHz to 5850 MHz | SURCE! | | Output Power | -5.0 dBm to +17.0 dBm | POWERSOURCE | | Power Supply | 5V DC, via USB jack | 1.2 | | Power Consumption | <3 W | | | Applications | System performance check and validation with a CW signal. | | | | | | Report Format Version 5.0.0 Page No. : 10 of 35 Report No.: SF201118C03 Issued Date : Jan. 13, 2021 ### 3.2.8 Tissue Simulating Liquids For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 10 % are listed in Table-3.1. **Table-3.1 Targets of Tissue Simulating Liquid** | F | | nigets of Tissue office | ` . | D | |-----------|--------------|-------------------------|-----------------|-------------| | Frequency | Target | Range of | Target | Range of | | (MHz) | Permittivity | ±10 % | Conductivity | ±10 % | | 450 | 43.5 | 39.2 ~ 47.9 | 0.87 | 0.78 ~ 0.96 | | 750 | 41.9 | 37.7 ~ 46.1 | 0.89 | 0.80 ~ 0.98 | | 835 | 41.5 | 37.4 ~ 45.7 | 0.90 | 0.81 ~ 0.99 | | 900 | 41.5 | 37.4 ~ 45.7 | 0.97 | 0.87 ~ 1.07 | | 1450 | 40.5 | 36.5 ~ 44.6 | 1.20 | 1.08 ~ 1.32 | | 1500 | 40.4 | 36.4 ~ 44.4 | 1.23 | 1.11 ~ 1.35 | | 1640 | 40.2 | 36.2 ~ 44.2 | 1.31 | 1.18 ~ 1.44 | | 1750 | 40.1 | 36.1 ~ 44.1 | 1.37 | 1.23 ~ 1.51 | | 1800 | 40.0 | 36.0 ~ 44.0 | 1.40 | 1.26 ~ 1.54 | | 1900 | 40.0 | 36.0 ~ 44.0 | 1.40 | 1.26 ~ 1.54 | | 2000 | 40.0 | 36.0 ~ 44.0 | 1.40 | 1.26 ~ 1.54 | | 2100 | 39.8 | 35.8 ~ 43.8 | 1.49 | 1.34 ~ 1.64 | | 2300 | 39.5 | 35.6 ~ 43.5 | 1.67 | 1.50 ~ 1.84 | | 2450 | 39.2 | 35.3 ~ 43.1 | 1.80 | 1.62 ~ 1.98 | | 2600 | 39.0 | 35.1 ~ 42.9 | 1.96 | 1.76 ~ 2.16 | | 3000 | 38.5 | 34.7 ~ 42.4 | 2.40 | 2.16 ~ 2.64 | | 3500 | 37.9 | 34.1 ~ 41.7 | 2.91 | 2.62 ~ 3.20 | | 4000 | 37.4 | 33.7 ~ 41.1 | 3.43 | 3.09 ~ 3.77 | | 4500 | 36.8 | 33.1 ~ 40.5 | 3.94 | 3.55 ~ 4.33 | | 5000 | 36.2 | 32.6 ~ 39.8 | 4.45 | 4.01 ~ 4.90 | | 5200 | 36.0 | 32.4 ~ 39.6 | 4.66 | 4.19 ~ 5.13 | | 5400 | 35.8 | 32.2 ~ 39.4 | 4.86 | 4.37 ~ 5.35 | | 5600 | 35.5 | 32.0 ~ 39.1 | 5.07 | 4.56 ~ 5.58 | | 5800 | 35.3 | 31.8 ~ 38.8 | 5.27 | 4.74 ~ 5.80 | | 6000 | 35.1 | 31.6 ~ 38.6 | 5.48 | 4.93 ~ 6.03 | Report Format Version 5.0.0 Page No. : 11 of 35 Report No.: SF201118C03 Issued Date : Jan. 13, 2021 The dielectric properties of the tissue simulating liquids are defined in IEC 62209-1 and IEC 62209-2. The dielectric properties of the tissue simulating liquids were verified prior to the SAR evaluation using a dielectric assessment kit and a network analyzer. Since the range of ± 10 % of the required target values is used to measure relative permittivity and conductivity, the SAR correction procedure is applied to correct measured SAR for the deviations in permittivity and conductivity. Only positive correction has been used to scale up the measured SAR, and SAR result would not be corrected if the correction Δ SAR has a negative sign. The following table gives the recipes for tissue simulating liquids. **Table-3.2 Recipes of Tissue Simulating Liquid** | Tissue
Type | Bactericide | DGBE | HEC | NaCl | Sucrose | Triton
X-100 | Water | Diethylene
Glycol
Mono-
hexylether | |----------------|-------------|------|-----|------|---------|-----------------|-------|---| | H750 | 0.2 | - | 0.2 | 1.5 | 56.0 | - | 42.1 | - | | H835 | 0.2 | - | 0.2 | 1.5 | 57.0 | - | 41.1 | - | | H900 | 0.2 | - | 0.2 | 1.4 | 58.0 | - | 40.2 | - | | H1450 | - | 43.3 | - | 0.6 | - | - | 56.1 | - | | H1640 | - | 45.8 | - | 0.5 | - | - | 53.7 | - | | H1750 | - | 47.0 | 1 | 0.4 | - | 1 | 52.6 | - | | H1800 | - | 44.5 | ı | 0.3 | - | ı | 55.2 | - | | H1900 | - | 44.5 | 1 | 0.2 | - | 1 | 55.3 | - | | H2000 | - | 44.5 | ı | 0.1 | - | 1 | 55.4 | - | | H2300 | - | 44.9 | ı | 0.1 | - | 1 | 55.0 | - | | H2450 | - | 45.0 | - | 0.1 | - | - | 54.9 | - | | H2600 | - | 45.1 | - | 0.1 | - | - | 54.8 | - | | H3500 | - | 8.0 | 1 | 0.2 | - | 20.0 | 71.8 | - | | H5G | - | - | - | - | - | 17.2 | 65.5 | 17.3 | Report Format Version 5.0.0 Page No. : 12 of 35 Report No. : SF201118C03 Issued Date : Jan. 13, 2021 ### 3.3 SAR System Verification The system check verifies that the system operates within its specifications. It is performed daily or before every SAR measurement. The system check uses normal SAR measurements in the flat section of the phantom with a matched dipole at a specified distance. The system verification setup is shown as below. The SPEAG Powersource1 is a portable and very stable RF source providing a continuous wave (CW) signal. It is designed for conducting SAR system checks and SAR system validation of DASY and is compatible with IEC 62209-1, IEC 62209-2 and IEEE Std 1528 standards. The Powersource1 has been calibrated by SPEAG's ISO/IEC 17025-accredited calibration center. When using Powersource1, the setup can be simplified, as shown in Fig-3.3. The signal purity is warranted by design. Since the Powersource1 is calibrated, no additional equipment is needed and the Powersource1 can directly be connected to the SMA connector of the dipole without a cable as all separate components (signal generator, amplifier, coupler and power meter) are built into the unit. The validation dipole is placed beneath the flat phantom with the specific spacer in place. The distance spacer is touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The Powersource1 is adjusted for the desired forward power of 17 dBm at the dipole connector and the RF output power would be turned on. After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %. Report Format Version 5.0.0 Page No. : 13 of 35 Report No.: SF201118C03 Issued Date : Jan. 13, 2021 ### 3.4 SAR Measurement Procedure According to the SAR test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: - (a) Power reference measurement - (b) Area scan - (c) Zoom scan - (d) Power drift measurement The SAR measurement procedures for each of test conditions are as follows: - (a) Make EUT to transmit maximum output power - (b) Measure conducted output power through RF cable - (c) Place the EUT in the specific position of phantom - (d) Perform SAR testing steps on the DASY system - (e) Record the SAR value #### 3.4.1 Area Scan and Zoom Scan Procedure First area scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an area scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, zoom scan is required. The zoom scan is performed around the highest E-field value to determine the averaged SAR-distribution. Measure the local SAR at a test point at 1.4 mm of the inner surface of the phantom recommended by SEPAG. The area scan (two-dimensional SAR distribution) is performed cover at least an area larger than the projection of the EUT or antenna. The measurement resolution and spatial resolution for interpolation shall be chosen to allow identification of the local peak locations to within one-half of the linear dimension of the corresponding side of the zoom scan volume. Following table provides the measurement parameters required for the area scan. | Parameter | $f \leq 3 \mathrm{GHz}$ | $3 \text{ GHz} < f \leq 6 \text{ GHz}$ | |---|--|--| | Maximum distance from closest measurement point to phantom surface | 5 ± 1 | δ ln(2)/2 ±0.5 | | Maximum probe angle from probe axis to phantom surface normal at the measurement location | 30° ±1° | 20° ±1° | | Maximum area scan spatial resolution: Δx _{Area} , Δy _{Area} | \leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm | 3 – 4 GHz: ≦12 mm
4 – 6 GHz: ≦10 mm | From the scanned SAR distribution, identify the position of the maximum SAR value, in addition identify the positions of any local maxima with SAR values within 2 dB of the maximum value that will not be within the zoom scan of other peaks. Additional peaks shall be measured only when the primary peak is within 2 dB of the SAR compliance limit (e.g. 1 W/kg for 1.6 W/kg, 1 g limit; or 1.26 W/kg, 10 g limit). Report Format Version 5.0.0 Page No. : 14 of 35 Report No.: SF201118C03 Issued Date : Jan. 13, 2021 The zoom scan (three-dimensional SAR distribution) is performed at the local maxima locations identified in previous area scan procedure. The zoom scan volume must be larger than the required minimum dimensions. When graded grids are used, which only applies in the direction normal to the phantom surface, the initial grid separation closest to the phantom surface and subsequent graded grid increment ratios must satisfy the required protocols. The 1-g SAR averaging volume
must be fully contained within the zoom scan measurement volume boundaries; otherwise, the measurement must be repeated by shifting or expanding the zoom scan volume. The similar requirements also apply to 10-g SAR measurements. Following table provides the measurement parameters required for the zoom scan. | Para | ameter | <i>f</i> ≤ 3 GHz | 3 GHz < <i>f</i> ≤ 6 GHz | |---|---|-----------------------------------|--| | Maximum zoom scan spatial resolution: Δx _{Zoom} , Δy _{Zoom} | | ≦2 GHz: ≦8 mm
2 – 3 GHz: ≦5 mm | 3 – 4 GHz: ≦5 mm
4 – 6 GHz: ≦4 mm | | Maximum zoom scan spatial | uniform grid: Δz _{Zoom} (n) | <u>≤</u> 5 mm | 3 – 4 GHz: ≦4 mm
4 – 5 GHz: ≦3 mm
5 – 6 GHz: ≦2 mm | | resolution, normal to phantom surface | graded grids:
Δz _{Zoom} (1) | ≦4 mm | 3 – 4 GHz: ≦3.0 mm
4 – 5 GHz: ≦2.5 mm
5 – 6 GHz: ≦2.0 mm | | | $\Delta z_{Zoom}(n>1)$ | <u>≦</u> 1.5·Δz _{Zoo} | _{om} (n-1) mm | | Minimum zoom scan volume (x, y | r, z) | ≥30 mm | 3 – 4 GHz: ≥28 mm
4 – 5 GHz: ≥25 mm
5 – 6 GHz: ≥22 mm | Per IEC 62209-2 AMD1, the successively higher resolution zoom scan is required if the zoom scan measured as defined above complies with both of the following criteria, or if the peak spatial-average SAR is below 0.1 W/kg, no additional measurements are needed: - (1) The smallest horizontal distance from the local SAR peaks to all points 3 dB below the SAR peak shall be larger than the horizontal grid steps in both x and y directions (Δx , Δy). This shall be checked for the measured zoom scan plane conformal to the phantom at the distance zM1. - (2) The ratio of the SAR at the second measured point (M2) to the SAR at the closest measured point (M1) at the x-y location of the measured maximum SAR value shall be at least 30 %. If one or both of the above criteria are not met, the zoom scan measurement shall be repeated using a finer resolution. New horizontal and vertical grid steps shall be determined from the measured SAR distribution so that the above criteria are met. Compliance with the above two criteria shall be demonstrated for the new measured zoom scan. #### 3.4.2 Volume Scan Procedure The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR. Report Format Version 5.0.0 Page No. : 15 of 35 Report No.: SF201118C03 Issued Date : Jan. 13, 2021 #### 3.4.3 Power Drift Monitoring All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested. #### 3.4.4 Spatial Peak SAR Evaluation The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages: - (a) Extraction of the measured data (grid and values) from the Zoom Scan - (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters) - (c) Generation of a high-resolution mesh within the measured volume - (d) Interpolation of all measured values form the measurement grid to the high-resolution grid - (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface - (f) Calculation of the averaged SAR within masses of 1g and 10g #### 3.4.5 SAR Averaged Methods In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation. Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm. Report Format Version 5.0.0 Page No. : 16 of 35 Report No.: SF201118C03 Issued Date : Jan. 13, 2021 ## 4. SAR Measurement Evaluation ## 4.1 EUT Configuration and Setting #### <Connections between EUT and System Simulator> For WWAN SAR testing, the EUT was linked and controlled by base station emulator. Communication between the EUT and the emulator was established by air link. The distance between the EUT and the communicating antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT. The EUT was set from the emulator to radiate maximum output power during SAR testing. #### <Considerations Related to GSM / GPRS / EDGE for Setup and Testing> The maximum multi-slot capability supported by this device is as below. - 1. This EUT is class B device - 2. This EUT supports GPRS multi-slot class 12 (max. uplink: 4, max. downlink: 4, total timeslots: 5) - 3. This EUT supports EDGE multi-slot class 12 (max. uplink: 4, max. downlink: 4, total timeslots: 5) # <Considerations Related to WCDMA for Setup and Testing> Release 5 HSDPA Data Devices The 3G SAR test reduction procedure is applied to body SAR with 12.2 kbps RMC as the primary mode. Otherwise, body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in 12.2 kbps RMC without HSDPA.HSDPA is configured according to the applicable UE category of a test device. The number of HS-DSCH/HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms and a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors(β_c , β_d), and HS-DPCCH power offset parameters (Δ_{ACK} , Δ_{NACK} , Δ_{CQI}) are set according to values indicated in below. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set. | Sub-test | βς | β_d | β _d
(SF) | β₀/β _d | β _{HS} ⁽¹⁾⁽²⁾ | CM ⁽³⁾
(dB) | MPR ⁽³⁾
(dB) | |----------|----------------------|----------------------|------------------------|----------------------|-----------------------------------|---------------------------|----------------------------| | 1 | 2/15 | 15/15 | 64 | 2/15 | 4/15 | 0.0 | 0.0 | | 2 | 12/15 ⁽⁴⁾ | 15/15 ⁽⁴⁾ | 64 | 12/15 ⁽⁴⁾ | 24/15 | 1.0 | 0.0 | | 3 | 15/15 | 8/15 | 64 | 15/8 | 30/15 | 1.5 | 0.5 | | 4 | 15/15 | 4/15 | 64 | 15/4 | 30/15 | 1.5 | 0.5 | Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{HS} =30/15* β_c . Report Format Version 5.0.0 Page No. : 17 of 35 Report No.: SF201118C03 Issued Date : Jan. 13, 2021 Note 2:For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, Δ_{ACK} and Δ_{NACK} = 30/15 with β_{HS} =30/15* β_c , and Δ_{CQI} =24/15 with β_{HS} =24/15* β_c . Note 3:CM = 1 for β_c/β_d =12/15, β_{HS}/β_c =24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases. Note 4:For subtest 2 the β_{σ}/β_{d} ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_{c} = 11/15 and β_{d} = 15/15. #### Release 6 HSUPA Data Devices The 3G SAR test reduction procedure is applied to body SAR with 12.2 kbps RMC as the primary mode. Otherwise, body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC
configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA. When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode. Otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing. Due to inner loop power control requirements in HSPA, a communication test set is required for output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSPA are configured according to the β values indicated in below. | Sub-test | βε | βd | β _d
(SF) | β _c / β _d | β HS ⁽¹⁾ | β _{ec} | β ed ⁽⁴⁾⁽⁵⁾ | β _{ed}
(SF) | β _{ed}
(Codes) | CM ⁽²⁾
(dB) | MPR ⁽²⁾⁽⁶⁾
(dB) | AG ⁽⁵⁾
Index | E-TFCI | |----------|----------|----------------------|------------------------|---|----------------------------|-----------------|--|-------------------------|----------------------------|---------------------------|-------------------------------|----------------------------|--------| | 1 | 11/15(3) | 15/15 ⁽³⁾ | 64 | 11/15(3) | 22/15 | 209/225 | 1309/225 | 4 | 1 | 1.0 | 0.0 | 20 | 75 | | 2 | 6/15 | 15/15 | 64 | 6/15 | 12/15 | 12/15 | 94/75 | 4 | 1 | 3.0 | 2.0 | 12 | 67 | | 3 | 15/15 | 9/15 | 64 | 15/9 | 30/15 | 30/15 | β _{ed} 1: 47/15
β _{ed} 2: 47/15 | | 2 | 2.0 | 1.0 | 15 | 92 | | 4 | 2/15 | 15/15 | 64 | 2/15 | 4/15 | 2/15 | 56/75 | 4 | 1 | 3.0 | 2.0 | 17 | 71 | | 5 | 15/15 | 0 | - | - | 5/15 | 5/15 | 47/15 | 4 | 1 | 1.0 | 0.0 | 12 | 67 | Note 1:For sub-test 1 to 4, Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{HS} = 30/15 * β_c . For sub-test 5, Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 5/15 with β_{HS} =5/15* β_c . #### **DC-HSDPA SAR Guidance** The 3G SAR test reduction procedure is applied to DC-HSDPA with 12.2 kbps RMC as the primary mode. Otherwise, when SAR is required for Rel. 5 HSDPA, SAR is required for Rel. 8 DC-HSDPA. Power is measured for DC-HSDPA according to the H-Set 12, FRC configuration in Table C.8.1.12 of 3GPP TS 34.121-1 to determine SAR test reduction. A primary and a secondary serving HS-DSCH Cell are required to perform the power measurement and for the results to be acceptable. Report Format Version 5.0.0 Page No. : 18 of 35 Report No.: SF201118C03 Issued Date : Jan. 13, 2021 Note 2:CM = 1 forβ./βd =12/15,βHs/βc =24/15. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference. Note 3:For subtest 1 theβdβdratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) toβc = 10/15 andβd = 15/15. Note 4:In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g. Note 5:βedcan not be set directly; it is set by Absolute Grant Value. Note 6:For subtests 2, 3 and 4, UE may perform E-DPDCH power scaling at max power which could results in slightly smaller MPR values. #### <Considerations Related to LTE for Setup and Testing> This device contains LTE transmitter which follows 3GPP standards, is category 3, supports both QPSK and QAM modulations, and supported LTE band and channel bandwidth is listed in below. The output power was tested per 3GPP TS 36.521-1 maximum transmit procedures for both QPSK and QAM modulation. The results please refer to section 4.6 of this report. | | EUT Supported LTE Band and Channel Bandwidth | | | | | | | | | | | |----------|--|----------|----------|-----------|-----------|-----------|--|--|--|--|--| | LTE Band | BW 1.4 MHz | BW 3 MHz | BW 5 MHz | BW 10 MHz | BW 15 MHz | BW 20 MHz | | | | | | | 2 | V | V | V | V | V | V | | | | | | | 4 | V | V | V | V | V | V | | | | | | | 5 | V | V | V | V | | | | | | | | | 7 | | | V | V | V | V | | | | | | | 12 | V | V | V | V | | | | | | | | | 13 | V | V | V | V | | | | | | | | | 25 | V | V | V | V | V | V | | | | | | | 26 | V | V | V | V | V | | | | | | | | 38 | | | V | V | V | V | | | | | | | 41 | | | V | V | V | V | | | | | | The LTE maximum power reduction (MPR) in accordance with 3GPP TS 36.101 is active all times during LTE operation. The allowed MPR for the maximum output power is specified in below. | | | Channel Bandwidth / RB Configurations | | | | | | | | | |------------|------------|---------------------------------------|------|---------------------|-------|-----------|-----------------|--|--|--| | Modulation | BW 1.4 MHz | MHz BW 3 MHz BW 5 MI | | BW 10 MHz BW 15 MHz | | BW 20 MHz | Setting
(dB) | | | | | QPSK | > 5 | > 4 | > 8 | > 12 | > 16 | > 18 | 1 | | | | | 16QAM | <= 5 | <= 4 | <= 8 | <= 12 | <= 16 | <= 18 | 1 | | | | | 16QAM | > 5 | > 4 | > 8 | > 12 | > 16 | > 18 | 2 | | | | ote: MPR is according to the standard and implemented in the circuit (mandatory). In addition, the device is compliant with additional maximum power reduction (A-MPR) requirements defined in 3GPP TS 36.101 section 6.2.4 that was disabled for all FCC compliance testing. During LTE SAR testing, the related parameters of operating band, channel bandwidth, uplink channel number, modulation type, and RB was set in base station simulator. When the EUT has registered and communicated to base station simulator, the simulator set to make EUT transmitting the maximum radiated power. Report Format Version 5.0.0 Page No. : 19 of 35 Report No.: SF201118C03 Issued Date : Jan. 13, 2021 ### <Considerations Related to WLAN for Setup and Testing> In general, various vendor specific external test software and chipset based internal test modes are typically used for SAR measurement. These chipset based test mode utilities are generally hardware and manufacturer dependent, and often include substantial flexibility to reconfigure or reprogram a device. A Wi-Fi device must be configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools for SAR measurement. The test frequencies established using test mode must correspond to the actual channel frequencies. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. In addition, a periodic transmission duty factor is required for current generation SAR systems to measure SAR correctly. The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. According to KDB 248227 D01,this device has installed WLAN engineering testing software which can provide continuous transmitting RF signal. During WLAN SAR testing, this device was operated to transmit continuously at the maximum transmission duty with specified transmission mode, operating frequency, lowest data rate, and maximum output power. #### **Initial Test Configuration** An initial test configuration is determined for OFDM transmission modes in 2.4 GHz and 5 GHz bands according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band. #### **Subsequent Test Configuration** SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. Additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. When the highest reported SAR for the initial test configuration according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration. Report Format Version 5.0.0 Page No. : 20 of 35 Report No. : SF201118C03 Issued Date : Jan. 13, 2021 #### **SAR Test Configuration and Channel Selection** When multiple channel bandwidth configurations in a frequency band have the same specified maximum output power, the initial test configuration is using largest channel bandwidth, lowest order modulation, lowest data rate, and lowest order 802.11 mode (i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n). After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following. - 1) The channel closest to mid-band frequency is selected for SAR measurement. - 2) For channels with equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement. #### Test Reduction for U-NII-1 (5.2 GHz) and U-NII-2A (5.3 GHz) Bands For devices that operate in both U-NII bands using the same transmitter and
antenna(s), SAR test reduction is determined according to the following. - 1) When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition). - 2) When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration. Report Format Version 5.0.0 Page No. : 21 of 35 Report No. : SF201118C03 Issued Date : Jan. 13, 2021 ### <Considerations Related to Bluetooth for Setup and Testing> This device has installed Bluetooth engineering testing software which can provide continuous transmitting RF signal. During Bluetooth SAR testing, this device was operated to transmit continuously at the maximum transmission duty with specified transmission mode, operating frequency, lowest data rate, and maximum output power. The Bluetooth call box has been used during SAR measurement and the EUT was set to DH5 mode at the maximum output power. Its duty factor was calculated as below and the measured SAR for Bluetooth would be scaled to the 100% transmission duty factor to determine compliance. Time-domain plot for Bluetooth transmission signal The duty factor of Bluetooth signal has been calculated as following. Duty Factor = Pulse Width / Total Period = 2.865/3.750=76.4 % Report Format Version 5.0.0 Page No. : 22 of 35 Report No.: SF201118C03 Issued Date : Jan. 13, 2021 ## 4.2 EUT Testing Position ## 4.2.1 Extremity Exposure Conditions This hand-held device was test on the extremity exposure conditions. Extremity SAR was tested on the Front Face, Rear Face, Left Side, Right Side, Top Side and Bottom Side with 0 cm separation distance. ## 4.3 Tissue Verification The measuring results for tissue simulating liquid are shown as below. | Frequency
(MHz) | Liquid
Temp.
(℃) | Measured
Conductivity
(σ) | Measured
Permittivity
(ε _r) | Target
Conductivity
(σ) | Target
Permittivity
(ε _r) | Conductivity Deviation (%) | Permittivity
Deviation
(%) | Test
Date | |--------------------|------------------------|---------------------------------|---|-------------------------------|---|----------------------------|----------------------------------|---------------| | 750 | 23.2 | 0.928 | 43.42 | 0.89 | 41.9 | 4.27 | 3.63 | Dec. 03, 2020 | | 835 | 23.3 | 0.936 | 43.142 | 0.9 | 41.5 | 4.00 | 3.96 | Nov. 28, 2020 | | 835 | 23.2 | 0.908 | 42.687 | 0.9 | 41.5 | 0.89 | 2.86 | Dec. 03, 2020 | | 1750 | 23.3 | 1.319 | 40.264 | 1.37 | 40.1 | -3.72 | 0.41 | Dec. 02, 2020 | | 1750 | 23.1 | 1.328 | 39.799 | 1.37 | 40.1 | -3.07 | -0.75 | Dec. 08, 2020 | | 1900 | 23.3 | 1.452 | 39.334 | 1.4 | 40 | 3.71 | -1.66 | Nov. 28, 2020 | | 1900 | 23.1 | 1.459 | 39.22 | 1.4 | 40 | 4.21 | -1.95 | Dec. 08, 2020 | | 1900 | 23.2 | 1.456 | 39.288 | 1.4 | 40 | 4.00 | -1.78 | Dec. 11, 2020 | | 2300 | 23.1 | 1.724 | 39.637 | 1.67 | 39.5 | 3.23 | 0.35 | Dec. 05, 2020 | | 2450 | 23.2 | 1.879 | 39.289 | 1.8 | 39.2 | 4.39 | 0.23 | Dec. 09, 2020 | | 2600 | 23.3 | 2.049 | 38.987 | 1.96 | 39 | 4.54 | -0.03 | Dec. 04, 2020 | | 2600 | 23.1 | 2.028 | 37.803 | 1.96 | 39 | 3.47 | -3.07 | Dec. 08, 2020 | | 5250 | 23.3 | 4.835 | 36.46 | 4.71 | 35.9 | 2.65 | 1.56 | Dec. 10, 2020 | | 5600 | 23.3 | 5.224 | 35.924 | 5.07 | 35.5 | 3.04 | 1.19 | Dec. 10, 2020 | | 5750 | 23.3 | 5.364 | 35.91 | 5.22 | 35.4 | 2.76 | 1.44 | Dec. 10, 2020 | The dielectric properties of the tissue simulating liquid have been measured within 24 hours before the SAR testing and within ± 10 % of the target values. Liquid temperature during the SAR testing has kept within ± 2 °C. Report Format Version 5.0.0 Page No. : 23 of 35 Report No.: SF201118C03 Issued Date : Jan. 13, 2021 ## 4.4 System Validation The SAR measurement system was validated according to procedures in KDB 865664 D01. The validation status in tabulated summary is as below. | Toot | Probe | Calibration | Measured | Measured | V | alidation for C | W | Valida | ation for Modul | ation | |---------------|-------|-------------|---------------------|--------------------------------|----------------------|--------------------|-------------------|--------------------|-----------------|-------| | Test
Date | S/N | Point | Conductivity
(σ) | Permittivity (ε _r) | Sensitivity
Range | Probe
Linearity | Probe
Isotropy | Modulation
Type | Duty Factor | PAR | | Dec. 03, 2020 | 7554 | 750 | 0.928 | 43.42 | Pass | Pass | Pass | N/A | N/A | N/A | | Nov. 28, 2020 | 3820 | 835 | 0.936 | 43.142 | Pass | Pass | Pass | GMSK | Pass | N/A | | Dec. 03, 2020 | 7554 | 835 | 0.908 | 42.687 | Pass | Pass | Pass | N/A | N/A | N/A | | Dec. 02, 2020 | 7554 | 1750 | 1.319 | 40.264 | Pass | Pass | Pass | N/A | N/A | N/A | | Dec. 08, 2020 | 7555 | 1750 | 1.328 | 39.799 | Pass | Pass | Pass | N/A | N/A | N/A | | Nov. 28, 2020 | 3820 | 1900 | 1.452 | 39.334 | Pass | Pass | Pass | GMSK | Pass | N/A | | Dec. 08, 2020 | 7555 | 1900 | 1.459 | 39.22 | Pass | Pass | Pass | N/A | N/A | N/A | | Dec. 11, 2020 | 3650 | 1900 | 1.456 | 39.288 | Pass | Pass | Pass | N/A | N/A | N/A | | Dec. 05, 2020 | 7554 | 2300 | 1.724 | 39.637 | Pass | Pass | Pass | N/A | N/A | N/A | | Dec. 09, 2020 | 3650 | 2450 | 1.879 | 39.289 | Pass | Pass | Pass | OFDM | N/A | Pass | | Dec. 04, 2020 | 7554 | 2600 | 2.049 | 38.987 | Pass | Pass | Pass | N/A | N/A | N/A | | Dec. 08, 2020 | 7555 | 2600 | 2.028 | 37.803 | Pass | Pass | Pass | N/A | N/A | N/A | | Dec. 10, 2020 | 7537 | 5250 | 4.835 | 36.46 | Pass | Pass | Pass | OFDM | N/A | Pass | | Dec. 10, 2020 | 7537 | 5600 | 5.224 | 35.924 | Pass | Pass | Pass | OFDM | N/A | Pass | | Dec. 10, 2020 | 7537 | 5750 | 5.364 | 35.91 | Pass | Pass | Pass | OFDM | N/A | Pass | ## 4.5 System Verification The measuring result for system verification is tabulated as below. | Test
Date | Frequency
(MHz) | 1W Target
SAR-1g
(W/kg) | Measured
SAR-1g
(W/kg) | Normalized
to 1W
SAR-1g
(W/kg) | Deviation
(%) | Dipole
S/N | Probe
S/N | DAE
S/N | |---------------|--------------------|-------------------------------|------------------------------|---|------------------|---------------|--------------|------------| | Dec. 03, 2020 | 750 | 5.53 | 0.277 | 5.54 | 0.18 | 1013 | 7554 | 1590 | | Nov. 28, 2020 | 835 | 6.21 | 0.321 | 6.42 | 3.38 | 4d121 | 3820 | 1431 | | Dec. 03, 2020 | 835 | 6.21 | 0.332 | 6.64 | 6.92 | 4d121 | 7554 | 1590 | | Dec. 02, 2020 | 1750 | 18.90 | 0.955 | 19.10 | 1.06 | 1055 | 7554 | 1590 | | Dec. 08, 2020 | 1750 | 18.90 | 0.934 | 18.68 | -1.16 | 1055 | 7555 | 1589 | | Nov. 28, 2020 | 1900 | 20.90 | 1.04 | 20.80 | -0.48 | 5d036 | 3820 | 1431 | | Dec. 08, 2020 | 1900 | 20.90 | 1.06 | 21.20 | 1.44 | 5d036 | 7555 | 1589 | | Dec. 11, 2020 | 1900 | 20.90 | 1.07 | 21.40 | 2.39 | 5d036 | 3650 | 861 | | Dec. 05, 2020 | 2300 | 23.30 | 1.27 | 25.40 | 9.01 | 1004 | 7554 | 1590 | | Dec. 09, 2020 | 2450 | 24.30 | 1.29 | 25.80 | 6.17 | 737 | 3650 | 861 | | Dec. 04, 2020 | 2600 | 25.00 | 1.23 | 24.60 | -1.60 | 1020 | 7554 | 1590 | | Dec. 08, 2020 | 2600 | 25.00 | 1.24 | 24.80 | -0.80 | 1020 | 7555 | 1589 | | Dec. 10, 2020 | 5250 | 22.80 | 1.15 | 23.00 | 0.88 | 1019 | 7537 | 1277 | | Dec. 10, 2020 | 5600 | 23.70 | 1.16 | 23.20 | -2.11 | 1019 | 7537 | 1277 | | Dec. 10, 2020 | 5750 | 22.80 | 1.05 | 21.00 | -7.89 | 1019 | 7537 | 1277 | ### Note: Comparing to the reference SAR value provided by SPEAG in dipole calibration certificate, the deviation of system check results is within its specification of 10 %. The result indicates the system check can meet the variation criterion and the plots please refer to Appendix A of this report. ## 4.6 Maximum Output Power ### 4.6.1 Maximum Target Conducted Power Refer to Appendix E. ### 4.6.2 Measured Conducted Power Result Refer to Appendix F. Report Format Version 5.0.0 Page No. : 24 of 35 Report No.: SF201118C03 Issued Date : Jan. 13, 2021 ### 4.7 SAR Testing Results #### 4.7.1 SAR Test Reduction Considerations #### <KDB 447498 D01, General RF Exposure Guidance> Testing of other required channels within the operating mode of a frequency band is not required when the reported SAR for the mid-band or highest output power channel is: - (1) ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz - (2) ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz - (3) ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz When SAR is not measured at the maximum power level allowed for production units, the measured SAR will be scaled to the maximum tune-up tolerance limit to determine compliance. The scaling factor for the tune-up power is defined as maximum tune-up limit (mW) / measured conducted power (mW). The reported SAR would be calculated by measured SAR x tune-up power scaling factor. The SAR has been measured with highest transmission duty factor supported by the test mode tools for WLAN and/or Bluetooth. When the transmission duty factor could not achieve 100%, the reported SAR will be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up power. The scaling factor for the duty factor is defined as 100% / transmission duty cycle (%). The reported SAR would be calculated by measured SAR x tune-up power scaling factor x duty cycle scaling factor. #### <KDB 248227 D01, SAR Guidance for
Wi-Fi Transmitters> - (1) For handsets operating next to ear, hotspot mode or mini-tablet configurations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When the reported SAR of initial test position is <= 0.4 W/kg, SAR testing for remaining test positions is not required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is <= 0.8 W/kg or all test positions are measured. - (2) For WLAN 2.4 GHz, the highest measured maximum output power channel for DSSS was selected for SAR measurement. When the reported SAR is <= 0.8 W/kg, no further SAR testing is required. Otherwise, SAR is evaluated at the next highest measured output power channel. When any reported SAR is >1.2 W/kg, SAR is required for the third channel. For OFDM modes (802.11g/n),SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and it is <= 1.2 W/kg. - (3) For WLAN 5GHz, the initial test configuration was selected according to the transmission mode with the highest maximum output power. When the reported SAR of initial test configuration is > 0.8 W/kg, SAR is required for the subsequent highest measured output power channel until the reported SAR result is <=1.2 W/kg or all required channels are measured. For other transmission modes, SAR is not required when the highest reported SAR for initial test configuration is adjusted by the ratio of subsequent test configuration to initial test configuration specified maximum output power and it is <= 1.2 W/kg. Report Format Version 5.0.0 Page No. : 25 of 35 Report No. : SF201118C03 Issued Date : Jan. 13, 2021 ## 4.7.2 SAR Results for Extremity Exposure Condition (Test Separation Distance is 0 mm) | | | | | | Max. | Measured | | | | | |----------|--------------------|-------------|------------------------|------|---------|-----------|-------------------|-------|----------|-------------------| | Plot | | | Test | | Tune-up | Conducted | Cooling | Power | Measured | Scaled | | No. | Band | Mode | Position | Ch. | Power | Power | Scaling
Factor | Drift | SAR-10g | SAR-10g | | IVO. | | | PUSITION | | (dBm) | (dBm) | Factor | (dB) | (W/kg) | (W/kg) | | | | | | | , , | ` , | | | | | | | GSM850 | GPRS11 | Front Face | 128 | 29.50 | 29.43 | 1.02 | 0.02 | 0.227 | 0.23 | | | GSM850 | GPRS11 | Rear Face | 128 | 29.50 | 29.43 | 1.02 | -0.11 | 0.371 | 0.38 | | | GSM850 | GPRS11 | Left Side | 128 | 29.50 | 29.43 | 1.02 | 0.05 | 0.192 | 0.20 | | | GSM850 | GPRS11 | Right Side | 128 | 29.50 | 29.43 | 1.02 | -0.06 | 0.357 | 0.36 | | | GSM850 | GPRS11 | Top Side | 128 | 29.50 | 29.43 | 1.02 | 0.11 | 0.119 | 0.12 | | | GSM850 | GPRS11 | Bottom Side | 128 | 29.50 | 29.43 | 1.02 | 0 | <0.001 | 0.00 | | 01 | GSM850 | GPRS11 | Rear Face | 189 | 29.50 | 29.07 | 1.10 | -0.06 | 0.373 | <mark>0.41</mark> | | | GSM850 | GPRS11 | Rear Face | 251 | 29.50 | 29.17 | 1.08 | 0.02 | 0.307 | 0.33 | | | GSM1900 | GPRS11 | Front Face | 810 | 26.00 | 25.66 | 1.08 | -0.09 | 0.071 | 0.08 | | 02 | GSM1900 | GPRS11 | Rear Face | 810 | 26.00 | 25.66 | 1.08 | 0.14 | 2.96 | 3.20 | | | GSM1900 | GPRS11 | Left Side | 810 | 26.00 | 25.66 | 1.08 | -0.1 | 0.13 | 0.14 | | | GSM1900 | GPRS11 | Right Side | 810 | 26.00 | 25.66 | 1.08 | -0.03 | 0.741 | 0.80 | | | GSM1900 | GPRS11 | Top Side | 810 | 26.00 | 25.66 | 1.08 | -0.11 | 0.269 | 0.29 | | | GSM1900 | GPRS11 | Bottom Side | 810 | 26.00 | 25.66 | 1.08 | 0 | < 0.001 | 0.00 | | | GSM1900 | GPRS11 | Rear Face | 512 | 26.00 | 25.32 | 1.17 | -0.12 | 2.57 | 3.01 | | | GSM1900 | GPRS11 | Rear Face | 661 | 26.00 | 25.56 | 1.11 | 0.09 | 2.67 | 2.96 | | | GSM1900 | GPRS11 | Rear Face | 810 | 26.00 | 25.66 | 1.08 | 0.11 | 2.88 | 3.11 | | | WCDMA II | RMC12.2K | Front Face | 9262 | 23.50 | 23.38 | 1.03 | 0.14 | 0.081 | 0.08 | | 03 | WCDMA II | RMC12.2K | Rear Face | 9262 | 23.50 | 23.38 | 1.03 | -0.12 | 2.49 | 2.56 | | - 00 | WCDMA II | RMC12.2K | Left Side | 9262 | 23.50 | 23.38 | 1.03 | -0.05 | 0.161 | 0.17 | | | WCDMA II | RMC12.2K | Right Side | 9262 | 23.50 | 23.38 | 1.03 | 0.11 | 0.477 | 0.49 | | | WCDMA II | RMC12.2K | Top Side | 9262 | 23.50 | 23.38 | 1.03 | -0.05 | 0.264 | 0.27 | | | WCDMA II | RMC12.2K | Bottom Side | 9262 | 23.50 | 23.38 | 1.03 | 0 | <0.001 | 0.00 | | | WCDMA II | RMC12.2K | Rear Face | 9400 | 23.50 | 23.36 | 1.03 | -0.15 | 2.41 | 2.48 | | | WCDMA II | RMC12.2K | Rear Face | 9538 | 23.50 | 22.97 | 1.13 | 0.1 | 2.24 | 2.53 | | | WCDMA II | RMC12.2K | Rear Face | 9262 | 23.50 | 23.38 | 1.03 | 0.06 | 2.38 | 2.45 | | | WCDMA IV | RMC12.2K | Front Face | 1413 | 23.50 | 23.49 | 1.00 | 0.07 | 0.236 | 0.24 | | | WCDMA IV | RMC12.2K | Rear Face | 1413 | 23.50 | 23.49 | 1.00 | 0.07 | 2.6 | 2.60 | | | WCDMA IV | RMC12.2K | Left Side | 1413 | 23.50 | 23.49 | 1.00 | 0.14 | 0.331 | 0.33 | | | WCDMA IV | RMC12.2K | Right Side | 1413 | 23.50 | 23.49 | 1.00 | 0.02 | 0.284 | 0.33 | | | WCDMA IV | RMC12.2K | Top Side | 1413 | 23.50 | 23.49 | 1.00 | 0.02 | 0.572 | 0.57 | | | WCDMA IV | RMC12.2K | Bottom Side | 1413 | 23.50 | 23.49 | 1.00 | 0.02 | <0.001 | 0.00 | | 04 | WCDMA IV | RMC12.2K | Rear Face | 1312 | 23.50 | 22.42 | 1.28 | -0.08 | 2.79 | 3.57 | | U-T | WCDMA IV | RMC12.2K | Rear Face | 1513 | 23.50 | 23.45 | 1.01 | -0.01 | 2.66 | 2.69 | | | WCDMA IV | RMC12.2K | Rear Face | 1312 | 23.50 | 22.42 | 1.28 | -0.04 | 2.73 | 3.49 | | | WCDMA V | RMC12.2K | Front Face | 4182 | 23.50 | 23.29 | 1.05 | 0.05 | 0.151 | 0.16 | | \vdash | WCDMA V | RMC12.2K | Rear Face | 4182 | 23.50 | 23.29 | 1.05 | -0.11 | 0.151 | 0.16 | | \vdash | WCDMA V
WCDMA V | RMC12.2K | Left Side | 4182 | 23.50 | 23.29 | 1.05 | 0.03 | 0.285 | 0.30 | | | WCDMA V | RMC12.2K | Right Side | 4182 | 23.50 | 23.29 | 1.05 | -0.06 | 0.131 | 0.14 | | \vdash | WCDMA V
WCDMA V | RMC12.2K | Top Side | 4182 | 23.50 | 23.29 | 1.05 | 0.12 | 0.219 | 0.23 | | \vdash | WCDMA V
WCDMA V | RMC12.2K | Bottom Side | 4182 | 23.50 | 23.29 | 1.05 | 0.12 | 0.096 | 0.10 | | 05 | WCDMA V
WCDMA V | RMC12.2K | | 4182 | 23.50 | 23.29 | 1.05 | -0.13 | 0.029 | 0.03
0.32 | | υo | WCDMA V
WCDMA V | RMC12.2K | Rear Face
Rear Face | 4132 | 23.50 | 23.23 | 1.05 | 0.13 | 0.305 | 0.32 | | Ļ | | RIVIC 12.2K | Rear Face | 4233 | 23.50 | | 1.00 | 0.11 | 0.291 | 0.31 | **Note:** The "< 0.001" means there is no SAR value or the SAR is too low to be measured. Report Format Version 5.0.0 Page No. : 26 of 35 Report No. : SF201118C03 Issued Date : Jan. 13, 2021 | Not Position Pos | | | | | | | | Max. | Measured | | | | | |--|------------|-------|---------|------------|-------|-----|--------|-------|----------|---------|-------|-------|------| | LTE 2 | Plot | Rand | Mode | Test | Ch | DR# | RB | | | Scaling | | | | | LITE 2 OPS-SCOM Fear Face 19100 1 50 22:00 22:93 1:02 0:07 0:07 0:08 | No. | DdHu | ivioue | Position | CII. | KD# | offset | | | Factor | | | | | LTE 2 QPSCOM Rear Face 19100 | | | | | | | | | | | ` ' | | | | LTE 2 OPSCOM Left Side 91900 1 50 22300 2239 1.02 -0.08 0.138 0.14 | ! | | | | | | | | | | | | | | LTE 2 OPSCOM Right Side 19100 | | | | | | | | | | | | | | | LTE 2 OPSICOM Top Side 19100 | | | | | | | | | | | | | | | LTE 2 OPSK20M Bottom Side 19100 | | | | | | | | | | | | | | | LTE 2 OPSKQDM Reaf Face 19100 50 25 22.00 21.81 1.04 .074 0.74 0.75 1.01 1.1E 2.0FSkQDM Right Side 19100 50 25 22.00 21.81 1.04 .076 0.08 0.414 0.43 1.1E 2.0FSkQDM Right Side 19100 50 25 22.00 21.81 1.04 0.16 0.08 0.414 0.43 1.1E 2.0FSkQDM Right Side 19100 50 25 22.00 21.81 1.04 0.16 0.08 0.414 0.43 1.1E 2.0FSkQDM Side Side Side Side Side Side Side Side | | | | | | 1 | | | | | | | | | LTE 2 OPSICOM Left Side 19100 500 25 22.00 21.81 1.04 0.07 0.109 0.114 | | LTE 2 | QPSK20M | Front Face | 19100 | 50 | 25 | 22.00 | 21.81 | 1.04 | -0.06 | 0.061 | 0.06 | | LTE 2 OPSKCOM Right Side 19100 50 25 22,00 21,81 1,04 0.16 0.44 0.45 |
| | | | | | | | | | | | | | LTE 2 OPSKZOM Top Side 19100 50 25 22.00 21.81 1.04 0.16 0.147 0.15 | | | | | | | | | | | | | | | LTE 2 OPSKZOM Bottom Side 19100 500 25 22,00 21,81 1,04 0 0,001 | | | | | | | | | | | | | | | Color Colo | | | | | | | | | | | | | | | Color Colo | | | | | | | | | | | | | | | LTE 2 | 06 | | | | | | | | | | | | | | LTE 2 | | LTE 2 | QPSK20M | Rear Face | 18900 | 1 | 50 | 23.00 | 22.60 | | -0.03 | | 3.04 | | LTE 2 | | | | | | | | | | | | | | | TITE 4 OPSEXOM Front Face 20175 1 50 24.00 23.90 1.02 0.06 0.157 0.16 | —] | | | | | | | | | | | | | | OF Circ OFSCOM Reaf Face 20175 1 50 2400 23.90 1.02 -0.03 2.38 2.48 | | | | | | | | | | | | | | | LTE4 | | | | | | | | | | | | | | | LTE 4 | 07 | | | | | | | | | | | | | | LTE 4 | ┡ | | | | | | | | | | | | | | LTE 4 QPSKZOM Bottom Side 20175 50 24 00 23.90 1.02 0 0.001 0.00 | ╅ | | | | | | | | | | | | | | LTE 4 | | | | | | | | | | | | | | | LTE 4 | | | | | | 50 | | | | | | | | | LTE 4 OPSK20M Right Side 20175 50 25 23.00 22.57 1.10 0.17 0.141 0.16 | | | | | | | 25 | 23.00 | 22.57 | 1.10 | | 1.94 | | | LTE 4 OPSK20M Stort Side 20175 50 25 23.00 22.57 1.10 0.17 0.179 0.20 | . | | | | | | | | | | | | | | LTE 4 | ! | | | | | | | | | | | | | | LTE 4 | ┡ | | | | | | | | | | | | | | LTE 4 | ╅ | | | | | | | | | | | | | | LTE 4 | | | | | | | | | | | | | | | LTE 4 | | | | | | | | | | | | | | | LTE 4 | | | QPSK20M | Rear Face | | | | | 22.46 | 1.13 | | 1.39 | 1.57 | | LTE 5 | . | | | | | | | | | | | | | | LTE 5 | | | | | | · | | | | | | | | | LTE 5 | ! | | | | | | | | | | | | | | OB | | | | | | | | | | | | | | | LTE 5 | 08 | | | | | | | | | | | | | | LTE 5 | 00 | | | | | | | | | | | | | | LTE 5 | | | | | | | | | | | | | | | LTE 5 | | | | Front Face | | | | | | | | | | | LTE 5 | Щ | | | | | | | | | | | | | | LTE 5 | ! | | | | | | | | | | | | | | LTE 5 | } | | | | | | | | | | | | | | LTE 5 | ┡ | | | | | | | | | | | | | | LTE 5 QPSK10M Right Side 20600 1 24 24.00 23.66 1.08 -0.05 0.321 0.35 LTE 7 QPSK20M Front Face 21100 1 50 24.00 23.92 1.02 0.03 0.139 0.14 LTE 7 QPSK20M Rear Face 21100 1 50 24.00 23.92 1.02 0.07 3.05 3.11 LTE 7 QPSK20M Reft Side 21100 1 50 24.00 23.92 1.02 0.07 3.05 3.11 LTE 7 QPSK20M Reft Side 21100 1 50 24.00 23.92 1.02 0.05 0.564 0.58 LTE 7 QPSK20M Top Side 21100 1 50 24.00 23.92 1.02 0.01 0.199 0.20 LTE 7 QPSK20M Bottom Side 21100 1 50 24.00 23.92 1.02 0 <0.001 0.00 <tr< th=""><th>╅</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></tr<> | ╅ | | | | | | | | | | | | | | LTE 7 | | | | | | | | | | | | | | | LTE 7 QPSK20M Rear Face 21100 1 50 24.00 23.92 1.02 0.07 3.05 3.11 | | | | | 21100 | 1 | 50 | 24.00 | | 1.02 | 0.03 | | 0.14 | | LTE 7 QPSK20M Right Side 21100 1 50 24.00 23.92 1.02 0.05 0.564 0.58 LTE 7 QPSK20M Top Side 21100 1 50 24.00 23.92 1.02 0.01 0.199 0.20 LTE 7 QPSK20M Bottom Side 21100 1 50 24.00 23.92 1.02 0 <0.001 0.00 LTE 7 QPSK20M Front Face 21100 50 25 23.00 22.39 1.15 -0.06 0.116 0.13 LTE 7 QPSK20M Rear Face 21100 50 25 23.00 22.39 1.15 -0.06 0.116 0.13 LTE 7 QPSK20M Rear Face 21100 50 25 23.00 22.39 1.15 0.05 0.082 2.90 LTE 7 QPSK20M Right Side 21100 50 25 23.00 22.39 1.15 0.05 0.082 0.09 | | LTE 7 | QPSK20M | | 21100 | | 50 | | 23.92 | 1.02 | 0.07 | 3.05 | 3.11 | | LTE 7 QPSK20M Top Side 21100 1 50 24.00 23.92 1.02 0.01 0.199 0.20 LTE 7 QPSK20M Bottom Side 21100 1 50 24.00 23.92 1.02 0 <0.001 0.00 LTE 7 QPSK20M Front Face 21100 50 25 23.00 22.39 1.15 -0.06 0.116 0.13 LTE 7 QPSK20M Rear Face 21100 50 25 23.00 22.39 1.15 0.06 0.116 0.13 LTE 7 QPSK20M Reaf Face 21100 50 25 23.00 22.39 1.15 0.02 0.09 LTE 7 QPSK20M Reif Side 21100 50 25 23.00 22.39 1.15 0.05 0.082 0.09 LTE 7 QPSK20M Right Side 21100 50 25 23.00 22.39 1.15 0.07 0.495 0.57 LT | | | | | | | | | | | | | | | LTE 7 QPSK20M Bottom Side 21100 1 50 24.00 23.92 1.02 0 <0.001 | ! | | | _ | | | | | | | | | | | LTE 7 QPSK20M Front Face 21100 50 25 23.00 22.39 1.15 -0.06 0.116 0.13 LTE 7 QPSK20M Rear Face 21100 50 25 23.00 22.39 1.15 0.12 2.52 2.90 LTE 7 QPSK20M Left Side 21100 50 25 23.00 22.39 1.15 0.05 0.082 0.09 LTE 7 QPSK20M Right Side 21100 50 25 23.00 22.39 1.15 0.07 0.495 0.57 LTE 7 QPSK20M Top Side 21100 50 25 23.00 22.39 1.15 0.07 0.495 0.57 LTE 7 QPSK20M Bottom Side 21100 50 25 23.00 22.39 1.15 0.03 0.178 0.20 LTE 7 QPSK20M Bottom Side 21100 50 25 23.00 22.39 1.15 0 <0.001 0.00 | | | | | | | | | | | | | | | LTE 7 QPSK20M Rear Face 21100 50 25 23.00 22.39 1.15 0.12 2.52 2.90 LTE 7 QPSK20M Left Side 21100 50 25 23.00 22.39 1.15 0.05 0.082 0.09 LTE 7 QPSK20M Right Side 21100 50 25 23.00 22.39 1.15 0.07 0.495 0.57 LTE 7 QPSK20M Top Side 21100 50 25 23.00 22.39 1.15 0.03 0.178 0.20 LTE 7 QPSK20M Bottom Side 21100 50 25 23.00 22.39 1.15 0.03 0.178 0.20 LTE 7 QPSK20M Bottom Side 21100 50 25 23.00 22.39 1.15 0 <0.001 0.00 LTE 7 QPSK20M Rear Face 21100 100 0 23.00 22.39 1.15 0 <0.001 0.00 <td< th=""><th>┡</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<> | ┡ | | | | | | | | | | | | | | LTE 7 QPSK20M Left Side 21100 50 25 23.00 22.39 1.15 0.05 0.082 0.09 LTE 7 QPSK20M Right Side 21100 50 25 23.00 22.39 1.15 0.07 0.495 0.57 LTE 7 QPSK20M Top Side 21100 50 25 23.00 22.39 1.15 0.03 0.178 0.20 LTE 7 QPSK20M Bottom Side 21100 50 25 23.00 22.39 1.15 0.03 0.178 0.20 LTE 7 QPSK20M Bottom Side 21100 50 25 23.00 22.39 1.15 0 <0.001 0.00 LTE 7 QPSK20M Rear Face 21100 100 0 23.00 22.39 1.15 0 <0.001 0.00 UTE 7 QPSK20M Rear Face 20850 1 50 24.00 23.91 1.02 -0.08 3.51 3.58 | 1 | | | | | | | | | | | | | | LTE 7 QPSK20M Right Side 21100 50 25 23.00 22.39 1.15 0.07 0.495 0.57 LTE 7 QPSK20M Top Side 21100 50 25 23.00 22.39 1.15 0.03 0.178 0.20 LTE 7 QPSK20M Bottom Side 21100 50 25 23.00 22.39 1.15 0 <0.001 0.00 LTE 7 QPSK20M Rear Face 21100 100 0 23.00 22.46 1.13 -0.13 2.29 2.59 09 LTE 7 QPSK20M Rear Face 20850 1 50 24.00 23.91 1.02 -0.08 3.51 3.58 LTE 7 QPSK20M Rear Face 21350 1 50 24.00 23.64 1.09 0.04 3.19 3.48 LTE 7 QPSK20M Rear Face 20850 50 25 23.00 22.38 1.15 -0.16 2.89 3.3 | | | | | | | | | | | | | | | LTE 7 QPSK20M Bottom Side 21100 50 25 23.00 22.39 1.15 0 <0.001 | | | QPSK20M | | 21100 | 50 | 25 | 23.00 | 22.39 | | | | | | LTE 7 QPSK20M Rear Face 21100 100 0 23.00 22.46 1.13 -0.13 2.29 2.59 09 LTE 7 QPSK20M Rear Face 20850 1 50 24.00 23.91 1.02 -0.08 3.51 3.58 LTE 7 QPSK20M Rear Face 21350 1 50 24.00 23.64 1.09 0.04 3.19 3.48 LTE 7 QPSK20M Rear Face 20850 50 25 23.00 22.38 1.15 -0.16 2.89 3.32 LTE 7 QPSK20M Rear Face 21350 50 25 23.00 22.30 1.17 0.17 2.64 3.09 | | | | | | | | | | | | | | | 09 LTE 7 QPSK20M Rear Face 20850 1 50 24.00 23.91 1.02 -0.08 3.51 3.58 LTE 7 QPSK20M Rear Face 21350 1 50 24.00 23.64 1.09 0.04 3.19 3.48 LTE 7 QPSK20M Rear Face 20850 50 25 23.00 22.38 1.15 -0.16 2.89 3.32 LTE 7 QPSK20M Rear Face 21350 50 25 23.00 22.30 1.17 0.17 2.64 3.09 | . | | | | | | | | | | | | | | LTE 7 QPSK20M Rear Face 21350 1 50 24.00 23.64 1.09 0.04 3.19 3.48 LTE 7 QPSK20M Rear Face 20850 50 25 23.00 22.38 1.15 -0.16 2.89 3.32 LTE 7 QPSK20M Rear Face 21350 50 25 23.00 22.30 1.17 0.17 2.64 3.09 | 00 | | | | | | | | | | | | | | LTE 7 QPSK20M Rear Face 20850 50 25 23.00 22.38 1.15 -0.16 2.89 3.32 LTE 7 QPSK20M Rear Face 21350 50 25 23.00 22.30 1.17 0.17 2.64 3.09 | 09 | | | | | | | | | | | | | | LTE 7 QPSK20M Rear Face 21350 50 25 23.00 22.30 1.17 0.17 2.64 3.09 | ╅ | **Note:** The "< 0.001" means there is no SAR value or the SAR is too low to be measured. Report Format Version 5.0.0 Page No. : 27 of 35 Report No. : SF201118C03 Issued Date : Jan. 13, 2021 | | | | | | | | Max. | Measured | | | | 0 1 1 | |----------|------------------|--------------------|---------------------------|----------------|----------|----------|----------------|----------------|--------------|----------------|---------------------|---------------------| | Plot | Band | Mode | Test | Ch. | RB# | RB | Tune-up | Conducted | Scaling | Power
Drift | Measured
SAR-10g | Scaled
SAR-10g | | No. | Dariu | Wiode | Position | CII. | INDπ | offset | Power | Power | Factor | (dB) | (W/kg) | (W/kg) | | | | | | | | | (dBm) | (dBm) | | ` ' | | | | | LTE 12 | QPSK10M | Front Face | 23095 | 1 | 24 | 24.00 | 23.86 | 1.03 | -0.1 | 0.22 | 0.23 | | 20 | LTE 12
LTE 12 | QPSK10M
QPSK10M | Rear Face
Left Side | 23095
23095 | 1 | 24
24 | 24.00
24.00 | 23.86
23.86 | 1.03
1.03 |
-0.12
0.08 | 0.316
0.118 | 0.33
0.12 | | | LTE 12 | QPSK10M | Right Side | 23095 | 1 | 24 | 24.00 | 23.86 | 1.03 | -0.14 | 0.177 | 0.12 | | | LTE 12 | QPSK10M | Top Side | 23095 | 1 | 24 | 24.00 | 23.86 | 1.03 | -0.16 | 0.074 | 0.08 | | | LTE 12 | QPSK10M | Bottom Side | 23095 | 1 | 24 | 24.00 | 23.86 | 1.03 | 0 | <0.001 | 0.00 | | | LTE 12 | QPSK10M | Front Face | 23095 | 25 | 12 | 23.00 | 22.83 | 1.04 | 0.19 | 0.173 | 0.18 | | | LTE 12 | QPSK10M | Rear Face | 23095 | 25 | 12 | 23.00 | 22.83 | 1.04 | 0.15 | 0.262 | 0.27 | | | LTE 12 | QPSK10M | Left Side | 23095 | 25 | 12 | 23.00 | 22.83 | 1.04 | 0.06 | 0.103 | 0.11 | | | LTE 12 | QPSK10M | Right Side | 23095 | 25 | 12 | 23.00 | 22.83 | 1.04 | -0.03 | 0.198 | 0.21 | | | LTE 12 | QPSK10M | Top Side | 23095 | 25 | 12 | 23.00 | 22.83 | 1.04 | -0.16 | 0.062 | 0.06 | | - | LTE 12
LTE 12 | QPSK10M
QPSK10M | Bottom Side
Rear Face | 23095
23060 | 25
1 | 12
24 | 23.00
24.00 | 22.83
23.79 | 1.04
1.05 | 0.03 | <0.001
0.312 | 0.00
0.33 | | | LTE 12 | QPSK10M | Rear Face | 23130 | 1 | 24 | 24.00 | 23.81 | 1.04 | -0.05 | 0.312 | 0.32 | | \vdash | LTE 13 | QPSK10M | Front Face | 23230 | 1 | 24 | 24.00 | 23.97 | 1.04 | 0.07 | 0.309 | 0.32 | | 21 | LTE 13 | QPSK10M | Rear Face | 23230 | 1 | 24 | 24.00 | 23.97 | 1.01 | -0.12 | 0.113 | 0.11
0.29 | | | LTE 13 | QPSK10M | Left Side | 23230 | 1 | 24 | 24.00 | 23.97 | 1.01 | 0.12 | 0.280 | 0.15 | | | LTE 13 | QPSK10M | Right Side | 23230 | 1 | 24 | 24.00 | 23.97 | 1.01 | -0.03 | 0.247 | 0.25 | | | LTE 13 | QPSK10M | Top Side | 23230 | 1 | 24 | 24.00 | 23.97 | 1.01 | -0.18 | 0.076 | 0.08 | | | LTE 13 | QPSK10M | Bottom Side | 23230 | 1 | 24 | 24.00 | 23.97 | 1.01 | 0 | <0.001 | 0.00 | | | LTE 13 | QPSK10M | Front Face | 23230 | 25 | 12 | 23.00 | 22.68 | 1.08 | 0.17 | 0.083 | 0.09 | | | LTE 13 | QPSK10M | Rear Face | 23230 | 25 | 12 | 23.00 | 22.68 | 1.08 | 0.12 | 0.221 | 0.24 | | - | LTE 13 | QPSK10M | Left Side | 23230 | 25 | 12 | 23.00 | 22.68 | 1.08 | 0.05 | 0.135 | 0.15 | | | LTE 13
LTE 13 | QPSK10M
QPSK10M | Right Side | 23230
23230 | 25
25 | 12
12 | 23.00
23.00 | 22.68
22.68 | 1.08 | 0.06
0.12 | 0.187
0.06 | 0.20
0.06 | | | LTE 13 | QPSK10M | Top Side
Bottom Side | 23230 | 25 | 12 | 23.00 | 22.68 | 1.08
1.08 | 0.12 | <0.001 | 0.00 | | \vdash | LTE 25 | QPSK20M | Front Face | 26365 | 1 | 50 | 23.50 | 23.49 | 1.00 | 0.01 | 0.102 | 0.10 | | 10 | LTE 25 | QPSK20M | Rear Face | 26365 | 1 | 50 | 23.50 | 23.49 | 1.00 | -0.01 | 3.58 | 3.58 | | 10 | LTE 25 | QPSK20M | Left Side | 26365 | 1 | 50 | 23.50 | 23.49 | 1.00 | 0.12 | 0.169 | 0.17 | | | LTE 25 | QPSK20M | Right Side | 26365 | 1 | 50 | 23.50 | 23.49 | 1.00 | -0.12 | 0.691 | 0.69 | | | LTE 25 | QPSK20M | Top Side | 26365 | 1 | 50 | 23.50 | 23.49 | 1.00 | 0.18 | 0.134 | 0.13 | | | LTE 25 | QPSK20M | Bottom Side | 26365 | 1 | 50 | 23.50 | 23.49 | 1.00 | 0 | <0.001 | 0.00 | | | LTE 25 | QPSK20M | Front Face | 26365 | 50 | 0 | 22.50 | 22.06 | 1.11 | 0.13 | 0.074 | 0.08 | | | LTE 25 | QPSK20M | Rear Face | 26365 | 50 | 0 | 22.50 | 22.06 | 1.11 | 0.11 | 2.95 | 3.27 | | | LTE 25
LTE 25 | QPSK20M
QPSK20M | Left Side
Right Side | 26365
26365 | 50
50 | 0 | 22.50
22.50 | 22.06
22.06 | 1.11
1.11 | 0.16 | 0.137
0.531 | 0.15
0.59 | | \vdash | LTE 25 | QPSK20M
QPSK20M | Top Side | 26365 | 50 | 0 | 22.50 | 22.06 | 1.11 | -0.14
0.03 | 0.531 | 0.59 | | | LTE 25 | QPSK20M | Bottom Side | 26365 | 50 | 0 | 22.50 | 22.06 | 1.11 | 0.03 | <0.001 | 0.00 | | | LTE 25 | QPSK20M | Rear Face | 26365 | 100 | 0 | 22.50 | 21.89 | 1.15 | 0.03 | 3.02 | 3.47 | | | LTE 25 | QPSK20M | Rear Face | 26140 | 1 | 50 | 23.50 | 23.48 | 1.00 | -0.1 | 3.27 | 3.27 | | | LTE 25 | QPSK20M | Rear Face | 26590 | 1 | 50 | 23.50 | 23.47 | 1.01 | 0.06 | 2.65 | 2.68 | | | LTE 25 | QPSK20M | Rear Face | 26140 | 50 | 0 | 22.50 | 22.04 | 1.11 | -0.09 | 3.17 | 3.52 | | | LTE 25 | QPSK20M | Rear Face | 26590 | 50 | 0 | 22.50 | 22.01 | 1.12 | -0.09 | 2.17 | 2.43 | | \vdash | LTE 25 | QPSK20M | Rear Face | 26365 | 1 | 50 | 23.50 | 23.49 | 1.00 | -0.04 | 3.52 | 3.52 | | | LTE 26 | QPSK15M | Front Face | 26865 | 1 | 37 | 23.50 | 23.48 | 1.00 | -0.14 | 0.138 | 0.14 | | | LTE 26
LTE 26 | QPSK15M
QPSK15M | Rear Face
Left Side | 26865
26865 | 1 | 37
37 | 23.50
23.50 | 23.48
23.48 | 1.00
1.00 | -0.04
0.06 | 0.256 | 0.26
0.14 | | | LTE 26 | QPSK15M
QPSK15M | Right Side | 26865 | 1 | 37 | 23.50 | 23.48 | 1.00 | 0.06 | 0.141
0.322 | 0.14 | | | LTE 26 | QPSK15M | Top Side | 26865 | 1 | 37 | 23.50 | 23.48 | 1.00 | -0.16 | 0.095 | 0.32 | | | LTE 26 | | Bottom Side | 26865 | 1 | 37 | 23.50 | 23.48 | 1.00 | 0 | <0.001 | 0.00 | | | LTE 26 | QPSK15M | Front Face | 26865 | 36 | 19 | 22.50 | 22.49 | 1.00 | 0.17 | 0.117 | 0.12 | | | LTE 26 | QPSK15M | Rear Face | 26865 | 36 | 19 | 22.50 | 22.49 | 1.00 | -0.14 | 0.207 | 0.21 | | | LTE 26 | QPSK15M | Left Side | 26865 | 36 | 19 | 22.50 | 22.49 | 1.00 | 0.14 | 0.117 | 0.12 | | | LTE 26 | QPSK15M | Right Side | 26865 | 36 | 19 | 22.50 | 22.49 | 1.00 | -0.1 | 0.256 | 0.26 | | \vdash | LTE 26 | QPSK15M | Top Side | 26865 | 36 | 19 | 22.50 | 22.49 | 1.00 | -0.09 | 0.067 | 0.07 | | | LTE 26
LTE 26 | QPSK15M
QPSK15M | Bottom Side
Right Side | 26865
26765 | 36
1 | 19
37 | 22.50
23.50 | 22.49
23.35 | 1.00
1.04 | -0.07 | <0.001
0.238 | 0.00
0.25 | | 11 | LTE 26 | QPSK15M
QPSK15M | | 26965 | 1 | 37 | 23.50 | 23.45 | 1.04 | -0.07 | 0.238 | 0.25
0.39 | | L ' ' | | QF3K13W | <u> </u> | | | 3/ | | | 1.01 | -0.01 | 0.004 | 0.00 | Note: The "< 0.001" means there is no SAR value or the SAR is too low to be measured. Report Format Version 5.0.0 Page No. : 28 of 35 Report No.: SF201118C03 Issued Date : Jan. 13, 2021 | Plot
No. | Band | Mode | Test
Position | Ch. | RB# | RB
offset | Max.
Tune-up
Power
(dBm) | Measured
Conducted
Power
(dBm) | Scaling
Factor | Power
Drift
(dB) | Measured
SAR-10g
(W/kg) | Scaled
SAR-10g
(W/kg) | |-------------|--------|---------|------------------|-------|-----|--------------|-----------------------------------|---|-------------------|------------------------|-------------------------------|-----------------------------| | | LTE 38 | QPSK20M | Front Face | 38150 | 1 | 50 | 24.50 | 24.46 | 1.01 | -0.05 | 0.107 | 0.11 | | 12 | LTE 38 | QPSK20M | Rear Face | 38150 | 1 | 50 | 24.50 | 24.46 | 1.01 | 0.1 | 1.37 | 1.38 | | | LTE 38 | QPSK20M | Left Side | 38150 | 1 | 50 | 24.50 | 24.46 | 1.01 | -0.04 | 0.046 | 0.05 | | | LTE 38 | QPSK20M | Right Side | 38150 | 1 | 50 | 24.50 | 24.46 | 1.01 | -0.13 | 0.348 | 0.35 | | | LTE 38 | QPSK20M | Top Side | 38150 | 1 | 50 | 24.50 | 24.46 | 1.01 | 0.03 | 0.096 | 0.10 | | | LTE 38 | QPSK20M | Bottom Side | 38150 | 1 | 50 | 24.50 | 24.46 | 1.01 | -0.03 | < 0.001 | 0.00 | | | LTE 38 | QPSK20M | Front Face | 38150 | 50 | 25 | 23.50 | 23.43 | 1.02 | -0.04 | 0.088 | 0.09 | | | LTE 38 | QPSK20M | Rear Face | 38150 | 50 | 25 | 23.50 | 23.43 | 1.02 | 0.03 | 1.21 | 1.23 | | | LTE 38 | QPSK20M | Left Side | 38150 | 50 | 25 | 23.50 | 23.43 | 1.02 | 0.1 | 0.043 | 0.04 | | | LTE 38 | QPSK20M | Right Side | 38150 | 50 | 25 | 23.50 | 23.43 | 1.02 | -0.04 | 0.323 | 0.33 | | | LTE 38 | QPSK20M | Top Side | 38150 | 50 | 25 | 23.50 | 23.43 | 1.02 | -0.17 | 0.069 | 0.07 | | | LTE 38 | QPSK20M | Bottom Side | 38150 | 50 | 25 | 23.50 | 23.43 | 1.02 | -0.02 | < 0.001 | 0.00 | | | LTE 38 | QPSK20M | Rear Face | 37850 | 1 | 50 | 24.50 | 24.41 | 1.02 | -0.18 | 1.14 | 1.16 | | | LTE 38 | QPSK20M | Rear Face | 38000 | 1 | 50 | 24.50 | 24.38 | 1.03 | 0.05 | 1.21 | 1.25 | | | LTE 41 | QPSK20M | Front Face | 40185 | 1 | 50 | 24.00 | 23.98 | 1.00 | 0.05 | 0.064 | 0.06 | | | LTE 41 | QPSK20M | Rear Face | 40185 | 1 | 50 | 24.00 | 23.98 | 1.00 | 0.08 | 1.29 | 1.29 | | | LTE 41 | QPSK20M | Left Side | 40185 | 1 | 50 | 24.00 | 23.98 | 1.00 | 0.03 | 0.039 | 0.04 | | | LTE 41 | QPSK20M | Right Side | 40185 | 1 | 50 | 24.00 | 23.98 | 1.00 | 0.01 | 0.265 | 0.27 | | | LTE 41 | QPSK20M | Top Side | 40185 | 1 | 50 | 24.00 | 23.98 | 1.00 | 0.17 | 0.119 | 0.12 | | | LTE 41 | QPSK20M | Bottom Side | 40185 | 1 | 50 | 24.00 | 23.98 | 1.00 | 0 | < 0.001 | 0.00 | | | LTE 41 | QPSK20M | Front Face | 40185 | 50 | 25 | 23.00 | 22.97 | 1.01 | -0.11 | 0.069 | 0.07 | | | LTE 41 | QPSK20M | Rear Face | 40185 | 50 | 25 | 23.00 | 22.97 | 1.01 | 0.18 | 1.23 | 1.24 | | | LTE 41 | QPSK20M | Left Side | 40185 | 50 | 25 | 23.00 | 22.97 | 1.01 | 0.13 | 0.044 | 0.04 | | | LTE 41 | QPSK20M | Right Side | 40185 | 50 | 25 | 23.00 | 22.97 | 1.01 | 0.1 | 0.253 | 0.26 | | | LTE 41 | QPSK20M | Top Side | 40185 | 50 | 25 | 23.00 | 22.97 | 1.01 | -0.04 | 0.107 | 0.11 | | | LTE 41 | QPSK20M | Bottom Side | 40185 | 50 | 25 | 23.00 | 22.97 | 1.01 | 0 | <0.001 | 0.00 | | | LTE 41 | QPSK20M | Rear Face | 39750 | 1 | 50 | 24.00 | 23.83 | 1.04 | -0.19 | 1.05 | 1.09 | | | LTE 41 | QPSK20M | Rear Face | 40620 | 1 | 50 | 24.00 | 23.97 | 1.01 | 0.18 | 1.25 | 1.26 | | 14 | LTE 41 | QPSK20M | Rear Face | 41055 | 1 | 50 | 24.00 | 23.94 | 1.01 | 0.18 | 1.45 | <mark>1.46</mark> | | | LTE 41 | QPSK20M | Rear Face | 41490 | 1 | 50 | 24.00 | 23.93 | 1.02 | 0.05 | 1.19 | 1.21 | **Note:** The "< 0.001" means there is no SAR value or the SAR is too low to be measured. Report Format Version 5.0.0 Page No. : 29 of 35 Report No.: SF201118C03 Issued Date : Jan. 13, 2021 | | | | | | | | Max. | Measured | | | | | |------|----------|---------|-------------|-----|------------|--------------|---------|-----------|---------|-------|----------|---------| | Plot | | | Test | | | | Tune-up | Conducted | Scaling | Power | Measured | Scaled | | No. | Band | Mode | Position | Ch. | Duty Cycle | Crest Factor | Power | Power | Factor | Drift | SAR-10g | SAR-10g | | 140. | | | 1 03/110/11 | | | | (dBm) | (dBm) | 1 40101 | (dB) | (W/kg) | (W/kg) | | | WLAN2.4G | 802.11b | Front Face | 6 |
100.00 | 1.00 | 17.00 | 16.96 | 1.01 | -0.14 | 0.039 | 0.04 | | | WLAN2.4G | 802.11b | Rear Face | 6 | 100.00 | 1.00 | 17.00 | 16.96 | 1.01 | -0.04 | 0.14 | 0.14 | | 15 | WLAN2.4G | 802.11b | Left Side | 6 | 100.00 | 1.00 | 17.00 | 16.96 | 1.01 | -0.09 | 0.302 | 0.31 | | | WLAN2.4G | 802.11b | Right Side | 6 | 100.00 | 1.00 | 17.00 | 16.96 | 1.01 | 0.03 | 0.038 | 0.04 | | | WLAN2.4G | 802.11b | Top Side | 6 | 100.00 | 1.00 | 17.00 | 16.96 | 1.01 | 0 | <0.001 | 0.00 | | | WLAN2.4G | 802.11b | Bottom Side | 6 | 100.00 | 1.00 | 17.00 | 16.96 | 1.01 | 0.04 | 0.134 | 0.14 | | | WLAN2.4G | 802.11b | Left Side | 1 | 100.00 | 1.00 | 17.00 | 16.91 | 1.02 | 0.15 | 0.278 | 0.28 | | | WLAN2.4G | 802.11b | Left Side | 11 | 100.00 | 1.00 | 17.00 | 16.88 | 1.03 | -0.08 | 0.286 | 0.29 | | | WLAN5.3G | 802.11a | Front Face | 64 | 91.80 | 1.09 | 14.00 | 13.93 | 1.02 | -0.01 | 0.028 | 0.03 | | | WLAN5.3G | 802.11a | Rear Face | 64 | 91.80 | 1.09 | 14.00 | 13.93 | 1.02 | -0.01 | 0.215 | 0.24 | | | WLAN5.3G | 802.11a | Left Side | 64 | 91.80 | 1.09 | 14.00 | 13.93 | 1.02 | 0.01 | 0.062 | 0.07 | | | WLAN5.3G | 802.11a | Right Side | 64 | 91.80 | 1.09 | 14.00 | 13.93 | 1.02 | 0.14 | 0.02 | 0.02 | | | WLAN5.3G | 802.11a | Top Side | 64 | 91.80 | 1.09 | 14.00 | 13.93 | 1.02 | 0 | <0.001 | 0.00 | | | WLAN5.3G | 802.11a | Bottom Side | 64 | 91.80 | 1.09 | 14.00 | 13.93 | 1.02 | 0.03 | 0.277 | 0.31 | | 16 | WLAN5.3G | 802.11a | Bottom Side | 52 | 91.80 | 1.09 | 14.00 | 13.77 | 1.05 | 0.13 | 0.293 | 0.34 | | | WLAN5.3G | 802.11a | Bottom Side | 56 | 91.80 | 1.09 | 14.00 | 13.70 | 1.07 | -0.08 | 0.273 | 0.32 | | | WLAN5.3G | 802.11a | Bottom Side | 60 | 91.80 | 1.09 | 14.00 | 13.92 | 1.02 | 0.02 | 0.282 | 0.31 | | | WLAN5.6G | 802.11a | Front Face | 100 | 91.80 | 1.09 | 14.50 | 14.11 | 1.09 | -0.05 | 0.026 | 0.03 | | | WLAN5.6G | 802.11a | Rear Face | 100 | 91.80 | 1.09 | 14.50 | 14.11 | 1.09 | -0.09 | 0.254 | 0.30 | | | WLAN5.6G | 802.11a | Left Side | 100 | 91.80 | 1.09 | 14.50 | 14.11 | 1.09 | 0.11 | 0.062 | 0.07 | | | WLAN5.6G | 802.11a | Right Side | 100 | 91.80 | 1.09 | 14.50 | 14.11 | 1.09 | -0.12 | 0.021 | 0.02 | | | WLAN5.6G | 802.11a | Top Side | 100 | 91.80 | 1.09 | 14.50 | 14.11 | 1.09 | 0 | <0.001 | 0.00 | | 17 | WLAN5.6G | 802.11a | Bottom Side | 100 | 91.80 | 1.09 | 14.50 | 14.11 | 1.09 | 0.07 | 0.312 | 0.37 | | | WLAN5.6G | 802.11a | Bottom Side | 116 | 91.80 | 1.09 | 14.50 | 13.85 | 1.16 | 0.18 | 0.286 | 0.36 | | | WLAN5.6G | 802.11a | Bottom Side | 120 | 91.80 | 1.09 | 14.50 | 13.82 | 1.17 | 0.15 | 0.288 | 0.37 | | | WLAN5.6G | 802.11a | Bottom Side | 124 | 91.80 | 1.09 | 14.50 | 13.80 | 1.17 | -0.08 | 0.241 | 0.31 | | | WLAN5.6G | 802.11a | Bottom Side | 132 | 91.80 | 1.09 | 14.50 | 13.68 | 1.21 | -0.06 | 0.226 | 0.30 | | | WLAN5.6G | 802.11a | Bottom Side | 140 | 91.80 | 1.09 | 14.50 | 13.86 | 1.16 | -0.04 | 0.279 | 0.35 | | | WLAN5.8G | 802.11a | Front Face | 149 | 91.80 | 1.09 | 14.00 | 13.87 | 1.03 | 0.17 | 0.026 | 0.03 | | 18 | WLAN5.8G | 802.11a | Rear Face | 149 | 91.80 | 1.09 | 14.00 | 13.87 | 1.03 | -0.13 | 0.337 | 0.38 | | | WLAN5.8G | 802.11a | Left Side | 149 | 91.80 | 1.09 | 14.00 | 13.87 | 1.03 | 0.16 | 0.068 | 0.08 | | | WLAN5.8G | 802.11a | Right Side | 149 | 91.80 | 1.09 | 14.00 | 13.87 | 1.03 | -0.19 | 0.024 | 0.03 | | | WLAN5.8G | 802.11a | Top Side | 149 | 91.80 | 1.09 | 14.00 | 13.87 | 1.03 | 0.1 | < 0.001 | 0.00 | | | WLAN5.8G | 802.11a | Bottom Side | 149 | 91.80 | 1.09 | 14.00 | 13.87 | 1.03 | 0.14 | 0.319 | 0.36 | | | WLAN5.8G | 802.11a | Rear Face | 153 | 91.80 | 1.09 | 14.00 | 13.76 | 1.06 | -0.18 | 0.301 | 0.35 | | | WLAN5.8G | 802.11a | Rear Face | 157 | 91.80 | 1.09 | 14.00 | 13.85 | 1.04 | 0.12 | 0.287 | 0.33 | | | WLAN5.8G | 802.11a | Rear Face | 161 | 91.80 | 1.09 | 14.00 | 13.70 | 1.07 | 0.02 | 0.283 | 0.33 | | | WLAN5.8G | 802.11a | Rear Face | 165 | 91.80 | 1.09 | 14.00 | 13.82 | 1.04 | -0.15 | 0.296 | 0.34 | | | BT | BDR | Front Face | 0 | 76.40 | 1.31 | 9.00 | 8.98 | 1.00 | 0 | <0.001 | 0.00 | | | BT | BDR | Rear Face | 0 | 76.40 | 1.31 | 9.00 | 8.98 | 1.00 | 0 | <0.001 | 0.00 | | | BT | BDR | Left Side | 0 | 76.40 | 1.31 | 9.00 | 8.98 | 1.00 | 0 | <0.001 | 0.00 | | | BT | BDR | Right Side | 0 | 76.40 | 1.31 | 9.00 | 8.98 | 1.00 | 0 | <0.001 | 0.00 | | | BT | BDR | Top Side | 0 | 76.40 | 1.31 | 9.00 | 8.98 | 1.00 | 0 | <0.001 | 0.00 | | | BT | BDR | Bottom Side | 0 | 76.40 | 1.31 | 9.00 | 8.98 | 1.00 | 0 | <0.001 | 0.00 | | | BT | BDR | Left Side | 39 | 76.40 | 1.31 | 9.00 | 8.30 | 1.17 | 0 | <0.001 | 0.00 | | | BT | BDR | Left Side | 78 | 76.40 | 1.31 | 8.00 | 6.18 | 1.52 | 0 | <0.001 | 0.00 | Note: The "< 0.001" means there is no SAR value or the SAR is too low to be measured. Report Format Version 5.0.0 Page No. : 30 of 35 Report No. : SF201118C03 Issued Date : Jan. 13, 2021 #### 4.7.3 SAR Measurement Variability According to KDB 865664 D01, SAR measurement variability was assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. Alternatively, if the highest measured SAR for both head and body tissue-equivalent media are ≤ 1.45 W/kg and the ratio of these highest SAR values, i.e., largest divided by smallest value, is ≤ 1.10 , the highest SAR configuration for either head or body tissue-equivalent medium maybe used to perform the repeated measurement. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results. #### SAR repeated measurement procedure: - 1. When the highest measured SAR is < 0.80 W/kg, repeated measurement is not required. - 2. When the highest measured SAR is >= 0.80 W/kg, repeat that measurement once. - 3. If the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20, or when the original or repeated measurement is >= 1.45 W/kg, perform a second repeated measurement. - 4. If the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20, and the original, first or second repeated measurement is >= 1.5 W/kg, perform a third repeated measurement. - 5. The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds. | Band | Mode | Test
Position | Ch. | Original
Measured
SAR-10g
(W/kg) | 1st
Repeated
SAR-10g
(W/kg) | L/S
Ratio | |----------|----------|------------------|-------|---|--------------------------------------|--------------| | GSM1900 | GPRS11 | Rear Face | 810 | 2.96 | 2.88 | 1.03 | | WCDMA II | RMC12.2K | Rear Face | 9262 | 2.49 | 2.38 | 1.05 | | WCDMA IV | RMC12.2K | Rear Face | 1312 | 2.79 | 2.73 | 1.02 | | LTE 2 | QPSK20M | Rear Face | 18700 | 2.9 | 2.83 | 1.02 | | LTE 4 | QPSK20M | Rear Face | 20175 | 2.38 | 2.31 | 1.03 | | LTE 7 | RMC12.2K | Rear Face | 20850 | 3.51 | 3.44 | 1.02 | | LTE 25 | RMC12.2K | Rear Face | 26365 | 3.58 | 3.52 | 1.02 | Report Format Version 5.0.0 Page No. : 31 of 35 Report No.: SF201118C03 Issued Date : Jan. 13, 2021 #### 4.7.4 Simultaneous Multi-band Transmission Evaluation #### <Possibilities of Simultaneous Transmission> The simultaneous transmission possibilities for this device are listed as below. | Simultaneous TX Combination | Capable Transmit Configurations | Extremity Exposure Condition | |-----------------------------|---------------------------------|------------------------------| | 1 | WWAN + WLAN2.4G | Yes | | 2 | WWAN + WLAN5G | Yes | | 3 | WWAN + BT | Yes | #### Note: - 1. The WLAN 2.4G and WLAN 5G cannot transmit simultaneously. - 2. The WLAN and Bluetooth cannot transmit simultaneously. #### <SAR Summation Analysis> Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna. When the sum of SAR_{1g} of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit(SAR_{1g} 1.6 W/kg), the simultaneous transmission SAR is not required. When the sum of SAR_{1g} is greater than the SAR limit (SAR_{1g} 1.6 W/kg), SAR test exclusion is determined by the SPLSR. Refer to Appendix G Test Engineer: James Chu, and Chienlun Huang Report Format Version 5.0.0 Page No. : 32 of 35 Report No.: SF201118C03 Issued Date : Jan. 13, 2021 ## 5. Calibration of Test Equipment | Equipment | Manufacturer | Model | SN | Cal. Date | Cal. Interval | |------------------------------|--------------|-----------------------|------------|---------------|---------------| | System Validation Dipole | SPEAG | D750V3 | 1013 | Aug. 13, 2020 | 1 Year | | System Validation Dipole | SPEAG | D835V2 | 4d121 | Aug. 13, 2020 | 1 Year | | System Validation Dipole | SPEAG | D1750V2 | 1055 | Aug. 14, 2020 | 1 Year | | System Validation Dipole | SPEAG | D1900V2 | 5d036 | Jan. 21, 2020 | 1 Year | | System Validation Dipole | SPEAG | D2300V2 | 1004 | Jan. 21, 2020 | 1 Year | | System Validation Dipole | SPEAG | D2450V2 | 737 | Aug. 13, 2020 | 1 Year | | System Validation Dipole | SPEAG | D2600V2 | 1020 | Aug. 13, 2020 | 1 Year | | System Validation Dipole | SPEAG | D5GHzV2 | 1019 | Mar. 13, 2020 | 1
Year | | Dosimetric E-Field Probe | SPEAG | EX3DV4 | 3650 | Mar. 25, 2020 | 1 Year | | Dosimetric E-Field Probe | SPEAG | EX3DV4 | 3820 | Jun. 25, 2020 | 1 Year | | Dosimetric E-Field Probe | SPEAG | EX3DV4 | 7537 | May. 29, 2020 | 1 Year | | Dosimetric E-Field Probe | SPEAG | EX3DV4 | 7554 | Sep. 28, 2020 | 1 Year | | Dosimetric E-Field Probe | SPEAG | EX3DV4 | 7555 | Sep. 28, 2020 | 1 Year | | Data Acquisition Electronics | SPEAG | DAE4 | 861 | May. 27, 2020 | 1 Year | | Data Acquisition Electronics | SPEAG | DAE4 | 1431 | Mar. 18, 2020 | 1 Year | | Data Acquisition Electronics | SPEAG | DAE4 | 1277 | Jan. 24, 2020 | 1 Year | | Data Acquisition Electronics | SPEAG | DAE4 | 1589 | Sep. 15, 2020 | 1 Year | | Data Acquisition Electronics | SPEAG | DAE4 | 1590 | Sep. 15, 2020 | 1 Year | | Spectrum Analyzer | R&S | FSL6 | 102006 | Mar. 26, 2020 | 1 Year | | Universal Wireless Test Set | Anritsu | MT8870A/MU8
87000A | 6201699387 | Sep. 28, 2020 | 1 Year | | Thermometer | YFE | YF-160A | 150601220 | May. 25, 2020 | 1 Year | | Dielectric Assessment Kit | SPEAG | DAKS-3.5 | 1092 | May. 26, 2020 | 1 Year | | Powersource1 | SPEAG | SE_UMS_160
BA | 4010 | Aug. 13, 2020 | 1 Year | Report Format Version 5.0.0 Page No. : 33 of 35 Report No.: SF201118C03 Issued Date : Jan. 13, 2021 ## 6. Measurement Uncertainty According to KDB 865664 D01, SAR measurement uncertainty analysis is required in SAR reports only when the highest measured SAR in a frequency band is \geq 1.5 W/kg for 1-g SAR, and \geq 3.75 W/kg for 10-g SAR. The procedures described in IEEE Std 1528-2013should be applied. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k = 2. When the highest measured SAR within a frequency band is < 1.5 W/kg for 1-g and < 3.75 W/kg for 10-g, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. Hence, the measurement uncertainty analysis is not required in this SAR report because the test result met the condition. Report Format Version 5.0.0 Page No. : 34 of 35 Report No.: SF201118C03 Issued Date : Jan. 13, 2021 ## 7. Information of the Testing Laboratories We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025. If you have any comments, please feel free to contact us at the following: #### Taiwan Huaya Lab: Add: No. 19, Huaya 2nd Rd., Guishan Dist., Taoyuan City 333, Taiwan Tel: +886-(0)3-318-3232 Fax: +886-(0)3-211-5834 #### Taiwan Linkou Lab: Add: No. 47-2, Baodoucuokeng, Linkou Dist., New Taipei City 244, Taiwan Tel: +886-(0)2-2605-2180 Fax: +886-(0)2-2605-2943 #### Taiwan Hsinchu Lab1: Add: E-2, No. 1, Lixing 1st Rd., East Dist., Hsinchu City 300, Taiwan Tel: +886-(0)3-666-8565 Fax: +886-(0)3-666-8323 #### Taiwan Hsinchu Lab2: Add: No. 49, Ln. 206, Wende Rd., Qionglin Township, Hsinchu County 307, Taiwan Tel: +886-(0)3-512-0595 Fax: +886-(0)3-512-0568 #### **Taiwan Xindian Lab:** Add: B2F., No. 215, Sec. 3, Beixin Rd., Xindian Dist., New Taipei City 231, Taiwan Tel: +886-(0)2-8914-5882 Fax: +886-(0)2-8914-5840 Email: service.adt@tw.bureauveritas.com Web Site: https://ee.bureauveritas.com.tw/BVInternet/Default The road map of all our labs can be found in our web site also. ---END--- Report Format Version 5.0.0 Page No. : 35 of 35 Report No.: SF201118C03 Issued Date : Jan. 13, 2021 ## Appendix A. SAR Plots of System Verification The plots for system verification with largest deviation for each SAR system combination are shown as follows. Report Format Version 5.0.0 Issued Date : Jan. 13, 2021 Report No. : SF201118C03 ## **System Check H750 201203** **DUT: Dipole 750 MHz; Type: D750V3; SN: 1013** Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: H06T09N2 1203 Medium parameters used: f = 750 MHz; $\sigma = 0.928$ S/m; $\varepsilon_r = 43.42$; $\rho =$ Date: 2020/12/03 1000 kg/m^3 Ambient Temperature : 23.6 °C; Liquid Temperature : 23.2 °C ### DASY5 Configuration: - Probe: EX3DV4 SN7554; ConvF(10.39, 10.39, 10.39) @ 750 MHz; Calibrated: 2020/09/28 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1590; Calibrated: 2020/09/15 - Phantom: Twin SAM Phantom 1986; Type: QD 000 P40 CD; - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) Pin=50mW/Area Scan (61x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.587 W/kg Pin=50mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 25.54 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 0.678 W/kgSAR(1 g) = 0.418 W/kg; SAR(10 g) = 0.277 W/kg (SAR corrected for target medium) Maximum value of SAR (measured) = 0.585 W/kg ## **System Check_H835_201203** **DUT: Dipole 835 MHz; Type: D835V2; SN: 4d121** Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: H07T10N1_1203 Medium parameters used: f = 835 MHz; $\sigma = 0.908$ S/m; $\varepsilon_r = 42.687$; $\rho 0.908$ S/m; $\varepsilon_r = 42.687$; $\rho = 0.908$ S/m; $\varepsilon_r 0$ Date: 2020/12/03 1000 kg/m^3 Ambient Temperature : 23.6 °C; Liquid Temperature : 23.2 °C ### DASY5 Configuration: - Probe: EX3DV4 SN7554; ConvF(10.05, 10.05, 10.05) @ 835 MHz; Calibrated: 2020/09/28 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1590; Calibrated: 2020/09/15 - Phantom: Twin SAM Phantom 1986; Type: QD 000 P40 CD; - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Pin=50mW/Area Scan (61x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.680 W/kg Pin=50mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 28.10 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.762 W/kg SAR(1 g) = 0.507 W/kg; SAR(10 g) = 0.332 W/kg (SAR corrected for target medium) SAR(1 g) = 0.507 W/kg; SAR(10 g) = 0.332 W/kg (SAR corrected for target medium)Maximum value of SAR (measured) = 0.675 W/kg ## System Check_H1750_201208 ### **DUT: Dipole 1750 MHz; Type: D1750V2; SN: 1055** Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: H16T20N1 1208 Medium parameters used: f = 1750 MHz; $\sigma = 1.328$ S/m; $\varepsilon_r = 39.799$; ρ Date: 2020/12/08 $= 1000 \text{ kg/m}^3$ Ambient Temperature: 23.5 °C; Liquid Temperature: 23.1 °C ## DASY5 Configuration: - Probe: EX3DV4 SN7555; ConvF(8.6, 8.6, 8.6) @ 1750 MHz; Calibrated: 2020/09/28 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1589; Calibrated: 2020/09/15 - Phantom: SAM Phantom 1987; Type: QD 000 P41 AA; - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Pin=50mW/Area Scan (61x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.04 W/kg **Pin=50mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 40.84 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 2.40 W/kg SAR(1 g) = 1.81 W/kg; SAR(10 g) = 0.934 W/kg (SAR corrected for target medium)Maximum value of SAR (measured) = 2.04 W/kg ## **System Check_H1900_201211** ## **DUT: Dipole 1900 MHz; Type: D1900V2; SN: 5d036** Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: H16T20N1 1211 Medium parameters used: f = 1900 MHz; $\sigma = 1.456$ S/m; $\varepsilon_r = 39.288$; ρ Date: 2020/12/11 $= 1000 \text{ kg/m}^3$ Ambient Temperature : 23.6 °C; Liquid Temperature : 23.2 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3650; ConvF(8.23, 8.23, 8.23) @ 1900 MHz; Calibrated: 2020/03/25 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn861; Calibrated: 2020/05/27 - Phantom: Twin-SAM V8.0 1988; Type: QD 000 P41 AA; - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Pin=50mW/Area Scan (61x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 3.13 W/kg **Pin=50mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 47.86 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 3.75 W/kg SAR(1 g) = 2.01 W/kg; SAR(10 g) = 1.07 W/kg (SAR corrected for target medium) Maximum value of SAR (measured) = 3.16 W/kg ## **System Check_H2300_201205** ### **DUT: Dipole 2300 MHz; Type: D2300V2; SN:1004** Communication System: UID 0, CW; Frequency: 2300 MHz; Duty Cycle: 1:1 Medium: H19T27N1 1205 Medium parameters used: f = 2300 MHz; $\sigma = 1.724$ S/m; $\varepsilon_r = 39.637$; ρ Date: 2020/12/05 $= 1000 \text{ kg/m}^3$ Ambient Temperature : 23.5 °C; Liquid Temperature : 23.1 °C ### DASY5 Configuration: - Probe: EX3DV4 SN7554; ConvF(7.62, 7.62, 7.62) @ 2300 MHz; Calibrated: 2020/09/28 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1590; Calibrated: 2020/09/15 - Phantom: Twin SAM Phantom 1986; Type: QD 000 P40 CD; - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Pin=50mW/Area Scan (81x81x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 3.30 W/kg **Pin=50mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 44.91 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.97 W/kg SAR(1 g) = 2.29 W/kg; SAR(10 g) = 1.27 W/kg (SAR corrected for target medium) Maximum value of SAR (measured) = 3.28 W/kg ## **System Check_H2450_201209** **DUT: Dipole 2450 MHz; Type: D2450V2; SN: 737** Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: H19T27N1_1209 Medium parameters used (interpolated): f = 2450 MHz; $\sigma = 1.879$ S/m; Date: 2020/12/09 $\varepsilon_{\rm r} = 39.289; \, \rho = 1000 \, {\rm kg/m}^3$ Ambient Temperature: 23.8 °C; Liquid Temperature: 23.2 °C #### DASY5
Configuration: - Probe: EX3DV4 SN3650; ConvF(7.75, 7.75, 7.75) @ 2450 MHz; Calibrated: 2020/03/25 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn861; Calibrated: 2020/05/27 - Phantom: Twin-SAM V8.0 1988; Type: QD 000 P41 AA; - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Pin=50mW/Area Scan (81x81x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 4.39 W/kg **Pin=50mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 50.30 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 5.39 W/kg SAR(1 g) = 2.68 W/kg; SAR(10 g) = 1.29 W/kg (SAR corrected for target medium) Maximum value of SAR (measured) = 4.46 W/kg ## **System Check_H2600_201204** ### **DUT: Dipole 2600 MHz; Type: D2600V2; SN: 1020** Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: H19T27N1 1204 Medium parameters used: f = 2600 MHz; $\sigma = 2.049$ S/m; $\varepsilon_r = 38.987$; ρ Date: 2020/12/04 $= 1000 \text{ kg/m}^3$ Ambient Temperature : 23.6 °C; Liquid Temperature : 23.3 °C ### DASY5 Configuration: - Probe: EX3DV4 SN7554; ConvF(7.28, 7.28, 7.28) @ 2600 MHz; Calibrated: 2020/09/28 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1590; Calibrated: 2020/09/15 - Phantom: Twin SAM Phantom 1986; Type: QD 000 P40 CD; - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Pin=50mW/Area Scan (81x81x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 4.69 W/kg **Pin=50mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 48.86 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 5.89 W/kg SAR(1 g) = 2.71 W/kg; SAR(10 g) = 1.23 W/kg (SAR corrected for target medium) Maximum value of SAR (measured) = 4.71 W/kg ## **System Check_H5250_201210** ## DUT: Dipole 5 GHz; Type: D5GHzV2; SN: 1019 Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: H34T60N1_1210 Medium parameters used: f = 5250 MHz; $\sigma = 4.835$ S/m; $\epsilon_r = 36.46$; $\rho = 1000$ kg/m³ Date: 2020/12/10 Ambient Temperature: 23.8 °C; Liquid Temperature: 23.3 °C ### DASY5 Configuration: - Probe: EX3DV4 SN7537; ConvF(5.35, 5.35, 5.35) @ 5250 MHz; Calibrated: 2020/05/29 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1277; Calibrated: 2020/01/24 - Phantom: SAM Phantom 1982; Type: QD 000 P41 Ax; - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Pin=50mW/Area Scan (91x91x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 8.54 W/kg **Pin=50mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 47.85 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 14.3 W/kg SAR(1 g) = 3.81 W/kg; SAR(10 g) = 1.15 W/kg (SAR corrected for target medium) Maximum value of SAR (measured) = 9.18 W/kg ## **System Check_H5600_201210** ## DUT: Dipole 5 GHz; Type: D5GHzV2; SN: 1019 Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: H34T60N1_1210 Medium parameters used: f = 5600 MHz; $\sigma = 5.224$ S/m; $\epsilon_r = 35.924$; $\rho = 1.000$ Medium: $\epsilon_r = 35.924$; 35.$ Date: 2020/12/10 1000 kg/m^3 Ambient Temperature: 23.8 °C; Liquid Temperature: 23.3 °C ### DASY5 Configuration: - Probe: EX3DV4 SN7537; ConvF(4.7, 4.7, 4.7) @ 5600 MHz; Calibrated: 2020/05/29 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1277; Calibrated: 2020/01/24 - Phantom: SAM Phantom 1982; Type: QD 000 P41 Ax; - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Pin=50mW/Area Scan (91x91x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 9.08 W/kg **Pin=50mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 47.20 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 16.4 W/kg SAR(1 g) = 3.87 W/kg; SAR(10 g) = 1.16 W/kg (SAR corrected for target medium) Maximum value of SAR (measured) = 9.77 W/kg ## System Check H5750 201210 ## DUT: Dipole 5 GHz; Type: D5GHzV2; SN: 1019 Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: H34T60N1_1210 Medium parameters used: f = 5750 MHz; $\sigma = 5.364$ S/m; $\epsilon_r = 35.91$; $\rho = 1.000$ to $\epsilon_r = 3.00$ Medium: Date: 2020/12/10 1000 kg/m^3 Ambient Temperature: 23.8 °C; Liquid Temperature: 23.3 °C ### DASY5 Configuration: - Probe: EX3DV4 SN7537; ConvF(4.95, 4.95, 4.95) @ 5750 MHz; Calibrated: 2020/05/29 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1277; Calibrated: 2020/01/24 - Phantom: SAM Phantom 1982; Type: QD 000 P41 Ax; - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Pin=50mW/Area Scan (91x91x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 8.36 W/kg **Pin=50mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 44.66 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 15.3 W/kg SAR(1 g) = 3.52 W/kg; SAR(10 g) = 1.05 W/kg (SAR corrected for target medium) Maximum value of SAR (measured) = 8.91 W/kg # **Appendix B. SAR Plots of SAR Measurement** The SAR plots for highest measured SAR in each exposure configuration, wireless mode and frequency band combination, and measured SAR > 1.5 W/kg are shown as follows. Report Format Version 5.0.0 Issued Date : Jan. 13, 2021 Report No. : SF201118C03 ## P01 GSM850_GPRS11_Rear Face_0mm_Ch189 #### **DUT: 201118C03** Communication System: UID 10027 - DAC, GPRS-FDD (TDMA, GMSK, TN 0-1-2); Frequency: Date: 2020/11/28 836.4 MHz;Duty Cycle: 1:3.02 Medium: H07T10N1_1128 Medium parameters used: f = 836.4 MHz; σ = 0.937 S/m; ϵ_r = 43.124; ρ $= 1000 \text{ kg/m}^3$ Ambient Temperature : 23.4 °C; Liquid Temperature : 23.2 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3820; ConvF(9.01, 9.01, 9.01) @ 836.4 MHz; Calibrated: 2020/06/25 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1431; Calibrated: 2020/03/18 - Phantom: SAM Phantom_1985; Type: QD 000 P41 AA; - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Area Scan (81x141x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.925 W/kg **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 30.44 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 1.31 W/kg SAR(1 g) = 0.656 W/kg; SAR(10 g) = 0.373 W/kg (SAR corrected for target medium) Smallest distance from peaks to all points 3 dB below = 8.6 mm Ratio of SAR at M2 to SAR at M1 = 53.7% Maximum value of SAR (measured) = 0.994 W/kg ## P02 GSM1900_GPRS11_Rear Face_0mm_Ch810 ### **DUT: 201118C03** Communication System: UID 10027 - DAC, GPRS-FDD (TDMA, GMSK, TN 0-1-2); Frequency: Date: 2020/11/28 1909.8 MHz;Duty Cycle: 1:3.02 Medium: H16T20N1_1128 Medium parameters used: f = 1910 MHz; σ = 1.462 S/m; ϵ_r = 39.315; ρ $= 1000 \text{ kg/m}^3$ Ambient Temperature : 23.6 $^{\circ}$ C; Liquid Temperature : 23.3 $^{\circ}$ C ## DASY5 Configuration: - Probe: EX3DV4 SN3820; ConvF(7.4, 7.4, 7.4) @ 1909.8 MHz; Calibrated: 2020/06/25 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1431; Calibrated: 2020/03/18 - Phantom: SAM Phantom_1985; Type: QD 000 P41 AA; - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Area Scan (81x141x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 9.14 W/kg Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 72.82 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 12.1 W/kg SAR(1 g) = 6 W/kg; SAR(10 g) = 2.96 W/kg (SAR corrected for target medium) Smallest distance from peaks to all points 3 dB below = 8.2 mm Ratio of SAR at M2 to SAR at M1 = 53.8% Maximum value of SAR (measured) = 9.40 W/kg ## P03 WCDMA II RMC12.2K Rear Face 0mm Ch9262 #### **DUT: 201118C03** Communication System: UID 10011 - CAB, UMTS-FDD (WCDMA); Frequency: 1852.4 MHz; Duty Cycle: 1:1.95 Medium: H16T20N1 1208 Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.418$ Date: 2020/12/08 S/m; $\varepsilon_r = 39.394$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.5 °C; Liquid Temperature: 23.1 °C ### DASY5 Configuration: - Probe: EX3DV4 SN7555; ConvF(8.42, 8.42, 8.42) @ 1852.4 MHz; Calibrated: 2020/09/28 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1589; Calibrated: 2020/09/15 - Phantom: SAM Phantom 1987; Type: QD 000 P41 AA; - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Area Scan (81x141x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 11.9 W/kg **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 83.75 V/m; Power Drift = -0.12 dB Reference value – 65./5 V/III, Power DIIII – -0. Peak SAR (extrapolated) = 11.8 W/kg SAR(1 g) = 5.36 W/kg; SAR(10 g) = 2.49 W/kg (SAR corrected for target medium) Smallest distance from peaks to all points 3 dB below = 8.1 mm Ratio of SAR at M2 to SAR at M1 = 46.3% Maximum value of SAR (measured) = 8.70 W/kg ## P04 WCDMA IV RMC12.2K Rear Face 0mm Ch1312 #### **DUT: 201118C03** Communication System: UID 10011 - CAB, UMTS-FDD (WCDMA); Frequency: 1712.4 MHz;Duty Cycle: 1:1.95 Medium: H16T20N1_1208 Medium parameters used: f = 1712.4 MHz; $\sigma = 1.294$ S/m; $\epsilon_r = 39.97$; ρ Date: 2020/12/08 $= 1000 \text{ kg/m}^3$ Ambient Temperature: 23.5 °C; Liquid Temperature: 23.1 °C ### DASY5 Configuration: - Probe: EX3DV4 SN7555; ConvF(8.6, 8.6, 8.6) @ 1712.4 MHz; Calibrated: 2020/09/28 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1589; Calibrated: 2020/09/15 - Phantom: SAM Phantom 1987;
Type: QD 000 P41 AA; - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Area Scan (81x141x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 11.9 W/kg **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 83.49 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 12.1 W/kg SAR(1 g) = 5.93 W/kg; SAR(10 g) = 2.79 W/kg (SAR corrected for target medium) Smallest distance from peaks to all points 3 dB below = 8.3 mm Ratio of SAR at M2 to SAR at M1 = 48.4% Maximum value of SAR (measured) = 9.76 W/kg ## P05 WCDMA V_RMC12.2K_Rear Face_0mm_Ch4132 ### **DUT: 201118C03** Communication System: UID 10011 - CAB, UMTS-FDD (WCDMA); Frequency: 826.4 MHz;Duty Cycle: 1:1.95 Date: 2020/11/28 Medium: H07T10N1_1128 Medium parameters used (interpolated): f = 826.4 MHz; $\sigma = 0.928$ S/m; $\varepsilon_r = 43.246$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.6 $^{\circ}$ C ; Liquid Temperature : 23.3 $^{\circ}$ C ## DASY5 Configuration: - Probe: EX3DV4 SN3820; ConvF(9.01, 9.01, 9.01) @ 826.4 MHz; Calibrated: 2020/06/25 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1431; Calibrated: 2020/03/18 - Phantom: SAM Phantom_1985; Type: QD 000 P41 AA; - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Area Scan (81x141x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.843 W/kg **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 30.47 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 1.08 W/kg SAR(1 g) = 0.535 W/kg; SAR(10 g) = 0.305 W/kg (SAR corrected for target medium) Smallest distance from peaks to all points 3 dB below = 8.2 mm Ratio of SAR at M2 to SAR at M1 = 52.7% Maximum value of SAR (measured) = 0.763 W/kg ## P06 LTE 2 QPSK20M Rear Face 0mm Ch18700 1RB OS50 #### **DUT: 201118C03** Communication System: UID 10169 - CAE, LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1860 MHz; Duty Cycle: 1:3.74 Medium: H16T20N1_1208 Medium parameters used: f = 1860 MHz; $\sigma = 1.425$ S/m; $\epsilon_r = 39.363$; ρ Date: 2020/12/08 $= 1000 \text{ kg/m}^3$ Ambient Temperature: 23.5 °C; Liquid Temperature: 23.1 °C ### DASY5 Configuration: - Probe: EX3DV4 SN7555; ConvF(8.42, 8.42, 8.42) @ 1860 MHz; Calibrated: 2020/09/28 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1589; Calibrated: 2020/09/15 - Phantom: SAM Phantom 1987; Type: QD 000 P41 AA; - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Area Scan (81x141x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 12.1 W/kg **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 79.82 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 14.4 W/kg SAR(1 g) = 6.31 W/kg; SAR(10 g) = 2.9 W/kg (SAR corrected for target medium) Smallest distance from peaks to all points 3 dB below = 8.3 mm Ratio of SAR at M2 to SAR at M1 = 44% Maximum value of SAR (measured) = 11.3 W/kg ## P07 LTE 4_QPSK20M_Rear Face_0mm_Ch20175_1RB_OS50 #### **DUT: 201118C03** Communication System: UID 10169 - CAE, LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1732.5 MHz; Duty Cycle: 1:3.74 Medium: H16T20N1_1202 Medium parameters used: f = 1733 MHz; $\sigma = 1.305$ S/m; $\epsilon_r = 40.336$; ρ Date: 2020/12/02 $= 1000 \text{ kg/m}^3$ Ambient Temperature : 23.7 °C; Liquid Temperature : 23.1 °C ### DASY5 Configuration: - Probe: EX3DV4 SN7554; ConvF(8.58, 8.58, 8.58) @ 1732.5 MHz; Calibrated: 2020/09/28 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1590; Calibrated: 2020/09/15 - Phantom: Twin SAM Phantom 1986; Type: QD 000 P40 CD; - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Area Scan (81x141x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 5.74 W/kg **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 63.03 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 9.80 W/kg SAR(1 g) = 5.03 W/kg; SAR(10 g) = 2.38 W/kg (SAR corrected for target medium) Smallest distance from peaks to all points 3 dB below = 8.2 mm Ratio of SAR at M2 to SAR at M1 = 52.1% Maximum value of SAR (measured) = 7.84 W/kg ## P08 LTE 5_QPSK10M_Right Side_0mm_Ch20525_1RB_OS24 #### **DUT: 201118C03** Communication System: UID 10175 - CAG, LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 836.5 MHz; Duty Cycle: 1:3.74 Medium: H07T10N1_1203 Medium parameters used (interpolated): f = 836.5 MHz; $\sigma = 0.91$ S/m; Date: 2020/12/03 $\varepsilon_{\rm r} = 42.668$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.6 °C; Liquid Temperature: 23.2 °C ### DASY5 Configuration: - Probe: EX3DV4 SN7554; ConvF(10.05, 10.05, 10.05) @ 836.5 MHz; Calibrated: 2020/09/28 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1590; Calibrated: 2020/09/15 - Phantom: Twin SAM Phantom 1986; Type: QD 000 P40 CD; - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Area Scan (81x141x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.765 W/kg **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 27.22 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.847 W/kg SAR(1 g) = 0.532 W/kg; SAR(10 g) = 0.337 W/kg (SAR corrected for target medium) Smallest distance from peaks to all points 3 dB below = 15.8 mm Ratio of SAR at M2 to SAR at M1 = 63% Maximum value of SAR (measured) = 0.735 W/kg ## P09 LTE 7 QPSK20M Rear Face 0mm Ch20850 1RB OS50 #### **DUT: 201118C03** Communication System: UID 10169 - CAE, LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 2510 MHz; Duty Cycle: 1:3.74 Medium: H19T27N1_1208 Medium parameters used: f = 2510 MHz; σ = 1.934 S/m; ϵ_r = 38.1; ρ = Date: 2020/12/08 1000 kg/m^3 Ambient Temperature: 23.5 °C; Liquid Temperature: 23.1 °C ### DASY5 Configuration: - Probe: EX3DV4 SN7555; ConvF(7.36, 7.36, 7.36) @ 2510 MHz; Calibrated: 2020/09/28 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1589; Calibrated: 2020/09/15 - Phantom: SAM Phantom 1987; Type: QD 000 P41 AA; - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Area Scan (101x171x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 15.7 W/kg **Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 70.91 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 18.6 W/kg SAR(1 g) = 7.94 W/kg; SAR(10 g) = 3.51 W/kg (SAR corrected for target medium) Smallest distance from peaks to all points 3 dB below = 8.5 mm Ratio of SAR at M2 to SAR at M1 = 41.6% Maximum value of SAR (measured) = 13.8 W/kg # P20 LTE 12_QPSK10M_Rear Face_0mm_Ch23095_1RB_OS24 #### **DUT: 201118C03** Communication System: UID 10175 - CAG, LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 707.5 MHz; Duty Cycle: 1:3.74 Medium: H06T09N2_1203 Medium parameters used (interpolated): f = 707.5 MHz; $\sigma = 0.913$ S/m; Date: 2020/12/03 $\varepsilon_{\rm r} = 43.514$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 23.7 °C; Liquid Temperature : 23.1 °C #### DASY5 Configuration: - Probe: EX3DV4 SN7554; ConvF(10.39, 10.39, 10.39) @ 707.5 MHz; Calibrated: 2020/09/28 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1590; Calibrated: 2020/09/15 - Phantom: Twin SAM Phantom 1986; Type: QD 000 P40 CD; - Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.14 (7483) **Area Scan (81x141x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.829 W/kg **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 29.55 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 1.04 W/kg SAR(1 g) = 0.530 W/kg; SAR(10 g) = 0.316 W/kg (SAR corrected for target medium) Smallest distance from peaks to all points 3 dB below = 12.8 mm Ratio of SAR at M2 to SAR at M1 = 52.3% Maximum value of SAR (measured) = 0.840 W/kg # P21 LTE 13_QPSK10M_Rear Face_0mm_Ch23230_1RB_OS24 ### **DUT: 201118C03** Communication System: UID 10175 - CAG, LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 782 MHz; Duty Cycle: 1:3.74 Medium: H06T09N2_1203 Medium parameters used: f = 782 MHz; $\sigma = 0.937$ S/m; $\epsilon_r = 43.348$; $\rho = 0.937$ S/m; $\epsilon_r = 43.348$; Date: 2020/12/03 1000 kg/m^3 Ambient Temperature : 23.6 °C; Liquid Temperature : 23.2 °C #### DASY5 Configuration: - Probe: EX3DV4 SN7554; ConvF(10.39, 10.39, 10.39) @ 782 MHz; Calibrated: 2020/09/28 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1590; Calibrated: 2020/09/15 - Phantom: Twin SAM Phantom 1986; Type: QD 000 P40 CD; - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Area Scan (81x141x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.807 W/kg **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 28.38 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 0.939 W/kg SAR(1 g) = 0.475 W/kg; SAR(10 g) = 0.286 W/kg (SAR corrected for target medium) Smallest distance from peaks to all points 3 dB below = 17.2 mm Ratio of SAR at M2 to SAR at M1 = 54.5% Maximum value of SAR (measured) = 0.767 W/kg ## P10 LTE 25 QPSK20M Rear Face 0mm Ch26365 1RB OS50 #### **DUT: 201118C03** Communication System: UID 10169 - CAE, LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1882.5 MHz; Duty Cycle: 1:3.74 Medium: H16T20N1_1208 Medium parameters used: f = 1882.5 MHz; $\sigma = 1.444$ S/m; $\varepsilon_r = 39.29$; ρ Date: 2020/12/08 $= 1000 \text{ kg/m}^3$ Ambient Temperature: 23.5 °C; Liquid Temperature: 23.1 °C ### DASY5 Configuration: - Probe: EX3DV4 SN7555; ConvF(8.42, 8.42, 8.42) @ 1882.5 MHz; Calibrated:
2020/09/28 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1589; Calibrated: 2020/09/15 - Phantom: SAM Phantom 1987; Type: QD 000 P41 AA; - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Area Scan (81x141x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 16.7 W/kg **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 91.95 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 18.8 W/kg SAR(1 g) = 8.04 W/kg; SAR(10 g) = 3.58 W/kg (SAR corrected for target medium) Smallest distance from peaks to all points 3 dB below = 8.2 mm Ratio of SAR at M2 to SAR at M1 = 42.9% Maximum value of SAR (measured) = 14.7 W/kg ## P11 LTE 26_QPSK15M_Right Side_0mm_Ch26965_1RB_OS37 #### **DUT: 201118C03** Communication System: UID 10181 - CAE, LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK); Frequency: 841.5 MHz; Duty Cycle: 1:3.74 Medium: H07T10N1_1203 Medium parameters used (interpolated): f = 841.5 MHz; $\sigma = 0.914$ S/m; Date: 2020/12/03 $\varepsilon_r = 42.609$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 23.6 $^{\circ}$ C ; Liquid Temperature : 23.2 $^{\circ}$ C ### DASY5 Configuration: - Probe: EX3DV4 SN7554; ConvF(10.05, 10.05, 10.05) @ 841.5 MHz; Calibrated: 2020/09/28 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1590; Calibrated: 2020/09/15 - Phantom: Twin SAM Phantom_1986; Type: QD 000 P40 CD; - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Area Scan (81x141x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.845 W/kg **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 29.34 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.985 W/kg SAR(1 g) = 0.605 W/kg; SAR(10 g) = 0.384 W/kg (SAR corrected for target medium) Smallest distance from peaks to all points 3 dB below = 8.8 mm Ratio of SAR at M2 to SAR at M1 = 63% Maximum value of SAR (measured) = 0.832 W/kg ## P12 LTE 38_QPSK20M_Rear Face_0mm_Ch38150_1RB_OS50 #### **DUT: 201118C03** Communication System: UID 10172 - CAG, LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 2610 MHz; Duty Cycle: 1:8.33 Medium: H19T27N1_1204 Medium parameters used (interpolated): f = 2610 MHz; $\sigma = 2.061$ S/m; Date: 2020/12/04 $\varepsilon_{\rm r} = 38.96$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.6 °C; Liquid Temperature: 23.3 °C ### DASY5 Configuration: - Probe: EX3DV4 SN7554; ConvF(7.28, 7.28, 7.28) @ 2610 MHz; Calibrated: 2020/09/28 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1590; Calibrated: 2020/09/15 - Phantom: Twin SAM Phantom 1986; Type: QD 000 P40 CD; - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Area Scan (101x171x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 5.35 W/kg **Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 50.68 V/m; Power Drift = $0.\overline{10} \text{ dB}$ Peak SAR (extrapolated) = 6.98 W/kg SAR(1 g) = 3.08 W/kg; SAR(10 g) = 1.37 W/kg (SAR corrected for target medium) Smallest distance from peaks to all points 3 dB below = 8.1 mm Ratio of SAR at M2 to SAR at M1 = 47.9% Maximum value of SAR (measured) = 5.61 W/kg ## P14 LTE 41_QPSK20M_Rear Face_0mm_Ch41055_1RB_OS50 #### **DUT: 201118C03** Communication System: UID 10172 - CAG, LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 2636.5 MHz; Duty Cycle: 1:8.33 Medium: H19T27N1_1204 Medium parameters used (interpolated): f = 2636.5 MHz; $\sigma = 2.088$ Date: 2020/12/04 S/m; $\varepsilon_r = 38.873$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 23.6 ℃; Liquid Temperature : 23.3 ℃ ## DASY5 Configuration: - Probe: EX3DV4 SN7554; ConvF(7.28, 7.28, 7.28) @ 2636.5 MHz; Calibrated: 2020/09/28 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1590; Calibrated: 2020/09/15 - Phantom: Twin SAM Phantom 1986; Type: QD 000 P40 CD; - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Area Scan (101x171x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 5.63 W/kg **Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 51.94 V/m; Power Drift = 0.18 dB Peak SAR (extrapolated) = 7.09 W/kg SAR(1 g) = 3.25 W/kg; SAR(10 g) = 1.45 W/kg (SAR corrected for target medium) Smallest distance from peaks to all points 3 dB below = 8.5 mm Ratio of SAR at M2 to SAR at M1 = 49.7% Maximum value of SAR (measured) = 5.73 W/kg