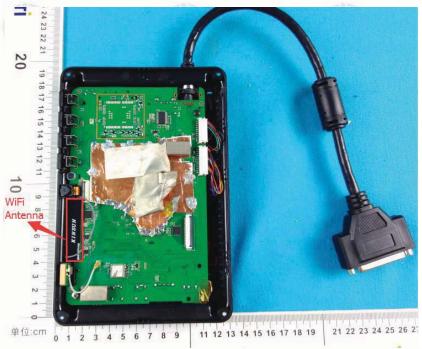


Page 34 of 65

Report No.: EED32H001720 Page 35 of 65

Appendix F) Antenna Requirement

15.203 requirement:

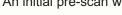

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna car be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

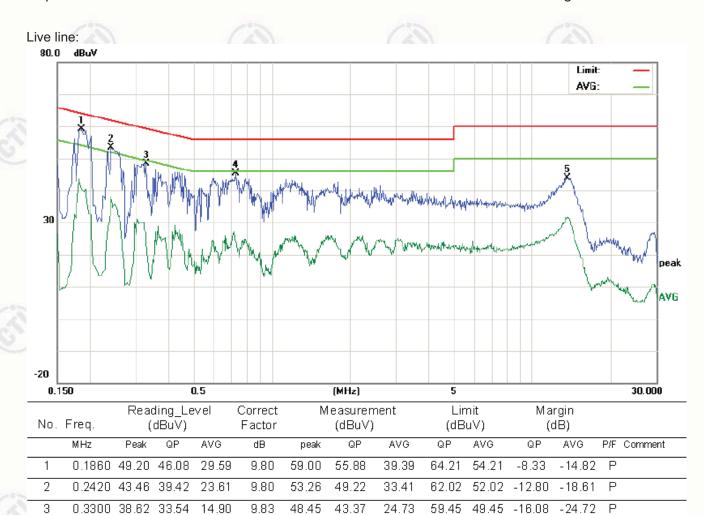
EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2.6dBi.



Report No.: EED32H001720 Page 36 of 65

		lz-30MHz									
	1) The mains terminal disturl	bance voltage test was	conducted in a shie	lded room.							
) (2) The EUT was connected Stabilization Network) wh power cables of all other which was bonded to the for the unit being measur multiple power cables to a exceeded.	nich provides a 50Ω/50 units of the EUT were ground reference plan red. A multiple socket	0μ H + 5Ω linear impose connected to a section in the same way a coutlet strip was use	edance. The cond LISN 2, s the LISN 1 d to connect							
	The tabletop EUT was plane reference plane. And for the horizontal ground reference plane.	floor-standing arranger		-							
	4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN										
A (1 was placed 0.8 m from the boundary of the unit under test and bonded to a										
/ (ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT.										
	plane. This distance was All other units of the EUT LISN 2.										
(cil)	5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.										
Limit:		Limit (
	Frequency range (MHz)	Quasi-peak	Average								
. /	0.15-0.5	66 to 56*	56 to 46*	(3)							
) (0.5-5	56	46	(6)							
	5-30	60	50								
	* The limit decreases linearly MHz to 0.50 MHz. NOTE: The lower limit is app	College Co.	200	e range 0.15							
Measurement Data											
An initial pre-scan was	performed on the live and neutra	I lines with peak detect	tor.								
•	ge measurement were performed	•		mission were							
detected.	(E) (E)										



Page 37 of 65

0.7300

13.6860

35.49

33.85

29.63

29.20

13.84

20.49

4

5

9.90

10.07

45.39

43.92

39.53

39.27

23.74

30.56

56.00

60.00

46.00

50.00

-16.47

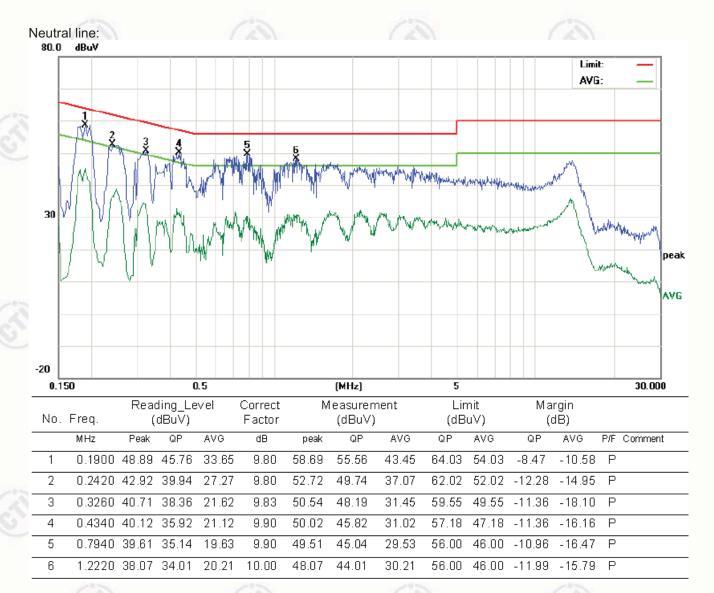
-20.73

-22.26

-19.44

Р

Ρ



Page 38 of 65

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: EED32H001720 Page 39 of 65

Appendix H) Restricted bands around fundamental frequency (Radiated)

R							
	eceiver Setup:	Frequency	Detector	RBW	VBW	Remark	
		30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peal	<
			Peak	1MHz	3MHz	Peak	10
		Above 1GHz	Peak	1MHz	10Hz	Average	(3
) T	est Procedure:	Below 1GHz test procedu a. The EUT was placed or at a 3 meter semi-aneod determine the position of the EUT was set 3 met was mounted on the top of the antenna height is wordetermine the maximum polarizations of the antenna was tuned table was turned from the antenna was tuned table was turned from the EuThe test-receiver system Bandwidth with Maximum f. Place a marker at the enterpression of the spectra for lowest and highest of the spectra for	re as below: In the top of a report of the highest report of a variable-laried from one of a value of the firm are set to heights from degrees to 36 m was set to Permit of the restrict of th	otating table the table was adiation. the interfer height ante meter to for ield strength make the r T was arran of 1 meter to 0 degrees the eak Detect cted band of neasure any	e 0.8 meter as rotated 3 rence-recei nna tower. bur meters n. Both hor neasurement aged to its v 4 meters a to find the in Function a	rs above the 360 degrees ving antenna above the grizontal and vent. worst case a and the rotat maximum rend Specified the transmit in the restricts in the restricts.	to a, where counce yertice nd the able ading
		 Above 1GHz test procedug. g. Different between above to fully Anechoic Champers of the second of	re as below: e is the test site ber change for I meter and tab vest channel, t nents are perfo	m table 0.8 ple is 1.5 methe Highest brmed in X, xis position	metre to 1 etre). channel Y, Z axis p ing which i	.5 metre(Ab positioning fo t is worse ca	ove r
L	_imit:	Frequency	Limit (dBµV			mark	
		30MHz-88MHz	40.			eak Value	
		88MHz-216MHz	43.		· ·		
		216MHz-960MHz	46.		· ·	Quasi-peak Value Quasi-peak Value	
		Z I OIVII IZ OOOIVII IZ	70.	-	Quasi-pe		
			5.1	0	Ouasi-ne		
		960MHz-1GHz	54. 54.		-	eak Value eak Value ge Value	

Report No.: EED32H001720 Page 40 of 65

Test plot as follows:

Worse case	e mode:	802.11b (1	1Mbps)		(8)	(2)		(63)		
Frequency (MHz)	Read Level (dBµV)	Level (dBµV/m)	Antenna Factor (dB/m)	Cable Loss (dB)	Premap Factor (dB)	Limit (dBµV/m)	Over Limit (dB)	Antenna Polaxis	Remark	Test channel
2390.00	45.51	45.11	32.53	4.28	37.21	74	-28.89	Н	PK	Lowest
2390.00	46.03	45.63	32.53	4.28	37.21	74	-28.37	V	PK	Lowest
2483.50	45.32	45.35	32.71	4.51	37.19	74	-28.65	Н	PK	Highest
2483.50	44.25	44.28	32.71	4.51	37.19	74	-29.72	V	PK	Highest

	276 V				/ /	76.7		1 100			
Worse case	e mode:	802.11g (6	Mbps)		(6)	(1)					
Frequency (MHz)	Read Level (dBµV)	Level (dBµV/m)	Antenna Factor (dB/m)	Cable Loss (dB)	Premap Factor (dB)	Limit (dBµV/m)	Over Limit (dB)	Antenna Polaxis	Remark	Test channel	
2390.00	56.52	56.12	32.53	4.28	37.21	74	-17.88	Н	PK	Lowest	
2390.00	53.52	53.12	32.53	4.28	37.21	74	-20.88	V	PK	Lowest	
2390.00	40.20	39.80	32.53	4.28	37.21	54	-14.20	Н	AV	Lowest	
2390.00	38.72	38.32	32.53	4.28	37.21	54	-15.68	V	AV	Lowest	
2483.50	51.96	51.99	32.71	4.51	37.19	74	-22.01	H	PK	Highest	
2483.50	57.34	57.37	32.71	4.51	37.19	74	-16.63	V	PK	Highest	
2483.50	34.15	34.18	32.71	4.51	37.19	54	-19.82	Н	AV	Highest	
2483.50	36.53	36.56	32.71	4.51	37.19	54	-17.44	V	AV	Highest	

Worse case	e mode:	802.11n(H	Г20) (6.5Mb	ps)						
Frequency (MHz)	Read Level (dBµV)	Level (dBµV/m)	Antenna Factor (dB/m)	Cable Loss (dB)	Premap Factor (dB)	Limit (dBµV/m)	Over Limit (dB)	Antenna Polaxis	Remark	Test channel
2390.00	53.31	52.91	32.53	4.28	37.21	74	-21.09	H	PK	Lowest
2390.00	50.67	50.27	32.53	4.28	37.21	74	-23.73	V	PK	Lowest
2390.00	39.42	39.02	32.53	4.28	37.21	54	-14.98	Н	AV	Lowest
2483.50	54.83	54.86	32.71	4.51	37.19	74	-19.14	Н	PK	Highest
2483.50	47.62	47.65	32.71	4.51	37.19	74	-26.35	V	PK	Highest
2483.50	35.21	35.24	32.71	4.51	37.19	54	-18.76	Н	AV	Highest

Remark:

- 1) Through Pre-scan Wi-Fi mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20),and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from the Restricted bands around fundamental frequency (Radiated) test data, The test data which are more than 20dB but below the Average limit not be reported.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No.: EED32H001720 Page 41 of 65

Appendix I) Radiated Spurious Emissions

Receiver Setup:

Detector	RBW	VBW	Remark
Peak	10kHz	30kHz	Peak
Average	10kHz	30kHz	Average
Quasi-peak	10kHz	30kHz	Quasi-peak
Peak	10kHz	30kHz	Peak
Average	10kHz	30kHz	Average
Quasi-peak	10kHz	30kHz	Quasi-peak
Quasi-peak	120 kHz	300kHz	Quasi-peak
Peak	1MHz	3MHz	Peak
Peak	1MHz	10Hz	Average
	Peak Average Quasi-peak Peak Average Quasi-peak Quasi-peak Peak	Peak 10kHz Average 10kHz Quasi-peak 10kHz Peak 10kHz Average 10kHz Quasi-peak 10kHz Quasi-peak 10kHz Quasi-peak 120 kHz Peak 1MHz	Peak 10kHz 30kHz Average 10kHz 30kHz Quasi-peak 10kHz 30kHz Peak 10kHz 30kHz Average 10kHz 30kHz Quasi-peak 10kHz 30kHz Quasi-peak 10kHz 30kHz Quasi-peak 120 kHz 300kHz Peak 1MHz 3MHz

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

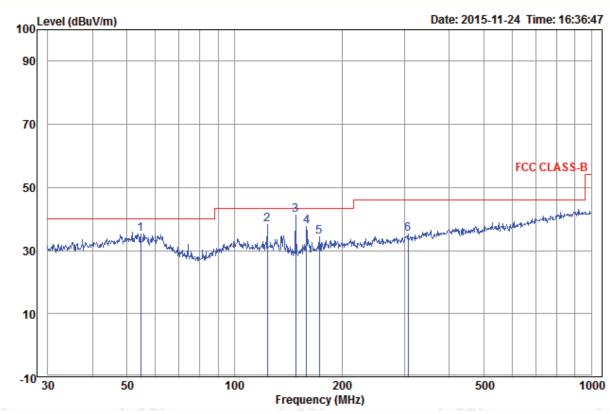
- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre (Above 18GHz the distance is 1 meter and table is 1.5 metre)..
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

Limit:

	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	-05	300
	0.490MHz-1.705MHz	24000/F(kHz)	-	(3)	30
١	1.705MHz-30MHz	30	-		30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

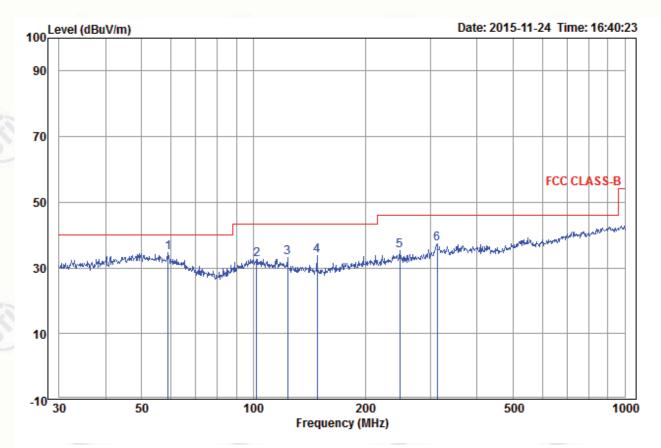


Report No.: EED32H001720 Page 42 of 65

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)

		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	54.64	14.47	1.41	19.53	35.41	40.00	-4.59	Horizontal	
2	123.70	11.36	1.58	25.30	38.24	43.50	-5.26	Horizontal	
3 рр	148.44	9.79	1.58	29.82	41.19	43.50	-2.31	Horizontal	
4	159.23	10.09	1.71	25.75	37.55	43.50	-5.95	Horizontal	
5	173.21	10.65	1.89	21.93	34.47	43.50	-9.03	Horizontal	
6	306.75	13.69	2.43	19.00	35.12	46.00	-10.88	Horizontal	



	Freq					Limit Line		Pol/Phase	Remark
_	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	——dB		
1 рр	59.03	13.92	1.43	19.19	34.54	40.00	-5.46	Vertical	
2	102.00	13.03	1.57	17.98	32.58	43.50	-10.92	Vertical	
3	123.70	11.36	1.58	20.21	33.15	43.50	-10.35	Vertical	
4	148.44	9.79	1.58	22.52	33.89	43.50	-9.61	Vertical	
5	247.68	12.37	2.34	20.49	35.20	46.00	-10.80	Vertical	
6	312.18	13.84	2.47	21.19	37.50	46.00	-8.50	Vertical	

Report No.: EED32H001720 Page 44 of 65

Transmitter Emission above 1GHz

Test r	mode:	802.1	11b	Test Fred	juencyl:		2412N	lHz	
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1439.09	30.75	38.06	2.77	47.23	42.69	74	-31.31	Pass	Н
1634.419	31.12	37.77	2.95	45.78	42.08	74	-31.92	Pass	Н
3200.502	33.42	37.06	5.58	45.79	47.73	74	-26.27	Pass	Н
4824.000	34.73	36.82	5.10	48.09	51.10	74	-22.90	Pass	Н
7236.000	36.42	37.45	6.69	45.15	50.81	74	-23.19	Pass	Н
9648.000	37.93	37.83	7.70	43.87	51.67	74	-22.33	Pass	Н
1904.119	31.56	37.41	3.16	51.00	48.31	74	-25.69	Pass	V
3216.838	33.41	37.05	5.58	46.27	48.21	74	-25.79	Pass	V
3625.669	33.07	36.97	5.50	46.05	47.65	74	-26.35	Pass	V
4824.000	34.73	36.82	5.10	44.18	47.19	74	-26.81	Pass	V
7236.000	36.42	37.45	6.69	42.43	48.09	74	-25.91	Pass	V
9648.000	37.93	37.83	7.70	44.37	52.17	74	-21.83	Pass	V

Test r	node:	802.	11b	Test Fred	quencyl:		2437N	1Hz	
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1638.585	31.12	37.76	2.95	45.93	42.24	74	-31.76	Pass	"ZH
1923.606	31.59	37.39	3.18	46.13	43.51	74	-30.49	Pass	Н
3359.099	33.29	37.02	5.55	45.93	47.75	74	-26.25	Pass	Н
4874.000	34.84	36.81	5.09	46.37	49.49	74	-24.51	Pass	Н
7311.000	36.43	37.43	6.76	43.46	49.22	74	-24.78	Pass	Н
9748.000	38.03	37.85	7.61	44.15	51.94	74	-22.06	Pass	Н
1439.090	30.75	38.06	2.77	45.61	41.07	74	-32.93	Pass	V
1597.401	31.05	37.82	2.92	45.37	41.52	74	-32.48	Pass	V
3299.775	33.34	37.03	5.56	45.78	47.65	74	-26.35	Pass	V
4874.000	34.84	36.81	5.09	44.34	47.46	74	-26.54	Pass	V
7311.000	36.43	37.43	6.76	43.21	48.97	74	-25.03	Pass	V
9748.000	38.03	37.85	7.61	44.22	52.01	74	-21.99	Pass	V

Page 45 of 65

- 1	176.3		434		1 434			1.0	
Test r	mode:	802.1	l1b	Test Freq	uencyl:		2462M	lHz	
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1185.958	30.19	38.51	2.50	49.36	43.54	74	-30.46	Pass	Н
2102.853	31.93	37.28	3.53	45.82	44.00	74	-30.00	Pass	Н
3249.760	33.38	37.04	5.57	46.59	48.50	74	-25.50	Pass	Н
4924.000	34.94	36.81	5.07	45.33	48.53	74	-25.47	Pass	Н
7386.000	36.44	37.42	6.83	43.60	49.45	74	-24.55	Pass	Н
9848.000	38.14	37.87	7.53	44.03	51.83	74	-22.17	Pass	Н
1435.431	30.74	38.07	2.77	45.91	41.35	74	-32.65	Pass	V
1663.803	31.17	37.72	2.97	45.72	42.14	74	-31.86	Pass	V
3325.070	33.31	37.03	5.56	45.70	47.54	74	-26.46	Pass	V
4924.000	34.94	36.81	5.07	41.76	44.96	74	-29.04	Pass	V
7386.000	36.44	37.42	6.83	43.16	49.01	74	-24.99	Pass	V
9848.000	38.14	37.87	7.53	43.93	51.73	74	-22.27	Pass	V

Test r	node:	802.1	802.11g		uencyl:	yl: 2412MH			
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1439.090	30.75	38.06	2.77	46.68	42.14	74	-31.86	Pass	CONT.
1948.245	31.62	37.36	3.19	45.64	43.09	74	-30.91	Pass	Н
3291.385	33.34	37.04	5.56	45.95	47.81	74	-26.19	Pass	H
4824.000	34.73	36.82	5.10	43.41	46.42	74	-27.58	Pass	Н
7236.000	36.42	37.45	6.69	43.72	49.38	74	-24.62	Pass	Н
9648.000	37.93	37.83	7.70	44.15	51.95	74	-22.05	Pass	Н
1293.173	30.44	38.31	2.62	46.41	41.16	74	-32.84	Pass	V
1680.831	31.2	37.70	2.99	46.00	42.49	74	-31.51	Pass	V
3291.385	33.34	37.04	5.56	45.92	47.78	74	-26.22	Pass	V
4824.000	34.73	36.82	5.10	42.67	45.68	74	-28.32	Pass	V
7236.000	36.42	37.45	6.69	44.34	50.00	74	-24.00	Pass	V
9648.000	37.93	37.83	7.70	44.06	51.86	74	-22.14	Pass	V

Page 46 of 65

				(20)						
Test r	Test mode:		11g	Test Fred	uencyl:	2437MHz				
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1439.090	30.75	38.06	2.77	45.97	41.43	74	-32.57	Pass	Н	
1800.416	31.40	37.54	3.08	45.67	42.61	74	-31.39	Pass	Н	
3805.334	32.94	36.93	5.47	45.41	46.89	74	-27.11	Pass	Н	
4874.000	34.84	36.81	5.09	44.10	47.22	74	-26.78	Pass	Н	
7311.000	36.43	37.43	6.76	43.27	49.03	74	-24.97	Pass	Н	
9748.000	38.03	37.85	7.61	43.74	51.53	74	-22.47	Pass	Н	
1439.090	30.75	38.06	2.77	46.18	41.64	74	-32.36	Pass	V	
1706.700	31.24	37.67	3.01	45.60	42.18	74	-31.82	Pass	V	
3258.042	33.37	37.04	5.57	45.75	47.65	74	-26.35	Pass	V	
4874.000	34.84	36.81	5.09	42.90	46.02	74	-27.98	Pass	V	
7311.000	36.43	37.43	6.76	43.82	49.58	74	-24.42	Pass	V	
9748.000	38.03	37.85	7.61	44.87	52.66	74	-21.34	Pass	V	

Test r	mode:	802.	11g	Test Fred	quencyl:	2462MHz			
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1439.090	30.75	38.06	2.77	46.76	42.22	74	-31.78	Pass	Н
1668.044	31.18	37.72	2.98	45.48	41.92	74	-32.08	Pass	Н
3168.080	33.45	37.06	5.59	46.17	48.15	74	-25.85	Pass	Н
4924.000	34.94	36.81	5.07	43.61	46.81	74	-27.19	Pass	Н
7386.000	36.44	37.42	6.83	43.76	49.61	74	-24.39	Pass	Н
9848.000	38.14	37.87	7.53	43.89	51.69	74	-22.31	Pass	Н
1880.038	31.52	37.44	3.14	44.76	41.98	74	-32.02	Pass	V
3266.346	33.36	37.04	5.57	46.27	48.16	74	-25.84	Pass	V
4570.772	34.17	36.84	5.2	43.75	46.28	74	-27.72	Pass	V
4924.000	34.94	36.81	5.07	42.48	45.68	74	-28.32	Pass	V
7386.000	36.44	37.42	6.83	42.54	48.39	74	-25.61	Pass	V
9848.000	38.14	37.87	7.53	44.54	52.34	74	-21.66	Pass	V

Page 47 of 65

Test r	node:	802.11n(HT20)		Test Frequencyl:		2412MHz				
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1185.958	30.19	38.51	2.50	46.89	41.07	74	-32.93	Pass	° Н	
1800.416	31.40	37.54	3.08	45.78	42.72	74	-31.28	Pass	Н	
3225.037	33.40	37.05	5.57	46.35	48.27	74	-25.73	Pass	Н	
4824.000	34.73	36.82	5.10	43.23	46.24	74	-27.76	Pass	Н	
7236.000	36.42	37.45	6.69	42.59	48.25	74	-25.75	Pass	Н	
9648.000	37.93	37.83	7.70	44.03	51.83	74	-22.17	Pass	Н	
1185.958	30.19	38.51	2.50	46.39	40.57	74	-33.43	Pass	V	
1439.090	30.75	38.06	2.77	46.37	41.83	74	-32.17	Pass	V	
1889.633	31.54	37.43	3.15	45.10	42.36	74	-31.64	Pass	V	
4824.000	34.73	36.82	5.10	42.85	45.86	74	-28.14	Pass	V	
7236.000	36.42	37.45	6.69	43.47	49.13	74	-24.87	Pass	V	
9648.000	37.93	37.83	7.70	44.04	51.84	74	-22.16	Pass	V	

Test r	node:	802.11n	(HT20)	Test Freq	uencyl:	2437MHz			
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1185.958	30.19	38.51	2.50	46.72	40.90	74	-33.10	Pass	H
1668.044	31.18	37.72	2.98	46.03	42.47	74	-31.53	Pass	Н
3283.018	33.35	37.04	5.56	46.29	48.16	74	-25.84	Pass	Н
4874.000	34.84	36.81	5.09	43.27	46.39	74	-27.61	Pass	Н
7311.000	36.43	37.43	6.76	43.17	48.93	74	-25.07	Pass	Н
9748.000	38.03	37.85	7.61	44.33	52.12	74	-21.88	Pass	Н
1577.198	31.01	37.85	2.90	45.99	42.05	74	-31.95	Pass	V
1943.292	31.62	37.37	3.19	45.21	42.65	74	-31.35	Pass	V
3143.979	33.47	37.07	5.59	46.66	48.65	74	-25.35	Pass	V
4874.000	34.84	36.81	5.09	42.98	46.10	74	-27.90	Pass	V
7311.000	36.43	37.43	6.76	42.62	48.38	74	-25.62	Pass	V
9748.000	38.03	37.85	7.61	44.06	51.85	74	-22.15	Pass	V

Page 48 of 65

Test r	Test mode:		(HT20) Test Frequencyl:		2462MHz					
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1597.401	31.05	37.82	2.92	45.74	41.89	74	-32.11	Pass	ΥН	
1800.416	31.40	37.54	3.08	45.83	42.77	74	-31.23	Pass	Н	
3225.037	33.40	37.05	5.57	46.01	47.93	74	-26.07	Pass	Н	
4924.000	34.94	36.81	5.07	42.36	45.56	74	-28.44	Pass	Н	
7386.000	36.44	37.42	6.83	43.25	49.10	74	-24.90	Pass	Н	
9848.000	38.14	37.87	7.53	44.35	52.15	74	-21.85	Pass	Н	
1487.509	30.85	37.98	2.82	45.47	41.16	74	-32.84	Pass	V	
1884.829	31.53	37.44	3.15	45.38	42.62	74	-31.38	Pass	V	
3316.617	33.32	37.03	5.56	46.11	47.96	74	-26.04	Pass	V	
4924.000	34.94	36.81	5.07	42.15	45.35	74	-28.65	Pass	V	
7386.000	36.44	37.42	6.83	42.97	48.82	74	-25.18	Pass	V	
9848.000	38.14	37.87	7.53	43.78	51.58	74	-22.42	Pass	V	

Note:

- 1) Through Pre-scan Wi-Fi mode mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20)), and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

PHOTOGRAPHS OF TEST SETUP

Test mode No.: M7R

Page 49 of 65

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)



Page 50 of 65

Report No.: EED32H001720 Page 51 of 65

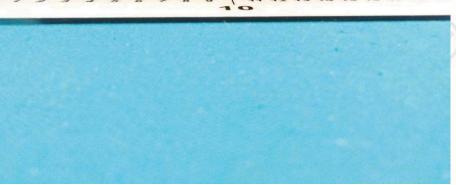
PHOTOGRAPHS OF EUT Constructional Details

Test mode No.: M7R

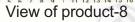
Page 52 of 65

Page 53 of 65

View of product-5



Page 54 of 65



View of product-7

