# APPENDIX D: RELEVANT PAGES FROM DAE& DIPOLE VALIDATION KIT REPORT(S) Report No.: WT248002059 Page 1 of 50 Z23-60002 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Client SMQ Certificate No: ## **CALIBRATION CERTIFICATE** Object D750V3 - SN: 1103 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: January 5, 2023 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|-------------------------------------------|-----------------------| | Power Meter NRP2 | 106276 | 10-May-22 (CTTL, No.J22X03103) | May-23 | | Power sensor NRP6A | 101369 | 10-May-22 (CTTL, No.J22X03103) | May-23 | | Reference Probe EX3DV4 | SN 7464 | 26-Jan-22(SPEAG,No.EX3-7464_Jan22) | Jan-23 | | DAE4 | SN 1556 | 12-Jan-22(CTTL-SPEAG,No.Z22-60007) | Jan-23 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 13-Jan-22 (CTTL, No.J22X00409) | Jan-23 | | Network Analyzer E5071C | MY46110673 | 14-Jan-22 (CTTL, No.J22X00406) | Jan-23 | | | I | | | | | Name | Function | - Signature | |----------------|-------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Calibrated by: | Zhao Jing | SAR Test Engineer | The state of s | | Reviewed by: | Lin Hao | SAR Test Engineer | 一一林光 | | Approved by: | Qi Dianyuan | SAR Project Leader | Maria / | Issued: January 12, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z23-60002 Page 1 of 6 Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Additional Documentation:** c) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z23-60002 Page 2 of 6 Report No.: WT248002059 Page 3 of 50 Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ±1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|---------------|--------------|-----------------| | Nominal Head TSL parameters | 22.0 ℃ | 42.0 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ±0.2) ℃ | 42.1 ±6 % | 0.88 mho/m ±6 % | | Head TSL temperature change during test | <1.0 ℃ | _ | _ | ## SAR result with Head TSL | SAR averaged over 1 $cm^3$ (1 g) of Head TSL | Condition | | |---------------------------------------------------------|--------------------|-------------------------| | SAR measured | 250 mW input power | 2.08 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.42 W/kg ±18.8 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.37 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.53 W/kg ±18.7 % (k=2) | Certificate No: Z23-60002 Page 3 of 6 Report No.: WT248002059 Page 4 of 50 ### Appendix (Additional assessments outside the scope of CNAS L0570) ### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 51.1Ω- 4.12jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 27.5dB | | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 0.948 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. ### **Additional EUT Data** | SPEAG | |-------| | | Certificate No: Z23-60002 Page 4 of 6 Report No.: WT248002059 Page 5 of 50 Date: 2023-01-05 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn ## DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1103 Communication System: UID 0, CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.877$ S/m; $\varepsilon_r = 42.05$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY5** Configuration: - Probe: EX3DV4 SN7464; ConvF(10.26, 10.26, 10.26) @ 750 MHz; Calibrated: 2022-01-26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2022-01-12 - Phantom: MFP V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.83 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.11 W/kg SAR(1 g) = 2.08 W/kg; SAR(10 g) = 1.37 W/kg Smallest distance from peaks to all points 3 dB below = 19.2 mm Ratio of SAR at M2 to SAR at M1 = 66.8% Maximum value of SAR (measured) = 2.77 W/kg 0 dB = 2.77 W/kg = 4.42 dBW/kg Certificate No: Z23-60002 Page 5 of 6 Report No.: WT248002059 Page 6 of 50 ### Impedance Measurement Plot for Head TSL Certificate No: Z23-60002 Page 6 of 6 Report No.: WT248002059 Page 7 of 50 | | | D | 750V3-SN:110 | )3 | | | |-------------|---------|-----------|--------------|-----------|-----------|--------------------| | | | | 750M | Hz-Head | | | | Date of | Retum- | | Real | | Imaginary | | | | Loss | Delta (%) | Impedance | Delta (Ω) | Impedance | Delta ( $\Omega$ ) | | Measurement | (dB) | | (Ω) | | (Ω) | | | 2023.01.05 | -27.505 | | 51.109 | | -4.118 | | | 2023.01.04 | -27.338 | 0.607 | 51.089 | -0.356 | -4.105 | -1.235 | | 202401.04 | -27.412 | 0.338 | 51.079 | -0.256 | -4.103 | -1.368 | The return loss is<-20dB, within 20% of prior calibration; the impedance is within 5 $\Omega$ of prior calibration. Therefore the verification result should support extended calibration. Report No.: WT248002059 Page 8 of 50 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn SMQ Client Certificate No: 24J02Z000557 ### **CALIBRATION CERTIFICATE** Object D835V2 - SN: 4d141 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: August 30, 2024 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 106276 | 17-May-24 (CTTL, No. J24X04107) | May-25 | | 101369 | 17-May-24 (CTTL, No. J24X04107) | May-25 | | SN 7464 | 22-Jan-24(SPEAG, No. EX-7464_Jan24) | Jan-25 | | SN 1556 | 03-Jan-24(CTTL-SPEAG, No.24J02Z80002) | Jan-25 | | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | MY49071430 | 25-Dec-23 (CTTL, No. J23X13426) | Dec-24 | | MY46110673 | 25-Dec-23 (CTTL, No. J23X13425) | Dec-24 | | 1010 | 22 In 24/CDEAC No OCD DAKS 5 4040 In 24) | Jan-25 | | | 106276<br>101369<br>SN 7464<br>SN 1556<br>ID #<br>MY49071430<br>MY46110673 | 106276 17-May-24 (CTTL, No. J24X04107) 101369 17-May-24 (CTTL, No. J24X04107) SN 7464 22-Jan-24(SPEAG, No. EX-7464_Jan24) SN 1556 03-Jan-24(CTTL-SPEAG, No.24J02Z80002) ID # Cal Date (Calibrated by, Certificate No.) MY49071430 25-Dec-23 (CTTL, No. J23X13426) | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 1000 | | Reviewed by: | Lin Jun | SAR Test Engineer | 王-呣 | | Approved by: | Qi Dianyuan | SAR Project Leader | - Tues | Issued: September 13, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: 24J02Z000557 Page 1 of 6 Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Additional Documentation:** c) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: 24J02Z000557 Page 2 of 6 Report No.: WT248002059 Page 10 of 50 Measurement Conditions DASY system configuration, as far as not given on page 1 | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|---------------------------------------| | Extrapolation | Advanced Extrapolation | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.1 ± 6 % | 0.89 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | <del>-</del> | | ### SAR result with Head TSL | SAR averaged over 1 $cm^3$ (1 g) of Head TSL | Condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.38 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.59 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.58 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.36 W/kg ± 18.7 % (k=2) | Certificate No: 24J02Z000557 Page 3 of 6 Report No.: WT248002059 Page 11 of 50 ### Appendix (Additional assessments outside the scope of CNAS L0570) ### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 47.4Ω- 7.05jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 22.3dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.298 ns | |----------------------------------|-----------| | Electrical Delay (one direction) | 1.290 115 | After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: 24J02Z000557 Page 4 of 6 Report No.: WT248002059 Page 12 of 50 Date: 2024-08-30 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn E man emission maps, with mean accept # **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d141 Communication System: UID 0, CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma$ = 0.888 S/m; $\epsilon_r$ = 41.07; $\rho$ = 1000 kg/m<sup>3</sup> Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: Probe: EX3DV4 - SN7464; ConvF(8.69, 9.48, 9.34) @ 835 MHz; Calibrated: 2024-01-22 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn1556; Calibrated: 2024-01-03 Phantom: MFP\_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.35 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.47 W/kg SAR(1 g) = 2.38 W/kg; SAR(10 g) = 1.58 W/kg Smallest distance from peaks to all points 3 dB below = 16 mm Ratio of SAR at M2 to SAR at M1 = 68.8% Maximum value of SAR (measured) = 3.12 W/kg 0 dB = 3.12 W/kg = 4.94 dBW/kg Certificate No: 24J02Z000557 Page 5 of 6 Report No.: WT248002059 Page 13 of 50 ### Impedance Measurement Plot for Head TSL Certificate No: 24J02Z000557 Page 6 of 6 Report No.: WT248002059 Page 14 of 50 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Client SMQ Certificate No: Z23-60003 # **CALIBRATION CERTIFICATE** Object D1750V2 - SN: 1108 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: January 5, 2023 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|-------------------------------------------|-----------------------| | Power Meter NRP2 | 106276 | 10-May-22 (CTTL, No.J22X03103) | May-23 | | Power sensor NRP6A | 101369 | 10-May-22 (CTTL, No.J22X03103) | May-23 | | Reference Probe EX3DV4 | SN 7464 | 26-Jan-22(SPEAG,No.EX3-7464_Jan22) | Jan-23 | | DAE4 | SN 1556 | 12-Jan-22(CTTL-SPEAG,No.Z22-60007) | Jan-23 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 13-Jan-22 (CTTL, No.J22X00409) | Jan-23 | | Network Analyzer E5071C | MY46110673 | 14-Jan-22 (CTTL, No.J22X00406) | Jan-23 | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | ** | | Reviewed by: | Lin Hao | SAR Test Engineer | 一献格 | | Approved by: | Qi Dianyuan | SAR Project Leader | No | Issued: January 12, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z23-60003 Page 1 of 6 Glossary: TSL ConvF N/A tissue simulating liquid F s sensitivity in TSL / NORMx,y,z not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Additional Documentation:** c) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z23-60003 Page 2 of 6 Report No.: WT248002059 Page 16 of 50 # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ±1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|---------------|--------------|-----------------| | Nominal Head TSL parameters | 22.0 ℃ | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ±0.2) ℃ | 39.9 ±6 % | 1.39 mho/m ±6 % | | Head TSL temperature change during test | <1.0 ℃ | | | ### SAR result with Head TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |---------------------------------------------------------|--------------------|-------------------------| | SAR measured | 250 mW input power | 9.07 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 35.9 W/kg ±18.8 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 4.85 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.3 W/kg ±18.7 % (k=2) | Certificate No: Z23-60003 Page 3 of 6 Report No.: WT248002059 Page 17 of 50 ### Appendix (Additional assessments outside the scope of CNAS L0570) ### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 48.9Ω- 1.12jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 36.0dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.126 ns | |-----------------------------------------|----------| | , , , , , , , , , , , , , , , , , , , , | 11.175 | After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: Z23-60003 Page 4 of 6 Report No.: WT248002059 Page 18 of 50 Date: 2023-01-05 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn ### **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1108 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.39$ S/m; $\varepsilon_r = 39.92$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY5** Configuration: - Probe: EX3DV4 SN7464; ConvF(8.52, 8.52, 8.52) @ 1750 MHz; Calibrated: 2022-01-26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2022-01-12 - Phantom: MFP\_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.69 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 16.4 W/kg SAR(1 g) = 9.07 W/kg; SAR(10 g) = 4.85 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 56% Maximum value of SAR (measured) = 13.8 W/kg 0 dB = 13.8 W/kg = 11.40 dBW/kg Certificate No: Z23-60003 Page 5 of 6 Report No.: WT248002059 Page 19 of 50