Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl a chinattl.com Http://www.chinattl.cn ## DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3633 ## **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |-------------------------|----------|----------|----------|-----------| | $Norm(\mu V/(V/m)^2)^A$ | 0.39 | 0.37 | 0.39 | ±10.0% | | DCP(mV) ^B | 97.3 | 98.8 | 98.6 | | ## **Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Unc ^E
(k=2) | |------|---------------------------|-----|---------|-----------|------|---------|----------|---------------------------| | 0 CW | Х | 0.0 | 0.0 | 1.0 | 0.00 | 144.3 | ±2.0% | | | | | Υ | 0.0 | 0.0 | 1.0 | | 145.2 | | | | | Z | 0.0 | 0.0 | 1.0 | | 147.9 | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 5 and Page 6). ^B Numerical linearization parameter: uncertainty not required. E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ## DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3633 ## Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 9.51 | 9.51 | 9.51 | 0.09 | 1.70 | ±12.1% | | 900 | 41.5 | 0.97 | 9.27 | 9.27 | 9.27 | 0.27 | 0.92 | ±12.1% | | 1640 | 40.3 | 1.29 | 8.16 | 8.16 | 8.16 | 0.21 | 1.06 | ±12.1% | | 1750 | 40.1 | 1.37 | 8.07 | 8.07 | 8.07 | 0.26 | 1.00 | ±12.1% | | 1900 | 40.0 | 1.40 | 7.63 | 7.63 | 7.63 | 0.24 | 1.07 | ±12.1% | | 2100 | 39.8 | 1.49 | 7.60 | 7.60 | 7.60 | 0.25 | 1.02 | ±12.1% | | 2300 | 39.5 | 1.67 | 7.60 | 7.60 | 7.60 | 0.61 | 0.69 | ±12.1% | | 2450 | 39.2 | 1.80 | 7.33 | 7.33 | 7.33 | 0.61 | 0.70 | ±12.1% | | 2600 | 39.0 | 1.96 | 7.12 | 7.12 | 7.12 | 0.47 | 0.99 | ±12.1% | | 3500 | 37.9 | 2.91 | 6.74 | 6.74 | 6.74 | 0.62 | 0.86 | ±13.3% | | 3700 | 37.7 | 3.12 | 6.47 | 6.47 | 6.47 | 0.58 | 0.88 | ±13.3% | | 5250 | 35.9 | 4.71 | 5.42 | 5.42 | 5.42 | 0.45 | 1.15 | ±13.3% | | 5600 | 35.5 | 5.07 | 4.72 | 4.72 | 4.72 | 0.45 | 1.30 | ±13.3% | | 5750 | 35.4 | 5.22 | 4.73 | 4.73 | 4.73 | 0.45 | 1.30 | ±13.3% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. $^{^{\}rm G}$ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn ## DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3633 ## Calibration Parameter Determined in Body Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 9.56 | 9.56 | 9.56 | 0.40 | 0.80 | ±12.1% | | 900 | 55.0 | 1.05 | 9.25 | 9.25 | 9.25 | 0.20 | 1.24 | ±12.1% | | 1640 | 53.8 | 1.40 | 7.90 | 7.90 | 7.90 | 0.22 | 1.14 | ±12.1% | | 1750 | 53.4 | 1.49 | 7.93 | 7.93 | 7.93 | 0.20 | 1.16 | ±12.1% | | 1900 | 53.3 | 1.52 | 7.67 | 7.67 | 7.67 | 0.21 | 1.20 | ±12.1% | | 2100 | 53.2 | 1.62 | 7.56 | 7.56 | 7.56 | 0.22 | 1.18 | ±12.1% | | 2300 | 52.9 | 1.81 | 7.48 | 7.48 | 7.48 | 0.55 | 0.80 | ±12.1% | | 2450 | 52.7 | 1.95 | 7.40 | 7.40 | 7.40 | 0.62 | 0.76 | ±12.1% | | 2600 | 52.5 | 2.16 | 7.21 | 7.21 | 7.21 | 0.69 | 0.70 | ±12.1% | | 3500 | 51.3 | 3.31 | 6.45 | 6.45 | 6.45 | 0.50 | 1.15 | ±13.3% | | 3700 | 51.0 | 3.55 | 6.37 | 6.37 | 6.37 | 0.52 | 1.05 | ±13.3% | | 5250 | 48.9 | 5.36 | 5.03 | 5.03 | 5.03 | 0.55 | 1.30 | ±13.3% | | 5600 | 48.5 | 5.77 | 4.19 | 4.19 | 4.19 | 0.55 | 1.50 | ±13.3% | | 5750 | 48.3 | 5.94 | 4.29 | 4.29 | 4.29 | 0.55 | 1.30 | ±13.3% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. FAt frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. $^{^{\}rm G}$ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn ## Receiving Pattern (Φ), θ=0° ## f=600 MHz, TEM ## f=1800 MHz, R22 Page 8 of 11 # Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ±0.9% (k=2) compensated Certificate No: Z19-60033 Page 9 of 11 not compensated ## **Conversion Factor Assessment** ## f=750 MHz, WGLS R9(H_convF) ## f=1750 MHz, WGLS R22(H_convF) ## **Deviation from Isotropy in Liquid** Uncertainty of Spherical Isotropy Assessment: ±3.2% (K=2) ## DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3633 ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |-----------------------------------------------|------------| | Connector Angle (°) | 72.2 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 9mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 1.4mm | ## **ANNEX I Dipole Calibration Certificate** ## 750 MHz Dipole Calibration Certificate http://www.chinattl.cn CTTL(South Branch) Certificate No: Z19-60291 Client ## **CALIBRATION CERTIFICATE** E-mail: cttl a chinattl.com Object D750V3 - SN: 1163 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: September 3, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|------------------------------------------|-----------------------| | Power Meter NRP2 | 106276 | 11-Apr-19 (CTTL, No.J19X02605) | Apr-20 | | Power sensor NRP6A | 101369 | 11-Apr-19 (CTTL, No.J19X02605) | Apr-20 | | Reference Probe EX3DV4 | SN 3617 | 31-Jan-19(SPEAG,No.EX3-3617_Jan19) | Jan-20 | | DAE4 | SN 1555 | 22-Aug-19(CTTL-SPEAG,No.Z19-60295) | Aug-20 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-19 (CTTL, No.J19X00336) | Jan-20 | | NetworkAnalyzer E5071C | MY46110673 | 24-Jan-19 (CTTL, No.J19X00547) | Jan-20 | | | | | | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 202 | | Reviewed by: | Lin Hao | SAR Test Engineer | 一大九 | | Approved by: | Qi Dianyuan | SAR Project Leader | To a | | | | | | Issued: September 6, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.2 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.6 ± 6 % | 0.90 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |---------------------------------------------------------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.16 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.53 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 $^{\circ}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | Condition | | | SAR measured | 250 mW input power | 1.44 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.70 W/kg ± 18.7 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | = | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.9 ± 6 % | 0.94 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL | SAR averaged over 1 cm^3 (1 g) of Body TSL | Condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.16 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 8.78 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 1.45 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 5.87 W/kg ±18.7 % (k=2) | Page 3 of 8 #### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.5Ω- 4.53jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 26.9dB | | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 48.5Ω- 3.38jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 28.5dB | | #### General Antenna Parameters and Design | 3 | |---| | , | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by SPEA | 3 | |----------------------|---| |----------------------|---| Date: 09.03.2019 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China ## DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1163 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; σ = 0.904 S/m; ϵ_r = 41.62; ρ = 1000 kg/m3 Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(10.03, 10.03, 10.03) @ 750 MHz; Calibrated: 1/31/2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1555; Calibrated: 8/22/2019 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ### Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.16 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.11 W/kg SAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.44 W/kg Maximum value of SAR (measured) = 2.81 W/kg 0 dB = 2.81 W/kg = 4.49 dBW/kg #### Impedance Measurement Plot for Head TSL #### DASY5 Validation Report for Body TSL Date: 09.03.2019 Test Laboratory: CTTL, Beijing, China DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1163 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.942$ S/m; $\epsilon_r = 55.87$; $\rho = 1000$ kg/m3 Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(9.85, 9.85, 9.85) @ 750 MHz; Calibrated: 1/31/2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1555; Calibrated: 8/22/2019 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ## Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.88 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.20 W/kg SAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.45 W/kg Maximum value of SAR (measured) = 2.85 W/kg 0 dB = 2.85 W/kg = 4.55 dBW/kg ### Impedance Measurement Plot for Body TSL ## 1750 MHz Dipole Calibration Certificate Client CTTL(South Branch) Certificate No: Z19-60292 ## CALIBRATION CERTIFICATE Object D1750V2 - SN: 1152 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: August 30, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|------------------------------------------|-----------------------| | Power Meter NRP2 | 106276 | 11-Apr-19 (CTTL, No.J19X02605) | Apr-20 | | Power sensor NRP6A | 101369 | 11-Apr-19 (CTTL, No.J19X02605) | Apr-20 | | Reference Probe EX3DV4 | SN 3617 | 31-Jan-19(SPEAG,No.EX3-3617_Jan19) | Jan-20 | | DAE4 | SN 1555 | 22-Aug-19(CTTL-SPEAG,No.Z19-60295) | Aug-20 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-19 (CTTL, No.J19X00336) | Jan-20 | | NetworkAnalyzer E5071C | MY46110673 | 24-Jan-19 (CTTL, No.J19X00547) | Jan-20 | | | 1 | | | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 经礼工 | | Reviewed by: | Lin Hao | SAR Test Engineer | 林路 | | Approved by: | Qi Dianyuan | SAR Project Leader | ara | | 1 | | | | Issued: September 2, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z19-60292 Page 1 of 8 Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. ## **Measurement Conditions** as far as not given on page 1 | DASY Version | DASY52 | V52.10.2 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.9 ± 6 % | 1.36 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.05 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 36.4 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 4.80 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.3 W/kg ± 18.7 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | le following parameters and suisanations were | Temperature | Permittivity | Conductivity | |-----------------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.1 ± 6 % | 1.52 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.45 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 37.3 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.05 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.0 W/kg ± 18.7 % (k=2) | ## Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.1Ω- 0.84 jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 38.1 dB | | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | 45.2Ω- 1.37 jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 25.5 dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.084 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | | 200000 | |-----------------|--------| | Manufactured by | SPEAG | | | | Date: 08.30.2019 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2509 Fax: +86-10-62304633-2504 http://www.chinattl.cn ### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1152 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; σ = 1.358 S/m; ϵ_r = 39.91; ρ = 1000 kg/m3 Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(8.38, 8.38, 8.38) @ 1750 MHz; Calibrated: 1/31/2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1555; Calibrated: 8/22/2019 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ## System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.38 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 16.8 W/kg SAR(1 g) = 9.05 W/kg; SAR(10 g) = 4.8 W/kg Maximum value of SAR (measured) = 13.9 W/kg $0\ dB = 13.9\ W/kg = 11.43\ dBW/kg$ ### Impedance Measurement Plot for Head TSL ### DASY5 Validation Report for Body TSL Date: 08.30.2019 Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1152 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; σ = 1.516 S/m; ϵ_r = 53.05; ρ = 1000 kg/m3 Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(8.03, 8.03, 8.03) @ 1750 MHz; Calibrated: 1/31/2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1555; Calibrated: 8/22/2019 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) ## System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 87.16 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 17.0 W/kg ## SAR(1 g) = 9.45 W/kg; SAR(10 g) = 5.05 W/kg Maximum value of SAR (measured) = 14.4 W/kg 0 dB = 14.4 W/kg = 11.58 dBW/kg ## Impedance Measurement Plot for Body TSL ## 1900 MHz Dipole Calibration Certificate Tel: +86-10-62304633-2079 E-mail: cttl @ chinattl.com Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn Certificate No: Z18-60387 ## **CALIBRATION CERTIFICATE** Object D1900V2 - SN: 5d088 Calibration Procedure(s) FF-Z11-003-01 CTTL(South Branch) Calibration Procedures for dipole validation kits Calibration date: October 24, 2018 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|------------------------------------------|-----------------------| | Power Meter NRVD | 102083 | 01-Nov-17 (CTTL, No.J17X08756) | Oct-18 | | Power sensor NRV-Z5 | 100542 | 01-Nov-17 (CTTL, No.J17X08756) | Oct-18 | | Reference Probe EX3DV4 | SN 7514 | 27-Aug-18(SPEAG,No.EX3-7514_Aug18) | Aug-19 | | DAE4 | SN 1555 | 20-Aug-18(SPEAG,No.DAE4-1555_Aug18) | Aug-19 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-18 (CTTL, No.J18X00560) | Jan-19 | | NetworkAnalyzer E5071C | MY46110673 | 24-Jan-18 (CTTL, No.J18X00561) | Jan-19 | | | | | | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | TX E | | Reviewed by: | Lin Hao | SAR Test Engineer | # 36 | | Approved by: | Qi Dianyuan | SAR Project Leader | 26 | Issued: October 28, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory lossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz ## Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.