

FCC Test Report

Report No.: AGC01110240805FR01A

FCC ID	:	2AOKB-A3331R
APPLICATION PURPOSE	:	Class II Permissive Change
PRODUCT DESIGNATION	:	Wireless Headphone
BRAND NAME	:	soundcore
MODEL NAME	:	A3331R
APPLICANT	:	Anker Innovations Limited
DATE OF ISSUE	:	Apr. 21, 2025
STANDARD(S)	:	FCC Part 15 Subpart C §15.247
REPORT VERSION	:	V1.0

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes	
V1.0	/	Apr. 21, 2025	Valid	Initial Release	

Note: The original test report AGC01110240805FR01 (dated Aug. 28, 2024 and tested from Aug. 05, 2024 to Aug. 27, 2024) was modified on Apr. 21, 2025, including the following changes and additions:

Changed the earphone battery, the batteries are the same except for the model name and manufacturer;

For the above described change(s) the following tests was considered to be necessary:

Clause	Testing
§15.209	Radiated Spurious Emission

Table of Contents

1. General Information	4
2. Product Information	5
2.1 Product Technical Description	5
2.2 Test Frequency List	
2.3 Related Submittal(S) / Grant (S)	6
2.4 Test Methodology	
2.5 Receiver Input Bandwidth	6
2.6 Equally Average Use of Frequencies and Behaviour.	6
2.7 Pseudorandom Frequency Hopping Sequence	7
2.8 Special Accessories	
2.9 Equipment Modifications	
2.10 Antenna Requirement	
3. Test Environment	9
3.1 Address of The Test Laboratory	9
3.2 Test Facility	9
3.3 Environmental Conditions	
3.4 Measurement Uncertainty	
3.5 List of Equipment Used	11
4.System Test Configuration	
4.1 EUT Configuration	
4.2 EUT Exercise	
4.3 Configuration of Tested System	
4.4 Equipment Used in Tested System	
4.5 Summary of Test Results	
5. Description of Test Modes	14
6. Radiated Spurious Emission	
6.1 Measurement Limit	
6.2 Measurement Procedure	
6.3 Measurement Setup (Block Diagram of Configuration)	
6.4 Measurement Result	
Appendix I: Photographs of Test Setup	27
Appendix II: Photographs of Test EUT	

1. General Information

Applicant	Anker Innovations Limited
Address	Unit 56, 8th Floor, Tower 2, Admiralty Centre, 18 Harcourt Road, Hong Kong
Manufacturer	Anker Innovations Limited
Address	Unit 56, 8th Floor, Tower 2, Admiralty Centre, 18 Harcourt Road, Hong Kong
Factory	N/A
Address	N/A
Product Designation	Wireless Headphone
Brand Name	soundcore
Test Model	A3331R
Date of receipt of test item	Mar. 26, 2025
Date of Test	Apr. 08, 2025~ Apr. 21, 2025
Deviation from Standard	No any deviation from the test method
Condition of Test Sample	Normal
Test Result	Pass
Test Report Form No	AGCER-FCC-BR_EDR-V1

Note: The test results of this report relate only to the tested sample identified in this report.

Prepared By

XCI Li

Cici Li (Project Engineer)

Calvin Lin

Apr. 21, 2025

Reviewed By

Calvin Liu (Reviewer)

Apr. 21, 2025

Approved By

Angela Li (Authorized Officer)

Apr. 21, 2025

2. Product Information

2.1 Product Technical Description

Frequency Band	2400MHz-2483.5MHz
Operation Frequency Range	2402MHz-2480MHz
Bluetooth Version	V5.4
Modulation Type	BR 🖾 GFSK, EDR 🖾 π /4-DQPSK, 🖾 8DPSK
Number of channels	79 Channels
Channel Separation	1 MHz
Maximum Transmitter Power	2.360dBm
Hardware Version	V1.2
Software Version	V1.0
Antenna Designation	FPC Antenna
Antenna Gain	-2.7dBi
Power Supply	DC 3.85V, 70mAh by battery

2.2 Test Frequency List

Frequency Band	Channel Number	Frequency		
	0	2402 MHz		
	1	2403 MHz		
	:	:		
2400~2483.5MHz	39	2441MHz		
	:	:		
	77	2479 MHz		
	78	2480 MHz		
Note: f = 2402 + 1k MHz, k =	0, …, 78 ; "f "is the operating frequency	(MHz); "k" is the operating channel.		

2.3 Related Submittal(S) / Grant (S)

This submittal(s) (test report) is intended for FCC ID:**2AOKB-A3331R**, filing to comply with Part 2, Part 15 of the Federal Communication Commission rules.

2.4 Test Methodology

The tests were performed according to following standards:

No.	Identity	Document Title	
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations	
2	2 FCC 47 CFR Part 15 Radio Frequency Devices		
3	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices	
4	KDB 558074 D01 15.247 Meas Guidance v05r02	Guidance for compliance measurements on Digital Transmission Systems, Frequency Hopping Spread Spectrum system, and Hybrid system devices operating under Section 15.247 of the FCC rules	

2.5 Receiver Input Bandwidth

The input bandwidth of the receiver is 1.3MHz, in every connection one Bluetooth device is the master and the other one is slave. The master determines the hopping sequence. The slave follows this sequence. Both devices shift between RX and TX time slot according to the clock of the master. Additionally, the type of connection (e.g. single of multi slot packet) is set up at the beginning of the connection. The master adapts its hopping frequency and its TX/RX timing according to the packet type of the connection. Also, the slave of the connection will use these settings. Repeating of a packet has no influence on the hopping sequence. The hopping sequence generated by the master of the connection will be followed in any case. That means, a repeated packet will not be send on the same frequency, it is send on the next frequency of the hopping sequence.

2.6 Equally Average Use of Frequencies and Behaviour.

The generation of the hopping sequence in connection mode depends essentially on two input values:

1. LAP/UAP of the master of the connection.

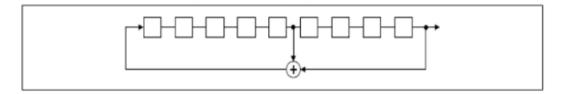
2. Internal master clock.

The LAP (lower address part) are the 24 LSB's of the 48 BD_ADDRESS. The BD_ADDRESS is an unambiguous number of every Bluetooth unit. The UAP (upper address part) are the 24MSB's of the 48BD_ADDRESS

The internal clock of a Bluetooth unit is derived from a free running clock which is never adjusted and is never turned off. For behavior action with other units only offset is used. It has no relation to the time of the day. Its resolution is at least half the RX/TX slot length of 312.5us. The clock has a cycle of about one day(23h30).

In most case it is implemented as 28 bits counter. For the deriving of the hopping sequence the entire. LAP (24 bits),4LSB's(4bits) (Input 1) and the 27MSB's of the clock (Input 2) are used. With this input values different mathematical procedures (permutations, additions, XOR-operations) are performed to generate the Sequence. This will be done at the beginning of every new transmission.

Regarding short transmissions the Bluetooth system has the following behavior:


The first connection between the two devices is established, a hopping sequence was generated. For Transmitting the wanted data the complete hopping sequence was not used. The connection ended. The second connection will be established. A new hopping sequence is generated. Due to the fact the Bluetooth clock has a different value, because the period between the two transmission is longer (and it Cannot be shorter) than the minimum resolution of the clock(312.5us). The hopping sequence will always differ from the first one.

2.7 Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of The PRBS Sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

44	35	78	03	20) 76	02	19		 21	64	75
				·					 		
			Ιi						1		
			¦			1			i.		
				L		<u>'i</u>		1	 		

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

2.8 Special Accessories

Not available for this EUT intended for grant.

2.9 Equipment Modifications

Not available for this EUT intended for grant.

2.10 Antenna Requirement

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi

EUT Antenna:

The non-detachable antenna inside the device cannot be replaced by the user at will. The gain of the antenna is -2.7dBi.

3. Test Environment

3.1 Address of The Test Laboratory

Laboratory: Attestation of Global Compliance (Shenzhen) Co., Ltd.

Address: 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5488

Attestation of Global Compliance (Shenzhen) Co., Ltd. has been assessed and proved to follow CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories.)

A2LA-Lab Cert. No.: 5054.02

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to follow ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 975832

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832.

IC-Registration No.: 24842(CAB identifier: CN0063)

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842.

3.3 Environmental Conditions

	Normal Conditions
Temperature range (°C)	15 - 35
Relative humidity range	20 % - 75 %
Pressure range (kPa)	86 - 106
Power supply	DC 3.85V

3.4 Measurement Uncertainty

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Item	Measurement Uncertainty		
Uncertainty of Conducted Emission for AC Port	$U_c = \pm 2.9 \text{ dB}$		
Uncertainty of Radiated Emission below 1GHz	$U_c = \pm 3.9 \text{ dB}$		
Uncertainty of Radiated Emission above 1GHz	$U_c = \pm 4.9 \text{ dB}$		
Uncertainty of total RF power, conducted	$U_c = \pm 0.8 \text{ dB}$		
Uncertainty of RF power density, conducted	$U_c = \pm 2.6 \text{ dB}$		
Uncertainty of spurious emissions, conducted	$U_c = \pm 2 \%$		
Uncertainty of Occupied Channel Bandwidth	$U_c = \pm 2 \%$		

3.5 List of Equipment Used

• F	Radiated Spurious Emission							
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
\boxtimes	AGC-EM-E046	EMI Test Receiver	R&S	ESCI	10096	2025-01-14	2026-01-13	
\square	AGC-EM-E116	EMI Test Receiver	R&S	ESCI	100034	2024-05-24	2025-05-23	
\boxtimes	AGC-EM-E061	Spectrum Analyzer	Agilent	N9010A	MY53470504	2024-05-28	2025-05-27	
\boxtimes	AGC-EM-E086	Loop Antenna	ZHINAN	ZN30900C	18051	2024-03-05	2026-03-04	
\boxtimes	AGC-EM-E001	Wideband Antenna	SCHWARZBECK	VULB9168	D69250	2023-05-11	2025-05-10	
\boxtimes	AGC-EM-E029	Broadband Ridged Horn Antenna	ETS	3117	00034609	2025-03-27	2026-03-26	
\boxtimes	AGC-EM-E082	Horn Antenna	SCHWARZBECK	BBHA 9170	#768	2023-09-24	2025-09-23	
\boxtimes	AGC-EM-E146	Pre-amplifier	ETS	3117-PA	00246148	2024-07-24	2026-07-23	
\boxtimes	AGC-EM-A119	2.4G Filter	SongYi	N/A	N/A	2024-05-23	2025-05-22	
\boxtimes	AGC-EM-A138	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2025-06-08	
	AGC-EM-A139	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2025-06-08	

• Te	st Software				
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Version Information
	AGC-EM-S003	RE Test System	FARA	EZ-EMC	VRA-03A
\square	AGC-EM-S011	RSE Test System	Tonscend	TS+-Ver2.1(JS36-RSE)	4.0.0.0

4.System Test Configuration

4.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT Exercise

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

4.3 Configuration of Tested System

Radiated Emission Configure:

EUT

4.4 Equipment Used in Tested System

The following peripheral devices and interface cables were connected during the measurement:

Test Accessories Come From The Laboratory

No.	Equipment	Manufacturer	Model No.	Specification Information	Cable
1					
	Test Accessories	Come From The	Manufacturer		
No.	Equipment	Manufacturer	Model No.	Specification Information	Cable

I	No.	Equipment	Manufacturer	Model No.	Specification Information	Cable	
	1						

4.5 Summary of Test Results

Item	FCC Rules	Description of Test	Result
1	§15.209	Radiated Spurious Emission	Pass

5. Description of Test Modes

	Summary table of Test Cases
Test litere	Data Rate / Modulation
Test Item	Bluetooth – BR_EDR (GFSK/π /4-DQPSK/8DPSK)
Radiated & Conducted Test Cases	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps (Battery powered) Mode 2: Bluetooth Tx CH39_2441 MHz_1Mbps (Battery powered) Mode 3: Bluetooth Tx CH78_2480 MHz_1Mbps (Battery powered) Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps (Battery powered) Mode 5: Bluetooth Tx CH39_2441 MHz_2Mbps (Battery powered) Mode 6: Bluetooth Tx CH39_2440 MHz_2Mbps (Battery powered) Mode 6: Bluetooth Tx CH78_2480 MHz_2Mbps (Battery powered) Mode 7: Bluetooth Tx CH00_2402 MHz_3Mbps (Battery powered) Mode 8: Bluetooth Tx CH39_2441 MHz_3Mbps (Battery powered) Mode 9: Bluetooth Tx CH39_2441 MHz_3Mbps (Battery powered) Mode 9: Bluetooth Tx CH78_2480 MHz_3Mbps (Battery powered) Mode 10: Bluetooth Tx Hopping-1Mbps (Battery powered) Mode11: Bluetooth Tx Hopping-2Mbps (Battery powered) Mode12: Bluetooth Tx Hopping-3Mbps (Battery powered)
AC Conducted Emission	Not applicable
 The battery is full-cha For Radiated Emission 	

6. Radiated Spurious Emission

6.1 Measurement Limit

15.209 Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note: All modes were tested for restricted band radiated emission, the test records reported below are the worst result compared to other modes.

6.2 Measurement Procedure

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection"

Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.

- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

Spectrum Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP
Start ~Stop Frequency	1GHz~26.5GHz
	1MHz/3MHz for Peak, 1MHz/3MHz for Average

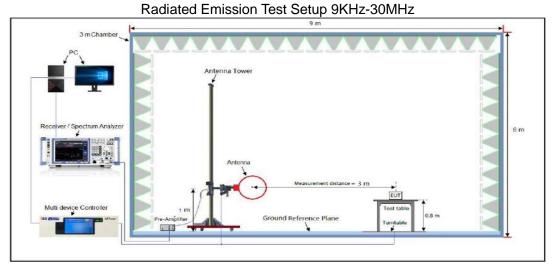
The following table is the setting of spectrum analyzer and receiver.

Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP

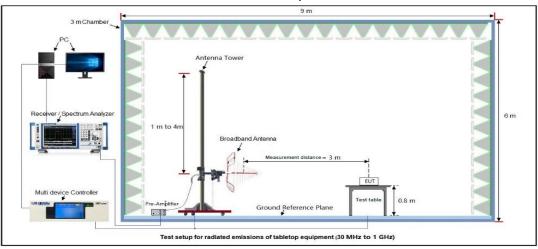
• Quasi-Peak Measurements below 1GHz

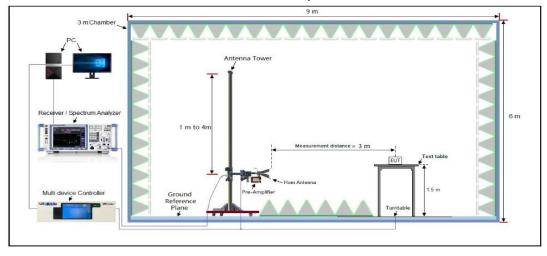
- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = as shown in the table above
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

• Peak Measurements above 1GHz


- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

<u>Average Measurements above 1GHz</u>


- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW \geq [3 × RBW]
- 4. Detector = Power averaging (rms)
- 5. Averaging type = power (i.e., rms)
- 6. Sweep time = auto
- 7. Perform a trace average of at least 100 traces.
- 8. The applicable correction factor is [10*log (1 / D)], where D is the duty cycle. The factor had been edited in the "Input Correction" of the Spectrum Analyzer.


6.3 Measurement Setup (Block Diagram of Configuration)

Radiated Emission Test Setup 30MHz-1000MHz

Radiated Emission Test Setup Above 1000MHz

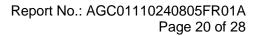
Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

 Attestation of Global Compliance(Shenzhen)Co., Ltd

 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

 Tel: +86-755 2523 4088
 E-mail: agc@agccert.com

 Web: http://www.agccert.com/


6.4 Measurement Result

Radiated Emission Below 30MHz

The amplitude of spurious emissions from 9kHz to 30MHz which are attenuated more than 20 dB below the permissible value need not be reported.

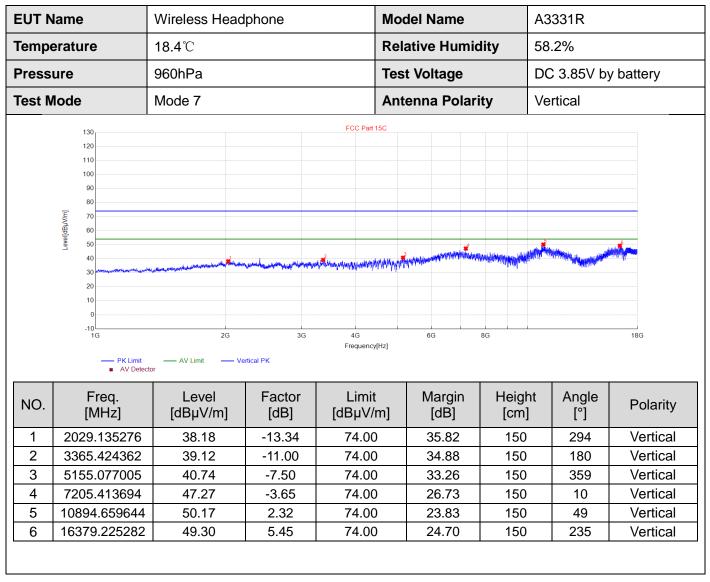
				1.0	aula	tea E	111133	sion lest Re	esults at	30MHz	z-1GH	lz				
EUT Name	٧	Virel	ess ⊦	lead	pho	ne			Мо	del Na	me		A	33311	R	
Temperatur	e 1	9.2°	С						Rel	lative H	Humi	dity	51	51.3%		
Pressure	ç	960hPa							Tes	Test Voltage			D	DC 3.85V by batter		
Test Mode	Ν	Node	e 8						An	tenna	Polar	ity	Н	orizor	ntal	
72.0	0 dBu\	//m														
													Limi Mar			
															-6	
32													5	المعا	~ MA	
										3	4	with my	min	n produce		
						and a		Webself	2	North With March	march	¥7				
	Martine we	production	urulhawa	white	An-	the way which		Subatan Surger Scales	a second and a second and a second as a	~						
		_														
-0																
-8 30	0.000	40	50	60	70	80		(MHz)		300	400		600		1000.0	000
						80 Read			Measur	300 'e-	400	500	600			000
				٥٥ Freq			ing	(MHz)		300 7e-			600			000
			. F			Read	ing	(MHz)	Measur	300 re-	400	500 Ove	600 ;		1000.0	000
		Mk.	. F	Freq MHz	-	Read Leve	ing el V	^(MH₂) Correct Factor	Measur	300 re- Li	400	500 Ove	600 ;	700	1000.0	000
	No.	Mk.	. F	Freq MHz 4116		Read Leve	ing el V	(MHz) Correct Factor dB	Measur ment dBuV/m	300 re- Li dB 43	400 imit BuV/m	500 Ove dB	600 : er 08	700 Detec	1000.0	000
	No.	Mk.	. F 109.4	Freq. MHz 4116 2000	3)	Read Leve dBu	ing el V I3	^(MH₂) Correct Factor dB 16.29	Measur ment dBuV/m 22.42	300 re- Li 43 43	400 imit 8uV/m 8.50	500 Ove dB -21.0	600 er 08 28	700 Detec	1000.0	000
	No.	Mk.	. F 109.4 197.1	Freq MHz 4116 2000 7536	3) 3	Read Leve dBu 6.1	ing el V 13 04	(MHz) Correct Factor dB 16.29 14.18	Measur ment dBuV/m 22.42 20.22	300 re- Li 43 43 46	400 imit 3uV/m 3.50 3.50	500 Ove dB -21.0 -23.2	600 : er 08 28 39	Detec pea	1000.0	000
	No.	Mk.	. F 109. 197. 306.	Freq. MHz 4116 2000 7536	- 3) 3	Read Leve dBu 6.1 6.0 7.6	ing el V 13 04 56	(мн₂) Correct Factor dB 16.29 14.18 16.50	Measur ment dBuV/m 22.42 20.22 24.11	300 re- Li 43 43 43 46 46	400 imit 3uV/m 3.50 3.50 5.00	500 Ove dB -21.0 -23.2 -21.8	600 er 08 28 39 52	Detec pea pea	1000.0	000
	No.	Mk.	109. 197. 306. 434.	Freq MHz 4116 2000 7536 0649 2078	- 6 0 6 9 3	Read Leve dBu 6.1 6.0 7.6 4.5	ing el V 13 04 56	(мн₂) Correct Factor dB 16.29 14.18 16.50 23.82	Measur ment dBuV/m 22.42 20.22 24.11 28.38	300 re- Li 43 43 43 46 46 46	400 imit 3uV/m 3.50 3.50 3.00 3.00	500 Ove dB -21.0 -23.2 -21.8 -21.8	600 er 08 28 39 52 40	Detec pea pea pea	1000.0	000

RESULT: Pass

				Rac	liated	Emis	2011 1621	Result	s at 3	0MHz-	-1GH	z					
EUT Name	Wi	reles	s He	adpl	none				Mod	el Nan	ne		A	\333	1R		
Temperature	19	.2℃							Rela	tive H	umio	lity	5	1.3%	6		
Pressure	96	960hPa							Test Voltage				C	DC 3.85V by batte			
Test Mode	Мс	ode 8							Ante	enna P	olar	ity	V	/ertic	cal		
72.0	dBuV/m	n															
-														nit: argin:			
_	, at a star log Mar Arr	whynn de	dina-4	1		M-bergenerall	harrowski	marthurn	sumplement	3 Amandanad Wel		ngunthi 	prosperies	500	when	6	
					"/////////////////////////////////////	W-baynowd	(MHz		Hand Marker	3 3 3 3 3 0 0	400	500	600				
-8 30.0		40	50 (70 80 Rea	ading) t Mea	Hand Marker	300	400		600				
-8 30.0	000 4	40	50 (60 7	ro ao Rea	ading	(мна Соггес	t Mea	asure	300 - Lir	400	500	600 er		10		
-8 30.0	000 4	10 1k.	50 Fre	eq.	n eo Rea Le	ading	мна Correc Facto	t Mea m dBi	asure	300 - Lir	400 mit	500 Ov	600 er	700 Dete	10	D00.0	
-8 30.0	000 4 No. M	10 1k. 6	50 G	eq. Hz	ro eo Rea Le di	ading evel BuV	(мна Correc Facto dB	t Mea m dBi 23	asure ient uV/m	300 - Lir dBu	400 mit IV/m 00	500 Ov dE	600 er 3 .87	700 Detr	10 ecto	D00.0	
-8 30.0	000 4 No. M	10 1k. 6 17	50 Fre MF	eq. Hz 125	n ea Rea Le di	ading evel BuV 5.10	Correc Facto dB 17.03	t Mea dBi 23	asure ient uV/m 3.13	300 - Lir dBu 40.1	400 mit IV/m 00 50	500 Ov dE -16.	600 er 3 87 96	700 Detr	10 ecto	D000.0	
-8 30.0	000 4 No. M 1 2	40 /lk. 6 17 30	50 Fre Mi 07.43	eq. Hz 12 12 12 1999	0 80 Rea dl 6 6 7	ading evel BuV 5.10 5.18	Correc Facto dB 17.03 18.36	t Me: dBi 23 24	asure ient uV/m 3.13	300 - Lir dBu 40.1 - 43.3	400 mit IV/m 00 50 00	500 Ov dE -16. -18.	600 er 87 96 53	700 Detr	10 ecto eak	D00.0	
-8 30.0	000 4 No. M 1 2 3	40 1k. 6 17 30 44	50 Fre MF 67.43 70.79 04.60	eq. Hz 381 025 099	0 80 Rea dl 6 7 5	ading evel BuV 5.10 5.18 7.25	(мна Соггес Facto dB 17.03 18.36 19.22	t Me: dBi 23 24 26 31	asure ient uV/m 3.13 4.54 5.47	300 - Lir dBu 40.1 43.3 46.1	400 nit i∨/m 50 00 00	500 Ov dE -16. -18. -19.	600 er 87 96 53 79	700 Detr pe pe	10 ecto eak eak	0.000.0	

RESULT: Pass

- **Note:** 1. Factor=Antenna Factor + Cable loss, Margin=Limit-Level.
 - 2. All test modes had been pre-tested. The mode 8 is the worst case and recorded in the report.



-0.1	Name	Wireles	s Head	lphone		Mod	lel Name		A33	31R	
Гетр	erature	18.4 ℃				Rela	ative Hun	nidity	58.2	2%	
Press	sure	960hPa				Test	t Voltage		DC	3.85V b	y battery
lest N	Mode	Mode 7				Ante	enna Pol	aritv	Hori	zontal	
					FCC Part 1			,			
	130 120				FCC Part I	50					
	110										
	100 90										
	80										
	[III] 70 60 60 50 50										
	p] 00					.3		4		L.	
	40	ماسار معاطر المعاد والمعاد والمعاد	ماسله والمحالية والمحالية الما	window manufactures and	www.	MANNAM	hallow and the state of the sta			Hariality	
	20										
	10										
	0										
	-10										
	-10L 1G		2G	3G	4G Frequency[Hz]	6G	8G			18G
	1G PK Limi			3G prizontal PK		Hz]	6G	8G			18G
РКГ	1G —— PK Limi * AV De					Hz]	6G	8G			186
PK [1G — PK Limi * AV De Data List	tector	t <u> </u>	rizontal PK	Frequency	Hz]				Angle	18G
PK I NO.	1G —— PK Limi * AV De		t — но /el				6G Margin [dB]	8G Heigł [cm]		Angle [°]	18G Polarity
NO.	1G PK Limi * AV De Data List Freq. [MHz]	Lev [dBµ\	t — но vel V/m]	Factor [dB]	Frequency		Margin [dB]	Heigl [cm]		[°]	Polarity
	1G — PK Limi * AV De Data List Freq.	Lev [dBµ\ 39.1	rel //m]	Factor	Frequency		Margin	Heigh			
NO. 1	1G PK Limi * AV De Data List Freq. [MHz] 2045.003	Lev [dBµ\ 39.0 38.3	rel V/m] 01 74	Factor [dB] -13.30	Erequency Limit [dBµV/n 74.00		Margin [dB] 34.99	Heigh [cm] 150		[°] 326	Polarity Horizontal
NO. 1 2	1G PK Limi * AV De Data List Freq. [MHz] 2045.003 3320.088006	Lev [dBµ\ 39. 3 38. 3 44.	rel //m] 01 74 23	Factor [dB] -13.30 -11.12	Erequency Limit [dBμV/n 74.00 74.00		Margin [dB] 34.99 35.26	Heigh [cm] 150		[°] 326 204	Polarity Horizontal Horizontal
NO. 1 2 3	1G PK Limi * AV De Data List Freq. [MHz] 2045.003 3320.088006 4803.720248	Lev [dBµ\ 39.0 5 38.7 3 44.7 3 53.0	vel V/m] 01 74 23 63	Factor [dB] -13.30 -11.12 -7.81	Frequency Limit [dBµV/n 74.00 74.00 74.00		Margin [dB] 34.99 35.26 29.77	Heigh [cm] 150 150 150		[°] 326 204 17	Polarity Horizontal Horizontal Horizontal
NO. 1 2 3 4	1G PK Limi * AV De Data List Freq. [MHz] 2045.003 3320.088006 4803.720248 7206.547103	Lev [dBµ\ 39.1 3 38.1 3 44.2 3 53.1 2 50.3	rel //m] 01 74 23 63 36	Factor [dB] -13.30 -11.12 -7.81 -3.65	Frequency Limit [dBµV/n 74.00 74.00 74.00 74.00		Margin [dB] 34.99 35.26 29.77 20.37	Heigh [cm] 150 150 150 150		[°] 326 204 17 24	Polarity Horizontal Horizontal Horizontal Horizontal
NO. 1 2 3 4 5 6	16 PK Limi * AV De Data List Freq. [MHz] 2045.003 3320.088006 4803.720248 7206.547103 11019.334623 16466.49776	Lev [dBµ\ 39.1 3 38.1 3 44.2 3 53.1 2 50.3	rel //m] 01 74 23 63 36	Factor [dB] -13.30 -11.12 -7.81 -3.65 2.62	Frequency Limit [dBµV/m 74.00 74.00 74.00 74.00 74.00		Margin [dB] 34.99 35.26 29.77 20.37 23.64	Heigh [cm] 150 150 150 150 150		[°] 326 204 17 24 261	Polarity Horizontal Horizontal Horizontal Horizontal Horizontal
NO. 1 2 3 4 5 6	Teq PK Limi * AV De Data List Freq. [MHz] 2045.003 3320.088006 4803.720248 7206.547103 11019.334622	Lev [dBµ\ 39.1 3 38.1 3 44.2 3 53.1 2 50.3	rel //m] 01 74 23 63 36 44	Factor [dB] -13.30 -11.12 -7.81 -3.65 2.62 5.58	Frequency Limit [dBµV/n 74.00 74.00 74.00 74.00 74.00		Margin [dB] 34.99 35.26 29.77 20.37 23.64	Heigh [cm] 150 150 150 150 150		[°] 326 204 17 24 261	Polarity Horizontal Horizontal Horizontal Horizontal Horizontal
NO. 1 2 3 4 5 6	16 PK Limi * AV De Data List Freq. [MHz] 2045.003 3320.088006 4803.720248 7206.547103 11019.334623 16466.49776	Lev [dBµ\ 39.1 3 38.2 3 44.2 3 53.1 2 50.3	rel //m] 01 74 23 63 36 44	Factor [dB] -13.30 -11.12 -7.81 -3.65 2.62	Frequency Limit [dBµV/m 74.00 74.00 74.00 74.00 74.00	1]	Margin [dB] 34.99 35.26 29.77 20.37 23.64	Heigh [cm] 150 150 150 150 150		[°] 326 204 17 24 261	Polarity Horizontal Horizontal Horizontal Horizontal Horizontal

Radiated Emissions Test Results Above 1GHz

RESULT: Pass

RESULT: Pass

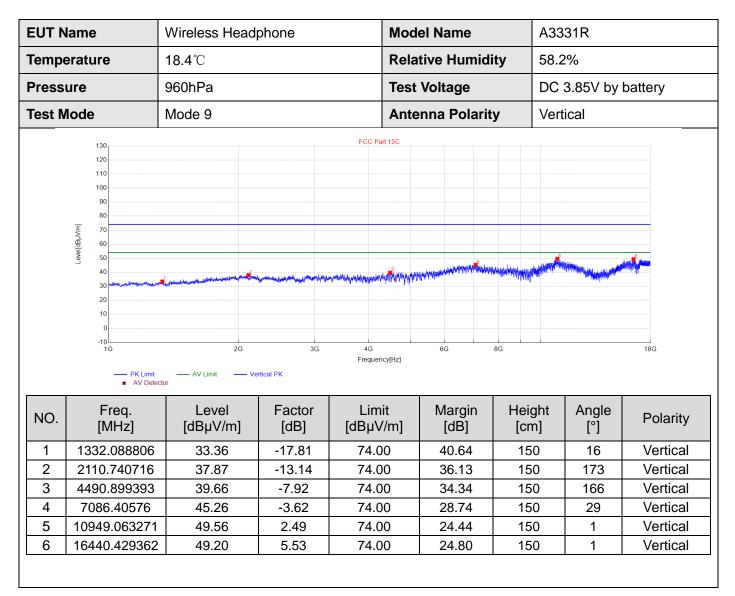
EUT N	lame	Wireless Head	lphone	M	odel Name	A	3331R			
Tempe	erature	18.4 ℃		Re	elative Humio	dity 5	8.2%			
Press	ure	960hPa		Те	st Voltage	D	DC 3.85V by battery			
Test N	lode	Mode 8		Ar	ntenna Polar	ity H	orizontal			
	130			FCC Part 15C						
	120									
	110									
	90									
	80									
	W 70									
	[W] 70 [above] 60 [above] 50						5	<u>ھ</u>		
	40			and an and an and an and an and an and and	a population and a second second second	www.anternania	No. of Concession, Name			
	30 Honoral and a state of the s	the second second and second and a second	ar han a she water a she far a she a sh	ana	de l'al a construction de la con		and the second			
	20									
	10									
	0									
	-10	26	36	49	66	86		186		
	-	2G	3G	4G Frequency[Hz]	6G	8G		18G		
	-10	— AV Limit — Ho	3G prizontal PK		6G	8G		18G		
	-10 1G 	— AV Limit — Ho					Angle			
NO.	-10 1G —— PK Limit	AV Limit Ho	prizontal PK	Frequency[Hz]	eG Margin [dB]	BG Height [cm]	Angle [°]	Polarity		
NO.	-10 IG W Detec Freq.	tor AV Limit Ho	Factor	Frequency[Hz]	Margin	Height				
	-10 -10 -10 -10 IG PK Limit * AV Detec Freq. [MHz]	- AV Limit - Ho Level [dBµV/m]	Factor [dB]	Frequency[Hz]	Margin [dB]	Height [cm]	[°]	Polarity Horizontal		
1	Freq. [MHz] 2055.20368	Level [dBµV/m] 38.58	Factor [dB] -13.28	Limit [dBµV/m] 74.00	Margin [dB] 35.42	Height [cm] 150	[°] 202	Polarity		
1	Freq. [MHz] 2055.20368 3573.971598	- AV Limit - Ho Level [dBµV/m] 38.58 38.23	Factor [dB] -13.28 -10.54	Frequency[Hz]	Margin [dB] 35.42 35.77	Height [cm] 150 150	[°] 202 219	Polarity Horizontal Horizontal Horizontal		
1 2 3	Freq. [MHz] 2055.20368 3573.971598 4881.925462	- AV Limit - Ho Level [dBµV/m] 38.58 38.23 41.09	Factor [dB] -13.28 -10.54 -7.80	Frequency[Hz]	Margin [dB] 35.42 35.77 32.91	Height [cm] 150 150 150	[°] 202 219 358	Polarity Horizontal Horizontal		

Radiated Emissions Test Results for Above 1GHz

RESULT: Pass

EUT N	lame	Wireless Head	lphone	M	odel Name	A3	3331R	
Tempe	erature	18.4 ℃		Re	elative Humic	lity 58	8.2%	
Pressu	ure	960hPa		Те	st Voltage	D	C 3.85V by	y battery
Test M	lode	Mode 8		Ar	ntenna Polari	ity Ve	ertical	
	130 120 110 90 80 70 60 50			FCC Part 15C			2	
	40 30 20 10 -10 -10 -10 -10 -10 -10 -10	2G — AV Limit — V(3G ertical PK	4G Frequency[Hz]	6G	BG		186
NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	1308.287219	33.10	-17.85	74.00	40.90	150	349	Vertical
2	2039.335956	38.45	-13.32	74.00	35.55	150	97	Vertical
3	3368.824588	39.55	-10.99	74.00	34.45	150	38	Vertical
4	6584.30562	46.72	-4.34	74.00	27.28	150	10	Vertical
5	11020.468031		2.62	74.00	24.35	150	236	Vertical
6	16461.964131	48.88	5.57	74.00	25.12	150	255	Vertical

RESULT: Pass



EUT N	ame	Wireless Head	phone	Mod	el Name	A3	331R		
Temperature Pressure Test Mode		18.4℃ 960hPa Mode 9			Relative Humidity Test Voltage Antenna Polarity		58.2%		
							DC 3.85V by battery Horizontal		
	120 110 100 90 80 70 60 90 60 90 80 40 30 20	- and the contract of the spin		antonsal policies and second and the					
	10 0 -10 1G	26	3G	4G Erequency[Hz]	6G	8G		 18G	
	0 -10 1G PK Limit X AV Detec	AV Limit Ho	prizontal PK	Frequency[Hz]			Angle	18G	
NO.	-10 -10 1G PK Limit	- AV Limit - Ho			6G Margin [dB]	BG Height [cm]	Angle [°]	18G Polarity	
NO.	o -10 -10 -10 PK Limit * AV Detec	- AV Limit - Ho	Factor	Frequency[Hz]	Margin	Height			
	PK Limit * AV Detec Freq. [MHz]	- AV Limit - Ho Level [dBµV/m]	Factor [dB]	Frequency[Hz] Limit [dBµV/m]	Margin [dB]	Height [cm]	[°]	Polarity	
1	• -10 -10 -10 -10 -10 -10 -10 -10 -10 -10	Level [dBµV/m] 38.10	Factor [dB] -13.37	Frequency[Hz] Limit [dBµV/m] 74.00	Margin [dB] 35.90	Height [cm] 150	[°] 236	Polarity Horizontal	
1 2	• • • • • • • • • • • • • •	- AV Limit - Ho Level [dBµV/m] 38.10 39.10	Factor [dB] -13.37 -11.46	Frequency[Hz]	Margin [dB] 35.90 34.90	Height [cm] 150 150	[°] 236 24	Polarity Horizonta Horizonta Horizonta	
2 3	• -10 -10 -10 -10 -10 -10 -10 -10	- AV Limit - Ho Level [dBµV/m] 38.10 39.10 41.26	Factor [dB] -13.37 -11.46 -7.78	Frequency[Hz]	Margin [dB] 35.90 34.90 32.74	Height [cm] 150 150 150	[°] 236 24 5	Polarity Horizontal Horizontal	

Radiated Emissions Test Results for Above 1GHz

RESULT: Pass

RESULT: Pass

Note:

- 1. The amplitude of other spurious emissions from 18G to 25 GHz which are attenuated more than 20 dB below the permissible value need not be reported.
- 2. Factor = Antenna Factor + Cable loss Pre-amplifier gain, Margin =Limit-Level.
- 3. The "Factor" value can be calculated automatically by software of measurement system.
- 4. All mode rates are tested and evaluated, 8DPSK modulated 3DH5 mode is the worst case and documented in the report.
- 5. In the test diagram, the frequency point with a protrusion from 2 GHz to 3 GHz is the fundamental frequency of the EUT.

Report No.: AGC01110240805FR01A Page 27 of 28

Appendix I: Photographs of Test Setup

Refer to the Report No.: AGC01110240805AP01A

Appendix II: Photographs of Test EUT

Refer to the Report No.: AGC01110240805AP02A

Conditions of Issuance of Test Reports

1. All samples and goods are accepted by the Attestation of Global Compliance (Shenzhen) Co., Ltd (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The company provides its services on the basis that such terms and conditions constitute express agreement between the company and any person, firm or company requesting its services (the "Clients").

2. Any report issued by Company as a result of this application for testing services (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to its customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders. 3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.

4. In the event of the improper use of the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.

5. Samples submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.

 6. The Company will not be liable for or accept responsibility for any loss or damage however arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.
 7.Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.

8. The Company is not responsible for recalling the electronic version of the original report when any revision is made to them. The Client assumes the responsibility to providing the revised version to any interested party who uses them.

9. Subject to the variable length of retention time for test data and report stored hereinto as otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of the test report for a period of six years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after retention period. Under no circumstances shall we be liable for damage of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.

-----End of Report-----