RF TEST REPORT **Applicant** Huawei Technologies Co., Ltd. FCC ID QISSTK-LX1 **Product** Smart Phone Model STK-LX1 **Report No.** R1903H0032-R7V2 Issue Date March 29, 2019 TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC CFR47 Part 15C (2018)**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report. Performed by: Peng Tao Approved by: Kai Xu # TA Technology (Shanghai) Co., Ltd. No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000 # **TABLE OF CONTENT** | 1. T | est Laboratory | 4 | |------|---|----| | | Notes of the test report | | | | Test facility | | | 1.3. | Testing Location | 5 | | | General Description of Equipment under Test | | | | Applied Standards | | | | est Configuration | | | 5. T | est Case Results | 10 | | 5.1. | 20dB Bandwidth | 10 | | 5.2. | Frequency Stability | 12 | | | Radiates Emission | | | 5.4. | Conducted Emission | 24 | | 6 M | Aain Test Instruments | 28 | # Summary of measurement results | Number | Summary of measurements of results | Clause in FCC rules | Verdict | | | | |--|------------------------------------|-----------------------------------|---------|--|--|--| | 1 | 20 dB bandwidth | 2.1049 | PASS | | | | | 2 | Frequency Stability Tolerance | 15.225(e) | PASS | | | | | 3 | Radiated Emissions | 15.225 (a) (b) (c) (d) and 15.209 | PASS | | | | | 4 | Conducted Emissions | 15.207 | PASS | | | | | Date of Testing: March 8, 2019~ March 29, 2019 | | | | | | | **FCC RF Test Report** 1. Test Laboratory 1.1. Notes of the test report This report shall not be reproduced in full or partial, without the written approval of **TA technology** (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the Report No: R1903H0032-R7V2 conditions and modes of operation as described herein .Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above. This report must not be used by the client to claim product certification, approval, or endorsement by any government agencies. 1.2. Test facility CNAS (accreditation number: L2264) TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS). FCC (Designation number: CN1179, Test Firm Registration Number: 446626) TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements. IC (recognition number is 8510A) TA Technology (Shanghai) Co., Ltd. has been listed by industry Canada to perform electromagnetic emission measurement. VCCI (recognition number is C-4595, T-2154, R-4113, G-10766) TA Technology (Shanghai) Co., Ltd. has been listed by industry Japan to perform electromagnetic emission measurement. A2LA (Certificate Number: 3857.01) TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement. # 1.3. Testing Location Company: TA Technology (Shanghai) Co., Ltd. Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong City: Shanghai Post code: 201201 Country: P. R. China Contact: Xu Kai +86-021-50791141/2/3 Telephone: Fax: +86-021-50791141/2/3-8000 Website: http://www.ta-shanghai.com E-mail: xukai@ta-shanghai.com # 2. General Description of Equipment under Test ### **Client Information** | Applicant | Huawei Technologies Co., Ltd. | |--|--| | Applicant address Administration Building, Headquarters of Huawei Technologi Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.Ch | | | Manufacturer | Huawei Technologies Co., Ltd. | | Manufacturer address | Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.China. | ### **General information** | EUT Description | | | | | | |---|---|---------------------------------|---------------------|--|--| | Model: | STK-LX1 | | | | | | IMEI: | IMEI 1:860815040043101
IMEI 2:860815040048027 | | | | | | Hardware Version: | HL1STKM | | | | | | Software Version: | STK-LX1 9.0.1.18 | | | | | | Power Supply: | Battery/AC adapter | | | | | | Antenna Type: | Internal Antenna | | | | | | Antenna Connector | A permanently atta | ched antenna (mee
quirement) | t with the standard | | | | Test Mode: | NFC-A | NFC-B | NFC-F | | | | Modulation Type: | ASK | ASK, BPSK | ASK | | | | Operating Frequency Range(s) | 13.56MHz | | | | | | | EUT Accesso | ry | | | | | Adapter 1 | Model: HW-0502000
Input Voltage: 100-2 | 240V ~50/60Hz 0.5A | | | | | Output Voltage: 5V === 2A Manufacturer: Huawei Technologies Co., Ltd. Model: HW-050200E01 Input Voltage: 100-240V ~50/60Hz 0.5A Output Voltage: 5V === 2A | | | | | | | Adapter 3 | Manufacturer: Huawei Technologies Co., Ltd. Model: HW-050200B01 Input Voltage: 100-240V ~50/60Hz 0.5A Output Voltage: 5V ==== 2A | | | | | | Adapter 4 | Manufacturer: Huawei Technologies Co., Ltd. Model: HW-050200A01 Input Voltage: 100-240V ~50/60Hz 0.5A | | | | | TA Technology (Shanghai) Co., Ltd. TA-MB-04-008R Page 6 of 28 | | Output Voltage: 5V === 2A | |---------------------------------|---| | | Manufacturer: Huawei Technologies Co., Ltd. | | Adapter 5 | Model: HW-050200U02 | | Adapter 5 | Input Voltage: 100-240V ~50/60Hz 0.5A | | | Output Voltage: 5V === 2A | | | Manufacturer: Huawei Technologies Co., Ltd. | | Adapter 6 | Model: HW-050200E02 | | , reaptor o | Input Voltage: 100-240V ~50/60Hz 0.5A | | | Output Voltage: 5V === 2A | | | Manufacturer: Huawei Technologies Co., Ltd. | | Adapter 7 | Model: HW-050200A02 | | | Input Voltage: 100-240V ~50/60Hz 0.5A | | | Output Voltage: 5V === 2A | | | Manufacturer: Huawei Technologies Co., Ltd. | | Adapter 8 | Model: HW-050200B02 | | | Input Voltage: 100-240V ~50/60Hz 0.5A | | | Output Voltage: 5V === 2A | | | Manufacturer: HuaweiTechnologies Co., Ltd. | | | Model: HB446486ECW | | Battery | Rated capacity: 3900mAh | | | Nominal Voltage: +3.82V | | | Charging Voltage: +4.40V | | Earphone 1 | Manufacturer: Boluo County Quancheng Electronic Co.,ltd | | | Monufacturer: liangui Lianghuang Hangahang Electronia | | Fornbono 2 | Manufacturer: Jiangxi Lianchuang Hongsheng Electronic Co.,LTD | | Earphone 2 | Model: MEND1532B528A02 | | | Manufacturer: NingBo Broad Telecommunication Co.,Ltd. | | USB cable 1 | Model: WA0020 | | | Manufacturer: LUXSHARE Precision Industry Co., Ltd. | | USB cable 2 | Model: L99UC131-CS-H | | | Manufacturer: HONGFUJIN PRECISION INDUSTRIAL | | USB cable 3 | (SHENZHEN).LTD | | | Model: CUDU01B-HC295-EH | | | Manufacturer: Freeport Resources Enterprises (Jiangxi) | | USB cable 4 | Co.,Ltd | | | Model: 18-93C2CHO-001HF | | | Manufacturer: Dongguan Mingji Electronics Technology | | USB cable 5 | Group Co.,Ltd | | | Model: 203-1572-0 | | Note: The information of the EU | P'a destacable the constant | Note: The information of the EUT is declared by the manufacturer. 2. There is more than one Adapter /USB cable/ Earphone, each one should be applied throughout the compliance test respectively, and however, only the worst case (Adapter 1/USB cable 2/ Earphone 2) will be recorded in this report. # 3. Applied Standards According to the specifications of the manufacturer, it must comply with the requirements of the following standards: #### **Test standards** - · FCC CFR47 Part 2 (2018) - FCC CFR47 Part 15C (2018) - · ANSI C63.10 (2013) FCC RF Test Report No: R1903H0032-R7V2 # 4. Test Configuration ### **Test Mode** The EUT was programmed to be in continuously transmitting mode and the transmit duty cycle is not less than 98%. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. # 5. Test Case Results #### 5.1. 20dB Bandwidth #### **Ambient condition** | Temperature | Relative humidity | Pressure | | | |-------------|-------------------|----------|--|--| | 23°C ~25°C | 45%~50% | 101.5kPa | | | #### **Method of Measurement** The EUT was connected to the spectrum analyzer through an external attenuator (20dB) and a known loss cable. RBW is set to 10 kHz; VBW is set to 3 times thw RBW on spectrum analyzer. ## **Test Setup** #### Limits No specific occupied bandwidth requirements in part 2.1049. # **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 936 Hz. # **Test Results:** # NFC-A | Carrier frequency | 99% Bandwidth | 20dB Bandwidth | Conclusion | |-------------------|---------------|----------------|------------| | (MHz) | (kHz) | (kHz) | | | 13.56MHz | 24.484 | 28.50 | PASS | # NFC-B | Carrier frequency
(MHz) | 99% Bandwidth
(kHz) | 20dB Bandwidth (kHz) | Conclusion | |----------------------------|------------------------|----------------------|------------| | 13.56MHz | 24.413 | 28.63 | PASS | # NFC-F | Carrier frequency | 99% Bandwidth | 20dB Bandwidth | Conclusion | |-------------------|---------------|----------------|------------| | (MHz) | (kHz) | (kHz) | | | 13.56MHz | 24.466 | 28.58 | PASS | # 5.2. Frequency Stability #### **Ambient condition** | Temperature | Relative humidity | | |-------------|-------------------|--| | 21°C ~25°C | 40%~60% | | #### **Method of Measurement** 1. Frequency Stability (Temperature Variation) The temperature inside the climate chamber is varied from 0°C to +35°C in 10°C step size, - (1) With all power removed, the temperature was decreased to 0°C and permitted to stabilize for three hours. - (2) Measure the carrier frequency with the test equipment in a "call mode". These measurements should be made within 1 minute of powering up the mobile station, to prevent significant self warming. - (3) Repeat the above measurements at 10°C increments from 0°C to +35°C. Allow at least 1.5 hours at each temperature, un-powered, before making measurements. - 2. Frequency Stability (Voltage Variation) The frequency stability shall be measured with variation of primary supply voltage as follows: - (1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment. - (2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery-operating end point which shall be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.6V and 4.4 V, with a nominal voltage of 3.82V. ### **Test setup** C RF Test Report No: R1903H0032-R7V2 #### Limits Rule Part 15.225 (e) The frequency tolerance of the carrier signal shall be maintained within ±0.01% of the operating frequency over a temperature variation of –20 degrees to + 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery. # **Measurement Uncertainty** The assessed measurement uncertainty to ensure 99.75% confidence level for the normal distribution is with the coverage factor k = 3, U = 0.01ppm. # **Test Result** # NFC-A | Test | Frequency
13.56MHz | | | | Tolerance (MHz) | | | | |-------------|-----------------------|-----------|-----------|-----------|-----------------|----------|----------|----------| | status | | | | | | | | | | Status | 1min | 2min | 5min | 10min | 1min | 2min | 5min | 10min | | 0°C/3.8 V | 13.560336 | 13.560344 | 13.560351 | 13.560350 | 0.000336 | 0.000344 | 0.000351 | 0.000350 | | 10°C/3.8 V | 13.560344 | 13.560349 | 13.560341 | 13.560341 | 0.000344 | 0.000349 | 0.000341 | 0.000341 | | 20°C/3.8 V | 13.560339 | 13.560344 | 13.560334 | 13.560340 | 0.000339 | 0.000344 | 0.000334 | 0.000340 | | 30°C/3.8 V | 13.560351 | 13.560335 | 13.560343 | 13.560346 | 0.000351 | 0.000335 | 0.000343 | 0.000346 | | 35°C/3.8 V | 13.560352 | 13.560336 | 13.560343 | 13.560349 | 0.000352 | 0.000336 | 0.000343 | 0.000349 | | 20°C/3.62 V | 13.560339 | 13.560343 | 13.560351 | 13.560340 | 0.000339 | 0.000343 | 0.000351 | 0.000340 | | 20°C/4.4 V | 13.560341 | 13.560340 | 13.560345 | 13.560337 | 0.000341 | 0.000340 | 0.000345 | 0.000337 | | Test | | Tolera | Limait (0/) | O a malarai a m | | | | |-------------|----------|----------|-------------|-----------------|-----------|------------|--| | status | 1min | 2min | 5min | 10min | Limit (%) | Conclusion | | | 0°C/3.8 V | 0.002479 | 0.002591 | 0.002477 | 0.002563 | 0.01 | PASS | | | 10°C/3.8 V | 0.002456 | 0.002598 | 0.002511 | 0.002582 | 0.01 | PASS | | | 20°C/3.8 V | 0.002475 | 0.002538 | 0.002590 | 0.002583 | 0.01 | PASS | | | 30°C/3.8 V | 0.002537 | 0.002576 | 0.002514 | 0.002518 | 0.01 | PASS | | | 35°C/3.8 V | 0.002499 | 0.002536 | 0.002462 | 0.002504 | 0.01 | PASS | | | 20°C/3.62 V | 0.002585 | 0.002473 | 0.002532 | 0.002554 | 0.01 | PASS | | | 20°C/4.4 V | 0.002594 | 0.002474 | 0.002529 | 0.002572 | 0.01 | PASS | | # NFC-B | Tool | | Frequ | iency | Toloranco (MHz) | | | | | |-------------|-----------|-----------|-----------------|-----------------|----------|----------------------------------|----------|----------------------| | Test | | 13.56 | Tolerance (MHz) | | | | | | | status | 1min | 2min | 5min | 10min | 1min | 2min | 5min | 10min | | 0°C/3.8 V | 13.560415 | 13.560409 | 13.560416 | 13.560407 | 0.000415 | 0.000409 | 0.000416 | 0.000407 | | 10°C/3.8 V | 13.560414 | 13.560405 | | 13.560414 | 0.000414 | 0.000405
0.000402
0.000411 | 0.000409 | 0.000414 | | 20°C/3.8 V | 13.560403 | 13.560402 | | 13.560404 | 0.000403 | | 0.000416 | 0.000404 | | 30°C/3.8 V | 13.560412 | 13.560411 | 13.560409 | 13.560416 | 0.000412 | | 0.000409 | 0.000416
0.000418 | | 35°C/3.8 V | 13.560418 | 13.560415 | 13.560414 | 13.560418 | 0.000418 | 0.000415 | 0.000414 | | | 20°C/3.62 V | 13.560404 | 13.560415 | 13.560411 | 13.560412 | 0.000404 | 0.000415 | 0.000411 | 0.000412 | | 20°C/4.4 V | 13.560404 | 13.560413 | 13.560419 | 13.560406 | 0.000404 | 0.000413 | 0.000419 | 0.000406 | | Test | | Tolera | Limit(%) | Conclusion | | | |-------------|-------------|----------|----------|------------|------|------------| | status | status 1min | | 5min | 10min | | Conclusion | | 0°C/3.8 V | 0.003058 | 0.003019 | 0.003070 | 0.002998 | 0.01 | PASS | | 10°C/3.8 V | 0.003053 | 0.002990 | 0.003016 | 0.003053 | 0.01 | PASS | | 20°C/3.8 V | 0.002973 | 0.002966 | 0.003071 | 0.002978 | 0.01 | PASS | | 30°C/3.8 V | 0.003036 | 0.003032 | 0.003019 | 0.003065 | 0.01 | PASS | | 35°C/3.8 V | 0.003084 | 0.003061 | 0.003053 | 0.003083 | 0.01 | PASS | | 20°C/3.62 V | 0.002983 | 0.003064 | 0.003028 | 0.003035 | 0.01 | PASS | | 20°C/4.4 V | 0.002978 | 0.003043 | 0.003091 | 0.002995 | 0.01 | PASS | | Toot | | Frequ | iency | | Tolerance (MHz) | | | | | | |-------------|-----------|---------------------|-----------|-----------|-----------------|-----------|-----------|-----------|--|--| | Test | | 13.56 | 6MHz | | | | | | | | | status | 1min | 2min | 5min | 10min | 1min | 2min | 5min | 10min | | | | 0°C/3.8 V | 13.559793 | 9793 13.559806 13.5 | | 13.559806 | -0.000207 | -0.000194 | -0.000189 | -0.000194 | | | | 10°C/3.8 V | 13.559793 | 13.559802 | 13.559793 | 13.559802 | -0.000207 | -0.000198 | -0.000207 | -0.000198 | | | | 20°C/3.8 V | 13.559811 | 13.559803 | 13.559801 | 13.559811 | -0.000189 | -0.000197 | -0.000199 | -0.000189 | | | | 30°C/3.8 V | 13.559804 | 13.559813 | 13.559807 | 13.559802 | -0.000196 | -0.000187 | -0.000193 | -0.000198 | | | | 35°C/3.8 V | 13.559800 | 13.559806 | 13.559803 | 13.559813 | -0.000200 | -0.000194 | -0.000197 | -0.000187 | | | | 20°C/3.62 V | 13.559798 | 13.559807 | 13.559807 | 13.559804 | -0.000202 | -0.000193 | -0.000193 | -0.000196 | | | | 20°C/4.4 V | 13.559808 | 13.559800 | 13.559808 | 13.559803 | -0.000192 | -0.000200 | -0.000192 | -0.000197 | | | | Test | | Tolera | Limit(%) | Conclusion | | | | |-------------|-------------|-----------|-----------|------------|------|------------|--| | status | status 1min | | 5min | 10min | | Conclusion | | | 0°C/3.8 V | -0.001525 | -0.001430 | -0.001396 | -0.001431 | 0.01 | PASS | | | 10°C/3.8 V | -0.001525 | -0.001463 | -0.001525 | -0.001464 | 0.01 | PASS | | | 20°C/3.8 V | -0.001392 | -0.001456 | -0.001469 | -0.001390 | 0.01 | PASS | | | 30°C/3.8 V | -0.001446 | -0.001380 | -0.001427 | -0.001461 | 0.01 | PASS | | | 35°C/3.8 V | -0.001474 | -0.001430 | -0.001454 | -0.001382 | 0.01 | PASS | | | 20°C/3.62 V | -0.001488 | -0.001420 | -0.001425 | -0.001448 | 0.01 | PASS | | | 20°C/4.4 V | -0.001418 | -0.001474 | -0.001417 | -0.001453 | 0.01 | PASS | | #### 5.3. Radiates Emission #### **Ambient condition** | Temperature | Relative humidity | Pressure | |-------------|-------------------|----------| | 23°C ~25°C | 45%~50% | 102.5kPa | #### **Method of Measurement** The test set-up was made in accordance to the general provisions of ANSI C63.10-2013. The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna. The radiated emissions measurements were made in a typical installation configuration. Sweep the whole frequency band through the range from 9 kHz to the 10th harmonic of the carrier, and the emissions less than 20 dB below the permissible value are reported. During the test, below 30MHz, the center of the loop shall be 1 meters; above 30MHz, the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turntable shall be rotated from 0 to 360 degrees for detecting the maximum of radiated spurious signal level. The measurements shall be repeated with orthogonal polarization of the test antenna. The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing. Set the spectrum analyzer in the following: #### Out-of-band Below30MHz RBW=9KHz, VBW=30KHz, detector=peak; Above 30MHz, RBW=100KHz, VBW=300KHz, Detector=peak #### In-band RBW=9KHz, VBW=30KHz, detector=peak; The field strength of spurious emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (X axis) and the loop antenna is vertical, the other antennas are vertical and horizontal. #### **Test setup** ### 9kHz~~~ 30MHz # 30MHz~~~ 1GHz #### **Above 1GHz** Note: Area side:2.4mX3.6m Limits Clause 15.225(a) the field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters. Report No: R1903H0032-R7V2 Clause 15.225(b) within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters. Clause 15.225(c) within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters. Clause 15.225(d) The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in §15.209. §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table: | Frequency of emission (MHz) | Field strength(uV/m) | Field strength(dBuV/m) @3m | |-----------------------------|----------------------|----------------------------| | 0.009-0.490 | 2400/F(kHz) | 128.519dBuV/m -93.8dBuV/m | | 0.490-1.705 | 24000/F(kHz) | 73.8dBuV/m -62.969dBuV/m | | 1.705–30.0 | 30 | 69.5 dBuV/m | | 30-88 | 100 | 40 | | 88-216 | 150 | 43.5 | | 216-960 | 200 | 46 | | Above960 | 500 | 54 | When using other measurement distance, according to the standard C63.10, If that point is closer to the EUT than $\lambda/2\pi$ and the limit distance is greater than $\lambda/2\pi$, the data was extrapolated to the specified measurement distance of 30m using extrapolation factor as specified in §6.4.4.2. Extrapolation Factor = 40log(30/ 3) **Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241. §15.209 (b) In the emission table above, the tighter limit applies at the band edges. §15.209 (d) The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. #### **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96. | Frequency | Uncertainty | | | | |--------------|-------------|--|--|--| | 9KHz-30MHz | 3.55 dB | | | | | 30MHz-200MHz | 4.02 dB | | | | | 200MHz-1GHz | 3.28 dB | | | | | Above 1GHz | 3.70 dB | | | | #### Test result NFC-A was selected as the worst condition. The test data of the worst-case condition was recorded in ### In-band Radiates Emission from 13.11MHz to 14.01MHz Note: This graph displays the maximum values of horizontal and vertical by software #### Out-of-band The following graphs display the maximum values of horizontal and vertical by software. For above 1GHz, Blue trace uses the peak detection, Green trace uses the average detection. FCC RE 9K-90KHz AV Radiates Emission from 9kHz to 90kHz FCC RE 90K-110KHz QP Radiates Emission from 90kHz to 110kHz #### FCC RE 110K-490KHz AV Radiates Emission from 110kHz to 490kHz FCC RE 490K-30MHz QP Radiates Emission from 490kHz to 30MHz RE 0.03-1GHz QP Class B Radiates Emission from 30MHz to 1GHz Note: This graph displays the maximum values of horizontal and vertical by software | Frequency
(MHz) | Quasi-Peak
(dBuV/m) | Height (cm) | Polarization | Azimuth (deg) | Reading
value
(dBuV/m) | Correct
Factor
(dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|------------------------|-------------|--------------|---------------|------------------------------|---------------------------|----------------|-------------------| | 34.326250 | 14.2 | 100.0 | V | 26.0 | -2.0 | 16.2 | 25.8 | 40.0 | | 40.670000 | 28.5 | 100.0 | V | 273.0 | 11.6 | 16.9 | 11.5 | 40.0 | | 81.368750 | 20.4 | 125.0 | V | 156.0 | 9.6 | 10.8 | 19.6 | 40.0 | | 149.148750 | 22.3 | 100.0 | V | 244.0 | 12.8 | 9.5 | 21.2 | 43.5 | | 170.037500 | 7.8 | 100.0 | V | 240.0 | -2.6 | 10.4 | 35.7 | 43.5 | | 207.226250 | 9.2 | 100.0 | V | 300.0 | -2.8 | 12.0 | 34.3 | 43.5 | #### 5.4. Conducted Emission #### **Ambient condition** | Temperature | Relative humidity | Pressure | |-------------|-------------------|----------| | 23°C ~25°C | 45%~50% | 101.5kPa | #### **Methods of Measurement** The EUT is placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.10-2013. Connect the AC power line of the EUT to the L.I.S.N. Use EMI receiver to detect the average and Quasi-peak value. RBW is set to 9 kHz, VBW is set to 30kHz. The measurement result should include both L line and N line. The test is in transmitting mode. #### **Test Setup** Note: AC Power source is used to change the voltage 110V/60Hz. #### Limits §15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges. | Frequency | Conducted Limits(dBμV) | | | | | | |------------|------------------------|-----------------------|--|--|--|--| | (MHz) | Quasi-peak | Average | | | | | | 0.15 - 0.5 | 66 to 56 [*] | 56 to 46 [*] | | | | | | 0.5 - 5 | 56 | 46 | | | | | TA Technology (Shanghai) Co., Ltd. TA-MB-04-008R Page 24 of 28 | \ | FCC RF les | st Report | Report No: R1903H0032-R7V2 | | | | | |---|--|-----------|----------------------------|--|--|--|--| | | 5 - 30 | 60 | 50 | | | | | | | * Decreases with the logarithm of the frequency. | | | | | | | # **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U = 2.69 dB. # **Test Results:** **FCC RF Test Report** Following plots, Blue trace uses the peak detection and Green trace uses the average detection. | Frequency
(MHz) | QuasiPeak
(dΒμV) | Average
(dBµV) | Limit
(dBµV) | Margin
(dB) | Meas.
Time
(ms) | Bandwidth
(kHz) | Line | Filter | Corr.
(dB) | |--------------------|---------------------|-------------------|-----------------|----------------|-----------------------|--------------------|------|--------|---------------| | 0.19 | | 33.68 | 53.92 | 20.24 | 1000.0 | 9.000 | L1 | ON | 19.18 | | 0.19 | 47.91 | | 63.92 | 16.01 | 1000.0 | 9.000 | L1 | ON | 19.18 | | 0.46 | 38.39 | - | 56.64 | 18.25 | 1000.0 | 9.000 | L1 | ON | 19.23 | | 0.56 | | 24.88 | 46.00 | 21.12 | 1000.0 | 9.000 | L1 | ON | 19.25 | | 0.89 | 33.15 | | 56.00 | 22.85 | 1000.0 | 9.000 | L1 | ON | 19.24 | | 1.04 | | 19.28 | 46.00 | 26.72 | 1000.0 | 9.000 | L1 | ON | 19.24 | | 3.42 | | 16.53 | 46.00 | 29.47 | 1000.0 | 9.000 | L1 | ON | 19.05 | | 3.46 | 23.77 | | 56.00 | 32.23 | 1000.0 | 9.000 | L1 | ON | 19.05 | | 10.00 | 22.17 | | 60.00 | 37.83 | 1000.0 | 9.000 | L1 | ON | 19.40 | | 12.37 | | 17.81 | 50.00 | 32.19 | 1000.0 | 9.000 | L1 | ON | 19.42 | | 13.56 | | 39.56 | 50.00 | 10.44 | 1000.0 | 9.000 | L1 | ON | 19.48 | | 13.56 | 43.02 | | 60.00 | 16.98 | 1000.0 | 9.000 | L1 | ON | 19.48 | L line Conducted Emission from 150 KHz to 30 MHz | Frequency
(MHz) | QuasiPeak
(dΒμV) | Average
(dBµV) | Limit
(dBµV) | Margin
(dB) | Meas.
Time
(ms) | Bandwidth
(kHz) | Line | Filter | Corr.
(dB) | |--------------------|---------------------|-------------------|-----------------|----------------|-----------------------|--------------------|------|--------|---------------| | 0.20 | | 27.09 | 53.73 | 26.64 | 1000.0 | 9.000 | N | ON | 19.18 | | 0.35 | 34.18 | | 58.96 | 24.78 | 1000.0 | 9.000 | N | ON | 19.17 | | 0.55 | 36.32 | | 56.00 | 19.68 | 1000.0 | 9.000 | N | ON | 19.25 | | 0.60 | | 27.42 | 46.00 | 18.58 | 1000.0 | 9.000 | N | ON | 19.27 | | 1.04 | | 22.05 | 46.00 | 23.95 | 1000.0 | 9.000 | N | ON | 19.24 | | 1.75 | 29.35 | | 56.00 | 26.66 | 1000.0 | 9.000 | N | ON | 19.16 | | 2.14 | | 20.33 | 46.00 | 25.67 | 1000.0 | 9.000 | N | ON | 19.07 | | 3.71 | 26.93 | | 56.00 | 29.07 | 1000.0 | 9.000 | N | ON | 19.06 | | 7.55 | | 18.85 | 50.00 | 31.15 | 1000.0 | 9.000 | N | ON | 19.21 | | 10.00 | 25.55 | | 60.00 | 34.45 | 1000.0 | 9.000 | N | ON | 19.42 | | 13.56 | | 43.35 | 50.00 | 6.65 | 1000.0 | 9.000 | N | ON | 19.45 | | 13.56 | 47.09 | | 60.00 | 12.91 | 1000.0 | 9.000 | N | ON | 19.45 | N line Conducted Emission from 150 KHz to 30 MHz # 6. Main Test Instruments | Name | Manufacturer | Туре | Serial
Number | Calibration
Date | Expiration
Time | | |-----------------------------|--------------|-----------|--------------------|---------------------|--------------------|--| | Spectrum Analyzer | R&S | FSV30 | 100815 | 2018-12-16 | 2019-12-15 | | | EMI Test Receiver | R&S | ESCI | 100948 | 2018-05-20 | 2019-05-19 | | | Loop Antenna | SCHWARZBECK | FMZB1519 | 1519-047 | 2017-09-26 | 2019-09-25 | | | TRILOG Broadband
Antenna | Schwarzbeck | VULB 9163 | 9163-201 | 2017-11-18 | 2019-11-17 | | | EMI Test Receiver | R&S | ESR | 101667 | 2018-05-20 | 2019-05-19 | | | LISN | R&S | ENV216 | 101171 | 2016-12-16 | 2019-12-15 | | | Spectrum Analyzer | Agilent | N9020A | MY52330084 | 2018-05-20 | 2019-05-19 | | | TEMPERATURE
CHAMBER | WEISS | VT4002 | 582261194500
10 | 2018-12-16 | 2019-12-15 | | | RF Cable | Agilent | SMA 15cm | 0001 | / | 1 | | | Software | R&S | EMC32 | 9.26.0 | 1 | 1 | | *****END OF REPORT *****