

802 N. Twin Oaks Valley Road, Suite 105 • San Marcos, CA 92069 • U.S.A. TEL (760) 471-2100 • FAX (760) 471-2121 http://www.rfexposurelab.com

CERTIFICATE OF COMPLIANCE SAR EVALUATION

Inseego 9645 Scranton Road, Suite 205 San Diego, CA 92121 Dates of Test: February 11-April 9, May 7, 2019 Test Report Number: SAR.20190423 Revision E

FCC ID: PKRISGM1000
IC Certificate: 3229A-M1000
Model(s): M1000

Test Sample: Engineering Unit Same as Production

FID Number: FF161218B00028, FF161218B00059, FF130219B00637

Equipment Type: Wireless Hotspot Modem
Classification: Portable Transmitter Next to Body

TX Frequency Range: 777 – 787 MHz, 824 – 848 MHz; 1710 – 1780 MHz; 1850 – 1910 MHz,

3550 - 3700 MHz, 2412 - 2462 MHz, 5150 - 5250 MHz, 5745 - 5825 MHz

Frequency Tolerance: ± 2.5 ppm

Maximum RF Output: 750 MHz (LTE) – 24.0 dBm, 850 MHz (WCDMA) – 24.0 dBm, 850 MHz (LTE) – 24.0 dBm,

1750 MHz (WCDMA) - 24.0 dBm, 1750 MHz (LTE) - 23.0 dBm, 1900 MHz (WCDMA) - 24.0 dBm,

1900 MHz (LTE) - 22.5 dBm, 3600 MHz (LTE) - 24.0 dBm, 2450 MHz (b) - 14.0 dBm, 2450 MHz(g/n) - 14.0 dBm, 5100 MHz (an/ac) - 14.0 dBm, 5800 MHz (an/ac) - 14.0 dBm

Conducted

Signal Modulation: WCDMA, QPSK, 16QAM, DSSS, OFDM

Antenna Type: WWAN – Novatel Wireless, P/N 12023244 (Ant0), P/N 12023245 (Ant1), P/N 12023246 (Ant2)

P/N 12023247 (Ant3), P/N 12023248 (Ant4), P/N 12023249 (Ant5), P/N Itched on PCB (Ant6), P/N 12023250 (Ant7), P/N 12023251 (WLAN0), P/N 12023252 (WLAN1), P/N 31325791 (mmW)

Application Type: Certification

FCC Rule Parts: Part 2, 15C, 15E, 22, 24, 27

KDB Test Methodology: KDB 447498 D01 v06, KDB 248227 v02r02, KDB 941225 D01 v03r01, D02 v02r01, D05 v02r01 &

D06 v01

Industry Canada: RSS-102 Issue 5, Safety Code 6

Max. Stand Alone SAR Value: 1.18 W/kg Reported

Max. Simultaneous SAR Value: 91.1% Ratio of Limit for SAR and Power Density

Separation Distance: 10 mm

This wireless mobile and/or portable device has been shown to be compliant for localized specific absorption rate (SAR) for uncontrolled environment/general exposure limits specified in ANSI/IEEE Std. C95.1-1992 and had been tested in accordance with the measurement procedures specified in IEEE 1528-2013 and IEC 62209-2:2010 (See test report).

I attest to the accuracy of the data. All measurements were performed by myself or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RF Exposure Lab, LLC certifies that no party to this application is subject to a denial of Federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 853(a).

Jay M. Moulton Vice President

Table of Contents

1. Introduction	
SAR Definition [5]	
2. SAR Measurement Setup	
Robotic System	
System Hardware	
System Electronics	
Probe Measurement System	
3. Probe and Dipole Calibration	
4. Phantom & Simulating Tissue Specifications	
Head & Body Simulating Mixture Characterization	
5. ANSI/IEEE C95.1 – 1992 RF Exposure Limits [2]	
Uncontrolled Environment	16
Controlled Environment	
Measurement Uncertainty	
7. System Validation	18
Tissue Verification	
Test System Verification	19
8. LTE Document Checklist	
9. SAR Test Data Summary	
Procedures Used To Establish Test Signal	
Device Test Condition	
10. FCC 3G Measurement Procedures	
10.1 Procedures Used to Establish RF Signal for SAR	27
10.2 SAR Measurement Conditions for WCDMA/HSDPA/HSUPA	27
10.5 SAR Measurement Conditions for LTE Bands	48
SAR Data Summary – 750 MHz Body – LTE Band 13	
SAR Data Summary – 835 MHz Body - WCDMA	83
SAR Data Summary – 835 MHz Body – LTE Band 5	84
SAR Data Summary – 1750 MHz Body - WCDMA	
SAR Data Summary – 1750 MHz Body – LTE Band 66	
SAR Data Summary – 1900 MHz Body - WCDMA	
SAR Data Summary – 1900 MHz Body – LTE Band 2	
SAR Data Summary – 3600 MHz Body – LTE Band 48	
SAR Data Summary – 2450 MHz Body 802.11b	90
SAR Data Summary – 5200 MHz Body 802.11a	91
SAR Data Summary – 5800 MHz Body 802.11a	
SAR Data Summary – Simultaneous Transmit (Worst Case) Ant 0 – WiFi	93
SAR Data Summary – Simultaneous Transmit (Worst Case) Ant 4 – WiFi	
Carrier Aggregation Evaluation	94
Table 1 – Carrier Aggregation Downlink Combinations	95
Table 2 – SAR Data Summary – Body – LTE Bands 2, 4, 5, 13, 48, 66 Stand Alone S	AR with Maximum TX Power Set to CA
Power Level	
Table 3 – SAR Data Summary – Uplink CA Inter-Band (Per Fall 2018 TCB Workshop	Notes)
Table 4 – SAR Data Summary –Uplink CA Intra-Band	97
SAR Data Summary – Simultaneous Transmit 4G/WiFi/5G	98
11. Test Equipment List	99
12. Conclusion	100
13. References	101
Appendix A – System Validation Plots and Data	102
Appendix B – SAR Test Data Plots	147
Appendix C – SAR Test Setup Photos	
Appendix D – Probe Calibration Data Sheets	
Appendix E – Dipole Calibration Data Sheets	190
Appendix F – Phantom Calibration Data Sheets	260
Appendix G – Validation Summary	262
Appendix H – Carrier Aggregation & MIMO Downlink Conducted Powers	

1. Introduction

This measurement report shows compliance of the Novatel Wireless Model M1000 FCC ID: PKRISGM1000 with FCC Part 2, 1093, ET Docket 93-62 Rules for mobile and portable devices and IC Certificate: 3229A-M1000 with RSS102 Issue 5 & Safety Code 6. The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on August 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC regulated portable devices. [1], [6]

The test results recorded herein are based on a single type test of Novatel Wireless Model M1000 and therefore apply only to the tested sample.

The test procedures, as described in ANSI C95.1 – 1999 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [2], ANSI C95.3 – 2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields [3], IEEE Std.1528 – 2013 Recommended Practice [4], and Industry Canada Safety Code 6 Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz were employed.

The following table indicates all the wireless technologies operating in the M1000 wireless modem. The table also shows the tolerance for the power level for each mode.

Band	Technology	Class	3GPP Nominal Power dBm	Calibrated Nominal Power dBm	Tolerance dBm	Lower Tolerance dBm	Upper Tolerance dBm
Band 2 – 1900 MHz	LTE	3	23.0	22.0	+0.5/-1.7	20.3	22.5
Band 4 – 1750 MHz	LTE	3	23.0	22.0	+1.0/-1.7	20.3	23.0
Band 5 – 835 MHz	LTE	3	23.0	23.0	+1.0/-1.7	21.3	24.0
Band 13 - 750 MHz	LTE	3	23.0	23.0	+1.0/-1.7	21.3	24.0
Band 66 - 1750 MHz	LTE	3	23.0	22.0	+1.0/-1.7	20.3	23.0
Band 48 – 3600 MHz	LTE-TDD	3	23.0	23.0	+1.0/-1.7	21.3	24.0
Band 2 – 1900 MHz	WCDMA/HSPA	3	23.0	23.0	+1.0/-2.0	21.0	24.0
Band 4 – 1750 MHz	WCDMA/HSPA	3	23.0	23.0	+1.0/-2.0	21.0	24.0
Band 5 – 850 MHz	WCDMA/HSPA	3	23.0	23.0	+1.0/-2.0	21.0	24.0
WLAN – 2.4 GHz	802.11b	N/A	N/A	12.0	±2.0	10.0	14.0
WLAN – 2.4 GHz	802.11g/n	N/A	N/A	12.0	±2.0	10.0	14.0
WLAN – 5.2 GHz	802.11an/ac	N/A	N/A	12.0	±2.0	10.0	14.0
WLAN – 5.8 GHz	802.11an/ac	N/A	N/A	12.0	±2.0	10.0	14.0
5G – mmW	LTE-TDD	3	N/A	N/A	N/A	N/A	14.0

Band UL 2CA Combination	Technology	Paired Spectrum	Class	3GPP Nominal	INSG Nominal	Tolerances	INSG Lower	INSG Upper
2A-5A	LTE	FDD	3	20	20	+1.0/-1.7	18.3	21
2A-13A	LTE	FDD	3	20	20	+1.0/-1.7	18.3	21
4A-5A	LTE	FDD	3	20	20	+1.0/-1.7	18.3	21
4A-13A	LTE	FDD	3	20	20	+1.0/-1.7	18.3	21
5B	LTE	FDD	3	20	20	+1.0/-1.7	18.3	21
66B	LTE	FDD	3	20	20	+1.0/-1.7	18.3	21
66C	LTE	FDD	3	20	20	+1.0/-1.7	18.3	21
5A-66A	LTE	FDD	3	20	20	+1.0/-1.7	18.3	21
13A-66A	LTE	FDD	3	20	20	+1.0/-1.7	18.3	21
2A-48A	LTE	FDD-TDD	3	20	20	+1.0/-1.7	18.3	21
48A-66A	LTE	TDD-FDD	3	20	20	+1.0/-1.7	18.3	21
48C	LTE	TDD	3	20	20	+1.0/-1.7	18.3	21

SAR Definition [5]

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ).

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of watts per kilogram (W/kg). SAR can be related to the electric field at a point by

$$SAR = \frac{\sigma \mid E \mid^2}{\rho}$$

where:

 σ = conductivity of the tissue (S/m)

 ρ = mass density of the tissue (kg/m³)

E = rms electric field strength (V/m)

2. SAR Measurement Setup

Robotic System

These measurements are performed using the DASY52 automated dosimetric assessment system. The DASY52 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, Intel Core2 computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. 2.1).

System Hardware

A cell controller system contains the power supply, robot controller teach pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the HP Intel Core2 computer with Windows XP system and SAR Measurement Software DASY52, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

Figure 2.1 SAR Measurement System Setup

System Electronics

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in.

Probe Measurement System

The SAR measurements were conducted with the dosimetric probe EX3DV4, designed in the classical triangular configuration (see Fig. 2.2) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi fiber line ending at the front of the probe tip. (see Fig. 2.3) It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY52 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.

DAE System

Probe Specifications

Calibration: In air from 10 MHz to 6.0 GHz

In brain and muscle simulating tissue at Frequencies of 450 MHz, 835 MHz, 1750 MHz, 1900 MHz, 2450 MHz, 2600 MHz, 3500 MHz, 5200 MHz, 5300 MHz, 5600

MHz, 5800 MHz

Frequency: 10 MHz to 6 GHz

Linearity: ±0.2dB (30 MHz to 6 GHz)

Dynamic: 10 mW/kg to 100 W/kg

Range: Linearity: ±0.2dB

Dimensions: Overall length: 330 mm

Tip length: 20 mm

Body diameter: 12 mm

Tip diameter: 2.5 mm

Distance from probe tip to sensor center: 1 mm

Application: SAR Dosimetry Testing

Compliance tests of wireless device

Figure 2.2 Triangular Probe Configurations

Figure 2.3 Probe Thick-Film Technique

Probe Calibration Process

Dosimetric Assessment Procedure

Each probe is calibrated according to a dosimetric assessment procedure described in with accuracy better than +/- 10%. The spherical isotropy was evaluated with the procedure described in and found to be better than +/-0.25dB. The sensitivity parameters (Norm X, Norm Y, Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe is tested.

Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a waveguide above 1GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

Temperature Assessment *

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium, correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor based temperature probe is used in conjunction with the E-field probe

$$SAR = C \frac{\Delta T}{\Delta t}$$

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

where: where:

 Δt = exposure time (30 seconds), σ = simulated tissue conductivity,

C = heat capacity of tissue (brain or muscle), ρ = Tissue density (1.25 g/cm³ for brain tissue)

 $\Delta T \ = \ \ \text{temperature increase due to RF exposure}.$

SAR is proportional to $\Delta T \, / \, \Delta t$, the initial rate of tissue

heating, before thermal diffusion takes place.

Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field;

Figure 2.4 E-Field and Temperature Measurements at 900MHz

Figure 2.5 E-Field and Temperature Measurements at 1800MHz

Data Extrapolation

The DASY52 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below;

with
$$V_i = \text{compensated signal of channel i}$$
 $(i=x,y,z)$

$$U_i = \text{input signal of channel i} \qquad (i=x,y,z)$$

$$U_i = \text{input signal of channel i} \qquad (i=x,y,z)$$

$$cf = \text{crest factor of exciting field} \qquad (DASY parameter)$$

$$dcp_i = \text{diode compression point} \qquad (DASY parameter)$$

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: with
$$V_i$$
 = compensated signal of channel i (i = x,y,z)
Norm_i = sensor sensitivity of channel i (i = x,y,z)
 $\mu V/(V/m)^2$ for E-field probes
ConvF = sensitivity of enhancement in solution
 E_i = electric field strength of channel i in V/m

The RSS value of the field components gives the total field strength (Hermetian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$
 with SAR = local specific absorption rate in W/g = total field strength in V/m = conductivity in [mho/m] or [Siemens/m] ρ = equivalent tissue density in g/cm³

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pue} = \frac{E_{tot}^2}{3770}$$
 with $P_{pwe} = \text{equivalent power density of a plane wave in W/cm}^2$ = total electric field strength in V/m

Scanning procedure

- The DASY installation includes predefined files with recommended procedures for measurements and system check. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.
- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. +/- 5 %.
- The highest integrated SAR value is the main concern in compliance test applications. These values can mostly be found at the inner surface of the phantom and cannot be measured directly due to the sensor offset in the probe. To extrapolate the surface values, the measurement distances to the surface must be known accurately. A distance error of 0.5mm could produce SAR errors of 6% at 1800 MHz. Using predefined locations for measurements is not accurate enough. Any shift of the phantom (e.g., slight deformations after filling it with liquid) would produce high uncertainties. For an automatic and accurate detection of the phantom surface, the DASY5 system uses the mechanical surface detection. The detection is always at touch, but the probe will move backward from the surface the indicated distance before starting the measurement.
- The "area scan" measures the SAR above the DUT or verification dipole on a parallel plane to the surface. It is used to locate the approximate location of the peak SAR with 2D spline interpolation. The robot performs a stepped movement along one grid axis while the local electrical field strength is measured by the probe. The probe is touching the surface of the SAM during acquisition of measurement values. The scan uses different grid spacings for different frequency measurements. Standard grid spacing for head measurements in frequency ranges 2GHz is 15 mm in x and y-dimension. For higher frequencies a finer resolution is needed, thus for the grid spacing is reduced according the following table:

Area scan grid spacing for different frequency ranges					
Frequency range	Grid spacing				
≤ 2 GHz	≤ 15 mm				
2 – 4 GHz	≤ 12 mm				
4 – 6 GHz	≤ 10 mm				

Grid spacing and orientation have no influence on the SAR result. For special applications where the standard scan method does not find the peak SAR within the grid, e.g. mobile phones with flip cover, the grid can be adapted in orientation. Results of this coarse scan are shown in annex B.

• A "zoom scan" measures the field in a volume around the 2D peak SAR value acquired in the previous "coarse" scan. It uses a fine meshed grid where the robot moves the probe in steps along all the 3 axis (x,y and z-axis) starting at the bottom of the Phantom. The grid spacing for the cube measurement is varied according to the measured frequency range, the dimensions are given in the following table:

Zoom scan grid spacing and volume for different frequency ranges						
Frequency range	Grid spacing	Grid spacing	Minimum zoom			
	for x, y axis	for z axis	scan volume			
≤ 2 GHz	≤ 8 mm	≤ 5 mm	≥ 30 mm			
2 – 3 GHz	≤ 5 mm	≤ 5 mm	≥ 28 mm			
3 – 4 GHz	≤ 5 mm	≤ 4 mm	≥ 28 mm			
4 – 5 GHz	≤ 4 mm	≤ 3 mm	≥ 25 mm			
5 – 6 GHz	≤ 4 mm	≤ 2 mm	≥ 22 mm			

DASY is also able to perform repeated zoom scans if more than 1 peak is found during area scan. In this document, the evaluated peak 1g and 10g averaged SAR values are shown in the 2D-graphics in annex B. Test

results relevant for the specified standard (see section 3) are shown in table form in section 7.

Spatial Peak SAR Evaluation

The spatial peak SAR - value for 1 and 10 g is evaluated after the Cube measurements have been done. The basis of the evaluation are the SAR values measured at the points of the fine cube grid consisting of all points in the three directions x, y and z. The algorithm that finds the maximal averaged volume is separated into three different stages.

- The data between the dipole center of the probe and the surface of the phantom are extrapolated. This data cannot be measured since the center of the dipole is 1 to 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is about 1 mm (see probe calibration sheet). The extrapolated data from a cube measurement can be visualized by selecting 'Graph Evaluated'.
- The maximum interpolated value is searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10 g) are computed using the 3d-spline interpolation algorithm. If the volume cannot be evaluated (i.e., if a part of the grid was cut off by the boundary of the measurement area) the evaluation will be started on the corners of the bottom plane of the cube.
- All neighbouring volumes are evaluated until no neighbouring volume with a higher average value is found.

Extrapolation

The extrapolation is based on a least square algorithm [W. Gander, Computermathematik, p.168-180]. Through the points in the first 3 cm along the z-axis, polynomials of order four are calculated. These polynomials are then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1 mm from each other.

Interpolation

The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three one-dimensional splines with the "Not a knot"-condition [W. Gander, Computermathematik, p.141-150] (x, y and z -direction) [Numerical Recipes in C, Second Edition, p.123ff].

Volume Averaging

At First the size of the cube is calculated. Then the volume is integrated with the trapezoidal algorithm. 8000 points (20x20x20) are interpolated to calculate the average.

Advanced Extrapolation

DASY uses the advanced extrapolation option which is able to compensate boundary effects on E-field probes.

SAM PHANTOM

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (see Fig. 2.6)

Phantom Specification

Phantom: SAM Twin Phantom (V4.0) **Shell Material:** Vivac Composite

Thickness: $2.0 \pm 0.2 \text{ mm}$

Figure 2.6 SAM Twin Phantom

Device Holder for Transmitters

In combination with the SAM Twin Phantom V4.0 the Mounting Device (see Fig. 2.7), enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The devices can be easily, accurately, and repeat ably be positioned according to the FCC, CENELEC, IEC and IEEE specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Figure 2.7 Mounting Device

Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations. To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

3. Probe and Dipole Calibration

See Appendix D and E.

4. Phantom & Simulating Tissue Specifications

Head & Body Simulating Mixture Characterization

The head and body mixtures consist of the material based on the table listed below. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. Body tissue parameters that have not been specified in IEEE1528 – 2013 are derived from the issue dielectric parameters computed from the 4-Cole-Cole equations.

Table 4.1 Typical Composition of Ingredients for Tissue

Ingredients		Simulating Tissue						
		750 MHz Body	835 MHz Body	1900 MHz Body	2450 MHz Body	1750 MHz Body	3-5 GHz Body	
Mixing Percentage								
Water			52.50	69.91	73.20			
Sugar			45.00	0.00	0.00	1		
Salt		Proprietary	1.40	0.13	0.10	Proprietary Purchased	Proprietary	
HEC		Purchased From Speag	1.00	0.00	0.00	From Speag	Purchased From Speag	
Bactericide] ' '	0.10	0.00	0.00		. 0	
DGBE			0.00	29.96	26.70			
Dielectric Constant	Target	55.50	55.20	53.30	52.70	53.4	Various	
Conductivity (S/m)	Target	0.96	0.97	1.52	1.95	1.49	Various	

5. ANSI/IEEE C95.1 – 1992 RF Exposure Limits [2]

Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 5.1 Human Exposure Limits

	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIROMENT Professional Population (W/kg) or (mW/g)	
SPATIAL PEAK SAR ¹ Head	1.60	8.00	
SPATIAL AVERAGE SAR ² Whole Body	0.08	0.40	
SPATIAL PEAK SAR ³ Hands, Feet, Ankles, Wrists	4.00	20.00	

¹ The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

² The Spatial Average value of the SAR averaged over the whole body.

³ The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

6. Measurement Uncertainty

Measurement uncertainty table is not required per KDB 865664 D01 v01r04 section 2.8.2 page 12. SAR measurement uncertainty analysis is required in the SAR report only when the highest measured SAR in a frequency band is \geq 1.5 W/kg for 1-g SAR. The equivalent ratio (1.5/1.6) should be applied to extremity and occupational exposure conditions. The highest reported value is less than 1.5 W/kg. Therefore, the measurement uncertainty table is not required.

7. System Validation

Tissue Verification

Table 7.1 Measured Tissue Parameters

Table 7.1 Measured Hosae 1				aramotoro			
		750 MHz Body		835 MHz Body		835 MHz Body	
Date(s)		Feb.	19, 2019	Feb. 18, 2019		Mar. 5, 2019	
Liquid Temperature (°C)	20.0	Target	Measured	Target	Measured	Target	Measured
Dielectric Constant: ε		55.53	54.43	55.20	54.57	55.20	54.37
Conductivity: σ		0.96	1.02	0.97	0.99	0.97	0.98
		1750	MHz Body	1750 l	ИНz Body	1900 [MHz Body
Date(s)		Feb.	21, 2019	Mar.	6, 2019	Feb.	11, 2019
Liquid Temperature (°C)	20.0	Target	Measured	Target	Measured	Target	Measured
Dielectric Constant: ε		53.43	52.66	53.43	52.68	53.30	52.97
Conductivity: σ		1.49	1.54	1.49	1.56	1.52	1.58
		1900	MHz Body	3500 l	MHz Body	3700 [MHz Body
Date(s)		Mar	. 4, 2019	Mar.	9, 2019	Mar. 13, 2019	
Liquid Temperature (°C)	20.0	Target	Measured	Target	Measured	Target	Measured
Dielectric Constant: ε		53.30	53.17	51.32	51.11	51.05	50.86
Conductivity: σ		1.52	1.54	3.32	3.34	3.55	3.54
		2450	MHz Body	5250 MHz Body		5750 MHz Body	
Date(s)		Mar.	13, 2019	Mar. 11, 2019		Mar. 11, 2019	
Liquid Temperature (°C)	20.0	Target	Measured	Target	Measured	Target	Measured
Dielectric Constant: ε		52.70	52.58	49.01	48.88	48.20	48.14
Conductivity: σ		1.95	2.00	5.30	5.40	6.00	5.99
		750 N	MHz Body	835 N	1Hz Body		MHz Body
Date(s)		May	7, 2019	May	7, 2019	May	7, 2019
Liquid Temperature (°C)	20.0	Target	Measured	Target	Measured	Target	Measured
Dielectric Constant: ε		55.53	55.57	55.20	55.91	53.43	53.32
Conductivity: σ		0.96	0.99	0.97	0.99	1.49	1.52
		1900 MHz Body		3500 l	MHz Body	3700 [MHz Body
Date(s)		May 7, 2019		May	7, 2019	May	7, 2019
Liquid Temperature (°C)	20.0	Target	Measured	Target	Measured	Target	Measured
Dielectric Constant: ε	<u> </u>	53.30	52.07	51.32	50.93	51.05	50.68
Conductivity: σ		1.52	1.47	3.32	3.33	3.55	3.53

See Appendix A for data printout.

Test System Verification

Prior to assessment, the system is verified to the $\pm 10\%$ of the specifications at the test frequency by using the system kit. Power is normalized to 1 watt. (Graphic Plots Attached)

Table 7.2 System Dipole Validation Target & Measured

	Test Frequency	Targeted SAR _{1g} (W/kg)	Measure SAR _{1g} (W/kg)	Tissue Used for Verification	Deviation (%)	Plot Number
19-Feb-2019	750 MHz	8.55	8.61	Body	+ 0.70	1
18-Feb-2019	835 MHz	9.57	9.61	Body	+ 0.42	2
05-Mar-2019	835 MHz	9.57	9.63	Body	+ 0.63	3
21-Feb-2019	1750 MHz	36.50	36.90	Body	+ 1.10	4
06-Mar-2019	1750 MHz	36.50	36.50	Body	+ 0.00	5
11-Feb-2019	1900 MHz	39.90	40.10	Body	+ 0.50	6
04-Mar-2019	1900 MHz	39.90	40.20	Body	+ 0.75	7
09-Mar-2019	3500 MHz	65.10	65.50	Body	+ 0.61	8
09-Mar-2019	3700 MHz	65.50	65.90	Body	+ 0.61	9
13-Mar-2019	2450 MHz	51.00	51.20	Body	+ 0.39	10
11-Mar-2019	5200 MHz	76.80	76.30	Body	- 0.65	11
11-Mar-2019	5800 MHz	76.20	75.90	Body	- 0.39	12
07-May-2019	750 MHz	8.55	8.65	Body	+ 1.17	13
07-May-2019	835 MHz	9.57	9.53	Body	- 0.42	14
07-May-2019	1750 MHz	36.50	36.80	Body	+ 0.82	15
07-May-2019	1900 MHz	39.90	39.80	Body	- 0.25	16
07-May-2019	3500 MHz	65.10	65.70	Body	+ 0.92	17
07-May-2019	3700 MHz	65.50	66.20	Body	+ 1.07	18

See Appendix A for data plots.

Figure 7.1 Dipole Validation Test Setup

8. LTE Document Checklist

1) Identify the operating frequency range of each LTE transmission band used by the device

LTE Operating	Uplink (transmit)	Downlink (Receive)	Duplex mode
Band	Low - high	Low - high	(FDD/TDD)
2	1850-1910	1930-1990	FDD
4	1710-1755	2110-2155	FDD
5	824-849	869-894	FDD
13	777-787	746-756	FDD
48	3550-3700	3550-3700	TDD
66	1710-1780	2110-2200	FDD

2) Identify the channel bandwidths used in each frequency band; 1.4, 3, 5, 10, 15, 20 MHz etc

LTE Band Class	Bandwidth (MHz)	Frequency or Freq. Band (MHz)
2	1.4, 3, 5, 10, 15, 20	1850-1910 MHz
4	1.4, 3, 5, 10, 15, 20	1710-1755 MHz
5	1.4, 3, 5, 10	824-849 MHz
13	5, 10	777-787 MHz
48	5, 10, 15, 20	3550-3700 MHz
66	1.4, 3, 5, 10, 15, 20	1710-1780 MHz

3) Identify the high, middle and low (H, M, L) channel numbers and frequencies in each LTE frequency band

LTE Band	Bandwidth	Frequency (MHz)/Channel #					
Class	(MHz)	Lo	ow	Mid		High	
2	1.4	1850.7	18607	1880.0	18900	1909.3	19193
2	3	1851.5	18615	1880.0	18900	1908.5	19185
2	5	1852.5	18625	1880.0	18900	1907.5	19175
2	10	1855.0	18650	1880.0	18900	1905.0	19150
2	15	1857.5	18675	1880.0	18900	1902.5	19125
2	20	1860.0	18700	1880.0	18900	1900.0	19100
4	1.4	1710.7	19957	1732.5	20175	1754.3	20393
4	3	1711.5	19965	1732.5	20175	1753.5	20385
4	5	1712.5	19975	1732.5	20175	1752.5	20375
4	10	1715.0	20000	1732.5	20175	1750.0	20350
4	15	1717.5	20025	1732.5	20175	1747.5	20325
4	20	1720.0	20050	1732.5	20175	1745.0	20300
5	1.4	824.7	20407	836.5	20525	848.3	20643
5	3	825.5	20415	836.5	20525	847.5	20635
5	5	826.5	20425	836.5	20525	846.5	20625
5	10	829.0	20450	836.5	20525	844.0	20600
13	5	779.5	23205	782.0	23230	784.5	23225
13	10			782.0	23230		
48	5	3552.5	55265	3526.0	55990	3697.5	56715
48	10	3555.0	55290	3526.0	55990	3695.0	56690
48	15	3557.5	55315	3526.0	55990	3692.5	56665
48	20	3560.0	55340	3526.0	55990	3690.0	56640
66	5	1712.5	131997	1755.0	132422	1777.4	132646
66	10	1716.1	132033	1755.0	132422	1774.9	132621
66	15	1717.5	132047	1755.0	132422	1772.4	132596
66	20	1720.0	132072	1755.0	132422	1769.9	132571

4) Specify the UE category and uplink modulations used:

• UE Category: 3

• Uplink modulations: QPSK and 16QAM

5) Include descriptions of the LTE transmitter and antenna implementation; and also identify whether it is a standalone transmitter operating independently of other wireless transmitters in the device or sharing hardware components and/or antenna(s) with other transmitters etc

The device has 14 antennas:

- #0 WWAN Antenna (Transmit and Receive) Antenna (B2, B4, B5, B13, B66)
- #1 WWAN Antenna (Receive Only)
- #2 WWAN Antenna (Receive Only)
- #3 WWAN Antenna (Receive Only)
- #4 WWAN Antenna (B48 Only)
- #5 WWAN Antenna (Receive Only)
- #6 WWAN Antenna (Not Used)
- #7 WWAN Antenna (Not Used)
- #8 WLANO Antenna (Transmit and Receive)
- #9 WLAN1 Antenna (Transmit and Receive)
- #10 5G Antenna 0
- #11 5G Antenna 1
- #12 5G Antenna 2
- #13 5G Antenna 3

Transmission relationship

- All transmission (TX) is limited to the mmW, WWAN and WLAN antennas only
- The device is unable to transmit WCDMA/HSPA and LTE simultaneously.
- Rx is simultaneous
- Simultaneous Tx with the WWAN and WLAN is active.
- 6) Identify the LTE voice/data requirements in each operating mode and exposure condition with respect to head and body test configurations, antenna locations, handset flip-cover or slide positions, antenna diversity conditions etc

The device is a data only hotspot device. Data mode was tested in each operating mode and exposure condition in the body configuration. See test setup photos to see all configurations tested.

- 7) Identify if Maximum Power Reduction (MPR) is optional or mandatory, i.e. built-in by design:
 - a) Only mandatory MPR may be considered during SAR testing, when the maximum output power is permanently limited by the MPR implemented within the UE; and only for the applicable RB (resource block) configurations specified in LTE standards

MPR is mandatory, built-in by design on all production units. It was enabled during testing.

Modulation	Ch	annel Band	width/transmis	ssion Bandwidt	h Configura	ntion	MPR
			(1	RB)			(dB)
	1.4	3.0	5	10	15	20	
	MHz	MHZ	MHz	MHz	MHz	MHz	
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1
16QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1
16QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2

- b) A-MPR (additional MPR) must be disabled
- c) A-MPR was disabled during testing.

8) Include the maximum average conducted output power measured on the required test channels for each channel bandwidth and UL modulation used in each frequency band:

The maximum average conducted output power measured for the testing is listed on pages 48-64 of this report. The below table shows the factory set point with the allowable tolerance.

Band	Technology	Class	3GPP Nominal Power dBm	Calibrated Nominal Power dBm	Tolerance dBm	Lower Tolerance dBm	Upper Tolerance dBm
Band 2 – 1900 MHz	LTE	3	23.0	22.0	+0.5/-1.7	20.3	22.5
Band 4 – 1750 MHz	LTE	3	23.0	22.0	+1.0/-1.7	20.3	23.0
Band 5 – 835 MHz	LTE	3	23.0	23.0	+1.0/-1.7	21.3	24.0
Band 13 – 750 MHz	LTE	3	23.0	23.0	+1.0/-1.7	21.3	24.0
Band 66 – 1750 MHz	LTE	3	23.0	22.0	+1.0/-1.7	20.3	23.0
Band 48 – 3600 MHz	LTE-TDD	3	23.0	23.0	+1.0/-1.7	21.3	24.0

9) Identify all other U.S. wireless operating modes (3G, Wi-Fi, WiMax, Bluetooth etc), device/exposure configurations (head and body, antenna and handset flip-cover or slide positions, antenna diversity conditions etc.) and frequency bands used for these modes

Other wireless modes:

Band	Technology	Class	3GPP Nominal Power dBm	Calibrated Nominal Power dBm	Tolerance dBm	Lower Tolerance dBm	Upper Tolerance dBm
Band 2 – 1900 MHz	WCDMA/HSPA	3	23.0	23.0	+1.0/-2.0	21.0	24.0
Band 4 – 1750 MHz	WCDMA/HSPA	3	23.0	23.0	+1.0/-2.0	21.0	24.0
Band 5 – 850 MHz	WCDMA/HSPA	3	23.0	23.0	+1.0/-2.0	21.0	24.0
WLAN – 2.4 GHz	802.11b	N/A	N/A	12.0	±2.0	10.0	14.0
WLAN – 2.4 GHz	802.11g/n	N/A	N/A	12.0	±2.0	10.0	14.0
WLAN – 5.2 GHz	802.11an/ac	N/A	N/A	12.0	±2.0	10.0	14.0
WLAN – 5.8 GHz	802.11an/ac	N/A	N/A	12.0	±2.0	10.0	14.0

10) Include the maximum average conducted output power measured for the other wireless modes and frequency bands.

The maximum average conducted output power measured for the testing is listed on pages 27-39 of this report. The table in item 9 shows the factory set point with the allowable tolerance.

11) Identify the <u>simultaneous transmission conditions</u> for the voice and data configurations supported by all wireless modes, device configurations and frequency bands, for the head and body exposure conditions and device operating configurations (handset flip or cover positions, antenna diversity conditions etc.)

The device is <u>unable</u> to transmit WCDMA and LTE simultaneously.

The device is able to transmit WWAN and WLAN simultaneously.

TX Modes	WCDMA	LTE	802.11 b/g/n
1	ON	OFF	ON
2	OFF	ON	ON

12) When power reduction is applied to certain wireless modes to satisfy SAR compliance for simultaneous transmission conditions, other equipment certification or operating requirements, include the maximum average conducted output power measured in each power reduction mode applicable to the simultaneous voice/data transmission configurations for such wireless configurations and frequency bands; and also include details of the power reduction implementation and measurement setup

Power reduction is not required to satisfy SAR compliance.

13) Include descriptions of the test equipment, test software, built-in test firmware etc. required to support testing the device when power reduction is applied to one or more transmitters/antennas for simultaneous voice/data transmission

Power reduction is not required to satisfy SAR compliance.

14) When appropriate, include a SAR test plan proposal with respect to the above

Power reduction is not required to satisfy SAR compliance.

15) If applicable, include preliminary SAR test data and/or supporting information in laboratory testing inquiries to address specific issues and concerns or for requesting further test reduction considerations appropriate for the device; for example, simultaneous transmission configurations.

Not applicable.

9. SAR Test Data Summary See Measurement Result Data Pages

See Appendix B for SAR Test Data Plots. See Appendix C for SAR Test Setup Photos.

Procedures Used To Establish Test Signal

The device was either placed into simulated transmit mode using the manufacturer's test codes or the actual transmission is activated through a base station simulator or similar equipment. See data pages for actual procedure used in measurement.

Device Test Condition

In order to verify that the device was tested at full power, conducted output power measurements were performed before and after each SAR measurement to confirm the output power unless otherwise noted. If a conducted power deviation of more than 5% occurred, the test was repeated. The power drift of each test is measured at the start of the test and again at the end of the test. The drift percentage is calculated by the formula ((end/start)-1)*100 and rounded to three decimal places. The drift percentage is calculated into the resultant SAR value on the data sheet for each test.

The testing was conducted on all edges closest to each antenna. Side A, Side B, Side C, Side D and Side E testing was conducted for the WWAN antenna for WCDMA and LTE Bands B2, B4, B5, B13, B14, and B66. The Side F waas not tested for WCDMA and these LTE bands as the antenna was more than 2.5 cm from this side. Side A, Side C, Side D and Side E testing was conducted for the WWAN antenna for LTE Band B48. Side B and Side F were not tested as the WWAN antenna for B48 was more than 2.5 cm from these sides. The Side A, Side C, and Side F was tested for both WLAN antennas. Side B was tested for WLAN Tx0 antenna and Side D was tested for WLAN Tx1 antenna. Side D and Side E were not tested for Tx0 as the antenna was more than 2.5 cm from these sides. Side B and Side E were not tested for Tx1 as the antenna was more than 2.5 cm from these sides. All further test reductions are shown on page 46 for WCDMA bands, page 40-45 for WLAN and pages 65-80 for LTE bands. All testing was conducted per KDB 941225 D06. See the photo in Appendix C for a pictorial of the setups, labeling of the sides tested and antenna locations.

The WCDMA testing was conducted using 12.2 kbps RMC configured in Test Loop Mode 1. The HSPA testing was conducted with HS-DPCCH, E-DPCCH and E-DPDCH all enabled and a 12.2 kbps RMC. FRC was configured according to HS-DPCCH Sub-Test 1 using H-set 1 and QPSK.

Figure 10.1 SAR Location Diagram of Modem Testing

10. FCC 3G Measurement Procedures

Power measurements were performed using a base station simulator under average power.

10.1 Procedures Used to Establish RF Signal for SAR

The device was placed into a simulated call using a base station simulator in a screen room. Such test signals offer a consistent means for testing SAR and recommended for evaluating SAR. The SAR measurement software calculates a reference point at the start and end of the test to check for power drifts. If conducted power deviations of more than 5% occurred, the tests were repeated.

10.2 SAR Measurement Conditions for WCDMA/HSDPA/HSUPA

Configure the call box 8960 to support all WCDMA tests in respect to the 3GPP 34.121 (listed in Table below). Measure the power at Ch4132, 4182 and 4233 for US cell; Ch9262, 9400 and 9538 for US PCS band.

For Rel99

- Set a Test Mode 1 loop back with a 12.2kbps Reference Measurement Channel (RMC).
- Set and send continuously Up power control commands to the device
- Measure the power at the device antenna connector using the power meter with average detector.

For HSDPA Rel 6

- Establish a Test Mode 1 look back with both 1 12.2kbps RMC channel and a H-Set1 Fixed Reference Channel (FRC). With the 8960 this is accomplished by setting the signal Channel Coding to "Fixed Reference Channel" and configuring for HSET-1 QKSP.
- Set beta values and HSDPA settings for HSDPA Subtest1 according to Table below.
- Send continuously Up power control commands to the device
- Measure the power at the device antenna connector using the power meter with modulated average detector.
- Repeat the measurement for the HSDPA Subtest2, 3 and 4 as given in Table below.

For HSUPA Rel 6

- Use UL RMC 12.2kbps and FRC H-Set1 QPSK, Test Mode 1 loop back. With the 8960 this is accomplished by setting the signal Channel Coding to "E-DCH Test Channel" and configuring the equipment category to Cat5_10ms.
- Set the Absolute Grant for HSUPA Subtest1 according to Table below.
- Set the device power to be at least 5dB lower than the Maximum output power
- Send power control bits to give one TPC_cmd = +1 command to the device. If device doesn't send any E-DPCH data with decreased E-TFCI within 500ms, then repeat this process until the decreased E-TFCI is reported.
- Confirm that the E-TFCI transmitted by the device is equal to the target E-TFCI in Table below. If the E-TFCI transmitted by the device is not equal to the target E-TFCI, then send power control bits to give one TPC_cmd = -1 command to the UE. If UE sends any E-DPCH data with decreased E-TFCI within 500 ms, send new power control bits to give one TPC_cmd = -1 command to the UE. Then confirm that the E-TFCI transmitted by the UE is equal to the target E-TFCI in Table below.
- Measure the power using the power meter with modulated average detector.
- Repeat the measurement for the HSUPA Subtest2, 3, 4 and 5 as given in Table below.

3GPP Release	Mode	Cellul	ar Band	[dBm]	Sub-Test (See Table	MPR
Version		4132	4183	4233	` Below)	
99	WCDMA	23.70	24.00	23.70	-	-
6	HSDPA	23.36	23.07	23.09	1	0
6		23.32	23.09	23.05	2	0
6		22.99	22.92	22.89	3	0.5
6		22.94	22.99	22.90	4	0.5
6		23.40	23.10	23.13	1	0
6		21.45	21.49	21.46	2	2
6	HSUPA	22.47	22.48	22.49	3	1
6		21.46	21.41	21.44	4	2
6		23.32	23.04	23.07	5	0

PP Release	Mode	AWS	Band [d	IBm]	Sub-Test (See Table	MPR
Version		1312	1413	1513	Below)	
99	WCDMA	23.83	23.91	23.97	-	-
6	HSDPA	23.79	23.82	23.76	1	0
6		23.81	23.75	23.79	2	0
6		23.36	23.34	23.36	3	0.5
6		23.41	23.31	23.39	4	0.5
6		23.84	23.82	23.75	1	0
6		21.97	22.01	21.89	2	2
6	HSUPA	22.94	23.05	22.94	3	1
6		21.99	21.95	22.03	4	2
6		23.82	23.80	23.71	5	0

3GPP Release	Mode	PCS	Band [d	Bm]	Sub-Test (See Table	MPR
Version		9262	9400	9538	Below)	
99	WCDMA	23.60	23.70	23.40	-	-
6	HSDPA	23.02	23.00	23.31	1	0
6		23.01	22.99	23.28	2	0
6		22.56	22.52	22.66	3	0.5
6		22.41	22.31	22.52	4	0.5
6		23.00	22.98	23.21	1	0
6		21.07	21.01	21.12	2	2
6	HSUPA	22.06	22.05	22.23	3	1
6		20.99	20.95	22.03	4	2
6		22.89	22.91	23.05	5	0

Sub-Test Setup for Release 6 HSDPA

Sub-Test	βc	β_d	B _c / β _d	eta_{hs}							
1	2/15	15/15	2/15	4/15							
2	12/15	15/15	15/15	24/15							
3	15/15	8/15	15/8	30/15							
4	15/15	4/15	15/4	30/15							
$\Delta_{ m ack},\Delta_{ m nack}$ a	Δ_{ack} , Δ_{nack} and $\Delta_{cqi} = 8$										

Sub-Test Setup for Release 6 HSUPA

Sub-Test	βc	β_d	B _c / β _d	β_{hs}	B_{ec}	B_{ed}	MPR	AG Index	E-TFCI
1	11/15	15/15	11/15	22/15	209/225	1039/225	0.0	20	75
2	6/15	15/15	6/15	12/15	12/15	94/75	2.0	12	67
3	15/15	9/15	15/9	30/15	30/15	47/15	1.0	15	92
4	2/15	15/15	2/15	4/15	2/15	56/15	2.0	17	71
5	15/15	15/15	15/15	30/15	24/15	134/15	0.0	21	81
$\Delta_{ m ack}, \Delta_{ m nack}$ at	nd $\Delta_{ m cqi}$ = 8	3							

David	0.01 -	Bandwidth	Charra al	Frequency	Data	A 4	Avg Power	Tune-up
Band	Mode	(MHz)	Channel	(MHz)	Rate	Antenna	(dBm)	Pwr (dBm)
			1	2412			13.6	14.00
			6	2437	1	Tx0	13.4	14.00
			11 1	2462 2412	Mbps		13.5 13.5	14.00 14.00
			6	2437	ops	Tx1	13.3	14.00
			11	2462			13.6	14.00
			1	2412		Tx0	13.6	14.00
			6 11	2437 2462	2	TXU	13.4 13.6	14.00 14.00
			1	2412	Mbps		13.7	14.00
			6	2437		Tx1	13.5	14.00
	802.11b	20	11	2462			13.6	14.00
			6	2412 2437		Tx0	13.5 13.2	14.00 14.00
			11	2462	5.5		13.5	14.00
			1	2412	Mbps		13.4	14.00
			6	2437		Tx1	13.1	14.00
			11 1	2462 2412			13.4 13.6	14.00 14.00
			6	2437	11 Mbps	Tx0	13.5	14.00
			11	2462			13.6	14.00
			1	2412			13.8	14.00
			6 11	2437 2462	1	Tx1	13.6 13.7	14.00 14.00
			1	2412			13.7	14.00
			6	2437	6 Mbps	Tx0	13.1	14.00
			11	2462			13.7	14.00
			6	2412 2437	Mbps	Tx1	13.7 13.2	14.00 14.00
			11	2462		17.1	13.7	14.00
			1	2412	9		13.8	14.00
			6	2437		Tx0	13.2	14.00
			11 1	2462 2412	Mbps		13.8 13.8	14.00 14.00
			6	2437	ivibps	Tx1	13.1	14.00
2450 MHz			11	2462			13.7	14.00
2430 101112			1	2412	12 Mbps	Tx0	13.7	14.00
			6 11	2437 2462		170	13.2 13.7	14.00 14.00
			1	2412			13.7	14.00
			6	2437		Tx1	13.1	14.00
			11	2462		Tx0 18 Mbps	13.6	14.00
			6	2412 2437			13.9 13.5	14.00 14.00
			11	2462	18		13.9	14.00
			1	2412	Mbps		13.8	14.00
			6	2437	_	Tx1	13.4	14.00
	802.11g	20	11 1	2462 2412			13.7 13.9	14.00 14.00
			6	2437]	Tx0	13.5	14.00
			11	2462	24		13.9	14.00
			1	2412	Mbps	Tv1	13.8	14.00
			6 11	2437 2462	1	Tx1	13.6 13.8	14.00 14.00
			1	2412]		13.1	14.00
			6	2437] _ [Tx0	13.7	14.00
			11	2462	36		13.5	14.00
			6	2412 2437	Mbps	Tx1	13.2 13.6	14.00 14.00
			11	2462	<u>1</u>		13.4	14.00
			1	2412	1 7		13.7	14.00
			6	2437	48	Tx0	13.5	14.00
			11 1	2462 2412	Mbps		13.7 13.6	14.00 14.00
			6	2437		Tx1	13.5	14.00
			11	2462			13.6	14.00
			1	2412	4 l	Tx0	13.8	14.00
			6 11	2437 2462	54	IXU	13.7 13.6	14.00 14.00
			1	2412	Mbps		13.7	14.00
			6	2437]	Tx1	13.5	14.00
			11	2462			13.6	14.00

		Bandwidth		Frequency	Data		Avg Power	Tune-up
Band	Mode	(MHz)	Channel	(MHz)	Rate	Antenna	(dBm)	Pwr (dBm)
		(IVITZ)			Kate			
			<u>1</u> 6	2412 2437	-	Tx0	13.7 13.5	14.00 14.00
			11	2462	7.2	170	13.8	14.00
			1	2412	Mbps		13.7	14.00
			6	2437		Tx1	13.6	14.00
			11	2462			13.9	14.00
			1	2412		T. 0	13.7	14.00
			6 11	2437 2462	14.4	Tx0	13.4 13.6	14.00 14.00
			1	2412	Mbps		13.6	14.00
			6	2437		Tx1	13.4	14.00
			11	2462			13.4	14.00
			1	2412			13.9	14.00
			6	2437	24.7	Tx0	13.5	14.00
			11	2462	21.7		13.7	14.00
			<u>1</u> 6	2412 2437	Mbps	Tx1	13.7 13.3	14.00 14.00
			11	2462	1	IXI	13.5	14.00
			1	2412			13.7	14.00
			6	2437		Tx0	13.7	14.00
			11	2462	28.9		13.9	14.00
			1	2412	Mbps		13.7	14.00
			6	2437	-	Tx1	13.6	14.00
2450 MHz	802.11n	20	11	2462	-		13.8	14.00
			<u>1</u> 6	2412 2437	-	Tx0	13.8 13.4	14.00 14.00
			11	2462	43.3 Mbps	170	13.7	14.00
			1	2412			13.8	14.00
			6	2437		Tx1	13.4	14.00
			11	2462			13.6	14.00
			1	2412	57.8 Mbps		13.8	14.00
			6	2437		Tx0	13.5	14.00
			11	2462			13.7	14.00
			<u>1</u> 6	2412 2437	IVIDPS	Tx1	13.8 13.6	14.00 14.00
			11	2462		IXI	13.7	14.00
			1	2412	65.0	Tx0	14.0	14.00
			6	2437			13.8	14.00
			11	2462			13.9	14.00
			1	2412	Mbps		13.8	14.00
			6	2437	<u> </u>	Tx1	13.7	14.00
			11 1	2462 2412			13.8 13.5	14.00 14.00
			6	2412		Tx0	13.3	14.00
			11	2462	72.2		13.6	14.00
			1	2412	Mbps		13.7	14.00
			6	2437		Tx1	13.5	14.00
			11	2462			13.8	14.00
			36	5180	-		13.8	14.00
			40	5200	-	Tx0	13.7	14.00
			44 48	5220 5240	6		13.7 13.5	14.00 14.00
			36	5180	Mbps		13.7	14.00
			40	5200		Tv4	13.7	14.00
			44	5220]	Tx1	13.6	14.00
			48	5240			13.5	14.00
			36	5180	<u> </u>		13.5	14.00
			40	5200	 	Tx0	13.6	14.00
			44 48	5220 5240	9		13.6	14.00
5.15-5.25 GHz	802.11a	20	48 36	5240 5180	Mbps		13.6 13.4	14.00 14.00
			40	5200	1415053		13.5	14.00
			44	5220	1	Tx1	13.5	14.00
			48	5240			13.4	14.00
			36	5180	↓		13.5	14.00
			40	5200	<u> </u>	Tx0	13.5	14.00
			44	5220	12		13.4	14.00
			48 36	5240 5180	Mbps		13.5 13.6	14.00 14.00
			40	5200	ινιυμο	_	13.5	14.00
						Tx1		
			44	5220			13.6	14.00

		Bandwidth		Frequency	Data		Avg Power	Tune-up
Band	Mode	(MHz)	Channel	(MHz)	Rate	Antenna	(dBm)	Pwr (dBm)
			36 40	5180 5200			13.8 13.8	14.00 14.00
			44	5220		Tx0	13.8	14.00
			48	5240	18		13.7	14.00
			36	5180	Mbps		13.8	14.00
			40 44	5200 5220	1	Tx1	13.8 13.7	14.00 14.00
			48	5240			13.7	14.00
			36	5180			13.8	14.00
			40 44	5200 5220	-	Tx0	13.8	14.00 14.00
			48	5220	24		13.8 13.8	14.00
			36	5180	Mbps		13.7	14.00
			40	5200	1	Tx1	13.7	14.00
			44 48	5220 5240	1		13.8 13.7	14.00 14.00
			36	5180			13.9	14.00
			40	5200		Tx0	13.8	14.00
			44 48	5220 5240	36	17.0	13.5 13.9	14.00 14.00
	802.11a	20	36	5180	Mbps		13.6	14.00
			40	5200		Tx1	13.8	14.00
			44	5220	1	IXI	13.8	14.00
			48 36	5240 5180	1		13.5 13.6	14.00 14.00
			40	5200	48 Mbps	Tx0	13.9	14.00
			44	5220		TXU	13.5	14.00
			48	5240			13.8	14.00
			36 40	5180 5200		T∨1	13.5 13.7	14.00 14.00
			44	5220		Tx1	13.5	14.00
			48	5240			13.6	14.00
			36 40	5180 5200		T-0	13.7 13.6	14.00 14.00
			44	5220	-	Tx0	13.6	14.00
5.15-5.25 GHz			48	5240	54	Tx1	13.8	14.00
3.13 3.23 0112			36	5180	_ Mbps _		13.7	14.00
			40 44	5200 5220			13.9 13.4	14.00 14.00
			48	5240			13.7	14.00
			36	5180			13.5	14.00
			40 44	5200	_	Tx0	13.5	14.00
			48	5220 5240	7.2		13.5 13.7	14.00 14.00
			36	5180	Mbps	Tx1	13.6	14.00
			40	5200	4		13.5	14.00
			44 48	5220 5240	-		13.5 13.7	14.00 14.00
			36	5180			13.5	14.00
	1	1	40	5200]	Tx0	13.6	14.00
	1	1	44	5220	14.4	0	13.5	14.00
	1	1	48 36	5240 5180	Mbps		13.5 13.5	14.00 14.00
	1	1	40	5200		Tx1	13.5	14.00
	1	1	44	5220	↓	IXT	13.6	14.00
	802.11n	20	48 36	5240 5180	 		13.6 13.8	14.00 14.00
	1	1	40	5200	† l	T. 0	13.8	14.00
	1	1	44	5220]	Tx0	13.8	14.00
	1	1	48	5240	21.7		13.7	14.00
	1	1	36 40	5180 5200	Mbps		13.6 13.5	14.00 14.00
	1	1	44	5220	† l	Tx1	13.7	14.00
	1	1	48	5240			13.6	14.00
	1		36	5180	↓		13.8	14.00
	1		40 44	5200 5220	 	Tx0	13.7 13.6	14.00 14.00
	1		48	5240	28.9		13.9	14.00
	1	1	36	5180	Mbps		13.8	14.00
	1	1	40	5200	- I	Tx1	13.9	14.00
	1	1	44 48	5220 5240	 		13.7 13.7	14.00 14.00
L	1	<u> </u>	1 4ŏ	5240	1		13./	14.00

		Bandwidth		Frequency	Data		Avg Power	Tune-up
Band	Mode	(MHz)	Channel	(MHz)	Rate	Antenna	(dBm)	Pwr (dBm)
		()	36	5180	110.00		13.5	14.00
			40	5200		Tx0	13.7	14.00
			44	5220		120	13.9	14.00
			48 36	5240	43.3		13.5	14.00
			40	5180 5200	Mbps		13.8 13.7	14.00 14.00
			44	5220		Tx1	13.6	14.00
			48	5240			13.6	14.00
			36	5180	-	Tx0	13.3	14.00
			40 44	5200 5220	-		13.5 13.7	14.00 14.00
			48	5240	57.8		13.8	14.00
			36	5180	Mbps		13.2	14.00
			40	5200		Tx1	13.6	14.00
			44	5220	-	171	13.7	14.00
	802.11n	20	48	5240			13.5 13.9	14.00
			36 40	5180 5200			13.8	14.00 14.00
			44	5220		Tx0	13.8	14.00
			48	5240	65.0		13.7	14.00
			36	5180	Mbps	Tx1	13.7	14.00
			40	5200			13.7	14.00
			44 48	5220 5240	1		13.5 13.6	14.00 14.00
			36	5180			13.9	14.00
			40	5200		Tx0	13.9	14.00
			44	5220			13.7	14.00
			48	5240	72.2		13.9	14.00
			36	5180	Mbps	Tx1	13.9	14.00
			40 44	5200 5220	1		13.7 13.6	14.00 14.00
			48	5240			13.9	14.00
			38	5190		Tx0	13.8	14.00
			46	5230	15	Tx1	13.8	14.00
			38	5190	Mbps		13.8	14.00
5.15-5.25 GHz			46 38	5230 5190			13.7 13.6	14.00 14.00
			46	5230	30 Mbps	Tx0	13.7	14.00
			38	5190		Tx1	13.7	14.00
			46	5230		IXI	13.8	14.00
			38	5190	45 Mbps	Tx0	13.7	14.00
			46 38	5230 5190		_	13.8 13.7	14.00 14.00
			46	5230		Tx1	13.9	14.00
			38	5190	60 Mbps	Tx0	13.8	14.00
			46	5230		TXU	14.0	14.00
			38	5190		Tx1	13.8	14.00
	802.11n	40	46 38	5230 5190			13.7 13.7	14.00 14.00
1			46	5230	90	Tx0	13.5	14.00
1			38	5190	Mbps	Tx1	13.8	14.00
			46	5230		IVT	13.8	14.00
		c 20	38	5190	120	Tx0	14.0	14.00
			46 38	5230 5190	Mbps		13.8 13.8	14.00 14.00
1			46	5230	141003	Tx1	13.8	14.00
1			38	5190		Tx0	13.8	14.00
1			46	5230	135	TXU	13.7	14.00
			38	5190	Mbps	Tx1	13.9	14.00
			46 38	5230 5190		Tx0	13.7 13.7	14.00 14.00
			46	5230	150 Mbps 7.2 Mbps		13.7	14.00
			38	5190		Tv1	14.0	14.00
			46	5230		Tx1	13.6	14.00
			36	5180		Tx0	13.5	14.00
			40 44	5200 5220			13.6	14.00 14.00
			44	5220 5240			13.7 13.6	14.00
	802.11ac		36	5180			13.7	14.00
			40	5200] '	Tx1	13.7	14.00
			44	5220	1	IVI	13.7	14.00
			48	5240			13.7	14.00

		Bandwidth		Frequency	Data		Avg Power	Tune-up
Band	Mode	(MHz)	Channel	(MHz)	Rate	Antenna	(dBm)	Pwr (dBm)
			36	5180			13.7	14.00
			40 44	5200 5220	-	Tx0	13.7 13.7	14.00 14.00
			48	5240	14.4		13.7	14.00
			36	5180	Mbps		13.7	14.00
			40	5200	<u> </u>	Tx1	13.8	14.00
			44 48	5220	_		13.6	14.00 14.00
			36	5240 5180			13.7 13.7	14.00
			40	5200		Tx0	13.9	14.00
			44	5220			13.8	14.00
			48	5240	21.7 Mbps		13.8	14.00
			36 40	5180 5200		Tx1	13.9 13.9	14.00 14.00
			44	5220			13.9	14.00
			48	5240			14.0	14.00
			36	5180	_	Tx0	13.9	14.00
			40 44	5200 5220	-		13.9 13.9	14.00 14.00
			48	5240	28.9		13.7	14.00
			36	5180	Mbps	Tx1	13.7	14.00
			40	5200	-		13.8	14.00
			44 48	5220 5240			13.8 13.7	14.00 14.00
			36	5180			13.9	14.00
			40	5200		Tx0	13.7	14.00
			44	5220			13.6	14.00
			48 36	5240	43.3	Tx1	13.7	14.00
			40	5180 5200	Mbps		13.8 13.9	14.00 14.00
			44	5220			13.5	14.00
	802.11ac	lac 20	48	5240		Tx0	13.7	14.00
	002.1180		36	5180			13.6	14.00
			40 44	5200 5220			13.7 13.8	14.00 14.00
			48	5240	57.8		13.5	14.00
			36	5180	Mbps	Tx1	13.6	14.00
5.15-5.25 GHz			40	5200			13.7	14.00
			44 48	5220 5240	1		13.8 13.8	14.00 14.00
			36	5180	65.0 Mbps	Tx0	13.9	14.00
			40	5200			13.8	14.00
			44	5220			13.8	14.00
			48 36	5240 5180		Tx1	13.8 13.7	14.00 14.00
			40	5200			13.7	14.00
			44	5220			13.8	14.00
			48	5240			13.8	14.00
			36 40	5180 5200	72.2	Tx0	13.8 13.8	14.00 14.00
			44	5220			13.8	14.00
			48	5240			13.7	14.00
			36	5180	Mbps		13.8	14.00
			40 44	5200 5220	1	Tx1	13.8 13.8	14.00 14.00
			48	5240			13.7	14.00
			36	5180		Tx0	13.8	14.00
			40	5200	4		13.7	14.00
			44 48	5220 5240	86.7		13.7 13.8	14.00 14.00
			36	5180	Mbps	Tx1	13.8	14.00
			40	5200	1 7		13.6	14.00
			44	5220	1		13.6	14.00
		11ac 40	48	5240 5190	-		13.8 13.7	14.00 14.00
			38 46	5190 5230	15	Tx0	13.7	14.00
			38	5190	Mbps	Tx1	13.8	14.00
			46	5230		IXT	13.8	14.00
			38	5190	30 Mbps	Tx0	13.8	14.00
	802.11ac		46 38	5230 5190			13.9 13.8	14.00 14.00
			46	5230		Tx1	13.8	14.00
			38	5190		Tx0	13.9	14.00
			46	5230	45	170	13.8	14.00
			38	5190	Mbps	Tx1	13.8	14.00
L			46	5230			13.9	14.00

		Bandwidth		Frequency	Data		Avg Power	Tune-up
Band	Mode	(MHz)	Channel	(MHz)	Rate	Antenna	(dBm)	Pwr (dBm)
			38	5190		Tx0	13.7	14.00
			46	5230	60	170	13.8	14.00
			38 46	5190 5230	Mbps	Tx1	13.9 13.7	14.00 14.00
			38	5190		Tx0	13.7	14.00
			46	5230	90 Mbps	TXU	13.8	14.00
			38	5190		Tx1	13.8	14.00
			46 38	5230 5190			13.8 13.9	14.00 14.00
			46	5230	120 Mbps	Tx0	13.9	14.00
	Ì		38	5190		Tx1	13.8	14.00
			46	5230			13.8	14.00
			38 46	5190 5230	135	Tx0	13.9 13.9	14.00 14.00
	802.11ac	40	38	5190	Mbps	T. 1	13.8	14.00
			46	5230		Tx1	13.7	14.00
			38	5190		Tx0	13.8	14.00
			46 38	5230 5190	150 Mbps		13.9 13.9	14.00 14.00
			46	5230	ivibhz	Tx1	13.7	14.00
			38	5190		TvO	13.8	14.00
			46	5230	180	Tx0	13.8	14.00
			38	5190	Mbps	Tx1	13.9	14.00
5.15-5.25 GHz			46 38	5230 5190			13.9 14.0	14.00 14.00
			46	5230	200	Tx0	14.0	14.00
			38	5190	Mbps	T1	13.8	14.00
			46	5230		Tx1	13.8	14.00
			42	5210	32.5	Tx0	13.9	14.00
	802.11ac				Mbps	Tx1	13.9	14.00
			42	5210	65.0 Mbps	Tx0 Tx1	13.8 14.0	14.00 14.00
			42	F210	97.5	Tx0	13.8	14.00
			42	5210	Mbps	Tx1	13.9	14.00
			42	5210	130.0	Tx0	13.8	14.00
					Mbps 195.0	Tx1 Tx0	13.7 13.7	14.00 14.00
			42	5210	Mbps	Tx1	13.7	14.00
		80	42	5210	260.0	Tx0	13.9	14.00
			42	3210	Mbps	Tx1	13.9	14.00
			42	5210	292.5	Tx0	13.9	14.00
					Mbps 325.0	Tx1 Tx0	13.7 13.7	14.00 14.00
			42	5210	Mbps	Tx1	13.7	14.00
			42	5210	390.0	Tx0	13.9	14.00
			42	3210	Mbps	Tx1	14.0	14.00
			42	5210	433.3	Tx0	13.8	14.00
			149	5745	Mbps	Tx1	13.9 13.9	14.00 14.00
			153	5765	1		13.9	14.00
			157	5785	1	Tx0	13.9	14.00
			161	5805]		13.7	14.00
		20	165	5825	6		13.6	14.00
			149	5745	Mbps	Tx1	13.7	14.00
			153	5765	<u> </u>		13.7	14.00
			157	5785	<u> </u>		13.7	14.00
			161	5805	-		13.8 13.9	14.00 14.00
5800 MHz	802.11a		165 149	5825 5745	 	Tx0	13.9	14.00
			153	5765	9 Mbps		13.7	14.00
			157	5785			13.9	14.00
			161	5805			13.7	14.00
			165	5825			13.9	14.00
			149	5745			13.7	14.00
			153	5765			13.7	14.00
			157	5785	<u> </u>	Tx1	13.8	14.00
			161	5805	- I		13.6	14.00
	1		165	5825	<u> </u>		13.6	14.00

Band	Mode	Bandwidth	Channel	Frequency	Data	Antenna	Avg Power	Tune-up
		(MHz)		(MHz)	Rate		(dBm)	Pwr (dBm
			149	5745			13.8	14.00
			153 157	5765 5785		TvO	13.7 13.7	14.00 14.00
			161	5805		Tx0	13.8	14.00
			165	5825	12		13.7	14.00
			149	5745	Mbps		13.8	14.00
			153	5765	Ινιυμς	Tx1	13.9	14.00
			157	5785			13.7	14.00
			161	5805			13.8	14.00
			165	5825			13.8	14.00
			149	5745			13.6	14.00
			153	5765		Tx0	13.8	14.00
			157	5785			13.8	14.00
			161	5805			13.8	14.00
			165	5825	18		13.7	14.00
			149	5745	Mbps	Tx1	13.8	14.00
			153	5765			13.7	14.00
			157	5785			13.6	14.00
			161	5805]		13.8	14.00
			165	5825			13.8	14.00
			149	5745			13.9	14.00
			153	5765			13.7	14.00
			157	5785		Tx0	13.8	14.00
			161	5805			13.9	14.00
			165	5825	24		13.7	14.00
			149	5745	Mbps		13.8	14.00
			153	5765			13.8	14.00
			157	5785			13.9	14.00
			161	5805			13.7	14.00
	801.11a	20	165	5825			13.6	14.00
	5021220		149	5745			13.7	14.00
			153	5765	36 Mbps	Tx0	13.8	14.00
			157	5785			13.7	14.00
			161	5805			13.8	14.00
5800 MHz			165	5825		Tx1	13.8	14.00
			149	5745			13.8	14.00
			153	5765			13.9	14.00
			157	5785			13.8	14.00
			161	5805			13.8	14.00
			165 149	5825 5745			13.7 13.7	14.00 14.00
			153	5765	1		13.6	14.00
			157	5785	1	Tx0	13.8	14.00
					1	TXU		14.00
			161 165	5805 5825	48 Mbps		13.9 13.8	14.00
			149 153	5745 5765		Tx1	13.7 13.7	14.00 14.00
			153	5785				44.00
			161	5805			13.7 13.8	14.00
			165	5825			13.8	14.00
			149	5745			13.7	14.00
			153	5765			13.8	14.00
			157	5785	1		13.7	14.00
			161	5805	1		13.8	14.00
			165	5825	54		13.7	14.00
			149	5745	Mbps		13.7	14.00
			153	5765]		13.8	14.00
		157	5785]	Tx1	13.8	14.00	
			161	5805]	- - I	13.8	14.00
		302.11n 20	165	5825			13.6	14.00
			149	5745			13.9	14.00
			153	5765	7.2 Mbps	Тх0	13.8	14.00
			157	5785			13.9	14.00
			161	5805			13.8	14.00
	902 11=		165	5825			13.7	14.00
8	802.11n		149	5745			13.8	14.00
			153	5765			13.7	14.00
			157	5785]	Tx1	13.8	14.00
			161	5805]		13.8	14.00
			165	5825	1		13.8	14.00

Donal	Mada	Bandwidth		Frequency	Data		Avg Power	Tune-up
Band	Mode	(MHz)	Channel	(MHz)	Rate	Antenna	(dBm)	Pwr (dBm)
			149	5745			13.7	14.00
			153	5765		T 0	13.9	14.00 14.00
			157 161	5785 5805	1	Tx0	13.8 13.9	14.00
			165	5825	14.4		13.7	14.00
			149	5745	Mbps		13.6	14.00
			153 157	5765 5785		Tx1	13.6 13.8	14.00 14.00
			161	5805	1	17.1	13.7	14.00
			165	5825			13.8	14.00
			149 153	5745 5765			13.9 13.7	14.00 14.00
			157	5785		Tx0	13.7	14.00
			161	5805			13.6	14.00
			165	5825	21.7		13.7	14.00
			149 153	5745 5765	Mbps		13.7 13.8	14.00 14.00
			157	5785		Tx1	13.8	14.00
			161	5805			13.6	14.00
			165	5825			13.8	14.00
			149 153	5745 5765			13.8 13.6	14.00 14.00
			157	5785	1	Tx0	13.8	14.00
			161	5805			13.8	14.00
			165 149	5825 5745	28.9		13.9 13.9	14.00 14.00
			153	5765	Mbps		13.7	14.00
			157	5785		Tx1 13.8 13.6		14.00
			161	5805				14.00
			165 149	5825 5745			13.6 13.7	14.00 14.00
			153	5765			13.8	14.00
	5800 MHz 802.11n		157	5785	43.3 Mbps	Tx0	13.7	14.00
		20	161	5805			13.9	14.00
5800 MHz			165 149	5825 5745			13.6 13.7	14.00 14.00
			153	5765			13.8	14.00
			157	5785		Tx1	13.7	14.00
			161	5805			13.8	14.00
			165 149	5825 5745			13.8 13.9	14.00 14.00
			153	5765			13.8	14.00
			157	5785		Tx0	13.9	14.00
			161 165	5805 5825	57.8		13.6 13.7	14.00 14.00
			149	5745	Mbps	Tx1	13.8	14.00
			153	5765			13.7	14.00
			157	5785			13.8	14.00
			161 165	5805 5825	1		13.7 13.6	14.00 14.00
			149	5745			13.7	14.00
			153	5765]		13.8	14.00
			157	5785		Tx0	13.7	14.00
			161 165	5805 5825	65.0		13.7 13.7	14.00 14.00
			149	5745	Mbps		13.7	14.00
			153	5765]		13.6	14.00
			157	5785		Tx1	13.9	14.00
			161 165	5805 5825	†		13.7 13.7	14.00 14.00
			149	5745]		13.9	14.00
			153	5765			13.9	14.00
			157 161	5785 5805		Tx0	13.7 13.7	14.00 14.00
			165	5825	72.2		13.7	14.00
			149	5745	Mbps		13.9	14.00
			153	5765			13.6	14.00
			157 161	5785 5805		Tx1	13.8 13.6	14.00 14.00
			165	5825			13.7	14.00
	•						13.7	

Donal	0.0 = d =	Bandwidth	Channal	Frequency	Data	Amtonno	Avg Power	Tune-up
Band	Mode	(MHz)	Channel	(MHz)	Rate	Antenna	(dBm)	Pwr (dBm)
			151	5755		Tx0	13.8	14.00
			159	5795	15	110	13.9	14.00
			151	5755	Mbps	Tx1	13.9	14.00
			159 151	5795 5755			13.7 13.7	14.00 14.00
			159	5795	30	Tx0	13.7	14.00
			151	5755	Mbps	Tx1	13.8	14.00
			159	5795		IXI	13.9	14.00
			151	5755	45	Tx0	13.9	14.00
			159 151	5795 5755	45 Mbps		13.8 13.7	14.00 14.00
			159	5795	ivibps	Tx1	13.7	14.00
			151	5755		T 0	13.6	14.00
			159	5795	60	Tx0	13.7	14.00
			151	5755	Mbps	Tx1	13.9	14.00
	802.11n	40	159	5795		17.1	13.8	14.00
	002.11		151	5755	00	Tx0	13.8	14.00
			159 151	5795 5755	90 Mbps		13.7 13.9	14.00 14.00
			159	5795	ivibps	Tx1	13.9	14.00
			151	5755			13.8	14.00
			159	5795	120	Tx0	13.6	14.00
			151	5755	Mbps	Tx1	13.8	14.00
			159	5795		IXI	13.8	14.00
			151	5755		Tx0	13.8	14.00
			159	5795	135		13.7	14.00
			151 159	5755 5795	Mbps	Tx1	13.8 13.7	14.00 14.00
			151	5755			13.7	14.00
			159	5795	150 Mbps	Tx0	13.8	14.00
			151	5755		T 1	13.9	14.00
5800 MHz			159	5795		Tx1	13.7	14.00
			149	5745			13.9	14.00
			153	5765			13.7	14.00
			157	5785		Tx0	13.8	14.00
			161 165	5805 5825	7.2		13.9 13.9	14.00 14.00
			149	5745	Mbps		13.8	14.00
			153	5765		Tx1	13.6	14.00
			157	5785			13.7	14.00
			161	5805			13.6	14.00
			165	5825			13.7	14.00
			149	5745			13.7	14.00
			153	5765	_	Tx0	13.8	14.00
			157 161	5785 5805	-	110	13.9 13.7	14.00 14.00
			165	5825	14.4		13.9	14.00
	802.11ac	20	149	5745	Mbps		13.7	14.00
			153	5765]		13.8	14.00
			157	5785	」 │	Tx1	13.8	14.00
			161	5805	4		13.6	14.00
			165	5825	1		13.7	14.00
			149 153	5745 5765	1 1		13.6 13.8	14.00 14.00
			157	5785	1	Tx0	13.7	14.00
			161	5805	1		13.9	14.00
			165	5825	21.7		13.8	14.00
			149	5745	Mbps		13.7	14.00
			153	5765	1		13.8	14.00
			157	5785	4	Tx1	13.8	14.00
			161	5805	4 l		13.7	14.00
			165	5825	l l		13.8	14.00

Donal	Nanda	Bandwidth	Channal	Frequency	Data	Amtonio	Avg Power	Tune-up
Band	Mode	(MHz)	Channel	(MHz)	Rate	Antenna	(dBm)	Pwr (dBm)
			149	5745			13.8	14.00
			153	5765			13.9	14.00
			157	5785		Tx0	13.8	14.00
			161 165	5805 5825	20.0		13.8 13.6	14.00 14.00
			149	5745	28.9 Mbps		13.7	14.00
			153	5765	Wibbs		13.7	14.00
			157	5785		Tx1	13.7	14.00
			161	5805			13.8	14.00
			165 149	5825 5745			13.8 13.7	14.00 14.00
			153	5765	1		13.7	14.00
			157	5785		Tx0	13.8	14.00
			161	5805			13.7	14.00
			165	5825	43.3		13.8	14.00
			149	5745	Mbps		13.9	14.00
			153 157	5765 5785		Tx1	13.7 13.7	14.00 14.00
			161	5805	1	171	13.7	14.00
			165	5825			13.8	14.00
			149	5745			13.7	14.00
			153	5765			13.8	14.00
			157	5785		Tx0	13.8	14.00
			161 165	5805 5825	57.8		13.8 13.6	14.00 14.00
			149	5745	Mbps	Tx1	13.7	14.00
			153	5765			13.8	14.00
			157	5785			13.6	14.00
			161	5805	_		13.9	14.00
	802.11ac	20	165	5825	65.0		13.9	14.00
			149 153	5745 5765			13.7 13.8	14.00 14.00
			157	5785		Tx0	13.9	14.00
5000 \$411			161	5805			13.6	14.00
5800 MHz			165	5825			13.9	14.00
			149	5745	Mbps	Tx1	13.8	14.00
			153 157	5765 5785			13.8	14.00 14.00
			161	5805	1		13.9 13.9	14.00
			165	5825			13.8	14.00
			149	5745			13.8	14.00
			153	5765		Tx0	13.7	14.00
			157	5785			13.6	14.00
			161 165	5805 5825	72.2		13.7 13.8	14.00 14.00
			149	5745	Mbps		13.9	14.00
			153	5765	.,.		13.7	14.00
			157	5785]	Tx1	13.8	14.00
			161	5805			13.8	14.00
			165	5825 5745	 		13.7	14.00 14.00
			149 153	5745			13.6 13.8	14.00
			157	5785	1	Tx0	13.7	14.00
			161	5805]	-	13.7	14.00
			165	5825	86.7		13.9	14.00
			149	5745	Mbps		13.6	14.00
			153 157	5765 5785	-	Tx1	13.9 13.7	14.00 14.00
			161	5805	1	IXT	13.7	14.00
			165	5825	1		13.7	14.00
			151	5755		Tx0	13.7	14.00
			159	5795	15	1 10	13.8	14.00
			151	5755	Mbps	Tx1	13.6	14.00
	802.11ac	40	159 151	5795 5755			13.8 13.7	14.00 14.00
			151	5795	30	Tx0	13.6	14.00
			151	5755	Mbps	- - 4	13.6	14.00
	1		159	5795	1 '	Tx1	13.9	14.00

Band	Mode	Bandwidth (MHz)	Channel	Frequency (MHz)	Data Rate	Antenna	Avg Power (dBm)	Tune-up Pwr (dBm)
			151	5755		Tv0	13.7	14.00
			159	5795	45	Tx0	13.8	14.00
			151	5755	Mbps	Tx1	13.7	14.00
			159	5795		IXI	13.6	14.00
			151	5755		T. 0	13.7	14.00
			159	5795	60	Tx0	13.8	14.00
			151	5755	Mbps	Tx1	13.8	14.00
			159	5795		IXI	13.8	14.00
			151	5755		Tx0	13.8	14.00
			159	5795	90	TXU	13.6	14.00
			151	5755	Mbps	Tx1	13.8	14.00
			159	5795		IXI	13.8	14.00
			151	5755		Tx0	13.8	14.00
			159	5795	120	TXU	13.8	14.00
			151	5755	Mbps	T 4	13.6	14.00
			159	5795		Tx1	13.9	14.00
	802.11ac	40	151	5755		T 0	13.9	14.00
			159	5795	135	Tx0	13.8	14.00
			151	5755	Mbps	T 4	13.6	14.00
			159	5795	i '	Tx1	13.8	14.00
			151	5755		Tx0	13.8	14.00
			159	5795	150 Mbps		13.7	14.00
			151	5755		T. 4	13.8	14.00
			159	5795		Tx1	13.8	14.00
			151	5755	180 Mbps	TvO	13.9	14.00
			159	5795		Tx0	13.9	14.00
5800 MHz			151	5755			13.7	14.00
			159	5795		Tx1	13.7	14.00
			151	5755			13.8	14.00
			159	5795	200 Mbps	Tx0	13.9	14.00
			151	5755			13.7	14.00
			159	5795		Tx1	13.8	14.00
					32.5	Tx0	13.9	14.00
			155	5775	Mbps	Tx1	13.8	14.00
					65.0	Tx0	13.7	14.00
			155	5775	Mbps	Tx1	13.8	14.00
					97.5	Tx0	13.6	14.00
			155	5775	Mbps	Tx1	13.8	14.00
					130.0	Tx0	13.9	14.00
			155	5775	Mbps	Tx1	13.8	14.00
					195.0	Tx0	13.9	14.00
	802.11ac		155	5775	Mbps	Tx1	13.6	14.00
		80			260.0	Tx0	13.7	14.00
1		1	155	5775	Mbps	Tx1	13.8	14.00
					292.5	Tx0	13.8	14.00
			155	5775	Mbps	Tx1	13.8	14.00
1		1			325.0	Tx0	13.9	14.00
			155	5775	Mbps	Tx1	13.8	14.00
					390.0	Tx0	13.8	14.00
			155	5775	Mbps	Tx1	13.6	14.00
					433.3	Tx0	13.9	14.00
1		1	155	5775	I	Tx1	13.9	14.00
	1	1	l	1	Mbps	IXT	13.8	14.00

Figure 10.1 Test Reduction Table – WiFi 2.4 GHz Chain 0

		··· · · · · · · · · · · · · · · · · ·	
Mode	Side	Required	Tested/Reduced
		Channel	
		1 – 2412 MHz	Reduced ¹
	Side A	6 – 2437 MHz	Tested
		11 – 2462 MHz	Reduced ¹
		1 – 2412 MHz	Reduced ¹
	Side B	6 – 2437 MHz	Tested
		11 – 2462 MHz	Reduced ¹
	1	1 – 2412 MHz	Reduced ¹
	Side C	6 – 2437 MHz	Tested
802.11b		11 – 2462 MHz	Reduced ¹
	0.1.5	1 – 2412 MHz	Reduced ³
	Side D	6 – 2437 MHz	Reduced ³
		11 – 2462 MHz	Reduced ³
		1 – 2412 MHz	Reduced ³
	Side E	6 – 2437 MHz	Reduced ³
		11 – 2462 MHz	Reduced ³
		1 – 2412 MHz	Reduced ¹
	Side F	6 – 2437 MHz	Tested
		11 – 2462 MHz	Reduced ¹
	l	1 – 2412 MHz	Reduced ²
	Side A	6 – 2437 MHz	Reduced ²
		11 – 2462 MHz	Reduced ²
		1 – 2412 MHz	Reduced ²
	Side B	6 – 2437 MHz	Reduced ²
		11 – 2462 MHz	Reduced ²
		1 – 2412 MHz	Reduced ²
	Side C	6 – 2437 MHz	Reduced ²
802.11g		11 – 2462 MHz	Reduced ²
002.119		1 – 2412 MHz	Reduced ²
	Side D	6 – 2437 MHz	Reduced ²
		11 – 2462 MHz	Reduced ²
		1 – 2412 MHz	Reduced ²
	Side E	6 – 2437 MHz	Reduced ²
		11 – 2462 MHz	Reduced ²
		1 – 2412 MHz	Reduced ²
	Side F	6 – 2437 MHz	Reduced ²
		11 – 2462 MHz	Reduced ²
		1 – 2412 MHz	Reduced ²
	Side A	6 – 2437 MHz	Reduced ²
		11 – 2462 MHz	Reduced ²
		1 – 2412 MHz	Reduced ²
	Side B	6 – 2437 MHz	Reduced ²
		11 – 2462 MHz	Reduced ²
		1 – 2412 MHz	Reduced ²
	Side C	6 – 2437 MHz	Reduced ²
802.11n		11 – 2462 MHz	Reduced ²
002.1111		1 – 2412 MHz	Reduced ²
	Side D	6 – 2437 MHz	Reduced ²
		11 – 2462 MHz	Reduced ²
		1 – 2412 MHz	Reduced ²
	Side E	6 – 2437 MHz	Reduced ²
	į į	11 – 2462 MHz	Reduced ²
	1		
		1 – 2412 MHz	Reduced ²
	Side F	1 – 2412 MHz 6 – 2437 MHz	Reduced ² Reduced ²

Reduced¹ – When the reported SAR is ≤ 0.4 W/kg, SAR is not required for the remaining test configuration per KDB 248227 D01 v02r02 section 5.1.1 1) page 9.

Reduced² – When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required per KDB 248227 D01 v02r02 section 5.2.2 2) page 10.

Reduced³ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Maximum power: 25.1 mW Closest Distance to Side D: 57 mm Closest Distance to Side E: 49 mm

The closest distance is from Side E. Therefore, if Side E is excluded then Side D would also be excluded.

 $[(25.1 \text{ mW})/(49 \text{ mm})]^*\sqrt{2.462}=0.80$ which is equal to or less than 3.0.

Figure 10.2 Test Reduction Table - WiFi 2.4 GHz Chain 1

• . • . •	: 55: : : 544511	J	<u></u> . . — . — . — . — . — . — . — . — . — . —
Mode	Side	Required	Tested/Reduced
		Channel	
		1 – 2412 MHz	Reduced ¹
	Side A	6 – 2437 MHz	Tested
		11 – 2462 MHz	Reduced ¹
		1 – 2412 MHz	Reduced ³
	Side B	6 – 2437 MHz	Reduced ³
		11 – 2462 MHz	Reduced ³
		1 – 2412 MHz	Reduced ¹
	Side C	6 – 2437 MHz	Tested
802.11b		11 – 2462 MHz	Reduced ¹
	0:1.5	1 – 2412 MHz	Reduced ¹
	Side D	6 – 2437 MHz	Tested
		11 – 2462 MHz	Reduced ¹
	0:1 5	1 – 2412 MHz	Reduced ³
	Side E	6 – 2437 MHz	Reduced ³
		11 – 2462 MHz	Reduced ³
	0:4- 5	1 – 2412 MHz	Reduced ¹
	Side F	6 – 2437 MHz	Tested
		11 – 2462 MHz	Reduced ¹
	Cido A	1 – 2412 MHz	Reduced ²
	Side A	6 – 2437 MHz	Reduced ²
		11 – 2462 MHz 1 – 2412 MHz	Reduced ²
	Side B	6 – 2437 MHz	Reduced ²
	Side B	11 – 2462 MHz	Reduced ²
		1 – 2462 MHz	Reduced ² Reduced ²
	Side C	6 – 2437 MHz	Reduced ²
	Side C	11 – 2462 MHz	Reduced ²
802.11g		1 – 2412 MHz	Reduced ²
	Side D	6 – 2437 MHz	Reduced ²
	Side D	11 – 2462 MHz	Reduced ²
		1 – 2412 MHz	Reduced ²
	Side E	6 – 2437 MHz	Reduced ²
	Side E	11 – 2462 MHz	Reduced ²
		1 – 2412 MHz	Reduced ²
	Side F	6 – 2437 MHz	Reduced ²
	olde i	11 – 2462 MHz	Reduced ²
		1 – 2412 MHz	Reduced ²
	Side A	6 – 2437 MHz	Reduced ²
	Oldo / C	11 – 2462 MHz	Reduced ²
		1 – 2412 MHz	Reduced ²
	Side B	6 – 2437 MHz	Reduced ²
	0.00 2	11 – 2462 MHz	Reduced ²
		1 – 2412 MHz	Reduced ²
	Side C	6 – 2437 MHz	Reduced ²
	5.30 0	11 – 2462 MHz	Reduced ²
802.11n		1 – 2412 MHz	Reduced ²
	Side D	6 – 2437 MHz	Reduced ²
	2.202	11 – 2462 MHz	Reduced ²
		1 – 2412 MHz	Reduced ²
	Side E	6 – 2437 MHz	Reduced ²
		11 – 2462 MHz	Reduced ²
		1 – 2412 MHz	Reduced ²
	Side F	6 – 2437 MHz	Reduced ²
	0.00	11 – 2462 MHz	Reduced ²
	· ·		

Reduced¹ – When the reported SAR is ≤ 0.4 W/kg, SAR is not required for the remaining test configuration per KDB 248227 D01 v02r02 section 5.1.1 1) page 9.

Reduced² – When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required per KDB 248227 D01 v02r02 section 5.2.2 2) page 10.

Reduced³ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Maximum power: 25.1 mW Closest Distance to Side B: 57 mm Closest Distance to Side E: 49 mm

The closest distance is from Side E. Therefore, if Side E is excluded then Side B would also be excluded.

 $[(25.1 \text{ mW})/(49 \text{ mm})]^*\sqrt{2.462}=0.80$ which is equal to or less than 3.0.

Figure 10.3 Test Reduction Table - WiFi 5.1 GHz Chain 0

0 1 010 1			
Mode	Side	Required	Tested/Reduced
Mode	Oldo	Channel	100tca/1tcaacca
		36 – 5180 MHz	Reduced ¹
	C: - A	40 – 5200 MHz	Reduced ¹
	Side A	44 – 5220 MHz	Tested
		48 – 5240 MHz	Reduced ¹
		36 – 5180 MHz	Reduced ¹
	0:1 5	40 – 5200 MHz	Reduced ¹
	Side B	44 – 5220 MHz	Tested
		48 – 5240 MHz	Reduced ¹
		36 – 5180 MHz	Reduced ¹
	0:1.0	40 – 5200 MHz	Reduced ¹
	Side C	44 – 5220 MHz	Tested
802.11a		48 – 5240 MHz	Reduced ¹
5150 MHz		36 – 5180 MHz	Reduced ²
		40 – 5200 MHz	Reduced ²
	Side D	44 – 5220 MHz	Reduced ²
		48 – 5240 MHz	Reduced ²
		36 – 5180 MHz	Reduced ²
		40 – 5200 MHz	Reduced ²
	Side E	44 – 5220 MHz	Reduced ²
		48 – 5240 MHz	Reduced ²
	Side F	36 – 5180 MHz	Reduced ¹
		40 – 5200 MHz	Reduced ¹
		44 – 5220 MHz	Tested
		48 – 5240 MHz	Reduced ¹
		36 – 5180 MHz	Reduced ¹
		40 – 5200 MHz	Reduced ¹
	Side A	44 – 5220 MHz	Reduced ¹
		48 – 5240 MHz	Reduced ¹
		36 – 5180 MHz	Reduced ¹
		40 – 5200 MHz	Reduced ¹
	Side B	44 – 5220 MHz	Reduced ¹
		48 – 5240 MHz	Reduced ¹
		36 – 5180 MHz	Reduced ¹
		40 – 5200 MHz	Reduced ¹
	Side C	44 – 5220 MHz	Reduced ¹
802.11n		48 – 5240 MHz	Reduced ¹
5150 MHz		36 – 5180 MHz	Reduced ²
0100 WH12		40 – 5200 MHz	Reduced ²
	Side D	44 – 5220 MHz	Reduced ²
		48 – 5240 MHz	Reduced ²
		36 – 5180 MHz	Reduced ²
		40 – 5200 MHz	Reduced ²
	Side E	44 – 5220 MHz	Reduced ²
		48 – 5240 MHz	Reduced ²
		36 – 5180 MHz	Reduced ¹
		40 – 5200 MHz	Reduced Reduced ¹
	Side F	44 – 5220 MHz	Reduced ¹
		48 – 5240 MHz	Reduced ¹
	i co diadina CADia	not required for the remain	

Reduced¹ – When the reported SAR is ≤ 0.4 W/kg, SAR is not required for the remaining test configuration per KDB 248227 D01 v02r02 section 5.1.1 1) page 9.

Reduced² – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Reduced³ – When the reported SAR is >0.4 W/kg, test the next highest configuration until the SAR value is ≤ 0.8 W/kg per KDB 248227 D01 v02r02 section 5.1.1 2) page 9.

Maximum power: 25.1 mW Closest Distance to Side D: 57 mm Closest Distance to Side E: 49 mm

The closest distance is from Side E. Therefore, if Side E is excluded then Side D would also be excluded.

 $[(25.1 \text{ mW})/(49 \text{ mm})]*\sqrt{5.24}=1.17$ which is equal to or less than 3.0.

Figure 10.4 Test Reduction Table - WiFi 5.1 GHz Chain 1

Mode	Side	Required Channel	Tested/Reduced
		36 – 5180 MHz	Reduced ¹
	Side A	40 – 5200 MHz	Reduced ¹
	Side A	44 – 5220 MHz	Tested
		48 – 5240 MHz	Reduced ¹
		36 – 5180 MHz	Reduced ²
	Side B	40 – 5200 MHz	Reduced ²
	Side b	44 – 5220 MHz	Reduced ²
		48 – 5240 MHz	Reduced ²
		36 – 5180 MHz	Reduced ¹
	Side C	40 – 5200 MHz	Reduced ¹
	Side C	44 – 5220 MHz	Tested
802.11a		48 – 5240 MHz	Reduced ¹
5150 MHz		36 – 5180 MHz	Reduced ¹
	Side D	40 – 5200 MHz	Reduced ¹
	Side D	44 – 5220 MHz	Tested
		48 – 5240 MHz	Reduced ¹
		36 – 5180 MHz	Reduced ²
	Side E	40 – 5200 MHz	Reduced ²
		44 – 5220 MHz	Reduced ²
		48 – 5240 MHz	Reduced ²
	Side F	36 – 5180 MHz	Reduced ¹
		40 – 5200 MHz	Reduced ¹
		44 – 5220 MHz	Tested
		48 – 5240 MHz	Reduced ¹
		36 – 5180 MHz	Reduced ¹
	Side A	40 – 5200 MHz	Reduced ¹
	Side A	44 – 5220 MHz	Reduced ¹
		48 – 5240 MHz	Reduced ¹
		36 – 5180 MHz	Reduced ²
	Side B	40 – 5200 MHz	Reduced ²
	Side B	44 – 5220 MHz	Reduced ²
		48 – 5240 MHz	Reduced ²
		36 – 5180 MHz	Reduced ¹
	Side C	40 – 5200 MHz	Reduced ¹
	Cido C	44 – 5220 MHz	Reduced ¹
802.11n		48 – 5240 MHz	Reduced ¹
5150 MHz		36 – 5180 MHz	Reduced ¹
	Side D	40 – 5200 MHz	Reduced ¹
		44 – 5220 MHz	Reduced ¹
		48 – 5240 MHz	Reduced ¹
		36 – 5180 MHz	Reduced ²
	Side E	40 – 5200 MHz	Reduced ²
		44 – 5220 MHz	Reduced ²
		48 – 5240 MHz	Reduced ²
		36 – 5180 MHz	Reduced ¹
	Side F	40 – 5200 MHz	Reduced ¹
		44 – 5220 MHz	Reduced ¹
		48 – 5240 MHz	Reduced ¹

Reduced¹ – When the reported SAR is ≤ 0.4 W/kg, SAR is not required for the remaining test configuration per KDB 248227 D01 v02r02 section 5.1.1 1) page 9.

Reduced² – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Maximum power: 25.1 mW Closest Distance to Side D: 57 mm Closest Distance to Side E: 49 mm

The closest distance is from Side E. Therefore, if Side E is excluded then Side D would also be excluded.

 $[(25.1 \text{ mW})/(49 \text{ mm})]*\sqrt{5.24}=1.17 \text{ which is equal to or less than 3.0.}$

Figure 10.5 Test Reduction Table – WiFi 5.8 GHz Chain 0

Mode	Side	Required Channel	Tested/Reduced
		149 – 5745 MHz	Reduced ¹
	Side A	157 – 5785 MHz	Tested
		165 – 5825 MHz	Reduced ¹
		149 – 5745 MHz	Reduced ¹
	Side B	157 – 5785 MHz	Tested
		165 – 5825 MHz	Reduced ¹
		149 – 5745 MHz	Reduced ¹
	Side C	157 – 5785 MHz	Tested
802.11a		165 – 5825 MHz	Reduced ¹
5800 MHz		149 – 5745 MHz	Reduced ²
	Side D	157 – 5785 MHz	Reduced ²
		165 – 5825 MHz	Reduced ²
		149 – 5745 MHz	Reduced ²
	Side E	157 – 5785 MHz	Reduced ²
		165 – 5825 MHz	Reduced ²
	Side F	149 – 5745 MHz	Reduced ¹
		157 – 5785 MHz	Tested
		165 – 5825 MHz	Reduced ¹
		149 – 5745 MHz	Reduced ¹
	Side A	157 – 5785 MHz	Reduced ¹
		165 – 5825 MHz	Reduced ¹
	Side B	149 – 5745 MHz	Reduced ¹
		157 – 5785 MHz	Reduced ¹
		165 – 5825 MHz	Reduced ¹
		149 – 5745 MHz	Reduced ¹
	Side C	157 – 5785 MHz	Reduced ¹
802.11n		165 – 5825 MHz	Reduced ¹
5800 MHz		149 – 5745 MHz	Reduced ²
	Side D	157 – 5785 MHz	Reduced ²
		165 – 5825 MHz	Reduced ²
		149 – 5745 MHz	Reduced ²
	Side E	157 – 5785 MHz	Reduced ²
		165 – 5825 MHz	Reduced ²
		149 – 5745 MHz	Reduced ¹
	Side F	157 – 5785 MHz	Reduced ¹
		165 – 5825 MHz	Reduced ¹

Reduced¹ – When the reported SAR is ≤ 0.4 W/kg, SAR is not required for the remaining test configuration per KDB 248227 D01 v02r02 section 5.1.1 1) page 9.

Reduced² – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Reduced³ – When the reported SAR is >0.8 W/kg, test the next highest configuration until the SAR value is ≤ 1.2 W/kg per KDB 248227 D01 v02r02 section 5.1.1 3) page 9.

Reduced⁴ – When the reported SAR is >0.4 W/kg, test the next highest configuration until the SAR value is ≤ 0.8 W/kg per KDB 248227 D01 v02r02 section 5.1.1 2) page 9.

Maximum power: 25.1 mW Closest Distance to Side D: 57 mm Closest Distance to Side E: 49 mm

The closest distance is from Side E. Therefore, if Side E is excluded then Side D would also be excluded.

 $[(25.1 \text{ mW})/(49 \text{ mm})]^*\sqrt{5.825}=1.23 \text{ which is equal to or less than 3.0.}$

Figure 10.6 Test Reduction Table – WiFi 5.8 GHz Chain 1

Mode	Side	Required Channel	Tested/Reduced
		149 – 5745 MHz	Reduced ¹
	Side A	157 – 5785 MHz	Tested
		165 – 5825 MHz	Reduced ¹
		149 – 5745 MHz	Reduced ²
	Side B	157 – 5785 MHz	Reduced ²
		165 – 5825 MHz	Reduced ²
		149 – 5745 MHz	Reduced ¹
	Side C	157 – 5785 MHz	Tested
802.11a		165 – 5825 MHz	Reduced ¹
5800 MHz		149 – 5745 MHz	Reduced ¹
	Side D	157 – 5785 MHz	Tested
		165 – 5825 MHz	Reduced ¹
		149 – 5745 MHz	Reduced ²
	Side E	157 – 5785 MHz	Reduced ²
		165 – 5825 MHz	Reduced ²
	Side F	149 – 5745 MHz	Reduced ¹
		157 – 5785 MHz	Tested
		165 – 5825 MHz	Reduced ¹
	Side A	149 – 5745 MHz	Reduced ¹
		157 – 5785 MHz	Reduced ¹
		165 – 5825 MHz	Reduced ¹
	Side B	149 – 5745 MHz	Reduced ²
		157 – 5785 MHz	Reduced ²
		165 – 5825 MHz	Reduced ²
		149 – 5745 MHz	Reduced ¹
	Side C	157 – 5785 MHz	Reduced ¹
802.11n		165 – 5825 MHz	Reduced ¹
5800 MHz		149 – 5745 MHz	Reduced ¹
	Side D	157 – 5785 MHz	Reduced ¹
		165 – 5825 MHz	Reduced ¹
		149 – 5745 MHz	Reduced ²
	Side E	157 – 5785 MHz	Reduced ²
		165 – 5825 MHz	Reduced ²
		149 – 5745 MHz	Reduced ¹
	Side F	157 – 5785 MHz	Reduced ¹
		165 – 5825 MHz	Reduced ¹

Reduced¹ – When the reported SAR is ≤ 0.4 W/kg, SAR is not required for the remaining test configuration per KDB 248227 D01 v02r02 section 5.1.1 1) page 9.

Reduced² – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Reduced³ – When the reported SAR is >0.8 W/kg, test the next highest configuration until the SAR value is ≤ 1.2 W/kg per KDB 248227 D01 v02r02 section 5.1.1 3) page 9.

Reduced⁴ – When the reported SAR is >0.4 W/kg, test the next highest configuration until the SAR value is ≤ 0.8 W/kg per KDB 248227 D01 v02r02 section 5.1.1 2) page 9.

Maximum power: 25.1 mW Closest Distance to Side D: 57 mm Closest Distance to Side E: 49 mm

The closest distance is from Side E. Therefore, if Side E is excluded then Side D would also be excluded.

 $[(25.1 \text{ mW})/(49 \text{ mm})]^*\sqrt{5.825}=1.23 \text{ which is equal to or less than 3.0.}$

Figure 10.7 Test Reduction Table – 3G 850 MHz

Band/	Technology	Side	Required	Tested/
Frequency (MHz)		0.00	Channel	Reduced
Trequency (WITIZ)				
		0:1 4	4132 4183	Tested
		Side A		Tested
			4233	Tested
		Side B	4132 4183	Reduced ¹ Tested
		Side B	4233	Reduced ¹
			4132	Reduced ¹
		Side C	4183	Tested
Band 5		Side C	4233	Reduced ¹
824-849 MHz			4132	Reduced ¹
024-049 WII 12		Side D	4183	Tested
		Side D	4233	Reduced ¹
			4132	Reduced ¹
		Side E	4183	Tested
		Oldo L	4233	Reduced ¹
			4132	Reduced ²
		Side F	4183	Reduced ²
		Oldo I	4233	Reduced ²
			1312	Tested
		Side A	1413	Tested
	WCDMA -	Oldo / t	1513	Tested
		Side B	1312	Reduced ¹
			1413	Tested
			1513	Reduced ¹
		Side C	1312	Reduced ¹
			1413	Tested
Band 4			1513	Reduced ¹
1710-1755 MHz		Side D	1312	Reduced ¹
			1413	Tested
			1513	Reduced ¹
			1312	Reduced ¹
		Side E	1413	Tested
			1513	Reduced ¹
			1312	Reduced ²
		Side F	1413	Reduced ²
			1513	Reduced ²
			9262	Tested
		Side A	9400	Tested
			9538	Tested
			9262	Reduced ¹
		Side B	9400	Tested
			9538	Reduced ¹
			9262	Reduced ¹
		Side C	9400	Tested
Band 2			9538	Reduced ¹
1850-1910 MHz			9262	Reduced ¹
		Side D	9400	Tested
			9538	Reduced ¹
			9262	Reduced ¹
		Side E	9400	Tested
			9538	Reduced ¹
			9262	Reduced ²
		Side F	9400	Reduced ²
			9538	Reduced ²

Reduced¹ – When the mid channel is 3 dB below the limit, the remaining channels are not required per KDB 447498 D01 v06 section 4.3.3 page 14.

Reduced² – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations.

Maximum power: 251.2 mW Closest Distance to Side F: 97 mm

[{[(3.0)/($\sqrt{0.849}$)]*50 mm}]+[{97-50 mm}*10]=632 mW which is greater than 251.2 mW [{[(3.0)/($\sqrt{1.755}$)]*50 mm}]+[{97-50 mm}*10]=583 mW which is greater than 251.2 mW [{[(3.0)/($\sqrt{1.91}$)]*50 mm}]+[{97-50 mm}*10]=578 mW which is greater than 251.2 mW

10.5 SAR Measurement Conditions for LTE Bands

10.5.1 LTE Functionality

The follow table identifies all the channel bandwidths in each frequency band supported by this device.

LTE Band Class	Bandwidth (MHz)	Frequency or Freq. Band (MHz)
2	1.4, 3, 5, 10, 15, 20	1850-1910 MHz
4	1.4, 3, 5, 10, 15, 20	1710-1755 MHz
5	1.4, 3, 5, 10	824-849 MHz
13	5, 10	777-787 MHz
48	5, 10, 15, 20	3550-3700 MHz
66	1.4, 3, 5, 10, 15, 20	1710-1780 MHz

10.5.2 Test Conditions

All SAR measurements for LTE were performed using the Anritsu MT8820C. A closed loop power control setting allowed the UE to transmit at the maximum output power during the SAR measurements. The Figure 11.1 table indicates all the test reduction utilized for this report.

MPR was enabled for this device. A-MPR was disabled for all SAR test measurements.

Table 10.5.1 LTE Power Measurements

Band	Bandwidth	RB	Offset	Channel	Freq.	Max Tune Up	QPSK	16QAM
				23205	779.5		23.26	22.71
		1	0	23230	782		23.28	22.90
				23255	784.5		23.73	22.88
	[23205	779.5		23.11	22.47
		1	12	23230	782		23.83	23.03
				23255	784.5		23.91	23.30
]			23205	779.5		23.82	23.44
		1	24	23230	782		23.95	23.35
				23255	784.5	MIN = 21.3 dBm	23.95	23.46
] [23205	779.5	NOM = 23.0	22.09	21.33
	5	12	0	23230	782	dBm	22.88	21.88
				23255	784.5	MAX = 24.0	22.89	21.95
				23205	779.5	dBm	22.35	21.41
		12	6	23230	782		23.04	22.06
Band 13				23255	784.5		23.08	21.98
Ant 0				23205	779.5		22.95	21.94
		12	13	23230	782		22.98	22.90 22.88 22.47 23.03 23.30 23.44 23.35 23.46 21.33 21.88 21.95 21.41 22.06 21.98
				23255	784.5		23.08	21.98
				23205	779.5		22.63	21.64
		25	0	23230	782		22.92	21.92
				23255	784.5		22.99	21.87
	<u> </u>	1	0	23230	782		23.15	22.34
	<u> </u>	1	25	23230	782	MIN = 21.3 dBm	23.98	23.02
	<u> </u>	1	49	23230	782	NOM = 23.0	23.88	22.90
	10	25	0	23230	782	dBm	22.79	21.74
	[25	13	23230	782	MAX = 24.0	22.94	21.85
	[25	25	23230	782	dBm	22.63 21.64 22.92 21.92 22.99 21.87 23.15 22.34 23.98 23.02 23.88 22.90 22.79 21.74 22.94 21.85 22.83 21.76	
		50	0	23230	782		22.88	21.68
	UL MCS	M	CS Index 6	=> QPSK, TB	S 6	MIN =>	22.09	21.33
	Index	MCS	Index 11 =	> 16QAM, T	BS 10	MAX =>	23.98	23.46

Band	Bandwidth	RB	Offset	Channel	Freq.	Max Tune Up	QPSK	16QAM
				20407	824.7		23.69	22.33
		1	0	20525	836.5		23.90	23.13
				20643	848.3		23.29	21.97
				20407	824.7		23.69	22.52
		1	3	20525	836.5		24.00	23.26
				20643	848.3		22.90	21.32
				20407	824.7		23.53	22.22
		1	5	20525	836.5		23.99	23.14
				20643	848.3	MIN = 21.3 dBm	22.34	21.38
				20407	824.7	NOM = 23.0	23.78	22.50
	1.4	3	0	20525	836.5	dBm	23.98	22.94
				20643	848.3	MAX = 24.0	23.25	21.78
				20407	824.7	dBm	23.78	22.54
		3	1	20525	836.5		24.00	23.09
				20643	848.3		23.13	21.63
				20407	824.7		23.64	22.34
		3	3	20525	836.5		24.00	23.12
Band 5				20643	848.3		22.55	21.36
Ant 0				20407	824.7		22.82	21.57
		6	0	20525	836.5		23.09	22.09
				20643	848.3		22.08	21.64
				20415	825.5		23.75	22.66
		1	0	20525	836.5		23.93	22.87
				20635	847.5		23.81	22.35
				20415	825.5		23.71	22.42
		1	7	20525	836.5		24.00	23.06
				20635	847.5	MIN = 21.3 dBm	23.66	22.24
				20415	825.5	NOM = 23.0	23.65	22.32
	3	1	14	20525	836.5	dBm	24.00	22.61
				20635	847.5	MAX = 24.0	22.40	21.38
				20415	825.5	dBm	22.91	21.63
		8	0	20525	836.5		23.12	22.18
				20635	847.5		22.89	21.44
				20415	825.5		22.85	21.64
		8	3	20525	836.5		23.13	22.30
				20635	847.5		22.78	21.38

Band	Bandwidth	RB	Offset	Channel	Freq.	Max Tune Up	QPSK	16QAM
				20415	825.5		22.78	21.59
		8	7	20525	836.5	MIN = 21.3 dBm	23.21	22.27
	2			20635	847.5	NOM = 23.0	22.26	21.91
	3			20415	825.5	dBm MAX = 24.0	22.84	21.62
		15	0	20525	836.5	dBm	23.13	22.17
				20635	847.5		22.55	21.33
				20425	826.5		23.79	22.81
		1	0	20525	836.5		23.79	22.88
				20625	846.5		23.51	22.20
				20425	826.5		23.78	23.13
		1	12	20525	836.5		24.00	23.18
				20625	846.5		23.98	22.56
				20425	826.5		23.84	23.18
		1	24	20525	836.5		23.61	22.32
				20625	846.5	MIN = 21.3 dBm	22.53	21.34
				20425	826.5	NOM = 23.0	22.93	21.79
	5	12	0	20525	836.5	dBm	23.06	22.17
				20625	846.5	MAX = 24.0	22.80	21.42
Donal F				20425	826.5	dBm	22.92	
Band 5 Ant 0		12	6	20525	836.5		23.21	22.24
Anto				20625	846.5		22.97	21.54
				20425	826.5		22.92	21.61
		12	13	20525	836.5		23.14	22.04
				20625	846.5		22.55	21.32
				20425	826.5		22.87	21.61
		25	0	20525	836.5		23.12	22.04
				20625	846.5		22.66	21.39
				20450	829		23.81	23.11
		1	0	20525	836.5		23.79	23.48
				20600	844		23.28	22.53
				20450	829		23.94	23.44
		1	25	20525	836.5	MIN = 21.3 dBm	23.95	23.11
	10			20600	844	NOM = 23.0 dBm	23.50	22.77
	10			20450	829	MAX = 24.0	23.82	23.37
	1	49	20525	836.5	dBm	22.95	22.16	
				20600	844]	22.91	21.86
				20450	829] [22.90	21.80
		25	0	20525	836.5] [22.86	21.83
				20600	844		22.32	21.31

Band	Bandwidth	RB	Offset	Channel	Freq.	Max Tune Up	QPSK	16QAM
				20450	829		22.72	22.00
		25	13	20525	836.5		22.87	22.08
				20600	844	MIN = 21.3 dBm	22.60	21.31
] [20450	829	NOM = 23.0	22.92	21.84
	10	25	25	20525	836.5	dBm	22.87	21.57
Band 5				20600	844	MAX = 24.0	22.74	21.37
Ant 0				20450	829	dBm	22.86	21.92
		50	0	20525	836.5		22.98	21.93
				20600	844		22.54	21.32
	UL MCS	M	CS Index 6	=> QPSK, TB	S 6	MIN =>	22.08	21.31
	Index	MCS	Index 11 =	> 16QAM, T	BS 10	MAX =>	24.00	23.48

Band	Bandwidth	RB	Offset	Channel	Freq.	Max Tune Up	QPSK	16QAM	
				19965	1711.5		21.97	21.30	
		1	0	20175	1732.5		22.94	22.16	
				20385	1753.5		22.82	21.71	
				19965	1711.5		23.13	21.83	
		1	7	20175	1732.5		23.48	22.74	
				20385	1753.5		23.34	22.00	
				19965	1711.5		22.19	21.67	
		1	14	20175	1732.5		23.35	22.52	
				20385	1753.5	MIN = 20.3 dBm	23.36	22.58	
				19965	1711.5	NOM = 22.0	22.38	21.70	
	3	8	0	20175	1732.5	dBm	23.40	22.60	
				20385	1753.5	MAX = 23.0	22.94 22.16 22.82 21.71 23.13 21.83 23.48 22.74 23.34 22.00 22.19 21.67 23.35 22.52 23.36 22.58 22.20 22.38 21.70 23.40 22.60 22.49 21.77 23.41 22.64 23.78 22.85 22.53 21.76 23.08 22.55 23.58 22.04 22.34 21.55 23.20 22.58 23.58 22.04 22.34 21.55 23.20 22.58 23.58 22.92 22.87 21.35 23.01 22.95 23.41 22.26 22.87 21.35 23.01 22.95 23.41 22.26 22.87 21.35 23.01 22.95 23.41 22.26 22.28 21.98 23.48 22.49 23.48 22.49 23.48 22.49 23.64 22.68 23.08 22.55 23.10 22.55 23.20 22.58 23.20 22.59 23.20 22.30 23.20 22.59 22.03 23.20 22.55 21.72 22.44 21.60 23.42 22.31		
				19965	1711.5	dBm	22.49	21.77	
		8	3	20175	1732.5		23.41	22.64	
				20385	1753.5		23.78	22.85	
				19965	1711.5		22.53	21.76	
		8	7	20175	1732.5		23.08	22.55	
Band 4				20385	1753.5		23.58	22.04	
Ant 0				19965	1711.5		22.34	21.55	
		15	0	20175	1732.5		23.20	22.58	
				20385	1753.5		23.58	22.92	
				19975	1712.5		22.87	21.35	
		1	0	20175	1732.5		23.01	22.95	
				20375	1752.5		23.41	22.26	
				19975	1712.5		22.28	21.98	
		1	12	20175	1732.5		23.48	22.49	
				20375	1752.5	MIN = 20.3 dBm	23.64	22.68	
				19975	1712.5	NOM = 22.0	22.59	22.03	
	5	1	24	20175	1732.5	dBm	23.08	22.12	
				20375	1752.5	MAX = 23.0	22.55	21.72	
				19975	1712.5	dBm	22.44	21.60	
		12	0	20175	1732.5] [23.42	22.31	
				20375	1752.5		23.58	22.76	
				19975	1712.5		22.62	21.76	
		12	6	20175	1732.5	- ⊢	23.37	22.63	
				20375	1752.5	<u> </u>	23.72	22.92	

Band	Bandwidth	RB	Offset	Channel	Freq.	Max Tune Up	QPSK	16QAM
				19975	1712.5		22.77	21.91
		12	13	20175	1732.5	MIN = 20.3 dBm	23.25	22.51
	_			20375	1752.5	NOM = 22.0	23.05	22.00
	5			19975	1712.5	dBm MAX = 23.0	22.33	21.56
		25	0	20175	1732.5	dBm	22.96	22.30
				20375	1752.5		23.37	22.62
				20000	1715		23.97	21.39
		1	0	20175	1732.5		23.57	22.54
	10			20350	1750		23.49	22.77
				20000	1715		22.73	22.29
		1	25	20175	1732.5		23.87	22.50
				20350	1750		23.59	22.35
				20000	1715		23.09	22.14
		1	49	20175	1732.5		23.52	22.87
				20350	1750	MIN = 20.3 dBm	23.21	22.83
				20000	1715	NOM = 22.0	22.56	21.62
		25	0	20175	1732.5	dBm	23.18	22.32
				20350	1750	MAX = 23.0	22.94	22.40
Band 4				20000	1715	dBm	21.96	22.83 21.62 22.32 22.40 21.32 22.22 22.38 21.60 22.06
Ant 0		25	13	20175	1732.5		23.06	22.22
7				20350	1750		23.19	22.38
				20000	1715		22.46	21.60
		25	25	20175	1732.5		22.87	22.06
				20350	1750		23.38	22.57
				20000	1715		22.80	21.87
		50	0	20175	1732.5		22.69	21.89
				20350	1750		22.89	21.96
				20025	1717.5		22.27	21.73
		1	0	20175	1732.5		23.10	22.57
				20325	1747.5		23.14	22.49
				20025	1717.5		23.45	22.96
		1	37	20175	1732.5	MIN = 20.3 dBm NOM = 22.0	23.17	22.35
	15			20325	1747.5	dBm -	23.43	22.50
				20025	1717.5	MAX = 23.0	23.14	22.42
		1	74	20175	1732.5	dBm	22.86	22.33 21.56 22.96 22.30 23.37 22.62 23.97 21.39 23.57 22.54 23.49 22.77 22.73 22.29 23.87 22.50 23.59 22.35 23.09 22.14 23.52 22.87 23.21 22.83 22.56 21.62 23.18 22.32 22.94 22.40 21.96 21.32 23.06 22.22 23.19 22.38 22.46 21.60 22.87 22.06 23.38 22.57 22.80 21.87 22.69 21.89 22.89 21.96 22.27 21.73 23.14 22.49 23.45 22.96 23.17 22.35 23.43 22.50 23.14 22.42
				20325	1747.5	<u> </u>	22.96 22.30 23.37 22.62 23.97 21.39 23.57 22.54 23.49 22.77 22.73 22.29 23.87 22.50 23.59 22.35 23.09 22.14 23.52 22.87 23.21 22.83 22.56 21.62 23.18 22.32 22.94 22.40 21.96 21.32 23.06 22.22 23.19 22.38 22.46 21.60 22.87 22.06 23.38 22.57 22.80 21.87 22.89 21.89 22.89 21.73 23.14 22.49 23.45 22.96 23.14 22.49 23.43 22.50 23.14 22.42 22.86 22.01 23.15 22.03 22.89 21.33 23.33 22.50	22.03
				20025	1717.5		22.89	21.33
		36	0	20175	1732.5] [23.33	22.50
				20325	1747.5		22.75	21.95

Band	Bandwidth	RB	Offset	Channel	Freq.	Max Tune Up	QPSK	16QAM
				20025	1717.5		22.55	21.64 22.29 22.22 22.20 22.04 22.37 21.31 21.79 21.76 21.91 22.93 22.35 22.43 22.06 22.20 21.61 21.77 21.95 21.31 22.31 21.67 21.94 22.03 21.32 22.16 21.70 22.02 21.54 21.85
		36	19	20175	1732.5		23.08	22.29
				20325	1747.5	MIN = 20.3 dBm	23.02	22.22
				20025	1717.5	NOM = 22.0	23.07	22.20
	15	36	39	20175	1732.5	dBm	22.82	22.04
				20325	1747.5	MAX = 23.0	23.36	22.37
			36 19 36 39 75 0 1 0 1 49 50 0 50 25 50 50	20025	1717.5	dBm	22.36	21.31
		75	0	20175	1732.5		22.78	21.79
				20325	1747.5		22.71	21.76
				20050	1720		22.52	21.91
		1	0	20175	1732.5		22.80	22.93
				20300	1745		22.69	22.35
				20050	1720 22.52 21.9 1732.5 22.80 22.9 1745 22.69 22.3 1720 23.66 22.4 1732.5 23.73 22.0 1720 23.32 22.2 1720 22.44 21.6 1732.5 22.86 21.7 1745 MIN = 20.3 dBm 22.59 21.9	22.43		
		1	49	20175	1732.5		22.55 2 23.08 2 23.08 2 23.07 2 dBm 22.82 2 AX = 23.0 23.36 2 22.78 2 22.71 2 22.52 2 22.80 2 23.66 2 23.73 2 23.32 2 23.44 2 22.86 2 22.44 2 22.86 2 22.70 2 dBm 23.13 2 AX = 23.0 dBm 23.35 2 23.90 2 dBm 23.35 2 23.90 2 23.90 2 23.03 2 23.90 2 23.03 2 23.90 2 23.03 2 23.90 2 23.03 2 23.90 2 23.03 2 23.90 2 23.03 2 23.90 2 23.03 2 23.90 2 23.03 2 23.90 2 23.03 2 23.90 2 24.90 2 25.90 2 25.90 2 25.90 2 25.90 2	22.06
				20300	1745		23.32	22.20
Band 4] [20050	1720		22.44	21.61
Ant 0		1	99	20175	1732.5		22.86	21.64 22.29 22.22 22.20 22.04 22.37 21.31 21.79 21.76 21.91 22.93 22.35 22.43 22.06 22.20 21.61 21.77 21.95 21.31 22.31 21.67 21.94 22.03 21.32 22.16 21.70 22.02 21.54
				20300	1745	MIN = 20.3 dBm	22.59	21.95
] [20050	1720		22.70	21.31
	20	50	0	20175	1732.5	dBm	23.13	22.31
				20300	1745	MAX = 23.0	22.90	21.67
] [20050	1720	dBm	23.35	21.94
]	50	25	20175	1732.5		23.27	22.03
				20300	1745		23.03	21.32
]			20050	1720		23.52	22.16
		50	50	20175	1732.5		22.95	21.70
				20300	1745		23.33	22.22 22.20 22.04 22.37 21.31 21.79 21.76 21.91 22.93 22.35 22.43 22.06 22.20 21.61 21.77 21.95 21.31 22.31 21.67 21.94 22.03 21.32 22.16 21.70 22.02 21.54 21.85 21.70 21.30
				20050	1720		23.08	21.54
		100	0	20175	1732.5		23.18	21.85
				20300	1745	†	23.05	21.70
	UL MCS	M	CS Index 6	=> QPSK, TB	S 6	MIN =>	21.96	21.30
	Index	MCS	Index 11 =:	> 16QAM, T	BS 10	MAX =>	23.97	22.96

Band	Bandwidth	RB	Offset	Channel	Freq.	Max Tune Up	QPSK	16QAM
				131987	1711.5		22.81	21.92
		1	0	132322	1745	-	22.48	21.31
				132657	1778.5	-	22.18	21.32
				131987	1711.5	-	22.10	22.00
		1	7	132322	1745		22.57	21.76
				132657	1778.5		22.31	21.96
				131987	1711.5		22.60	21.33
		1	14	132322	1745		22.43	21.36
				132657	1778.5	MIN = 20.3 dBm	22.07	21.37
				131987	1711.5	NOM = 22.0	22.07	21.34
	3	8	0	132322	1745	dBm	22.92	21.31
				132657	1778.5	MAX = 23.0	22.36	21.31
				131987	1711.5	dBm	22.06	21.34
		8	3	132322	1745		21.92	21.36
				132657	1778.5		22.43	21.32
				131987	1711.5		21.97	21.99
		8	7	132322	1745		21.92	21.81
				132657	1778.5		22.70	21.39
David CC				131987	1711.5		22.11	21.38
Band 66 Ant 0		15	0	132322	1745		22.09	21.94
Anto				132657	1778.5		22.32	21.30
				131997	1712.5		22.76	21.54
		1	0	132322	1745		22.67	21.67
				132647	1777.5		22.05	21.30
				131997	1712.5		22.34	21.38
		1	12	132322	1745		22.90	21.97
				132647	1777.5		22.16	21.94
				131997	1712.5		22.64	21.85
		1	24	132322	1745	MIN = 20.3 dBm	22.50	21.55
	5			132647	1777.5	NOM = 22.0 dBm	22.86	21.81
				131997	1712.5	MAX = 23.0	22.20	21.88
		12	0	132322	1745	dBm	22.89	21.83
				132647	1777.5		22.40	21.39
				131997	1712.5		22.13	21.33
		12	6	132322	1745	<u> </u>	22.11	21.88
				132647	1777.5		22.47	21.36
				131997	1712.5		22.21	21.94
		12	13	132322	1745		22.02	21.69
				132647	1777.5		22.32	21.39

Band	Bandwidth	RB	Offset	Channel	Freq.	Max Tune Up	QPSK	16QAM
				131997	1712.5	MIN = 21.3 dBm	22.35	21.31
				132322	1745	NOM = 23.0	22.52	21.73
	5	25	0	132647	1777.5	dBm MAX = 24.0 dBm	22.63	21.63
				132022	1715		22.96	21.34
		1	0	132322	1745		22.03	21.44
				132622	1775		22.09	21.50
				132022	1715		22.86	22.04
		1	25	132322	1745		22.93	21.42
				132622	1775		22.37	21.46
				132022	1715		22.90	21.38
		1	49	132322	1745		22.92	21.51
				132622	1775	MIN = 20.3 dBm	22.26	21.44
				132022	1715	NOM = 22.0	22.84	21.77
	10	25	0	132322	1745	dBm	22.87	21.37
				132622	1775	MAX = 23.0	22.10	21.37
				132022	1715	dBm	22.24	21.88
		25	13	132322	1745		22.45	21.69
				132622	1775		22.77	21.86
Band 66				132022	1715		22.09	21.77
Ant 0		25	25	132322	1745		22.62	21.32
				132622	1775		22.59	21.72
				132022	1715		22.83	21.37
		50	0	132322	1745		22.10	21.88
				132622	1775		22.61	21.42
				132047	1717.5		22.45	21.73
		1	0	132322	1745		22.44	21.60
				132597	1772.5		22.47	21.57
				132047	1717.5		23.05	21.83
		1	37	132322	1745		22.98	21.91
				132597	1772.5	MIN = 20.3 dBm	22.35	21.40
				132047	1717.5	NOM = 22.0	22.65	21.52
	15	1	74	132322	1745	dBm	22.18	21.75
				132597	1772.5	MAX = 23.0	22.24	21.40
				132047	1717.5	dBm	22.14	21.86
		36	0	132322	1745		22.94	21.87
				132597	1772.5		22.33	21.86
				132047	1717.5		22.25	21.38
		36	19	132322	1745		22.02	21.83
				132597	1772.5		22.15	21.39

Band	Bandwidth	RB	Offset	Channel	Freq.	Max Tune Up	QPSK	16QAM
				132047	1717.5		22.93	21.93
		36	39	132322	1745	MIN = 20.3 dBm	22.88	21.78
	4.5			132597	1772.5	NOM = 22.0	22.26	21.82
	15			132047	1717.5	dBm MAX = 23.0	22.18	21.76
		75	0	132322	1745	dBm	22.24	21.56
				132597	1772.5		22.37	21.34
				132072	1720		22.24	21.36
		1	0	132322	1745		22.16	21.34
				132572	1770		23.25	21.43
				132072	1720		23.11	21.98
		1	49	132322	1745		23.07	21.43
				132572	1770		22.57	21.56
				132072	1720		22.13	21.35
D 166		1	99	132322	1745		22.14	21.32
Band 66 Ant 0				132572	1770	MIN = 20.3 dBm	22.36	21.37
Anto				132072	1720	NOM = 22.0	22.28	21.39
	20	50	0	132322	1745	dBm	22.50	21.30
				132572	1770	MAX = 23.0	23.08	21.36
				132072	1720	dBm	22.83	21.94
		50	25	132322	1745		22.37	21.37
				132572	1770		22.33	21.86
				132072	1720		22.51	21.41
		50	50	132322	1745		22.85	21.86
				132572	1770		22.70	21.34 21.43 21.98 21.43 21.56 21.35 21.32 21.37 21.39 21.30 21.36 21.94 21.37 21.86 21.41 21.86 21.77 21.32 21.44 21.37 21.30
				132072	1720		22.55	21.32
		100	0	132322	1745		22.97	21.44
				132572	1770		22.51	21.37
	UL MCS	M	CS Index 6	=> QPSK, TB	S 6	MIN =>	21.92	21.30
	Index	MCS	Index 11 =:	> 16QAM, T	BS 10	MAX =>	23.25	22.04

Band	Bandwidth	RB	Offset	Channel	Freq.	Max Tune Up	QPSK	16QAM
				18615	1851.5		22.00	20.64
		1	0	18900	1880		22.00	20.83
				19185	1908.5		22.00	21.66
				18615	1851.5		22.00	21.60
		1	7	18900	1880		22.00	21.95
				19185	1908.5		22.00	20.64
				18615	1851.5		22.00	21.45
	3	1	14	18900	1880		22.00	20.54
				19185	1908.5	MIN = 20.3 dBm	22.00	20.81
				18615	1851.5	NOM = 22.0	21.77	20.46
		8	0	18900	1880	dBm	21.70	20.73
				19185	1908.5	MAX = 22.5	22.00 20.64 22.00 20.83 22.00 21.66 22.00 21.95 22.00 20.64 22.00 20.54 22.00 20.81 21.77 20.46 21.70 20.73 21.78 20.34 21.85 20.79 21.94 20.37 21.74 20.53 21.75 20.79 21.69 20.91 21.80 20.41 21.89 20.78 21.84 20.32 22.00 21.14 22.00 21.14 22.00 21.32 22.00 21.82 22.00 20.80 22.00 20.80 22.00 20.58 21.67 20.36 21.70 20.33 21.68 20.35 21.78 20.30 21.79 20.44 21.84 20.36 21.79 20.44 21.84 20.36 21	
				18615	1851.5	dBm	21.85	20.53
		8	3	18900	1880		21.85	20.79
				19185	1908.5		21.94	20.37
				18615	1851.5		21.74	20.53
		8	7	18900	1880		21.75	20.79
				19185	1908.5		21.69	20.91
D				18615	1851.5		21.80	20.41
Band 2 Ant 0		15	0	18900	1880		21.89	20.78
Anto				19185	1908.5		21.84 20.	20.32
				18625	1852.5		22.00	21.14
		1	0	18900	1880		22.00	21.10
				19175	1907.5		22.00	20.94
				18625	1852.5		21.89	20.32
		1	12	18900	1880		22.00	21.32
				19175	1907.5		22.00	21.82
				18625	1852.5		22.00	20.80
		1	24	18900	1880	MIN = 20.3 dBm	22.00	20.94
	5			19175	1907.5	NOM = 22.0 dBm	22.00	20.58
	3			18625	1852.5	MAX = 22.5	21.67	20.36
		12	0	18900	1880	dBm	21.70	20.33
				19175	1907.5		21.68	20.35
				18625	1852.5		21.78	20.30
		12	6	18900	1880		21.79	20.44
				19175	1907.5		21.84	20.44
				18625	1852.5		21.69	20.36
		12	13	18900	1880		21.73	20.35
			12 13	19175	1907.5		21.85	20.34

Band	Bandwidth	RB	Offset	Channel	Freq.	Max Tune Up	QPSK	16QAM
				18625	1852.5	MIN = 20.3 dBm	21.76	20.39
				18900	1880	NOM = 22.0	21.69	20.43
	5	25	0	19175	1907.5	dBm MAX = 22.5 dBm	21.71	20.32
				18650	1855		21.68	20.40
		1	0	18900	1880		21.69	20.58
				19150	1905		22.45	20.97
				18650	1855		21.83	21.27
		1	25	18900	1880		22.00	20.31
				19150	1905		22.00	20.36
				18650	1855		21.43	20.71
		1	49	18900	1880		21.48	20.52
				19150	1905	MIN = 20.3 dBm	20.31	
				18650	1855	NOM = 22.0	21.06	20.36
	10	25	0	18900	1880	dBm	21.28	20.37
				19150	1905	MAX = 22.5	21.03	20.79
				18650	1855	dBm	21.21	20.39
		25	13	18900	1880		21.47	20.42
				19150	1905		21.28	20.37
Band 2				18650	1855		21.89	20.89
Ant 0		25	25	18900	1880		21.17	20.38
				19150	1905		21.97	20.38
				18650	1855		21.10	20.34
		50	0	18900	1880		21.20	20.35
				19150	1905		21.03	20.38
				18675	1857.5		22.00	20.33
		1	0	18900	1880		22.00	21.58
				19125	1902.5		21.14	20.81
				18675	1857.5		22.00	21.45
		1	37	18900	1880		22.00	21.66
				19125	1902.5	MIN = 20.3 dBm	22.00	21.45
				18675	1857.5	NOM = 22.0	21.67	20.34
	15	1	74	18900	1880	dBm	22.00	21.67
				19125	1902.5	MAX = 22.5	22.00	21.21
				18675	1857.5	dBm	21.27	20.31
		36	0	18900	1880		21.58	20.45
				19125	1902.5		21.85	20.57
				18675	1857.5		21.32	20.31
		36	19	18900	1880		21.59	20.51
				19125	1902.5		21.29	20.87

Band	Bandwidth	RB	Offset	Channel	Freq.	Max Tune Up	QPSK	16QAM
				18675	1857.5		21.21	20.34
		36	39	18900	1880	MIN = 20.3 dBm	21.32	20.33
	15			19125	1902.5	NOM = 22.0	21.20	20.34
	15			18675	1857.5	- dBm - MAX = 22.5 dBm	21.10	20.31
		75	0	18900	1880		21.49	20.30
				19125	1902.5		21.16	20.36
				18700	1860		22.00	20.61
		1	0	18900	1880		22.00	21.72
				19100	1900		22.00	20.77
				18700	1860		22.00	21.47
		1	49	18900		21.75		
				19100	1900		21.57	20.64
				18700	1860		22.00	21.35
5 10		1	99	18900	1880		22.00	21.33
Band 2 Ant 0	ļ			19100	1900	MIN = 20.3 dBm NOM = 22.0 dBm	22.00	21.16
Anto			0 0	18700	1860		21.57	20.31
	20	50		18900	1880		21.51	20.36
	<u> </u>			19100	1900	MAX = 22.5	21.91	20.32
				18700	1860	dBm	21.42	20.31
		50	25	18900	1880		21.56	20.37
	<u> </u>			19100	1900		21.12	20.92
				18700	1860		21.07	20.95
		50	50	18900	1880		21.21	20.31
	<u> </u>			19100	1900		21.10	20.95
				18700	1860	[21.26	20.39
		100	0	18900	1880	[21.25	20.34
				19100	1900		21.19	20.33
	UL MCS	M	CS Index 6 :	=> QPSK, TB	S 6	MIN =>	21.03	20.30
	Index	MCS	Index 11 =:	> 16QAM, T	BS 10	MAX =>	22.84	21.95

Band	Bandwidth	RB	Offset	Channel	Freq.	Max Tune Up	QPSK	16QAM
				55265	3552.5		23.14	21.96
				55630	3589		23.07	22.16
		1	0	55990	3625		23.11	22.42
				56350	3661		23.52	22.60
				56715	3697.5		22.85	22.34
				55265	3552.5		23.10	22.01
				55630	3589		23.36	22.28
		1	12	55990	3625		23.37	22.61
				56350	3661		23.78	22.68
				56715	3697.5		23.07	22.45
				55265	3552.5		22.99	21.95
				55630	3589		23.19	22.29
		1	24	55990	3625		23.24	22.63
				56350	3661	23.24 23.70 22.80		22.64
				56715	3697.5		22.80	22.24
			0	55265	3552.5	MIN = 21.3 dBm	22.73	21.47
Daniel 40				55630	3589	NOM = 23.0	22.66	21.52
Band 48 Ant 4	5	12		55990	3625	dBm	22.52	21.60
7416 1				56350	3661	MAX = 24.0 dBm	22.99	21.95
				56715	3697.5		22.46	22.24
				55265	3552.5		22.57	21.53
				55630	3589		22.63	21.70
		12	6	55990	3625		22.53	21.67
				56350	3661		23.01	22.04
				56715	3697.5		23.37	22.33
				55265	3552.5		22.48	21.55
				55630	3589		22.54	21.63
		12	13	55990	3625		22.52	21.61
				56350	3661		23.01	22.10
				56715	3697.5		23.36	22.29
				55265	3552.5		22.45	21.49
				55630	3589		22.58	21.60
		25	0	55990	3625		22.50	21.62
				56350	3661		23.00	22.10
				56715	3697.5		23.24	22.39

		,		Channel	Freq.	Max Tune Up	QPSK	16QAM
				55290	3555		22.89	22.05
				55640	3590		23.06	22.24
		1	0	55990	3625		23.11	22.40
				56340	3660		23.40	22.55
				56690	3695		22.93	22.39
		55290 3555		22.86	21.97			
				55640	3590		23.17	22.28
		1	25	55990	3625		23.51	22.62
				56340	3660		23.60	22.69
				56690	3695		23.10	22.48
				55290	3555		22.85	21.99
				55640	3590		23.14	22.29
		1	49	55990	23.10 20 3695 20 3555 40 3590 20 3625 40 3660 20 3695 20 3555 40 3590 MIN = 21.3 dBm NOM = 23.0 dBm NOM = 23.0 dBm MAX = 24.0 23.14 23.28 23.28 23.49 22.67 22.41 22.88 22.48 22.48 22.48 22.48	22.74		
				56340	3660		23.49	22.61
				56690	3695		22.67	22.21
			25 0	55290	3555	MIN - 21 3 dRm	22.41	21.41
				55640	3590		22.88	21.50
Band 48 Ant 4	10	25		55990	3625	1	22.48	21.42
Ant 4				56340	3660		22.85	21.95
				56690	3695	dBm	23.26	22.32
				55290	3555		22.40	21.46
				55640	3590		22.71	21.67
		25	13	55990	3625		22.58	21.52
				56340	3660		23.01	22.03
				56690	3695		23.35	22.42
				55290	3555		22.44	21.50
				55640	3590		22.62	21.71
		25	25	55990	3625		22.65	21.68
				56340	3660		22.98	22.05
				56690	3695		23.39	22.30
				55290	3555		22.28	21.45
				55640	3590		22.70	21.70
		50	0	55990	3625		22.53	21.67
				56340	3660		22.99	22.03
				56690	3695		23.31	22.41

Band	Bandwidth	RB	Offset	Channel	Freq.	Max Tune Up	QPSK	16QAM	
				55315	3557.5		22.78	21.99	
				55650	3591		22.96	22.16	
		1	0	55990	3625		23.13	22.32	
				56330	3659		23.30	22.48	
				56665	3692.5		23.14	22.84	
				55315	3557.5		22.73	21.92	
				55650	3591		23.08	22.27	
		1	37	55990	3625		23.37	22.55	
				56330	3659		23.43	22.60	
				56665	3692.5		23.09	22.45	
				55315	3557.5		22.80	22.01	
				55650	3591		23.13	22.35	
		1	74	55990	3625	3625 23.36	22.81		
				56330	3659	23.13 22 23.36 22 23.44 22 22.73 22 3.44 22 22.73 22 22.51 22 3.44 22 22.69 22 4.4 22 22.69 22 4.4 22 22.69 22 4.4 22 22.69 22 4.4 22 22.69 22 4.4 22			
				56665	3692.5		22.73	22.20	
			0	55315	3557.5	MIN = 21 3 dBm	22.51	21.59	
				55650	3591		22.69	21.78	
Band 48 Ant 4	15	36		55990	3625		22.61	21.62	
AIIL 4				56330	3659	MAX = 24.0	23.04	22.04	
				56665	3692.5	dBm	23.52	22.36	
				55315	3557.5		22.52	21.56	
				55650	3591		22.80	21.84	
		36	19	55990	3625		22.64	21.71	
				56330	3659		23.09	22.16	
				56665	3692.5		23.44	22.49	
				55315	3557.5		22.62	21.57	
				55650	3591		22.69	21.75	
		36	39	55990	3625		22.75	21.73	
				56330	22.00				
				56665	3692.5		23.45	22.40	
				55315	3557.5		22.28	21.54	
				55650	3591		22.69	21.76	
		75	0	55990	3625		22.66	21.71	
		/5	"	56330	3659		23.09	22.19	

Band	Bandwidth	RB	Offset	Channel	Freq.	Max Tune Up	QPSK	16QAM
				55340	3560		22.73	22.07
				55665	3592.5		22.96	22.27
		1	0	55990	3625		23.14	22.45
				56315	3657.5		23.59	22.90
				56640	3690		23.47	23.11
				55340	3560		22.78	22.00
				55665	3592.5		23.09	22.31
		1	49	55990	3625		23.38	22.61
				56315	3657.5		23.78	23.00
				56640	3690		23.35	22.71
				55340	3560		23.08	22.32
				55665	3592.5		23.29	22.53
		1	99	55990	3625		23.40	22.75
				56315	3657.5		23.86	23.11
				56640	3690		22.84	22.44
				55340	3560	MIN = 21.3 dBm _	22.54	21.55
				55665	3592.5	NOM = 23.0	22.77	21.83
	20	50	0	55990	3625	dBm	22.61	22.07 22.27 22.45 22.90 23.11 22.00 22.31 22.61 23.00 22.71 22.32 22.53 22.75 23.11 22.44 21.55
				56315	3657.5	MAX = 24.0	23.03	22.14
Band 48				56640	3690	dBm	23.61	3.09 22.31 3.38 22.61 3.78 23.00 3.35 22.71 3.08 22.32 3.29 22.53 3.40 22.75 3.86 23.11 2.84 22.44 2.54 21.55 2.77 21.83 2.61 21.69 3.03 22.14 3.61 22.46 2.45 21.56 2.81 21.79 2.64 21.81 3.08 22.20 3.73 22.54 2.57 21.72 2.79 21.86 2.85 21.88 3.20 22.12 3.78 22.51 2.36 21.55
Ant 4		50	25	55340	3560		22.45	21.56
				55665	3592.5		22.81	21.79
				55990	3625		22.64	21.81
				56315	3657.5		23.08	22.20
				56640	3690		23.73	22.54
				55340	3560		22.57	21.72
				55665	3592.5		22.79	21.86
		50	50	55990	3625		22.85	21.88
				56315	3657.5		23.20	22.12
				56640	3690		23.78	22.51
				55340	3560		22.36	21.55
				55665	3592.5	[22.65	21.71
		100	0	55990	3625	[22.76	21.79
				56315	3657.5	<u> </u>	23.08	22.19
				56640	3690		23.46	22.72
	UL MCS Index			=> QPSK, TB		MIN =>	22.28	21.41
		MCS	MCS Index 11 => 16QAM, TBS 10					
-	UL TDD Configuration			ifiguration 1 ubframe 6		MAX =>	23.86	23.11

Table 10.5.2 Test Reduction Table - LTE

		able 10.5.2	TCSL IXCUI	action rab			
Band/	Side	Required	Bandwidth	Modulation	RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Danuwium	Wodulation	Allocation	Offset	Reduced
. , ,		18700					Tested
		18900			50	0	Tested
		19100					Tested
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100			.00	· ·	Tested
		18700		QPSK			Tested
		18900				49	Tested
		19100					Tested
		18700			1		Reduced ²
		18900				99	Reduced ²
		19100				00	Reduced ²
	Α	18700	20 MHz				Reduced ³
	'`	18900		16QAM	50	25	Reduced ³
		19100			00	20	Reduced ³
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100			100	O	Reduced ¹
		18700					Reduced ⁴
		18900			1	49	Reduced ⁴
		19100				43	Reduced ⁴
		18700					Reduced ⁴
		18900				99	Reduced ⁴
		19100				33	Reduced ⁴
Band 2			handwidths (15 N	L MHz, 10 MHz, 5 MH	lz 3 MHz 1 4 MH	7)	Reduced ⁵
1850-1910 MHz		18700	er bandwidths (15 iv		50	25	Reduced ⁶
		18900					Tested
		19100					Reduced ⁶
		18700			100	0	Reduced ¹
		18900					Reduced ¹
		19100					Reduced ¹
		18700		QPSK			Reduced ²
		18900				49	Tested
		19100				40	Reduced ²
		18700			1		Reduced ²
		18900				99	Reduced ²
		19100				33	Reduced ²
	В	18700	20 MHz				Reduced ³
		18900			50	25	Reduced ³
		19100			30	20	Reduced ³
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100			100	U	Reduced ¹
		18700		16QAM			Reduced ⁴
		18900				49	Reduced ⁴
		19100				43	Reduced ⁴
		18700			1		Reduced ⁴
		18900				99	Reduced ⁴
		19100				99	
			bandwidtha /15 N	<u>l</u> ∕lHz, 10 MHz, 5 MH		(MHz)	Reduced ⁴ Reduced ⁵
	<u> </u>	n the 50% PR testing					

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Band/		Required			RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
Trequeries (MT12)		18700			Anocation	Oliset	Reduced ⁶
		18900			50	25	Tested
		19100			00	20	Reduced ⁶
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100			.00	Ü	Reduced ¹
		18700		QPSK			Reduced ⁶
		18900				49	Tested
		19100					Reduced ⁶
		18700			1		Reduced ²
		18900				99	Reduced ²
		19100	00 MILE				Reduced ²
	С	18700	20 MHz		50		Reduced ³
		18900		16QAM		25	Reduced ³
		19100					Reduced ³
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100			1		Reduced ¹
		18700					Reduced ⁴
		18900				49	Reduced ⁴
		19100					Reduced ⁴
		18700			•		Reduced⁴
		18900				99	Reduced⁴
		19100					Reduced ⁴
Band 2			bandwidths (15 N	MHz, 10 MHz, 5 MH	lz, 3 MHz, 1.4 MH	z)	Reduced ⁵
1850-1910 MHz		18700	Ì		50	25	Reduced ⁶
		18900					Tested
		19100			100	0	Reduced ⁶
		18700					Reduced ¹
		18900					Reduced ¹
		19100		QPSK			Reduced ¹
		18700				40	Reduced ⁶
		18900				49	Tested
		19100			1		Reduced ⁶
		18700				00	Reduced ²
		18900				99	Reduced ²
	D	19100	20 MHz				Reduced ²
	D	18700			50	0.5	Reduced ³
		18900			50	25	Reduced ³
		19100 18700					Reduced ³ Reduced ¹
					100	0	
		18900			100	U	Reduced ¹ Reduced ¹
		19100		16QAM			Reduced ⁴
		18700 18900				49	Reduced ⁴
						49	
		19100 18700			1		Reduced ⁴ Reduced ⁴
		18900				99	Reduced ⁴
		18900				99	
			handwidtha (15 N	MHz, 10 MHz, 5 MH	 	4 MHz)	Reduced ⁴ Reduced ⁵
		All lower	Danuwiuliis (13 l	ni i∠, TU IVI□∠, O IVI□	ı∠, J IVII I∠, 1.4 IVI∏	4)	Neudced.

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3)
A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		18700					Reduced ⁶
		18900			50	25	Tested
		19100					Reduced ⁶
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100		QPSK			Reduced ¹
		18700		QFSN			Reduced ⁶
		18900	20 MHz		1	49	Tested
		19100					Reduced ⁶
		18700					Reduced ²
	E	18900				99	Reduced ²
Band 2		19100					Reduced ²
1850-1910 MHz		18700	20 1011 12		50	25	Reduced ³
1030-1910 WILIZ		18900					Reduced ³
		19100					Reduced ³
		18700					Reduced ¹
		18900			100	0	Reduced ¹
		19100		16QAM			Reduced ¹
		18700		TOQAIVI			Reduced ⁴
		18900				49	Reduced ⁴
		19100			1		Reduced ⁴
		18700			'		Reduced⁴
		18900				99	Reduced⁴
		19100					Reduced⁴
		All lower	bandwidths (15 N	MHz, 10 MHz, 5 MH	lz, 3 MHz, 1.4 MH	z)	Reduced ⁵

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Side F Reduced based on distance in KDB 447498 D01 v06 (See below calculations).

Maximum power: 251.2 mW Closest Distance to Side F: 97 mm

 $[\{[(3.0)/(\sqrt{1.91})]*50 \text{ mm}\}]+[\{97-50 \text{ mm}\}*10]=578 \text{ mW}$ which is greater than 251.2 mW

Band/		Required			RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
Trequency (WITIZ)		132072			Allocation	Oliset	Reduced ⁶
		132322			50	25	Tested
		132572			50	25	Reduced ⁶
		132072					Reduced ¹
		132322			100	0	Reduced ¹
		132572			100	U	Tested
		132072		QPSK			Tested
		132322				49	Tested
		132572				43	Tested
	А	132072			1		Reduced ²
		132322				99	Reduced ²
		132572				33	Reduced ²
		132072	20 MHz				Reduced ³
		132322			50	25	Reduced ³
		132572			30	20	Reduced ³
		132072					Reduced ¹
		132322			100	0	Reduced ¹
		132572	- - -	16QAM	100	Ü	Reduced ¹
		132072			4		Reduced ⁴
		132322				49	Reduced ⁴
		132572				10	Reduced ⁴
		132072			1		Reduced ⁴
		132322				99	Reduced ⁴
		132572					Reduced ⁴
Band 66			bandwidths (15 N	MHz, 10 MHz, 5 MH	lz. 3 MHz. 1.4 MH	z)	Reduced ⁵
1710-1780 MHz		132072	- Dandwidths (13 iv		50	25	Reduced ⁶
		132322					Tested
		132572					Reduced ⁶
		132072			100	0	Reduced ¹
		132322					Reduced ¹
		132572					Reduced ¹
		132072		QPSK			Reduced ⁶
		132322				49	Tested
		132572			4		Reduced ⁶
		132072			1		Reduced ²
		132322				99	Reduced ²
		132572	20 MHz				Reduced ²
	В	132072	ZU IVITZ				Reduced ³
		132322			50	25	Reduced ³
		132572					Reduced ³
		132072					Reduced ¹
		132322			100	0	Reduced ¹
		132572		16QAM			Reduced ¹
		132072		IOQAW			Reduced⁴
		132322				49	Reduced ⁴
		132572			4		Reduced⁴
		132072			1		Reduced⁴
		132322				99	Reduced ⁴
		132572					Reduced ⁴
		All lower	bandwidths (15 N	MHz, 10 MHz, 5 MH	Iz, 3 MHz, 1.4 MH	z)	Reduced⁵

Reduced 1 – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Band/		Required			RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
Trequency (WITIZ)		132072			Allocation	Oliset	Reduced ⁶
		132322			50	25	Tested
		132572			30	25	Reduced ⁶
		132072					Reduced ¹
		132322			100	0	Reduced ¹
		132572			100	U	Reduced ¹
		132072		QPSK			Reduced ⁶
		132322				49	Tested
		132572				43	Reduced ⁶
		132072			1		Reduced ²
		132322				99	Reduced ²
		132572				33	Reduced ²
	С	132072	20 MHz		1		Reduced ³
	O	132322			50	25	Reduced ³
		132572			30	20	Reduced ³
		132072					Reduced ¹
		132322			100	0	Reduced ¹
		132572	1	16QAM	100	J	Reduced ¹
		132072			4		Reduced ⁴
		132322				49	Reduced ⁴
		132572				10	Reduced ⁴
		132072			1		Reduced ⁴
		132322				99	Reduced ⁴
		132572					Reduced ⁴
Band 66			bandwidths (15 N	MHz, 10 MHz, 5 MH	lz. 3 MHz. 1.4 MH	z)	Reduced ⁵
1710-1780 MHz		132072	- Danawatiis (13 iv		50	25	Reduced ⁶
		132322					Tested
		132572					Reduced ⁶
		132072			100	0	Reduced ¹
		132322					Reduced ¹
		132572					Reduced ¹
		132072		QPSK			Reduced ⁶
		132322				49	Tested
		132572			4		Reduced ⁶
		132072			1		Reduced ²
		132322				99	Reduced ²
		132572	20 MLI=				Reduced ²
	D	132072	20 MHz				Reduced ³
		132322			50	25	Reduced ³
		132572					Reduced ³
		132072					Reduced ¹
		132322			100	0	Reduced ¹
		132572		160 4 14			Reduced ¹
		132072		16QAM			Reduced ⁴
		132322				49	Reduced ⁴
		132572			A		Reduced ⁴
		132072			1		Reduced⁴
		132322				99	Reduced ⁴
		132572					Reduced ⁴
		All lower	bandwidths (15 N	MHz, 10 MHz, 5 MH	Iz, 3 MHz, 1.4 MH	z)	Reduced⁵

Reduced 1 – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		132072					Reduced ⁶
		132322			50	25	Tested
		132572					Reduced ⁶
		132072					Reduced ¹
		132322		QPSK	100	0	Reduced ¹
		132572					Reduced ¹
		132072	20 MHz		1		Tested
		132322				49	Tested
		132572					Tested
		132072					Reduced ²
		132322				99	Reduced ²
Band 66		132572					Reduced ²
1710-1780 MHz	E	132072	ZU IVITZ		50	25	Reduced ³
17 10-17 80 WII IZ		132322					Reduced ³
		132572					Reduced ³
		132072					Reduced ¹
		132322			100	0	Reduced ¹
		132572		16QAM			Reduced ¹
		132072		IOQAW			Reduced ⁴
		132322				49	Reduced ⁴
		132572			1		Reduced ⁴
		132072			I		Reduced ⁴
		132322				99	Reduced ⁴
		132572					Reduced ⁴
		All lower	bandwidths (15 N	MHz. 10 MHz. 5 MH	lz. 3 MHz. 1.4 MH	z)	Reduced ⁵

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Side F Reduced based on distance in KDB 447498 D01 v06 (See below calculations).

Maximum power: 251.2 mW Closest Distance to Side F: 97 mm

 $[\{[(3.0)/(\sqrt{1.755})]*50 \text{ mm}\}]+[\{97-50 \text{ mm}\}*10]=583 \text{ mW}$ which is greater than 251.2 mW

Band/		Required			RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
rrequericy (Wiriz)		20450			Allocation	Oliset	Reduced ⁶
		20525			25	12	Tested
		20600			25	12	Reduced ⁶
		20450					Reduced ¹
		20525			50	0	Reduced ¹
		20600			30	O	Reduced ¹
		20450		QPSK			Reduced ⁶
		20525				24	Tested
		20600					Reduced ⁶
		20450			1		Reduced ²
		20525				49	Reduced ²
		20600				.0	Reduced ²
	Α	20450	10 MHz			12	Reduced ³
		20525			25		Reduced ³
		20600					Reduced ³
		20450					Reduced ¹
		20525			1	0	Reduced ¹
		20600		16QAM -			Reduced ¹
		20450					Reduced ⁴
		20525				24	Reduced ⁴
		20600					Reduced ⁴
		20450					Reduced ⁴
		20525				49	Reduced ⁴
		20600					Reduced ⁴
Band 5			All lower	bandwidths (5 MH	z)		Reduced⁵
824-849 MHz		20450		QPSK	25 50	12	Reduced ⁶
		20525					Tested
		20600					Reduced ⁶
		20450					Reduced ¹
		20525					Reduced ¹
		20600					Reduced ¹
		20450		QI OIX			Reduced ⁶
		20525				24	Tested
		20600			1		Reduced ⁶
		20450			•		Reduced ²
		20525				49	Reduced ²
	_	20600	10 MHz				Reduced ²
	В	20450					Reduced ³
		20525			25	12	Reduced ³
		20600					Reduced ³
		20450				_	Reduced ¹
		20525			50	0	Reduced ¹
		20600		16QAM			Reduced ¹
		20450				<u>.</u>	Reduced ⁴
		20525				24	Reduced ⁴
		20600			1		Reduced ⁴
		20450				,-	Reduced ⁴
		20525				49	Reduced ⁴
		20600					Reduced ⁴
Doduced If the C		n the FOO/ DD testing		bandwidths (5 MH			Reduced ⁵

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Band/		Required			RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
Troquonoy (iiiriz)		20450			7 tilo Gation	Onoot	Reduced ⁶
		20525			25	12	Tested
		20600					Reduced ⁶
		20450					Reduced ¹
		20525	1		50	0	Reduced ¹
		20600	1	0.0014			Reduced ¹
		20450	1	QPSK			Reduced ⁶
		20525				24	Tested
		20600	1		1		Reduced ⁶
		20450			I		Reduced ²
		20525				49	Reduced ²
		20600	10 MHz				Reduced ²
	С	20450	10 IVIDZ				Reduced ³
		20525		16QAM	25	12	Reduced ³
		20600					Reduced ³
		20450			50		Reduced ¹
		20525				0	Reduced ¹
		20600					Reduced ¹
		20450			1		Reduced⁴
		20525				24	Reduced ⁴
		20600					Reduced ⁴
		20450					Reduced ⁴
		20525				49	Reduced ⁴
		20600					Reduced ⁴
Band 5			All lower	bandwidths (5 MH	z)		Reduced ⁵
824-849 MHz		20450		QPSK	25		Reduced ⁶
		20525				12	Tested
		20600					Reduced ⁶
		20450			50	0	Reduced ¹
		20525					Reduced ¹
		20600					Reduced ¹
		20450			1	12	Reduced ⁶
		20525					Tested
		20600					Reduced ⁶
		20450				0.4	Reduced ²
		20525				24	Reduced ²
	D	20600	10 MHz				Reduced ² Reduced ³
	ט	20450	-		25	10	
		20525 20600	-		25	12	Reduced ³
		20450	-				Reduced ³ Reduced ¹
		20525	-		50	0	Reduced ¹
			-		50	U	
		20600 20450	1	16QAM			Reduced ¹ Reduced ⁴
		20450	-			24	Reduced ⁴
		20600	1			24	Reduced ⁴
		20450	1		1		Reduced ⁴
		20450				49	Reduced ⁴
						49	Reduced ⁴
	l	20600		bandwidths (5 MH			Reduced.

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		20450					Reduced ⁶
		20525			25	12	Tested
		20600					Reduced ⁶
		20450				0	Reduced ¹
		20525	10 MHz		50		Reduced ¹
	E	20600		QPSK			Reduced ¹
		20450				12	Reduced ⁶
		20525					Tested
		20600			1		Reduced ⁶
		20450			ı		Reduced ²
		20525				24	Reduced ²
Danid 5		20600					Reduced ²
Band 5 824-849 MHz		20450	TO MHZ			12	Reduced ³
624-649 IVITIZ		20525			25		Reduced ³
		20600					Reduced ³
		20450					Reduced ¹
		20525			50	0	Reduced ¹
		20600		16OAM			Reduced ¹
		20450		16QAM			Reduced⁴
		20525				24	Reduced ⁴
		20600			4		Reduced ⁴
		20450	- - -		1		Reduced⁴
		20525				49	Reduced⁴
		20600					Reduced⁴
			All lower	bandwidths (5 MH	z)		Reduced ⁵

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Side F Reduced based on distance in KDB 447498 D01 v06 (See below calculations).

Maximum power: 251.2 mW Closest Distance to Side F: 97 mm

 $[\{[(3.0)/(\sqrt{0.849})]*50 \text{ mm}\}]+[\{97-50 \text{ mm}\}*10]=632 \text{ mW}$ which is greater than 251.2 mW

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		23230			25	12	Tested
		23230		QPSK	50	0	Tested
		23230	10 MHz		1	24	Tested
	Α	23230			1	49	Reduced ²
		23230		16QAM	25	12	Reduced ³
		23230			50	0	Reduced ¹
		23230		IOQAIVI	1	24	Reduced ⁴
		23230			ı	49	Reduced ⁴
Band 13			Reduced ⁵				
777-787 MHz		23230		QPSK	25	12	Tested
		23230			50	0	Reduced ¹
		23230		QF3N	1	24	Tested
		23230	10 MHz		I	49	Reduced ²
	В	23230	10 IVID2		25	12	Reduced ³
		23230]	16QAM	50	0	Reduced ¹
		23230]	TOQAM	1	24	Reduced ⁴
		23230	1		1	49	Reduced ⁴
			All lower	bandwidths (5 MH	z)		Reduced⁵

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		23230			25	12	Tested
		23230		QPSK	50	0	Reduced ¹
		23230	10 MHz		4	24	Tested
	С	23230			, ' ,	49	Reduced ²
		23230		16QAM	25	12	Reduced ³
		23230			50	0	Reduced ¹
		23230			4	24	Reduced ⁴
		23230			ı	49	Reduced ⁴
Band 13			Reduced⁵				
777-787 MHz		23230		QPSK	25	12	Tested
		23230			50	0	Reduced ¹
		23230		QFSN	4	24	Tested
		23230	10 MHz		I	49	Reduced ²
	D	23230	TO MITZ		25	12	Reduced ³
		23230		16QAM	50	0	Reduced ¹
		23230		TOQAM	1	24	Reduced ⁴
		23230	1		1	49	Reduced ⁴
			All lower	bandwidths (5 MH	lz)		Reduced ⁵

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/ Frequency (MHz)	Side	Required Test Channel	Bandwidth	Modulation	RB Allocation	RB Offset	Tested/ Reduced
		23230		QPSK	25	12	Tested
		23230	- 10 MHz		50	0	Reduced ¹
		23230			1	24	Tested
Dond 12		23230			ı	49	Reduced ²
Band 13 777-787 MHz	E	23230		400 414	25	12	Reduced ³
777-767 WILIZ		23230			50	0	Reduced ¹
		23230		16QAM	1	24	Reduced⁴
		23230			ı	49	Reduced⁴
			All lower	bandwidths (5 MH	z)		Reduced⁵

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Side F Reduced based on distance in KDB 447498 D01 v06 (See below calculations).

Maximum power: 251.2 mW Closest Distance to Side F: 97 mm

 $[\{[(3.0)/(\sqrt{0.782})]*50 \text{ mm}\}]+[\{97-50 \text{ mm}\}*10]=639 \text{ mW}$ which is greater than 251.2 mW

Band/	Side	Required	Bandwidth	Modulation	RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	wodulation	Allocation	Offset	Reduced
		55340					Reduced ⁶
		55665	1				Reduced ⁶
		55990	1		50	25	Tested
		56315	1				Reduced ⁶
		56640	1				Reduced ⁶
		55340	1				Reduced ¹
		55665	1				Reduced ¹
		55990			100	0	Reduced ¹
		56315					Reduced ¹
		56640		ODOK			Reduced ¹
		55340		QPSK	1		Reduced ⁶
		55665					Reduced ⁶
		55990				49	Tested
		56315					Reduced ⁶
		56640					Reduced ⁶
		55340			1		Reduced ²
	A	55665					Reduced ²
		55990				99	Reduced ²
		56315					Reduced ²
Band 48		56640	20 MHz				Reduced ²
3550-3700 MHz		55340	20 MH2		50		Reduced ³
3550-3700 MHZ		55665				25	Reduced ³
		55990					Reduced ³
		56315					Reduced ³
		56640					Reduced ³
		55340					Reduced ¹
		55665					Reduced ¹
		55990			100	0	Reduced ¹
		56315					Reduced ¹
		56640		16QAM			Reduced ¹
		55340		TOQAIVI			Reduced ⁴
		55665					Reduced⁴
		55990				49	Reduced ⁴
		56315					Reduced ⁴
		56640			1		Reduced ⁴
		55340			'		Reduced⁴
		55665					Reduced ⁴
		55990				99	Reduced ⁴
		56315					Reduced ⁴
		56640					Reduced ⁴
		All lower	bandwidths (15 N	MHz, 10 MHz, 5 MH	lz. 3 MHz. 1.4 MH	z)	Reduced⁵

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/	O:-I-	Required	Donalis dela	Mandalatian	RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
		55340					Reduced ⁶
		55665					Reduced ⁶
		55990			50	25	Tested
		56315	1				Reduced ⁶
		56640	1				Reduced ⁶
		55340					Reduced ¹
		55665	1				Reduced ¹
		55990			100	0	Reduced ¹
		56315					Reduced ¹
		56640		QPSK			Reduced ¹
		55340		QPSK			Reduced ⁶
		55665					Reduced ⁶
		55990				49	Tested
		56315			1		Reduced ⁶
		56640					Reduced ⁶
		55340					Reduced ²
		55665					Reduced ²
		55990				99	Reduced ²
	С	56315					Reduced ²
Band 48		56640	20 MHz				Reduced ²
3550-3700 MHz		55340	20 IVIH2		50	25	Reduced ³
3330-3700 WII IZ		55665					Reduced ³
		55990					Reduced ³
		56315					Reduced ³
		56640					Reduced ³
		55340					Reduced ¹
		55665					Reduced ¹
		55990			100	0	Reduced ¹
		56315					Reduced ¹
		56640		16QAM			Reduced ¹
		55340		IOQAW			Reduced ⁴
		55665					Reduced ⁴
		55990				49	Reduced ⁴
		56315					Reduced ⁴
		56640			1		Reduced⁴
		55340			'		Reduced ⁴
		55665					Reduced ⁴
		55990				99	Reduced⁴
		56315]				Reduced⁴
		56640		<u> </u>	_		Reduced⁴
		All lower	bandwidths (15 N	MHz, 10 MHz, 5 MH	Iz, 3 MHz, 1.4 MH	z)	Reduced⁵

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/		Required			RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
rrequericy (Wiriz)		55340			Allocation	Oliset	Reduced ⁶
		55665					Reduced ⁶
		55990			50	25	Tested
		56315			30	23	Reduced ⁶
		56640					Reduced ⁶
		55340					Reduced ¹
		55665					Reduced ¹
		55990			100	0	Reduced ¹
		56315			.00	ŭ	Reduced ¹
		56640					Reduced ¹
		55340		QPSK			Reduced ⁶
		55665					Reduced ⁶
		55990				49	Tested
		56315	20 MHz		1		Reduced ⁶
		56640					Reduced ⁶
		55340					Reduced ²
		55665					Reduced ²
	D	55990				99	Reduced ²
		56315					Reduced ²
Danid 40		56640					Reduced ²
Band 48 3550-3700 MHz		55340			50	25	Reduced ³
3550-3700 WIHZ		55665					Reduced ³
		55990					Reduced ³
		56315	1				Reduced ³
		56640					Reduced ³
		55340					Reduced ¹
		55665					Reduced ¹
		55990			100	0	Reduced ¹
		56315					Reduced ¹
		56640		16QAM			Reduced ¹
		55340		TOQAW			Reduced⁴
		55665					Reduced⁴
		55990				49	Reduced⁴
		56315					Reduced⁴
		56640			1		Reduced⁴
		55340			'		Reduced ⁴
		55665					Reduced ⁴
		55990				99	Reduced ⁴
		56315					Reduced ⁴
		56640					Reduced ⁴
		All lower	bandwidths (15 N	//Hz, 10 MHz, 5 MH	lz, 3 MHz, 1.4 MH	z)	Reduced⁵

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Band/	Cida	Required	Dondd4	Madulation	RB	RB	Tested/
Frequency (MHz)	Side	Test Channel	Bandwidth	Modulation	Allocation	Offset	Reduced
, , , , , , , , , , , , , , , , , , , ,		55340					Reduced ⁶
		55665					Reduced ⁶
		55990			50	25	Tested
		56315					Reduced ⁶
		56640					Reduced ⁶
		55340					Reduced ¹
		55665	1				Reduced ¹
		55990	1		100	0	Reduced ¹
		56315					Reduced ¹
		56640		0.0014			Reduced ¹
		55340		QPSK	1		Reduced ⁶
		55665					Reduced ⁶
		55990				49	Tested
		56315					Reduced ⁶
		56640					Reduced ⁶
		55340					Reduced ²
		55665					Reduced ²
		55990				99	Reduced ²
	E	56315					Reduced ²
D 140		56640	00.841.				Reduced ²
Band 48		55340	20 MHz		50		Reduced ³
3550-3700 MHz		55665				25	Reduced ³
		55990					Reduced ³
		56315					Reduced ³
		56640					Reduced ³
		55340	1				Reduced ¹
		55665					Reduced ¹
		55990			100	0	Reduced ¹
		56315]				Reduced ¹
		56640		400414			Reduced ¹
		55340		16QAM			Reduced⁴
		55665					Reduced ⁴
		55990	1			49	Reduced ⁴
		56315	1				Reduced ⁴
		56640	1		4		Reduced ⁴
		55340	1		1		Reduced ⁴
		55665	1				Reduced ⁴
		55990				99	Reduced ⁴
		56315					Reduced ⁴
		56640					Reduced ⁴
1			bandwidths (15 N	MHz, 10 MHz, 5 MH	Iz. 3 MHz. 1.4 MH	z)	Reduced ⁵

Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4.

Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4.

Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4.

Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5.

Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5.

Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2.

Sides B & F Reduced based on distance in KDB 447498 D01 v06 (See below calculations).

Maximum power: 251.2 mW Closest Distance to Side B: 78 mm Closest Distance to Side F: 97 mm

Side B is the closest; therefore, if Side B is excluded side F would also be excluded.

 $[\{[(3.0)/(\sqrt{3.70})]*50 \text{ mm}\}]+[\{78-50 \text{ mm}\}*10]=357 \text{ mW}$ which is greater than 251.2 mW

SAR Data Summary – 750 MHz Body – LTE Band 13

MEA	MEASUREMENT RESULTS											
Gap	Plot	Position	Frequency		BW/ Modulation	RB Size	RB Offset	MPR Target	End Power	Measured SAR (W/kg)	Reported SAR (W/kg)	
			MHz	Ch.	Wodulation	Size	Oliset	larget	(dBm)	SAN (W/Ng)	SAR (W/kg)	
	1		782.0	23230	10 MHz/QPSK	1	25	0	23.98	0.890	0.89	
		Side A	782.0	23230	10 MHz/QPSK	25	13	1	22.94	0.767	0.78	
			782.0	23230	10 MHz/QPSK	50	0	1	22.88	0.651	0.67	
		Side B	782.0	23230	10 MHz/QPSK	1	25	0	23.98	0.543	0.55	
			782.0	23230	10 MHz/QPSK	25	13	1	22.94	0.439	0.45	
10		Side C	782.0	23230	10 MHz/QPSK	1	25	0	23.98	0.795	0.80	
mm		Side C	782.0	23230	10 MHz/QPSK	25	13	1	22.94	0.643	0.65	
		Side D	782.0	23230	10 MHz/QPSK	1	25	0	23.98	0.257	0.26	
		Side D	782.0	23230	10 MHz/QPSK	25	13	1	22.94	0.199	0.20	
		Sido E	782.0	23230	10 MHz/QPSK	1	25	0	23.98	0.172	0.17	
		Side F F	782.0	23230	10 MHz/QPSK	25	13	1	22.94	0.121	0.12	
		Repeat	782.0	23230	10 MHz/QPSK	1	25	0	23.98	0.876	0.88	

Body 1.6 W/kg (mW/g) averaged over 1 gram

1.	Battery is fully	charged for all tests.	

	Power Measured		□ERP	☐EIRP
2.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Eli4	Right Head
	SAR Configuration	Head	\boxtimes Body	
3.	Test Signal Call Mode	⊠Test Code	☐Base Station Simu	ılator
4.	Test Configuration	☐With Belt Clip	☐Without Belt Clip	⊠N/A
5	Ticcua Denth is at least 15 0	cm	-	

5. Tissue Depth is at least 15.0 cm

SAR Data Summary – 835 MHz Body - WCDMA

MEASUREMENT RESULTS

Gap	Plot	Frequency		Modulation	Position	End Power	RMC	Test Set Up	Measured SAR	Reported SAR
		MHz	Ch.			(dBm)			(W/kg)	(W/kg)
		826.4	4132	WCDMA		23.70	12.2 kbps	Test Loop 1	0.685	0.73
	2	836.6	4183	WCDMA	Side A	24.00	12.2 kbps	Test Loop 1	0.817	0.82
		846.4	4233	WCDMA		23.70	12.2 kbps	Test Loop 1	0.685	0.73
10		836.6	4183	WCDMA	Side B	24.00	12.2 kbps	Test Loop 1	0.445	0.45
mm		836.6	4183	WCDMA	Side C	24.00	12.2 kbps	Test Loop 1	0.720	0.72
		836.6	4183	WCDMA	Side D	24.00	12.2 kbps	Test Loop 1	0.309	0.31
		836.6	4183	WCDMA	Side E	24.00	12.2 kbps	Test Loop 1	0.164	0.16
		836.6	4183	WCDMA	Repeat	24.00	12.2 kbps	Test Loop 1	0.798	0.80

Body 1.6 W/kg (mW/g) averaged over 1 gram

 Battery is fully charged for all te 	ests	all	for	charged	fully	is	Battery	1.
---	------	-----	-----	---------	-------	----	---------	----

Power Measured		ERP	☐EIRP
----------------	--	-----	-------

2. SAR Measurement

Phantom Configuration	Left Head	⊠Eli4	Right Head
SAR Configuration	Head	\boxtimes Body	

3. Test Signal Call Mode Base Station Simulator

5. Tissue Depth is at least 15.0 cm

SAR Data Summary – 835 MHz Body – LTE Band 5

MEA	MEASUREMENT RESULTS											
Gap	Plot	Position	Frequency		BW/	RB	RB	MPR	End Power	Measured SAR	Reported SAR	
•			MHz	Ch.	Modulation	Size	Offset	Target	(dBm)	(W/kg)	(W/kg)	
	3	Side A	836.5	20525	10 MHz/QPSK	1	25	0	23.95	0.623	0.63	
			836.5	20525	10 MHz/QPSK	25	13	1	22.87	0.494	0.51	
		Side B	836.5	20525	10 MHz/QPSK	1	25	0	23.95	0.344	0.35	
			836.5	20525	10 MHz/QPSK	25	13	1	22.87	0.283	0.29	
10		Side C	836.5	20525	10 MHz/QPSK	1	25	0	23.95	0.437	0.44	
mm		Side C	836.5	20525	10 MHz/QPSK	25	13	1	22.87	0.338	0.35	
		Side D	836.5	20525	10 MHz/QPSK	1	25	0	23.95	0.227	0.23	
		Side D	836.5	20525	10 MHz/QPSK	25	13	1	22.87	0.186	0.19	
		Side E	836.5	20525	10 MHz/QPSK	1	25	0	23.95	0.247	0.25	
		Side L	836.5	20525	10 MHz/QPSK	25	13	1	22.87	0.171	0.18	

Body 1.6 W/kg (mW/g) averaged over 1 gram

1.	Battery is fully charged for a	all tests.		
	Power Measured	⊠Conducted	☐ERP	□EIRP
2.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Eli4	Right Head
	SAR Configuration	Head	\boxtimes Body	
3.	Test Signal Call Mode	⊠Test Code	☐Base Station Sim	ulator
4.	Test Configuration	☐With Belt Clip	Without Belt Clip	p N/A
5.	Tissue Depth is at least 15.0	cm		

SAR Data Summary – 1750 MHz Body - WCDMA

MEASUREMENT RESULTS

Gap	Plot	Frequency		Rev Level/ Modulation	Position	End Power	RMC	Test Set Up	Measured SAR	Reported SAR
		MHz	Ch.	Wodulation		(dBm)			(W/kg)	(W/kg)
		1712.4	1312	WCDMA		23.83	12.2 kbps	Test Loop 1	0.733	0.76
-		1732.6	1413	WCDMA	Side A	23.91	12.2 kbps	Test Loop 1	0.933	0.95
	4	1752.6	1513	WCDMA		23.97	12.2 kbps	Test Loop 1	1.17	1.18
10		1732.6	1413	WCDMA	Side B	23.91	12.2 kbps	Test Loop 1	0.426	0.44
mm		1732.6	1413	WCDMA	Side C	23.91	12.2 kbps	Test Loop 1	0.355	0.36
		1732.6	1413	WCDMA	Side D	23.91	12.2 kbps	Test Loop 1	0.107	0.11
		1732.6	1413	WCDMA	Side E	23.91	12.2 kbps	Test Loop 1	0.517	0.53
		1752.6	1513	WCDMA	Repeat	23.91	12.2 kbps	Test Loop 1	1.15	1.17

Body 1.6 W/kg (mW/g)

averaged	d ov	er 1	gram

	Power Measured		□ERP	□EIRP
2.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Eli4	Right Head
	SAR Configuration	Head	\boxtimes Body	

☐ Test Code Base Station Simulator 3. Test Signal Call Mode 4. Test Configuration ☐Without Belt Clip ☑N/A With Belt Clip

5. Tissue Depth is at least 15.0 cm

1. Battery is fully charged for all tests.

SAR Data Summary – 1750 MHz Body – LTE Band 66

MEA	MEASUREMENT RESULTS											
Gap	Plot	Position	Frequency		BW/	RB Size	RB Offset	MPR Target	End Power	Measured SAR (W/kg)	Reported SAR (W/kg)	
			MHz	Ch.	Modulation	Size	Oliset	rarget	(dBm)	SAN (W/Ng)	(vv/kg)	
			1720.0	132072	20 MHz/QPSK	1	49	0	23.00	0.852	0.85	
		Side A	1745.0	132322	20 MHz/QPSK	1	49	0	23.00	0.847	0.85	
	5		1780.0	132572	20 MHz/QPSK	1	49	0	22.57	0.861	0.95	
			1745.0	132322	20 MHz/QPSK	50	25	1	22.37	0.712	0.82	
			1780.0	132572	20 MHz/QPSK	100	0	1	22.51	0.633	0.71	
		Side B	1745.0	132322	20 MHz/QPSK	1	49	0	23.00	0.364	0.36	
			1745.0	132322	20 MHz/QPSK	50	25	1	22.37	0.278	0.32	
10		Side C	1745.0	132322	20 MHz/QPSK	1	49	0	23.00	0.349	0.35	
mm		Side C	1745.0	132322	20 MHz/QPSK	50	25	1	22.37	0.270	0.31	
		Side D	1745.0	132322	20 MHz/QPSK	1	49	0	23.00	0.0799	0.08	
		Side D	1745.0	132322	20 MHz/QPSK	50	25	1	22.37	0.0618	0.07	
			1720.0	132072	20 MHz/QPSK	1	49	0	23.00	0.675	0.68	
		Sido E	1745.0	132322	20 MHz/QPSK	1	49	0	23.00	0.722	0.72	
		Side E	1780.0	132572	20 MHz/QPSK	1	49	0	22.57	0.697	0.77	
			1745.0	132322	20 MHz/QPSK	50	25	1	22.37	0.780	0.90	
		Repeat	1720.0	132072	20 MHz/QPSK	1	49	0	22.57	0.849	0.94	

Body
1.6 W/kg (mW/g)
averaged over 1 gram

1.	Battery is fully charged for a	all tests.		
	Power Measured		□ERP	EIRP
2.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Eli4	Right Head
	SAR Configuration	Head	\boxtimes Body	
3.	Test Signal Call Mode	⊠Test Code	Base Station Si	imulator
4.	Test Configuration	☐With Belt Clip	☐Without Belt C	Clip ⊠N/A
5	Tissue Depth is at least 15.0	cm		

Jay M. Moulton Vice President

Note: Band 4 LTE is fully within the frequency band of B66. Therefore, Band 4 was not tested for standalone SAR. The highest value in B66 was tested in Band 4 for uplink carrier aggregation evaluation.

SAR Data Summary – 1900 MHz Body - WCDMA

MEASUREMENT RESULTS

Gap	Plot	Frequency		Rev Level/ Modulation	Position	End Power	RMC	Test Set Up	Measured SAR	Reported SAR
		MHz	Ch.	Wodulation		(dBm)			(W/kg)	(W/kg)
		1852.4	9262	WCDMA		23.60	12.2 kbps	Test Loop 1	0.987	1.08
		1880.0	9400	WCDMA	Side A	23.70	12.2 kbps	Test Loop 1	1.01	1.08
	6	1907.6	9538	WCDMA		23.40	12.2 kbps	Test Loop 1	1.03	1.18
10		1852.4	9262	WCDMA	Side B	23.70	12.2 kbps	Test Loop 1	0.669	0.72
mm		1880.0	9400	WCDMA	Side C	23.70	12.2 kbps	Test Loop 1	0.651	0.70
		1852.4	9262	WCDMA	Side D	23.70	12.2 kbps	Test Loop 1	0.0375	0.04
		1852.4	9262	WCDMA	Side E	23.70	12.2 kbps	Test Loop 1	0.609	0.65
		1907.6	9538	WCDMA	Repeat	23.40	12.2 kbps	Test Loop 1	1.01	1.16

Body 1.6 W/kg (mW/g) averaged over 1 gram

1.	Battery is fully charged for a	ıll tests.		
	Power Measured		□ERP	☐EIRP
2.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Eli4	Right Head
	SAR Configuration	Head	\boxtimes Body	
3.	Test Signal Call Mode	⊠Test Code	Base Station Simu	ılator
4	Test Configuration	With Belt Clin	Without Belt Clin	N/Δ

5. Tissue Depth is at least 15.0 cm

SAR Data Summary – 1900 MHz Body – LTE Band 2

MEA	MEASUREMENT RESULTS										
Gap	Plot	Position	Frequency		BW/ Modulation	RB Size	RB Offset	MPR	End Power	Measured SAR	Reported SAR
_			MHz	Ch.	Wodulation	Size	Offset	Target	(dBm)	(W/kg)	(W/kg)
			1860.0	18700	20 MHz/QPSK	1	49	0	22.39	0.777	0.80
			1880.0	18900	20 MHz/QPSK	1	49	0	22.47	0.934	0.94
	7		1900.0	19100	20 MHz/QPSK	1	49	0	22.20	0.964	1.03
		Side A	1860.0	18700	20 MHz/QPSK	50	25	1	21.42	0.650	0.74
		1900	1880.0	18900	20 MHz/QPSK	50	25	1	21.56	0.804	0.89
			1900.0	19100	20 MHz/QPSK	50	25	1	21.12	0.768	0.94
			1900.0	19100	20 MHz/QPSK	100	0	1	21.19	0.672	0.81
		Side B 1880.0	18900	20 MHz/QPSK	1	49	0	22.47	0.454	0.46	
10		Side b	1880.0	18900	20 MHz/QPSK	50	25	1	21.56	0.365	0.40
mm		Side C 1880.0	1880.0	18900	20 MHz/QPSK	1	49	0	22.47	0.654	0.66
		Side C	1880.0	18900	20 MHz/QPSK	50	25	1	21.56	0.509	0.56
		Side D	1880.0	18900	20 MHz/QPSK	1	49	0	22.47	0.0869	0.09
		Side D	1880.0	18900	20 MHz/QPSK	50	25	1	21.56	0.0761	0.08
			1860.0	18700	20 MHz/QPSK	1	49	0	22.39	0.674	0.69
		Sido E	1880.0	18900	20 MHz/QPSK	1	49	0	22.47	0.804	0.81
		Side E	1900.0	19100	20 MHz/QPSK	1	49	0	22.20	0.630	0.68
			1880.0	18900	20 MHz/QPSK	50	25	1	21.56	0.585	0.65
		Repeat	1860.0	18700	20 MHz/QPSK	1	49	0	22.20	0.948	1.02

Body 1.6 W/kg (mW/g) averaged over 1 gram

1.	Battery is fully charged for a	ıll tests.		
	Power Measured	⊠Conducted	□ERP	□EIRP
2.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Eli4	Right Head
	SAR Configuration	Head	\boxtimes Body	
3.	Test Signal Call Mode	⊠Test Code	☐Base Station Sim	ulator
4.	Test Configuration	☐With Belt Clip	☐Without Belt Cli	p 🔲 N/A
5.	Tissue Depth is at least 15.0	cm		

SAR Data Summary – 3600 MHz Body – LTE Band 48

MEA	MEASUREMENT RESULTS										
Gap	Plot	Position	Frequency		BW/ RB		RB	MPR	End Power	Measured SAR	Reported SAR
•			MHz	Ch.	Modulation	Size	Offset	Target	(dBm)	(W/kg)	(W/kg)
	8	Side A	3625	55990	20 MHz/QPSK	1	49	0	23.38	0.577	0.67
		3625	3625	55990	20 MHz/QPSK	50	25	1	22.64	0.557	0.61
		Side C 3625 3625	55990	20 MHz/QPSK	1	49	0	23.38	0.385	0.44	
10			55990	20 MHz/QPSK	50	25	1	22.64	0.312	0.34	
mm		Side D	3625	55990	20 MHz/QPSK	1	49	0	23.38	0.376	0.43
		3625	3625	55990	20 MHz/QPSK	50	25	1	22.64	0.309	0.34
		Side E 3625	3625	55990	20 MHz/QPSK	1	49	0	23.38	0.437	0.50
		Side	3625	55990	20 MHz/QPSK	50	25	1	22.64	0.370	0.40

Body 1.6 W/kg (mW/g) averaged over 1 gram

Ι.	Battery is fully charged for a	II tests.		
	Power Measured	⊠Conducted	□ERP	☐EIRP
2.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Eli4	Right Head
	SAR Configuration	Head	\boxtimes Body	
3.	Test Signal Call Mode	⊠Test Code	☐Base Station Simu	
4.	Test Configuration	☐With Belt Clip	☐Without Belt Clip	$\sum N/A$
5.	Tissue Depth is at least 15.0	cm		

SAR Data Summary – 2450 MHz Body 802.11b

MEASUREMENT RESULTS

Can	Plot	Position	Frequency		Modulation	Antenna	End Power	Measured SAR	Reported SAR
Gap			MHz	Ch.	Modulation	Antenna	(dBm)	(W/kg)	(W/kg)
		Side A	2437	6	DSSS	Tx0	13.4	0.0527	0.06
		Side B	2437	6	DSSS		13.4	0.0562	0.07
		Side C	2437	6	DSSS		13.4	0.0643	0.07
10		Side F	2437	6	DSSS		13.4	0.0302	0.04
mm		Side A	2437	6	DSSS		13.3	0.0418	0.05
	9	Side C	2437	6	DSSS	Tx1	13.3	0.0990	0.12
		Side D	2437	6	DSSS] 'X'	13.3	0.0172	0.02
		Side F	2437	6	DSSS		13.3	0.0299	0.04

Body 1.6 W/kg (mW/g) averaged over 1 gram

1.	Battery	is /	fully	charged	for a	ill tests.

Power Measured	□ERP	□EIRP

- 2. SAR Measurement
- 3. Test Signal Call Mode
 4. Test Configuration
 ✓ Test Code
 ✓ Base Station Simulator
 ✓ With Belt Clip
 ✓ Without Belt Clip
- 5. Tissue Depth is at least 15.0 cm

SAR Data Summary - 5200 MHz Body 802.11a

MEASUREMENT RESULTS

Con	Plot	Position	Frequency		Modulation	Antenna	End Power	Measured SAR	Reported
Gap			MHz	Ch.	Wodulation	Ailteilla	(dBm)	(W/kg)	SAR (W/kg)
		Side A	5220	44	OFDM	Tx0	13.7	0.0548	0.06
	11	Side B	5220	44	OFDM		13.7	0.0851	0.09
		Side C	5220	44	OFDM		13.7	0.125	0.13
10		Side F	5220	44	OFDM		13.7	0.0437	0.05
mm		Side A	5220	44	OFDM		13.6	0.0574	0.06
		Side C	5220	44	OFDM	Tx1	13.6	0.221	0.24
		Side D	5220	44	OFDM	1 1 1	13.6	0.0149	0.02
		Side F	5220	44	OFDM		13.6	0.0285	0.03

Body 1.6 W/kg (mW/g) averaged over 1 gram

1.	Battery	is /	fully	charged	for a	ill tests.

Power Measured	□ERP	EIRF

- 2. SAR Measurement
- 3. Test Signal Call Mode ☐ Test Code ☐ Base Station Simulator
 4. Test Configuration ☐ With Belt Clip ☐ Without Belt Clip ☐ N/A
- 5. Tissue Depth is at least 15.0 cm

SAR Data Summary - 5800 MHz Body 802.11a

MEASUREMENT RESULTS Reported Measured **End Power** Frequency **Position** Modulation **Antenna** SAR Gap Plot SAR MHz Ch. (dBm) (W/kg) (W/kg) Side A 5785 157 OFDM 13.9 0.0936

0.10 Side B 5785 OFDM 13.9 0.0506 0.05 ----157 Tx0 Side C OFDM 5785 157 13.9 0.0805 80.0 Side F <u>1</u>57 OFDM 13.9 0.10 10 5785 0.0948 Side A 5785 OFDM 0.0447 0.05 mm ----157 13.7 11 Side C 5785 157 OFDM 13.7 0.160 0.17 Tx1 ----Side D 5785 157 OFDM 13.7 0.0214 0.02 Side F 5785 157 OFDM 13.7 0.0283 0.03

> Body 1.6 W/kg (mW/g) averaged over 1 gram

1. Batte	ery is fully	charged for a	ll tests.
----------	--------------	---------------	-----------

	Power Measured		□ERP	☐EIRP
2.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Eli4	Right Head
	SAR Configuration	Head	\boxtimes Body	
3.	Test Signal Call Mode	⊠Test Code	Base Station Simu	ılator
4.	Test Configuration	☐With Belt Clip	Without Belt Clip	⊠N/A

5. Tissue Depth is at least 15.0 cm

averaged over 1 gram

SAR Data Summary - Simultaneous Transmit (Worst Case) Ant 0 - WiFi

MEAS	MEASUREMENT RESULTS										
Side	Frequency (WLAN)		Frequency (WWAN)		WWAN Technology	SAR (W/kg)	SAR (W/kg)	Total			
	MHz	Ch.	MHz	Ch.		WLAN	WWAN	SAR (W/kg)			
All	5520	44	1752.6	1512	WCDMA	0.24	1.18	1.42			
					Body 1.6 W/kg (mW/g) averaged over 1 gram						

The sum of the two transmitters is less than the limit; therefore, the simultaneous transmission meets the requirements of KDB447498 D01 v06 section 4.3.2 page 11.

SAR Data Summary - Simultaneous Transmit (Worst Case) Ant 4 - WiFi

MEASUREMENT RESULTS										
Side	Frequency (WLAN)		Frequency (WWAN)		WWAN Technology	SAR (W/kg) WLAN	SAR (W/kg) WWAN	Total		
	MHz	Ch.	MHz	Ch.		WLAN		SAR (W/kg)		
All	5520 44		3625.0	55990	LTE Band 48	0.24	0.67	0.91		
					Boo 1.6 W/kg					

The sum of the two transmitters is less than the limit; therefore, the simultaneous transmission meets the requirements of KDB447498 D01 v06 section 4.3.2 page 11.

Carrier Aggregation Evaluation

Downlink Only Carrier Aggregation

This device supports LTE Carrier Aggregation (CA) in the downlink. All uplink communications are identical to Release 8 specifications. Per FCC KDB Publication 941225 D05A v01r02 and Fall 2017 TCB Workshop Notes, SAR for LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive. DLCA power measurements can be found in Appendix H and table of CA DL combinations in Table 1.

Conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05A v01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink carrier aggregation is inactive on the PCC. For every supported combination of downlink only carrier aggregation, additional conducted output power are measured with the downlink carrier aggregation active for the configuration with the highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation and RB combinations in each frequency band. Per FCC KDB Publication 941225 D05A v01r02, no SAR measurements are required for carrier aggregation configurations when the average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with the downlink only carrier aggregation inactive.

Uplink Only Carrier Aggregation

This device supports LTE Carrier Aggregation (CA) in the uplink for LTE Band 2, Band 4, Band 5, Band 13, Band 48 and Band 66 with two component carriers in the uplink. SAR measurements and conducted powers were evaluated per 2017 Fall TCB Workshop Notes and 2018 Fall TCB Workshop Notes.

For LTE Band 2, Band 4, Band 5, Band 13, Band 48 and Band 66, per Fall 2018 Workshop Notes, SAR was first measured with only a single carrier active in the uplink (carrier aggregation not active). For each inter-band exposure condition, the single uplink SAR values are provided in table 2 below. If the single uplink 1 gram SAR values for each band are both less than 0.8 W/kg and the algebraic summation of the 1 gram SAR values are less than 1.45 W/kg no additional measurements are required. See table 3 below for results.

For LTE Band 5, Band 48 and Band 66, per Fall 2017 Workshop Notes, SAR was first measured with only a single carrier active in the uplink (carrier aggregation not active). For each intra-band exposure condition, the uplink CA scenario with two component carriers was additionally tested for the configuration with the highest SAR when carrier aggregation was not active. The SCC was configured with the closest available contiguous channel. The two component carriers were configured so the resource blocks are physically allocated side by side to achieve the maximum output power. When the reported 1 gram SAR was >1.2 W/kg or the reported 10 gram SAR was >3.0 W/kg, all required test channels were additionally evaluated. See table 4 below for the results.

MIMO

This device only supports LTE downlink 4x4 MIMO. Per Fall 2017 TCB Workshop Notes, SAR for LTE MIMO operations was not needed since the maximum average output power in LTE MIMO mode was not >0.25 dB higher than the maximum output power when MIMO is inactive. See Appendix H for conducted power data.

Table 1 – Carrier Aggregation Downlink Combinations

1 Band/2CC	2 Band/2CC	2 Band/3CC	3 Band/3CC	2 Band/4CC	3 Band/4CC	4 Band/4CC	2 Band/5CC	3 Band/5CC	4 Band/5CC	3 Band/6CC
2A-2A	2A-4A	2A-2A-4A	2A-4A-5A	2A-2A-4A-4A	2A-2A-4A-5A	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX
XXXXX	2A-5A	2A-2A-5A	2A-5A-66A	XXXXX	2A-2A-5A-66A	2A-5A-48A-66A	XXXXX	2A-5A-48D	XXXXX	XXXXX
XXXXX	XXXXX	2A-5B	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX
XXXXX	2A-13A	2A-2A-13A	2A-13A-66A	XXXXX	2A-2A-13A-66A	2A-13A-48A-66A	XXXXX	2A-13A-48D	XXXXX	XXXXX
XXXXX	2A-66A	2A-2A-66A	XXXXX	2A-2A-66A-66A	XXXXX	XXXXX	XXXXX	2A-48A-48C-66A	XXXXX	2A-66A-48E
4A-4A	XXXXX	4A-4A-2A	XXXXX	XXXXX	4A-4A-2A-5A	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX
XXXXX	4A-5A	4A-4A-5A	XXXXX	XXXXX	4A-4A-5B	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX
XXXXX	4A-13A	4A-4A-13A	4A-2A-13A	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX
5A-5A	5A-66A	5A-5A-66A	XXXXX	5A-48D	XXXXX	XXXXX	5A-48A-48D	XXXXX	XXXXX	XXXXX
5B	XXXXX	5B-4A	XXXXX	XXXXX	5B-2A-4A	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX
XXXXX	XXXXX	5B-66A	XXXXX	5B-66A-66A	5B-2A-66A	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX
66A-66A	XXXXX	66A-66A-2A	XXXXX	XXXXX	66A-66A-2A-5A	XXXXX	XXXXX	66A-66A-2A-2A-5A	XXXXX	XXXXX
XXXXX	XXXXX	66A-66A-5A	XXXXX	66A-66A-5A-5A	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX
XXXXX	66A-13A	66A-66A-13A	XXXXX	XXXXX	66A-66A-2A-13A	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX
66B	XXXXX	66B-2A	XXXXX	66B-2A-2A	66B-2A-5A	XXXXX	XXXXX	66B-2A-2A-5A	XXXXX	XXXXX
XXXXX	XXXXX	66B-5A	XXXXX	66B-5A-5A	66B-13A-48A	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX
XXXXX	XXXXX	XXXXX	XXXXX	66B-5B	XXXXX	XXXXX	XXXXX	66B-5B-2A	XXXXX	XXXXX
XXXXX	XXXXX	66B-13A	XXXXX	XXXXX	66B-2A-13A	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX
66C	XXXXX	66C-2A	XXXXX	66C-2A-2A	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX
XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	66C-2A-5A	XXXXX	XXXXX	66C-2A-2A-5A	XXXXX	XXXXX
XXXXX	XXXXX	66C-5A	XXXXX	66C-5A-5A	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX
XXXXX	XXXXX	XXXXX	XXXXX	66C-5B	XXXXX	XXXXX	XXXXX	66C-5B-2A	XXXXX	XXXXX
XXXXX	XXXXX	66C-13A	XXXXX	XXXXX	66C-2A-13A	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX
XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	66C-13A-48A	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX
XXXXX	XXXXX	66C-66A	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX
XXXXX	48A-2A	48A-48A-2A	48A-2A-66A	XXXXX	48A-48A-2A-13A	XXXXX	48E-2A	2A-5A-48A-48C	XXXXX	XXXXX
XXXXX	48A-4A	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	48E-4A	XXXXX	XXXXX	XXXXX
XXXXX	48A-5A	48A-48A-5A	48A-2A-13A	XXXXX	48A-48A-5A-2A	XXXXX	XXXXX	48A-5A-48C-66A	XXXXX	XXXXX
XXXXX	48A-13A	48A-48A-13A	48A-13A-66A	XXXXX	48A-48A-13A-66A	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX
XXXXX	48A-66A	48A-48A-66A	XXXXX	48A-48A-66A-66A	XXXXX	XXXXX	XXXXX	XXXXX	48A-48A-66A-2A-13A	XXXXX
XXXXX	XXXXX	48A-66A-66A	XXXXX	48A-48C-5A	48A-48A-5A-66A	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX
XXXXX	XXXXX	48A-66B	XXXXX	48A-48A-66B	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX
XXXXX	XXXXX	48A-66C	XXXXX	48A-48A-66C	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX
XXXXX	XXXXX	48C-2A	XXXXX	XXXXX	48C-2A-13A	XXXXX	XXXXX	48C-2A-13A-48A	48C-2A-13A-66A	XXXXX
XXXXX	XXXXX	48C-5A	XXXXX	XXXXX	48C-5A-2A	XXXXX	48C-48C-5A	XXXXX	48C-5A-2A-66A	XXXXX
XXXXX	XXXXX	48C-4A	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX
XXXXX	XXXXX	48C-13A	XXXXX	XXXXX	48C-13A-66A	XXXXX	48C-48C-2A	48C-13A-66B	XXXXX	XXXXX
XXXXX	XXXXX	48C-66A	XXXXX	48C-48A-66A	48C-66A-5A	XXXXX	48C-48C-66A	XXXXX	XXXXX	XXXXX
XXXXX	XXXXX	XXXXX	XXXXX	48C-66B	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX
XXXXX	XXXXX	XXXXX	XXXXX	48C-66C	XXXXX	XXXXX	XXXXX	48C-66C-13A	XXXXX	XXXXX
XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	48D-48A-2A	XXXXX	XXXXX	XXXXX
XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	48E-5A	XXXXX	XXXXX	XXXXX

Table 2 – SAR Data Summary – Body – LTE Bands 2, 4, 5, 13, 48, 66 Stand Alone SAR with Maximum TX Power Set to CA Power Level

MEA	MEASUREMENT RESULTS												
Gap	Plot	Position	Frequency		BW/	RB	RB	MPR	End Power	Measured SAR	Reported SAR		
•			MHz	Ch.	Modulation	Size	Offset	Target	(dBm)	(W/kg)	(W/kg)		
		Side A	1900.0	19100	20 MHz/QPSK	1	49	0	20.61	0.658	0.72		
			1745.0	20300	20 MHz/QPSK	1	49	0	20.89	0.572	0.59		
10			836.5	20525	10 MHz/QPSK	1	25	0	20.79	0.298	0.31		
mm			782.0	23230	10 MHz/QPSK	1	25	0	20.66	0.416	0.45		
			3625.0	55990	20 MHz/QPSK	1	49	0	20.31	0.318	0.37		
			1780.0	132572	20 MHz/QPSK	1	49	0	20.79	0.624	0.66		

Body 1.6 W/kg (mW/g) averaged over 1 gram

1.	Battery is fully charged fo	r all tests.		
	Power Measured	⊠Conducted	□ERP	□EIRP
2.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Eli4	Right Head
	SAR Configuration	Head	⊠Body	
3.	Test Signal Call Mode	⊠Test Code	☐Base Station Simulator	
4.	Test Configuration	☐With Belt Clip	☐Without Belt Clip	⊠N/A
5.	Tissue Depth is at least 15	5.0 cm		

Jay M. Moulton Vice President

Table 3 – SAR Data Summary – Uplink CA Inter-Band (Per Fall 2018 TCB Workshop Notes)

MEASUREMENT RESULTS										
Frequency		Frequency		CA Combination	SAR ₁ (W/kg)	SAR ₂ (W/kg)	Total			
MHz	Ch.	MHz	Ch.		, , ,	(- 3/	SAR (W/kg)			
1900.0	19100	836.5	20525	2A-5A	0.72	0.31	1.03			
1900.0	19100	782.0	23230	2A-13A	0.72	0.45	1.17			
1745.0	20300	836.5	20525	4A-5A	0.59	0.31	0.90			
1745.0	20300	782.0	23230	4A-13A	0.59	0.45	1.04			
836.5	20525	1780.0	132572	5A-66A	0.31	0.66	0.97			
782.0	23230	1780.0	132572	13A-66A	0.45	0.66	1.11			
1900.0	19100	3625.0	55990	2A-48A	0.72	0.37	1.09			
3625.0	55990	1780.0	132572	48A-66A	0.37	0.66	1.03			
3625.0	55990	3605.0	55790	48C	0.37	0.34	0.71			
	Frequence MHz 1900.0 1900.0 1745.0 1745.0 836.5 782.0 1900.0 3625.0	Frequency MHz Ch. 1900.0 19100 1900.0 19100 1745.0 20300 1745.0 20300 836.5 20525 782.0 23230 1900.0 19100 3625.0 55990	Frequency Frequency MHz Ch. MHz 1900.0 19100 836.5 1900.0 19100 782.0 1745.0 20300 836.5 1745.0 20300 782.0 836.5 20525 1780.0 782.0 23230 1780.0 1900.0 19100 3625.0 3625.0 55990 1780.0	Frequency Frequency MHz Ch. MHz Ch. 1900.0 19100 836.5 20525 1900.0 19100 782.0 23230 1745.0 20300 836.5 20525 1745.0 20300 782.0 23230 836.5 20525 1780.0 132572 782.0 23230 1780.0 132572 1900.0 19100 3625.0 55990 3625.0 55990 1780.0 132572	Frequency Frequency CA Combination MHz Ch. MHz Ch. 1900.0 19100 836.5 20525 2A-5A 1900.0 19100 782.0 23230 2A-13A 1745.0 20300 836.5 20525 4A-5A 1745.0 20300 782.0 23230 4A-13A 836.5 20525 1780.0 132572 5A-66A 782.0 23230 1780.0 132572 13A-66A 1900.0 19100 3625.0 55990 2A-48A 3625.0 55990 1780.0 132572 48A-66A	Frequency Frequency CA Combination SAR1 (W/kg) 1900.0 19100 836.5 20525 2A-5A 0.72 1900.0 19100 782.0 23230 2A-13A 0.72 1745.0 20300 836.5 20525 4A-5A 0.59 1745.0 20300 782.0 23230 4A-13A 0.59 836.5 20525 1780.0 132572 5A-66A 0.31 782.0 23230 1780.0 132572 13A-66A 0.45 1900.0 19100 3625.0 55990 2A-48A 0.72 3625.0 55990 1780.0 132572 48A-66A 0.37	Frequency Frequency CA Combination SAR1 (W/kg) SAR2 (W/kg) 1900.0 19100 836.5 20525 2A-5A 0.72 0.31 1900.0 19100 782.0 23230 2A-13A 0.72 0.45 1745.0 20300 836.5 20525 4A-5A 0.59 0.31 1745.0 20300 782.0 23230 4A-13A 0.59 0.45 836.5 20525 1780.0 132572 5A-66A 0.31 0.66 782.0 23230 1780.0 132572 13A-66A 0.45 0.66 1900.0 19100 3625.0 55990 2A-48A 0.72 0.37 3625.0 55990 1780.0 132572 48A-66A 0.37 0.66			

Body 1.6 W/kg (mW/g) averaged over 1 gram

Table 4 – SAR Data Summary – Uplink CA Intra-Band

MEASUREMENT RESULTS											
Side	Gap	Frequency			Mod	RB		СС	Duty Cycle	SAR (W/kg)	Reported SAR (W/kg)
		MHz	Ch.	(MHz)	Size	Offset					
		835.1	20511	10	QPSK	1	49	PCC	1:1	0.578	0.59
		844.0	20600	10		1	0	SCC	1:1		
		1775.0	132622	10	QPSK	1	0	PCC	1:1	0.842	0.93
Α	10 mm	1765.2	132524	10		1	49	SCC	1:1		
^	10 111111	1770.0	132572	20	QPSK	1	0	PCC	1:1	0.822	0.91
		1750.2	132374	20	ursn	1	49	SCC	1:1	0.022	0.91
		3625.0	55990	20	QPSK	1	49	PCC	1:1.58	0.513	0.59
		3644.8	56188	20	QI SIN	1	0	SCC	1:1.58	0.515	0.59

Body 1.6 W/kg (mW/g) averaged over 1 gram

MPR is 0 for measurements.

SAR Data Summary - Simultaneous Transmit 4G/WiFi/5G

MEAS	MEASUREMENT RESULTS										
Side	Frequency (WLAN)		Frequency (WWAN)		WWAN Technology	SAR (W/kg) WLAN	SAR (W/kg) WWAN	Total			
	MHz	Ch.	MHz	Ch.		WLAN	WWAIN	SAR (W/kg)			
All	5520 44		1900	19100	WCDMA	0.24	1.03	1.27			
						Body					

1.6 W/kg (mW/g)
averaged over 1 gram

The sum of the two transmitters is less than the limit; therefore, the simultaneous transmission meets the requirements of KDB447498 D01 v06 section 4.3.2 page 11.

In order to meet the simultaneous evaluation for all three transmitters, a volume scan was conducted on the highest SAR value for the WLAN and WWAN (anchor band). The final SAR value for simultaneous for 4G and WiFi is 1.05 W/kg. Please see plot 12 in appendix B for the simultaneous evaluation.

For the simultaneous evaluation for 4G/WiFi/5G, the ration of the SAR value for the 4G/WiFi to the limit and the ratio of the power density to the limit are added together. The sum must be less than 100%. Please see the calculations below for the evaluation.

SAR = 1.05 W/kg (Simultaneous Value)/1.6 W/kg (Limit) = 65.6%

Power Density = 2.55 W/m² (Measured Value)/10 W/m² (Limit) = 25.5%

The sum of the simultaneous ratio is 91.1%. Therefore, the simultaneous evaluation meets the requirements of KDB447498 v06.

11. Test Equipment List

Table 11.1 Equipment Specifications

Туре	Calibration Due Date	Calibration Done Date	Serial Number
Staubli Robot TX60L	N/A	N/A	F07/55M6A1/A/01
Measurement Controller CS8c	N/A	N/A	1012
ELI5 Flat Phantom	N/A	N/A	2037
Device Holder	N/A	N/A	N/A
Data Acquisition Electronics 4	01/10/2020	01/10/2019	1321
SPEAG E-Field Probe EX3DV4	04/20/2019	04/20/2018	3662
SPEAG E-Field Probe EX3DV4	04/24/2020	04/24/2019	3662
Speag Validation Dipole D750V2	07/13/2019	07/13/2018	1016
Speag Validation Dipole D835V2	07/13/2019	07/13/2018	4d089
Speag Validation Dipole D1750V2	07/20/2019	07/20/2018	1018
Speag Validation Dipole D1900V2	07/13/2019	07/13/2018	5d116
Speag Validation Dipole D2450V2	07/12/2019	07/12/2018	829
Speag Validation Dipole D3500V2	04/13/2020	04/13/2018	1061
Speag Validation Dipole D3700V2	04/13/2020	04/13/2018	1024
Speag Validation Dipole D5GHzV2	07/19/2019	07/19/2018	1085
Agilent N1911A Power Meter	03/20/2020	03/20/2019	GB45100254
Agilent N1922A Power Sensor	06/21/2019	06/21/2017	MY45240464
Advantest R3261A Spectrum Analyzer	03/25/2020	03/25/2019	31720068
Agilent (HP) 8350B Signal Generator	03/20/2020	03/20/2019	2749A10226
Agilent (HP) 83525A RF Plug-In	03/20/2020	03/20/2019	2647A01172
Agilent (HP) 8753C Vector Network Analyzer	03/20/2020	03/20/2019	3135A01724
Agilent (HP) 85047A S-Parameter Test Set	03/20/2020	03/20/2019	2904A00595
Agilent (HP) 8960 Base Station Sim.	03/19/2020	03/19/2019	MY48360364
Anritsu MT8820C	01/26/2020	01/26/2019	6201176199
Agilent 778D Dual Directional Coupler	N/A	N/A	MY48220184
MiniCircuits BW-N20W5+ Fixed 20 dB	N/A	N/A	N/A
Attenuator	N1/0	NI/A	D0070540740
MiniCircuits SPL-10.7+ Low Pass Filter	N/A	N/A	R8979513746
Aprel Dielectric Probe Assembly	N/A	N/A	0011
Body Equivalent Matter (750 MHz)	N/A	N/A	N/A
Body Equivalent Matter (835 MHz)	N/A	N/A	N/A
Body Equivalent Matter (1750 MHz)	N/A	N/A	N/A
Body Equivalent Matter (1900 MHz)	N/A	N/A	N/A
Body Equivalent Matter (2450 MHz)	N/A	N/A	N/A
Body Equivalent Matter (3-5 GHz)	N/A	N/A	N/A

12. Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC/IC. These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body is a very complex phenomena that depends on the mass, shape, and size of the body; the orientation of the body with respect to the field vectors; and, the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

13. References

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio Frequency Radiation, August 1996
- [2] ANSI/IEEE C95.1 1992, American National Standard Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 300kHz to 100GHz, New York: IEEE, 1992.
- [3] ANSI/IEEE C95.3 2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, 2002.
- [4] International Electrotechnical Commission, IEC 62209-2 (Edition 1.0), Human Exposure to radio frequency fields from hand-held and body mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), March 2010.
- [5] IEEE Standard 1528 2013, IEEE Recommended Practice for Determining the Peak-Spatial Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques, June 2013.
- [6] Industry Canada, RSS 102 Issue 5, Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands), March 2015.
- [7] Health Canada, Safety Code 6, Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz, 2009.

Appendix A – System Validation Plots and Data

```
Test Result for UIM Dielectric Parameter
Tue 19/Feb/2019
Freq Frequency(GHz)
FCC_eB Limits for Body Epsilon
FCC_sB Limits for Body Sigma
Test_e Epsilon of UIM
Test_s Sigma of UIM
* value interpolated
****************
Test Result for UIM Dielectric Parameter
Tue 07/May/2019
Freq Frequency(GHz)
FCC_eB Limits for Body Epsilon
FCC_sB Limits for Body Sigma
Test_e Epsilon of UIM
Test_s Sigma of UIM
**************
```

^{*} value interpolated

************* Test Result for UIM Dielectric Parameter Fri 29/Mar/2019 Freq Frequency(GHz) FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM ************* FCC_eB FCC_sB Test_e Test_s 55.32 0.97 54.72 0.96 55.28 0.97 54.68 0.97 Freq 0.8050 0.8150 0.8250 55.24 0.97 54.63 0.98 55.224 0.97 54.606 0.984* 0.8290 55.20 0.97 54.57 0.99 0.8350 55.195 0.972 54.564 0.992* 0.8365 0.8450 55.17 0.98 54.53 1.00

 0.8490
 55.158 0.984
 54.518 1.004*

 0.8550
 55.14 0.99 54.50 1.01

 0.8650
 55.11 1.01 54.47 1.02

 * value interpolated ***************** Test Result for UIM Dielectric Parameter Tue 05/Mar/2019 Freq Frequency(GHz) FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM ************ Freq FCC_eB FCC_sB Test_e Test_s 55.32 0.97 54.24 0.94 55.28 0.97 54.28 0.95 0.8050 0.8150 0.8250 55.24 0.97 54.33 0.96 55.234 0.97 0.8264 55.234 0.97 54.336 0.963* 55.20 0.97 54.37 0.98 0.8350 55.195 0.972 54.375 0.982* 0.8366 55.17 0.98 54.40 0.99 0.8450
 0.8466
 55.165
 0.982
 54.40
 0.99

 0.8550
 55.14
 0.99
 54.44
 1.02

 0.8650
 55.11
 1.01
 54.48
 1.04

^{*} value interpolated


```
*************
Test Result for UIM Dielectric Parameter
Tue 07/May/2019
Freq Frequency(GHz)
FCC_eB Limits for Body Epsilon
FCC_sB Limits for Body Sigma
Test_e Epsilon of UIM
Test_s Sigma of UIM
*************
          FCC_eB FCC_sB Test_e Test_s
55.32 0.97 56.05 0.96
55.28 0.97 56.00 0.98
0.8050
0.8150
             55.24 0.97 55.95 0.98
0.8250
0.8350
             55.20 0.97 55.91 0.99
0.8365
0.8550
             55.196 0.972 55.905 0.991*
55.14 0.99 55.84 1.00
0.8650
             55.11 1.01 55.80 1.01

      0.8750
      55.08
      1.02
      55.78
      1.03

      0.8850
      55.05
      1.03
      55.73
      1.03

      0.8950
      55.02
      1.04
      55.70
      1.04

* value interpolated
*****************
Test Result for UIM Dielectric Parameter
Thu 21/Feb/2019
Freq Frequency(GHz)
FCC_eB Limits for Body Epsilon
FCC_sB Limits for Body Sigma
Test_e Epsilon of UIM
Test_s Sigma of UIM
************
Freq FCC_eB FCC_sB Test_e Test_s
          53.59 1.45 52.87 1.49
53.56 1.46 52.83 1.50
1.6900
1.7000
1.7100
             53.54 1.46 52.79 1.51
1.7200
             53.51 1.47 52.76 1.52
53.48 1.48 52.72 1.53
1.7300
             53.46 1.48 52.68 1.53
1.7400
             53.445 1.485 52.67 1.535*
1.7450
1.7500
             53.43 1.49 52.66 1.54
             53.41 1.49 52.64 1.54
1.7600

      1.7700
      53.38
      1.50
      52.63
      1.55

      1.7800
      53.35
      1.51
      52.59
      1.56

      1.7900
      53.33
      1.51
      52.56
      1.57
```

^{*} value interpolated


```
***************
Test Result for UIM Dielectric Parameter
Wed 06/Mar/2019
Freq Frequency(GHz)
FCC_eB Limits for Body Epsilon
FCC_sB Limits for Body Sigma
Test_e Epsilon of UIM
Test_s Sigma of UIM
 *************
             FCC_eB FCC_sB Test_e Test_s
53.59 1.45 52.89 1.51
53.56 1.46 52.85 1.52
1.6900
1.7000
                   53.54 1.46 52.81 1.53
1.7100
1.7124
                   53.533 1.462 52.803 1.532*

    1.7124
    53.533
    1.462
    52.803
    1.532

    1.7200
    53.51
    1.47
    52.78
    1.54

    1.7300
    53.48
    1.48
    52.74
    1.55

    1.7326
    53.475
    1.48
    52.73
    1.55*

    1.7400
    53.46
    1.48
    52.70
    1.55

    1.7500
    53.43
    1.49
    52.68
    1.56

    1.7526
    53.425
    1.49
    52.675
    1.56*

    1.7600
    53.41
    1.49
    52.66
    1.56

    1.7700
    53.38
    1.50
    52.65
    1.57

    1.7800
    53.35
    1.51
    52.61
    1.58

    1.7900
    53.33
    1.51
    52.58
    1.59

* value interpolated
****************
Test Result for UIM Dielectric Parameter
Tue 07/May/2019
Freq Frequency(GHz)
FCC_eB Limits for Body Epsilon
FCC_sB Limits for Body Sigma
Test_e Epsilon of UIM
Test_s Sigma of UIM
 *****************
Freq FCC_eB FCC_sB Test_e Test_s
1.7100 53.53 1.47 53.55 1.48
1.7200 53.51 1.47 53.52 1.49
1.7300 53.48 1.48 53.38 1.50
1.7300
1.7400
                   53.46 1.48 53.36 1.51
1.7450
                   53.445 1.485 53.34 1.515*
                   53.43 1.49 53.32 1.52
1.7500

    1.7600
    53.41
    1.49
    53.32
    1.52

    1.7700
    53.38
    1.50
    53.27
    1.55

    1.7800
    53.35
    1.51
    53.23
    1.55
```

^{*} value interpolated


```
***************
Test Result for UIM Dielectric Parameter
Mon 11/Feb/2019
Freq Frequency(GHz)
FCC_eB Limits for Body Epsilon
FCC_sB Limits for Body Sigma
Test_e Epsilon of UIM
Test_s Sigma of UIM
FCC_eB FCC_sB Test_e Test_s
53.30 1.52 53.07 1.53
53.30 1.52 53.05 1.54
Freq
1.8500
1.8600
1.8700
               53.30 1.52 53.03 1.55
               53.30 1.52 53.01 1.56
1.8800
               53.30 1.52 52.99 1.57
1.8900
1.9000
               53.30 1.52 52.97 1.58
1.910053.301.5252.951.601.920053.301.5252.941.611.930053.301.5252.921.62
* value interpolated
***************
Test Result for UIM Dielectric Parameter
Mon 04/Mar/2019
Freq Frequency(GHz)
FCC_eB Limits for Body Epsilon
FCC_sB Limits for Body Sigma
Test_e Epsilon of UIM
Test_s Sigma of UIM
***************
Freq FCC_eB FCC_sB Test_e Test_s

    1.8500
    53.30
    1.52
    53.27
    1.49

    1.8524
    53.30
    1.52
    53.265
    1.492*

    1.8600
    53.30
    1.52
    53.25
    1.50

    1.8700
    53.30
    1.52
    53.23
    1.51

    1.8800
    53.30
    1.52
    53.21
    1.52

    1.8900
    53.30
    1.52
    53.19
    1.53

              53.30 1.52 53.17 1.54
1.9000
               53.30 1.52 53.155 1.548*

    1.9100
    53.30
    1.52
    53.155
    1.54

    1.9200
    53.30
    1.52
    53.15
    1.55

    1.9300
    53.30
    1.52
    53.14
    1.57

    1.9300
    53.30
    1.52
    53.14
    1.57

1.9076
```

^{*} value interpolated


```
***************
Test Result for UIM Dielectric Parameter
Tue 07/May/2019
Freq Frequency(GHz)
FCC_eB Limits for Body Epsilon
FCC_sB Limits for Body Sigma
Test_e Epsilon of UIM
Test_s Sigma of UIM
FCC_eB FCC_sB Test_e Test_s
53.30 1.52 52.04 1.43
53.30 1.52 52.03 1.44
Freq
1.8400
1.8500
1.8600
              53.30 1.52 52.03 1.44
              53.30 1.52 52.14 1.45
1.8700
              53.30 1.52 52.10 1.45
1.8800
              53.30 1.52 52.17 1.46

      1.9000
      53.30
      1.52
      52.07
      1.47

      1.9100
      53.30
      1.52
      52.12
      1.50

      1.9200
      53.30
      1.52
      52.00
      1.50

* value interpolated
***************
Test Result for UIM Dielectric Parameter
Wed 13/Mar/2019
Freq Frequency(GHz)
FCC_eB Limits for Body Epsilon
FCC_sB Limits for Body Sigma
Test_e Epsilon of UIM
Test_s Sigma of UIM
***************
Freq FCC_eB FCC_sB Test_e Test_s
            52.75 1.91 52.66 1.95
52.748 1.912 52.656 1.952*
2.4100
2.4120
2.4200
              52.74 1.92 52.64 1.96
2.4300
             52.73 1.93 52.62 1.97
             52.716 1.937 52.606 1.984*
2.4370
             52.71 1.94 52.60 1.99
52.70 1.95 52.58 2.00
2.4400
2.4500

      52.69
      1.96
      52.57
      2.01

      2.4620
      52.686
      1.964
      52.566
      2.012*

      2.4700
      52.67
      1.98
      52.55
      2.02

      2.4800
      52.66
      1.99
      52.55
      2.02

              52.69 1.96 52.57 2.01
```

^{*} value interpolated

************* Test Result for UIM Dielectric Parameter Sat 09/Mar/2019 Freq Frequency(GHz) FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM *************

FCC_eB FCC_sB Test_e Test_s 51.35 3.30 51.13 3.32 51.33 3.31 51.12 3.33 3.4800 3.4900 3.5000 51.32 3.32 51.11 3.34 3.5000 51.32 3.32 51.11 3.34 3.5100 51.31 3.33 51.11 3.35 3.5200 51.29 3.34 51.10 3.36 3.5300 51.28 3.35 51.08 3.37 3.5400 51.27 3.36 51.07 3.38 3.5500 51.25 3.37 51.05 3.39 3.5600 51.24 3.38 51.03 3.40 3.5700 51.23 3.40 51.02 3.41 3.5800 51.21 3.41 51.00 3.42 3.5900 51.20 3.42 50.98 3.43 3.5925 51.198 3.423 50.978 3.433* 3.6000 51.19 3.43 50.97 3.44 3.6100 51.17 3.44 50.95 3.45 3.6200 51.16 3.45 50.94 3.46 3.6250 51.15 3.46 50.93 3.47 3.6400 51.15 3.46 50.93 3.47 3.6400 51.13 3.47 50.92 3.48 3.6500 51.12 3.48 50.91 3.49 3.6575 51.13 3.48 50.90 3.50 3.6700 51.09 3.50 50.89 3.51 3.6800 51.09 3.50 50.89 3.51 3.6800 51.08 3.51 50.88 3.52 3.6900 51.07 3.52 50.87 3.53 3.7000 51.05 3.53 50.86 3.54 3.7100 51.04 3.54 50.85 3.55 3.7200 interpolated 3.5100 51.31 3.33 51.11 3.35

^{*} value interpolated

************* Test Result for UIM Dielectric Parameter Tue 07/May/2019 Freq Frequency(GHz) FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM ************* FCC_eB FCC_sB Test_e Test_s 51.35 3.30 50.95 3.31 51.33 3.31 50.94 3.32 3.4800 3.4900 3.5000 51.32 3.32 50.93 3.33 3.5000 51.32 3.32 50.93 3.33 3.5100 51.31 3.33 50.93 3.34 3.5200 51.29 3.34 50.92 3.35 3.5300 51.28 3.35 50.90 3.36 3.5400 51.27 3.36 50.89 3.37 3.5500 51.25 3.37 50.87 3.38 3.5600 51.24 3.38 50.85 3.39 3.5700 51.23 3.40 50.84 3.40 3.5800 51.21 3.41 50.82 3.41 3.5900 51.20 3.42 50.80 3.42 3.5925 51.198 3.423 50.798 3.423* 3.6000 51.19 3.43 50.79 3.43 3.6100 51.17 3.44 50.77 3.44 3.6200 51.16 3.45 50.76 3.45 3.6250 51.155 3.455 50.755 3.455* 3.6300 51.15 3.46 50.75 3.46 3.6400 51.13 3.47 50.74 3.47 3.6500 51.12 3.48 50.73 3.48 3.6575 51.12 3.48 50.723 3.488* 3.6600 51.10 3.49 50.72 3.49 3.6700 51.09 3.50 50.71 3.50 3.6800 51.08 3.51 50.70 3.51 3.6900 51.08 3.51 50.70 3.51 3.6900 51.07 3.52 50.69 3.52 3.7000 51.05 3.53 50.66 3.55 3.5100 51.31 3.33 50.93 3.34

^{*} value interpolated

Test Result for UIM Dielectric Parameter Mon 11/Mar/2019 Freq Frequency(GHz) FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM ************* FCC_eB FCC_sB Test_e Test_s 49.15 5.18 49.09 5.22 49.12 5.21 49.06 5.25 5.1000 5.1200 5.1400 49.10 5.23 49.03 5.27

^{*} value interpolated

RF Exposure Lab

Plot 1

DUT: Dipole 750 MHz D750V3; Type: D750V3; Serial: D750V3 - SN:1085

Communication System: CW; Frequency: 750 MHz; Duty Cycle: 1:1

Medium: MSL750; Medium parameters used: f = 750 MHz; σ = 1.02 S/m; ϵ_r = 54.43; ρ = 1000 kg/m³

Phantom section: Flat Section

Test Date: Date: 2/19/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(9.62, 9.62, 9.62); Calibrated: 4/20/2018;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

750 MHz/Verification/Area Scan (5x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.07 W/kg

750 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 30.367 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.29 W/kg

SAR(1 g) = 0.861 W/kg; SAR(10 g) = 0.564 W/kg Maximum value of SAR (measured) = 1.09 W/kg

RF Exposure Lab

Plot 2

DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN:4d089

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL835; Medium parameters used: f = 835 MHz; $\sigma = 0.99$ S/m; $\varepsilon_r = 54.57$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: Date: 2/18/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(9.21, 9.21, 9.21); Calibrated: 4/20/2018;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

835 MHz/Verification/Area Scan (5x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.17 W/kg

835 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 30.589 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.42 W/kg

SAR(1 g) = 0.961 W/kg; SAR(10 g) = 0.618 W/kg Maximum value of SAR (measured) = 1.17 W/kg

RF Exposure Lab

Plot 3

DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN:4d089

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL835; Medium parameters used: f = 835 MHz; σ = 0.98 S/m; ε_r = 54.37; ρ = 1000 kg/m³

Phantom section: Flat Section

Test Date: Date: 3/5/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(9.21, 9.21, 9.21); Calibrated: 4/20/2018;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

835 MHz/Verification/Area Scan (5x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.18 W/kg

835 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 31.227 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.47 W/kg

SAR(1 g) = 0.963 W/kg; SAR(10 g) = 0.629 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.19 W/kg

RF Exposure Lab

Plot 4

DUT: Dipole 1750 MHz D1750V2; Type: D1750V2; Serial: D1750V2 - SN:1018

Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium: MSL1750; Medium parameters used: f = 1750 MHz, σ = 1.54 S/m; ε_r = 52.66; ρ = 1000 kg/m³

Phantom section: Flat Section

Test Date: Date: 2/21/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.96, 7.96, 7.96); Calibrated: 4/20/2018;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

1750 MHz/Verification/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.38 W/kg

1750 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 32.667 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 6.92 W/kg

SAR(1 g) = 3.69 W/kg; SAR(10 g) = 2.04 W/kg Maximum value of SAR (measured) = 5.48 W/kg

RF Exposure Lab

Plot 5

DUT: Dipole 1750 MHz D1750V2; Type: D1750V2; Serial: D1750V2 - SN:1018

Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium: MSL1750; Medium parameters used: f = 1750 MHz, σ = 1.56 S/m; ε_r = 52.68; ρ = 1000 kg/m³

Phantom section: Flat Section

Test Date: Date: 3/6/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.96, 7.96, 7.96); Calibrated: 4/20/2018;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

1750 MHz/Verification/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.33 W/kg

1750 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 31.227 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 6.89 W/kg

SAR(1 g) = 3.65 W/kg; SAR(10 g) = 2.03 W/kg Maximum value of SAR (measured) = 5.49 W/kg

RF Exposure Lab

Plot 6

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: D1900V2 - SN:5d116

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL1900; Medium parameters used: f = 1900 MHz, σ = 1.58 S/m; ε_r = 52.97; ρ = 1000 kg/m³

Phantom section: Flat Section

Test Date: Date: 2/11/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.61, 7.61, 7.61); Calibrated: 4/20/2018;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

1900 MHz/Verification/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.52 W/kg

1900 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 33.856 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 7.25 W/kg

SAR(1 g) = 4.01 W/kg; SAR(10 g) = 2.05 W/kg Maximum value of SAR (measured) = 5.76 W/kg

RF Exposure Lab

Plot 7

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: D1900V2 - SN:5d116

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL1900; Medium parameters used: f = 1900 MHz, σ = 1.54 S/m; ε_r = 53.17; ρ = 1000 kg/m³

Phantom section: Flat Section

Test Date: Date: 3/4/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.61, 7.61, 7.61); Calibrated: 4/20/2018;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

1900 MHz/Verification/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.44 W/kg

1900 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 31.227 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 7.22 W/kg

SAR(1 g) = 4.02 W/kg; SAR(10 g) = 2.1 W/kg Maximum value of SAR (measured) = 5.77 W/kg

RF Exposure Lab

Plot 8

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN: 829

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL2450; Medium parameters used: f = 2450 MHz; σ = 2 S/m; ε_r = 52.58; ρ = 1000 kg/m³

Phantom section: Flat Section

Test Date: Date: 3/13/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(7.29, 7.29, 7.29); Calibrated: 4/20/2018;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

Body Verification/2450 MHz/Area Scan (61x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 8.92 W/kg

Body Verification/2450 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.359 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 11.04 W/kg

SAR(1 g) = 5.12 W/kg; SAR(10 g) = 2.37 W/kg Maximum value of SAR (measured) = 8.79 W/kg

RF Exposure Lab

Plot 9

DUT: Dipole D3500V2; Type: D3500V2; Serial: D3500V2 - SN:1061

Communication System: CW; Frequency: 3500 MHz; Duty Cycle: 1:1

Medium: MSL 3-6 GHz; Medium parameters used: f = 3500 MHz; σ = 3.34 S/m; ϵ_r = 51.11; ρ = 1000 kg/m³

Phantom section: Flat Section

Test Date: Date: 3/9/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(7, 7, 7); Calibrated: 4/20/2018;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

3500 MHz Body/Verification/Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.64 W/kg

3500 MHz Body/Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 11.892 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.63 W/kg

SAR(1 g) = 0.655 W/kg; SAR(10 g) = 0.245 W/kg Maximum value of SAR (measured) = 1.70 W/kg

RF Exposure Lab

Plot 10

DUT: Dipole D3700V2; Type: D3700V2; Serial: D3700V2 - SN:1024

Communication System: CW; Frequency: 3700 MHz; Duty Cycle: 1:1

Medium: MSL 3-6 GHz; Medium parameters used: f = 3700 MHz; σ = 3.54 S/m; ϵ_r = 50.86; ρ = 1000 kg/m³

Phantom section: Flat Section

Test Date: Date: 3/9/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(6.71, 6.71, 6.71); Calibrated: 4/20/2018;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

3700 MHz Body/Verification/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.55 W/kg

3700 MHz Body/Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 55.759 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 3.09 W/kg

SAR(1 g) = 0.659 W/kg; SAR(10 g) = 0.238 W/kg Maximum value of SAR (measured) = 1.58 W/kg

RF Exposure Lab

Plot 11

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1085

Communication System: CW; Frequency: 5250 MHz; Duty Cycle: 1:1

Medium: MSL 3-6 GHz; Medium parameters used (interpolated): f = 5250 MHz; $\sigma = 5.395$ S/m; $\epsilon_r = 48.875$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: Date: 3/11/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(4.46, 4.46, 4.46); Calibrated: 4/20/2018;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

5250 MHz Body/Verification/Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.58 W/kg

5250 MHz Body/Verification/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 11.705 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.75 W/kg

SAR(1 g) = 0.763 W/kg; SAR(10 g) = 0.211 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.65 W/kg

RF Exposure Lab

Plot 12

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1085

Communication System: CW; Frequency: 5750 MHz; Duty Cycle: 1:1

Medium: MSL 3-6 GHz; Medium parameters used (interpolated): f = 5750 MHz; $\sigma = 5.985$ S/m; $\epsilon_r = 48.135$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: Date: 3/11/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(4.08, 4.08, 4.08); Calibrated: 4/20/2018;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

5750 MHz Body/Verification/Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.56 W/kg

5750 MHz Body/Verification/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 11.621 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.47 W/kg

SAR(1 g) = 0.759 W/kg; SAR(10 g) = 0.208 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.63 W/kg

RF Exposure Lab

Plot 13

DUT: Dipole 750 MHz D750V3; Type: D750V3; Serial: D750V3 - SN:1016

Communication System: CW; Frequency: 750 MHz; Duty Cycle: 1:1

Medium: MSL750; Medium parameters used: f = 750 MHz; $\sigma = 0.99 \text{ S/m}$; $\varepsilon_f = 55.57$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Test Date: Date: 5/7/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(9.57, 9.57, 9.57); Calibrated: 4/24/2019;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

750 MHz/Verification/Area Scan (5x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.08 W/kg

750 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 31.227 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.30 W/kg

SAR(1 g) = 0.865 W/kg; SAR(10 g) = 0.569 W/kg Maximum value of SAR (measured) = 1.10 W/kg

RF Exposure Lab

Plot 14

DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN:4d089

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL835; Medium parameters used: f = 835 MHz; $\sigma = 0.99 \text{ S/m}$; $\varepsilon_r = 55.91$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Test Date: Date: 5/7/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(9.12, 9.12, 9.12); Calibrated: 4/24/2019;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

835 MHz Body/Verification/Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.29 W/kg

835 MHz Body/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 52.612 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.47 W/kg

SAR(1 g) = 0.953 W/kg; SAR(10 g) = 0.632 W/kg Maximum value of SAR (measured) = 1.29 W/kg

RF Exposure Lab

Plot 15

DUT: Dipole 1750 MHz D1750V2; Type: D1750V2; Serial: D1750V2 - SN:1018

Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium: MSL1750; Medium parameters used: f = 1750 MHz; $\sigma = 1.52 \text{ S/m}$; $\epsilon_r = 53.32$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Test Date: Date: 5/7/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(8.23, 8.23, 8.3); Calibrated: 4/24/2019;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

1750 MHz/Verification/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.33 W/kg

1750 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 31.227 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 6.89 W/kg

SAR(1 g) = 3.68 W/kg; SAR(10 g) = 2.03 W/kg Maximum value of SAR (measured) = 5.49 W/kg

RF Exposure Lab

Plot 16

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: D1900V2 - SN:5d116

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL1900; Medium parameters used: f = 1900 MHz; $\sigma = 1.47 \text{ S/m}$; $\epsilon_r = 52.07$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Test Date: Date: 5/7/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(7.9, 7.9, 7.9); Calibrated: 4/24/2019:

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

1900 MHz Body/Verification/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 5.63 W/kg

1900 MHz Body/Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.612 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 6.68 W/kg

SAR(1 g) = 3.98 W/kg; SAR(10 g) = 1.92 W/kg Maximum value of SAR (measured) = 5.63 W/kg

RF Exposure Lab

Plot 17

DUT: Dipole D3500V2; Type: D3500V2; Serial: D3500V2 - SN:1061

Communication System: CW; Frequency: 3500 MHz; Duty Cycle: 1:1

Medium: MSL 3-6 GHz; Medium parameters used: f = 3500 MHz; σ = 3.33 S/m; ϵ_r = 50.93; ρ = 1000 kg/m³

Phantom section: Flat Section

Test Date: Date: 5/7/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(6.83, 6.83, 6.83); Calibrated: 4/24/2019;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

3500 MHz Body/Verification/Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.67 W/kg

3500 MHz Body/Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 12.497 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 2.87 W/kg

SAR(1 g) = 0.657 W/kg; SAR(10 g) = 0.246 W/kg Maximum value of SAR (measured) = 1.78 W/kg

RF Exposure Lab

Plot 18

DUT: Dipole D3700V2; Type: D3700V2; Serial: D3700V2 - SN:1024

Communication System: CW; Frequency: 3700 MHz; Duty Cycle: 1:1

Medium: MSL 3-6 GHz; Medium parameters used: f = 3700 MHz; $\sigma = 3.53$ S/m; $\epsilon_r = 50.68$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: Date: 5/7/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(6.52, 6.52, 6.52); Calibrated: 4/24/2019;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

3700 MHz Body/Verification/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.76 W/kg

3700 MHz Body/Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=4mm

Reference Value = 13.429 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.04 W/kg

SAR(1 g) = 0.662 W/kg; SAR(10 g) = 0.239 W/kg Maximum value of SAR (measured) = 1.87 W/kg

Appendix B – SAR Test Data Plots

RF Exposure Lab

Plot 1

DUT: M1000; Type: Hotspot; Serial: Eng 1

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 782 MHz; Duty Cycle: 1:1 Medium: MSL750; Medium parameters used (interpolated): f = 782 MHz; $\sigma = 1.052 \text{ S/m}$; $\epsilon_r = 54.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Test Date: Date: 2/20/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(9.8, 9.8, 9.8); Calibrated: 4/20/2018;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

Band 13 LTE/Side A 1 RB 24 Offset Ant 0 Mid/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.998 W/kg

Band 13 LTE/Side A 1 RB 24 Offset Ant 0 Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm Reference Value = 29.27 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.16 W/kg

SAR(1 g) = 0.890 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.04 W/kg

RF Exposure Lab

Plot 2

DUT: M1000; Type: Hotspot; Serial: Eng 1

Communication System: UMTS (WCDMA); Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: MSL835; Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.982$ S/m; $\epsilon_r = 54.375$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: Date: 3/5/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(9.21, 9.21, 9.21); Calibrated: 4/20/2018;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

Band 5 UMTS/Side A Ant 0 Mid/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.936 W/kg

Band 5 UMTS/Side A Ant 0 Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.70 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.04 W/kg

SAR(1 g) = 0.817 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.944 W/kg

RF Exposure Lab

Plot 3

DUT: M1000; Type: Hotspot; Serial: Eng 1

Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 836.5 MHz; Duty Cycle: 1:1

Medium: MSL835; Medium parameters used (interpolated): f = 836.5 MHz; σ = 0.992 S/m; ϵ_r = 54.564; ρ = 1000 kg/m³

Phantom section: Flat Section

Test Date: Date: 2/18/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(9.21, 9.21, 9.21); Calibrated: 4/20/2018;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

Band 5 LTE/Side A 1 RB 24 Offset Ant 0 Mid/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.705 W/kg

Band 5 LTE/Side A 1 RB 24 Offset Ant 0 Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.81 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.816 W/kg

SAR(1 g) = 0.623 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.727 W/kg

Band 5 LTE/Side A 1 RB 24 Offset Ant 0 Mid/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.81 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.745 W/kg

SAR(1 g) = 0.573 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.673 W/kg

RF Exposure Lab

Plot 4

DUT: M1000; Type: Hotspot; Serial: Eng 1

Communication System: UMTS (WCDMA); Frequency: 1752.6 MHz; Duty Cycle: 1:1

Medium: MSL1750; Medium parameters used (interpolated): f = 1752.6 MHz; $\sigma = 1.56 \text{ S/m}$; $\epsilon_r = 52.675$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Test Date: Date: 3/6/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.96, 7.96, 7.96); Calibrated: 4/20/2018;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

Band 4 UMTS/Side A Ant 0 High/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.21 W/kg

Band 4 UMTS/Side A Ant 0 High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.06 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.48 W/kg

SAR(1 g) = 1.17 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.22 W/kg

Band 4 UMTS/Side A Ant 0 High/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.06 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.16 W/kg

SAR(1 g) = 1.02 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.969 W/kg

RF Exposure Lab

Plot 5

DUT: M1000; Type: Hotspot; Serial: Eng 1

Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1770 MHz; Duty Cycle: 1:1 Medium: MSL1750; Medium parameters used: f = 1770 MHz; σ = 1.55 S/m; ϵ_r = 52.63; ρ = 1000 kg/m³

Phantom section: Flat Section

Test Date: Date: 2/21/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.96, 7.96, 7.96); Calibrated: 4/20/2018;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

Band 66 LTE/Side A 1 RB 49 Offset Ant 0 High/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.06 W/kg

Band 66 LTE/Side A 1 RB 49 Offset Ant 0 High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 11.93 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.40 W/kg

SAR(1 g) = 0.861 W/kg

Maximum value of SAR (measured) = 1.13 W/kg

RF Exposure Lab

Plot 6

DUT: M1000; Type: Hotspot; Serial: Eng 1

Communication System: UMTS (WCDMA); Frequency: 1907.6 MHz; Duty Cycle: 1:1

Medium: MSL1900; Medium parameters used (interpolated): f = 1907.6 MHz; $\sigma = 1.548 \text{ S/m}$; $\epsilon_r = 53.155$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Test Date: Date: 3/4/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.61, 7.61, 7.61); Calibrated: 4/20/2018;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

Band 2 UMTS/Side A Ant 0 High/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.32 W/kg

Band 2 UMTS/Side A Ant 0 High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.58 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 1.68 W/kg

SAR(1 g) = 1.03 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.37 W/kg

RF Exposure Lab

Plot 7

DUT: M1000; Type: Hotspot; Serial: Eng 1

Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL1900; Medium parameters used: f = 1900 MHz; σ = 1.58 S/m; ϵ_r = 52.97; ρ = 1000 kg/m³

Phantom section: Flat Section

Test Date: Date: 2/11/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.61, 7.61, 7.61); Calibrated: 4/20/2018;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

Band 2 LTE/Side A 1 RB 49 Offset Ant 0 High/Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.31 W/kg

Band 2 LTE/Side A 1 RB 49 Offset Ant 0 High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.31 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.63 W/kg

SAR(1 g) = 0.964 W/kg

RF Exposure Lab

Plot 8

DUT: M1000; Type: Hotspot; Serial: Eng 1

Communication System: LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 3592.5 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used (interpolated): f = 3592.5 MHz; σ = 3.433 S/m; ϵ_r = 50.978; ρ = 1000 kg/m³ Phantom section: Flat Section

Test Date: Date: 4/9/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7, 7, 7); Calibrated: 4/20/2018;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2019 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

Band 48 LTE/Side A 1 RB 49 Offset Ant 4 Mid1/Area Scan (13x19x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.929 W/kg

Band 48 LTE/Side A 1 RB 49 Offset Ant 4 Mid1/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=2mm Reference Value = 7.247 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.48 W/kg

SAR(1 g) = 0.577 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.943 W/kg

RF Exposure Lab

Plot 9

DUT: M1000; Type: Hotspot; Serial: Eng 1

Communication System: WiFi 802.11b (DSSS, 11 Mbps); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: MSL2450; Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.984$ S/m; $\epsilon_r = 52.606$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: Date: 3/13/2019; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.29, 7.29, 7.29); Calibrated: 4/20/2018;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1321; Calibrated: 1/10/2018 Phantom: ELI v5.0; Type: QDOVA002AA; Serial: 2037

Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Procedure Notes:

2450 MHz/Side D Ant 1 Mid/Area Scan (10x19x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.144 W/kg

2450 MHz/Side D Ant 1 Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.019 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.190 W/kg

SAR(1 g) = 0.099 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

