Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No...... CTA25022000201

FCC ID.....: 2BECU-K12

Compiled by

(position+printed name+signature) .: File administrators Joan Wu

Supervised by

(position+printed name+signature) .: Project Engineer Zoey Cao

Approved by

(position+printed name+signature) .: RF Manager Eric Wang

Date of issue Feb. 26, 2025

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name...... Shenzhen Yufei Display Co., Ltd.

Xixiang Street, Baoan District, Shenzhen City, China

Test specification:

Standard FCC Part 15.247

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description K12 WIRELESS KARAOKE SPAKER

Trade Mark N/A

Manufacturer Zhuhai Kuwee Technology Co., LTD

Model/Type reference K12

Listed Models K1, K30, K52, K60, K70, K80, K90, K100, K110

Modulation GFSK, Π/4DQPSK

Frequency From 2402MHz to 2480MHz

Result PASS

Page 2 of 48 Report No.: CTA25022000201

TEST REPORT

K12 WIRELESS KARAOKE SPAKER Equipment under Test

K12 Model /Type

Listed Models K1, K30, K52, K60, K70, K80, K90, K100, K110

The PCB board, circuit, structure and internal of these models are the Model difference

same, Only model number and colour is different for these model.

Shenzhen Yufei Display Co., Ltd. **Applicant**

Room 412, Creative Park, No. 12 Defu Road, Guxing Community, Address

Xixiang Street, Baoan District, Shenzhen City, China

Manufacturer Shenzhen Yufei Display Co., Ltd.

Room 412, Creative Park, No. 12 Defu Road, Guxing Community, Address

Xixiang Street, Baoan District, Shenzhen City, China

CIN CITY	CTATESTING	
Test Result:	PASS	CTATE

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test CTATESTING laboratory.

Page 3 of 48 Report No.: CTA25022000201

Contents

		Cont	tents	
	C	TEST STANDARDS		4
	1	TEST STANDARDS	<u> </u>	<u>4</u>
	2 Juneary Inc.	CHMMADY		_
	<u>2</u>	SUMMARY	·····	<u>5</u>
				_
	2.1	General Remarks		5
	2.2	Product Description		5
	2.3	Equipment Under Test		5
	2.4	Short description of the Equipment under	ſest (EUT)	5
	2.5	EUT configuration		5
	2.6	EUT operation mode		6
CIP	2.7	Block Diagram of Test Setup		6
2	2.8	Related Submittal(s) / Grant (s)		6
	2.9	Modifications		6
	2	TEST ENVIRONMENT		7
	<u>3</u>	TEST ENVIRONMENT		
			EN CTP	LED!
	3.1	Address of the test laboratory		7
	3.2	Test Facility		7
	3.3	Environmental conditions		7
	3.4	Summary of measurement results		8
	3.5	Statement of the measurement uncertainty		8
	3.6	Equipments Used during the Test		9
	0.0	The state of the s		•
		(<u>A. C </u>	<u>al</u> G	
	4	TEST CONDITIONS AND RESUL	<u>тѕ</u>	<u> 11</u>
		TATES	CTA TESTING	
	4.1	AC Power Conducted Emission		11
	4.2	Radiated Emission		14
	4.3	Maximum Peak Output Power	CTA	21
	4.4	20dB Bandwidth		22
	4.5	Frequency Separation		25
	4.6	Number of hopping frequency		27
	4.7			29
	4.7	Time of Occupancy (Dwell Time) Out-of-band Emissions		32
	4.0 4.9	Pseudorandom Frequency Hopping Seque		
	4.9 4.10		nce	38
	4.10	Antenna Requirement		39
		TATE		
	<u>5</u>	TEST SETUP PHOTOS OF THE I	EUT	40
	_		TES	
	•		CIP.	MIN
	<u>6</u>	PHOTOS OF THE EUT	<u> </u>	41

Page 4 of 48 Report No.: CTA25022000201

TEST STANDARDS 1

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

Page 5 of 48 Report No.: CTA25022000201

SUMMARY

2.1 General Remarks

Date of receipt of test sample		Feb. 20, 2025
	34	
Testing commenced on	O STATE OF	Feb. 20, 2025
Testing concluded on	:	Feb. 26, 2025

2.2 **Product Description**

l esting commenced on		Feb. 20, 2025	CIL		
Testing concluded on	:	Feb. 26, 2025			CT
2.2 Product Descrip	tion				
Product Name:	K12 WIRE	LESS KARAOKE SPA	AKER		
Model/Type reference:	K12				
Power supply:	DC 3.7V F	rom battery and DC 5	.0V From external ci	ircuit	
Hardware version:	V1.0		ATES		-ING
Software version:	V1.0	(EM)		- 1	ESTI
Testing sample ID:		20002-1# (Engineer sa 20002-2# (Normal san		(EVA CTA	
Bluetooth :					
Supported Type:	Bluetooth I	BR/EDR			
Modulation:	GFSK, π/4	4DQPSK			
Operation frequency:	2402MHz~	~2480MHz		. Ca	
Channel number:	79	CAR		ESTING	
Channel separation:	1MHz		CTA		
Antenna type:	PCB anter	nna	Car		
Antenna gain:	-0.58 dBi				(CIA)

2.3 Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz O 120V / 60Hz				
(61)		0	12 V DC				
		•	Other (specified in blank below)				
DC 3.7V From battery and DC 5.0V From external circuit							
DC 3.7\	/ Fron	n ba	attery and DC 5.0V From external circuit				

Short description of the Equipment under Test (EUT)

This is a K12 WIRELESS KARAOKE SPAKER. For more details, refer to the user's manual of the EUT.

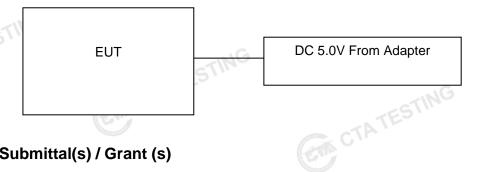
2.5 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

 supplied by the manufacturer O - supplied by the lab

○ Adapter	72 use 1111	Model: EP-TA20CBC
		Input: AC 100-240V 50/60Hz
		Output: DC 5V 2A

Page 6 of 48 Report No.: CTA25022000201


EUT operation mode 2.6

The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels CTATES provided to the EUT and Channel 00/39/78 were selected to test.

Operation Frequency:

Channel	Frequency (MHz)
00	2402
01	2403
	i i
38	2440
39	2441
40	2442
	CIA
77	2479
78	2480

Block Diagram of Test Setup

Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.9 **Modifications**

CTATESTING No modifications were implemented to meet testing criteria.

Page 7 of 48 Report No.: CTA25022000201

TEST ENVIRONMENT

Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory
Accreditation to perform electromagnetic emission measurement

CAB identifier: CN0127 ISED#: 27890

Shenzhen CTA Testing Technology Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

CTA TESTING During the measurement the environmental conditions were within the listed ranges:

Radiated Emission:

tadiated Elilicolorii	
Temperature:	24 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

AC Power Conducted Emission:

Temperature:	25 ° C	
TES.	/ 1.	
Humidity:	46 %	
	-EST	
Atmospheric pressure:	950-1050mbar	
Conducted testing:	GW CV	
, and the second		
Temperature:	25 ° C	

Conducted testina:

enaactaa taatiing.	
Temperature:	25 ° C
Humidity:	44 %
Training.	,
Atmospheric pressure:	950-1050mbar
CTATESIN	STIN

Page 8 of 48 Report No.: CTA25022000201

Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel		orded eport	Test result
§15.247(a)(1)	Carrier Frequency separation	GFSK Π/4DQPSK	☑ Lowest☑ Middle☑ Highest	GFSK Π/4DQPSK		Compliant
§15.247(a)(1)	Number of Hopping channels	GFSK Π/4DQPSK	⊠ Full	GFSK	⊠ Full	Compliant
§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK Π/4DQPSK	☑ Lowest☑ Middle☑ Highest	GFSK Π/4DQPSK	⊠ Middle	Compliant
§15.247(a)(1)	Spectrumbandwidth of aFHSS system20dB bandwidth	GFSK П/4DQPSK	☑ Lowest☑ Middle☑ Highest	GFSK Π/4DQPSK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.247(b)(1)	Maximum output peak power	GFSK Π/4DQPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.247(d)	Band edgecompliance conducted	GFSK Π/4DQPSK	☑ Lowest☑ Highest	GFSK Π/4DQPSK	☑ Lowest☑ Highest	Compliant
§15.205	Band edgecompliance radiated	GFSK Π/4DQPSK	□ Lowest □ Highest □	GFSK Π/4DQPSK	☑ Lowest☑ Highest	Compliant
§15.247(d)	TX spuriousemissions conducted	GFSK Π/4DQPSK	✓ Lowest✓ Middle✓ Highest	GFSK Π/4DQPSK	✓ Lowest✓ Middle✓ Highest	Compliant
§15.247(d)	TX spuriousemissions radiated	GFSK Π/4DQPSK	✓ Lowest✓ Middle✓ Highest	GFSK	✓ Lowest✓ Middle✓ Highest	Compliant
§15.209(a)	TX spurious Emissions radiated Below 1GHz	GFSK Π/4DQPSK	☑ Lowest☑ Middle☑ Highest	GFSK	⊠ Middle	Compliant
§15.107(a) §15.207	Conducted Emissions 9KHz-30 MHz	GFSK Π/4DQPSK	☑ Lowest☑ Middle☑ Highest	GFSK		Compliant

Remark:

- The measurement uncertainty is not included in the test result. 1.
- We tested all test mode and recorded worst case in report

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density	/	0.57 dB	(1)

Page 9 of 48 Report No.: CTA25022000201

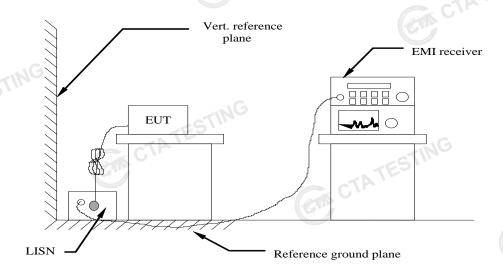
Spectrum bandwidth	/	1.1%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

		e Test			CIN C
Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	CTA-308	2024/08/03	2025/08/02
LISN	R&S	ENV216	CTA-314	2024/08/03	2025/08/02
EMI Test Receiver	R&S	ESPI	CTA-307	2024/08/03	2025/08/02
EMI Test Receiver	R&S	ESCI	CTA-306	2024/08/03	2025/08/02
Spectrum Analyzer	Agilent	N9020A	CTA-301	2024/08/03	2025/08/02
Spectrum Analyzer	R&S	FSU	CTA-337	2024/08/03	2025/08/02
Vector Signal generator	Agilent	N5182A	CTA-305	2024/08/03	2025/08/02
Analog Signal Generator	R&S	SML03	CTA-304	2024/08/03	2025/08/02
WIDEBAND RADIO COMMUNICATION TESTER CMW500		R&S	CTA-302	2024/08/03	2025/08/02
Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2024/08/03	2025/08/02
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2026/10/16
Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2026/10/12
Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2026/10/16
Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2023/10/17	2026/10/16
Amplifier	Schwarzbeck	BBV 9745	CTA-312	2024/08/03	2025/08/02
Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2024/08/03	2025/08/02
Directional coupler	NARDA	4226-10	CTA-303	2024/08/03	2025/08/02
High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2024/08/03	2025/08/02
High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2024/08/03	2025/08/02
Automated filter bank	Tonscend	JS0806-F	CTA-404	2024/08/03	2025/08/02
Power Sensor	Agilent	U2021XA	CTA-405	2024/08/03	2025/08/02
Amplifier Schwarzbeck		BBV9719	CTA-406	2024/08/03	2025/08/02

Report No.: CTA25022000201 Page 10 of 48


	Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
	EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
	EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A
	CTING					2311
CTATE	51	CTATESTING				
1		CTATE				

Report No.: CTA25022000201 Page 11 of 48

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

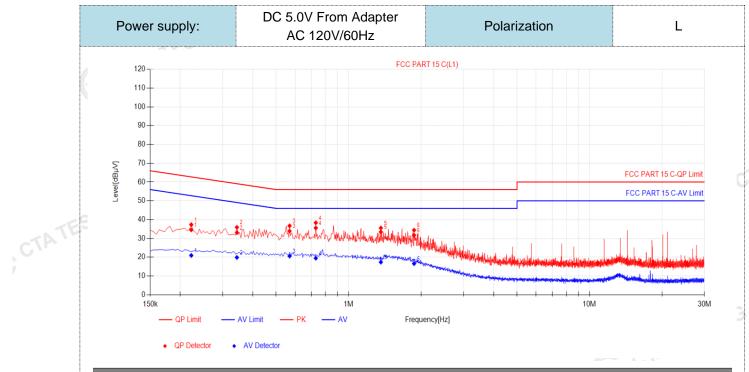
TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

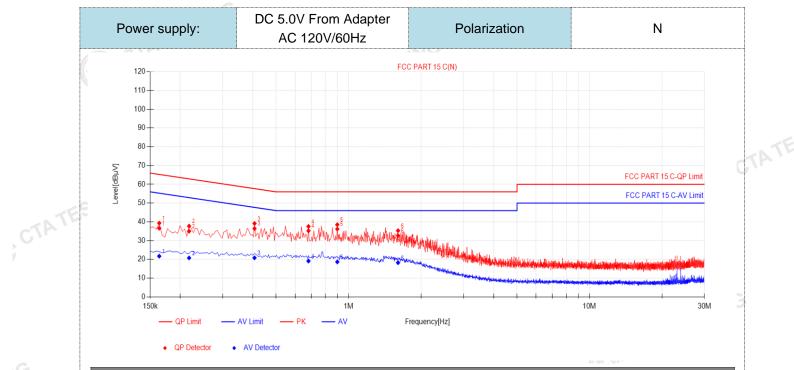

Fraguenov rango (MHz)	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			
* Decreases with the logarithm of the frequen	ncy.				

TEST RESULTS

Remark:

1. All modes of GFSK, Π/4 DQPSK were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below:

Page 12 of 48 Report No.: CTA25022000201



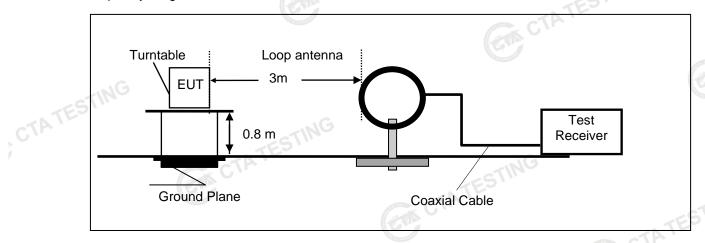
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµ√]	QP Margin [dB]	AV Reading [dΒμV]	AV Value [dBµV]	AV Limit [dΒμ∨]	AV Margin [dB]	Verdict
1	0.222	10.03	24.54	34.57	62.74	28.17	10.93	20.96	52.74	31.78	PASS
2	0.3435	9.88	23.26	33.14	59.12	25.98	10.01	19.89	49.12	29.23	PASS
3	0.5685	10.04	23.90	33.94	56.00	22.06	10.56	20.60	46.00	25.40	PASS
4	0.7305	9.93	25.64	35.57	56.00	20.43	9.57	19.50	46.00	26.50	PASS
5	1.3605	9.90	23.56	33.46	56.00	22.54	7.49	17.39	46.00	28.61	PASS
6	1.869	9.92	21.81	31.73	56.00	24.27	6.69	16.61	46.00	29.39	PASS

CTATESTING

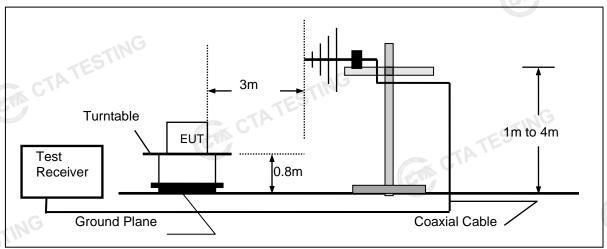
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dBμV) AV Value (dBμV)

Page 13 of 48 Report No.: CTA25022000201

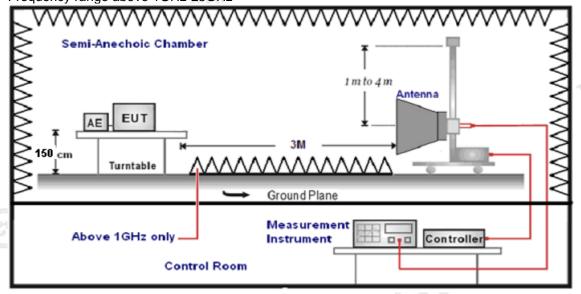
NO. Freq. [MHz] Factor [dB] Packer [dB] Policy Factor [dB] Policy Fac	Final	l Data Lis	st										
2 0.2175 9.98 25.05 35.03 62.91 27.88 10.81 20.79 52.91 32.12 PASS 3 0.4065 9.94 26.49 36.43 57.72 21.29 10.90 20.84 47.72 26.88 PASS 4 0.681 10.08 25.17 35.25 56.00 20.75 9.05 19.13 46.00 26.87 PASS 5 0.897 10.13 26.07 36.20 56.00 19.80 8.55 18.68 46.00 27.32 PASS 6 1.6035 10.14 22.55 32.69 56.00 23.31 8.11 18.25 46.00 27.75 PASS lote:1).QP Value (dBμV)= QP Reading (dBμV)+ Factor (dB) 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)	NO.	· ·		Reading[dB	Value	Limit	Margin	Reading	Value	Limit	Margin	Verdict	
3 0.4065 9.94 26.49 36.43 57.72 21.29 10.90 20.84 47.72 26.88 PASS 4 0.681 10.08 25.17 35.25 56.00 20.75 9.05 19.13 46.00 26.87 PASS 5 0.897 10.13 26.07 36.20 56.00 19.80 8.55 18.68 46.00 27.32 PASS 6 1.6035 10.14 22.55 32.69 56.00 23.31 8.11 18.25 46.00 27.75 PASS lote:1).QP Value (dBμV)= QP Reading (dBμV)+ Factor (dB) 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)	1	0.1635	10.05	26.56	36.61	65.28	28.67	11.68	21.73	55.28	33.55	PASS	
4 0.681 10.08 25.17 35.25 56.00 20.75 9.05 19.13 46.00 26.87 PASS 5 0.897 10.13 26.07 36.20 56.00 19.80 8.55 18.68 46.00 27.32 PASS 6 1.6035 10.14 22.55 32.69 56.00 23.31 8.11 18.25 46.00 27.75 PASS lote:1).QP Value (dBμV)= QP Reading (dBμV)+ Factor (dB) 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)	2	0.2175	9.98	25.05	35.03	62.91	27.88	10.81	20.79	52.91	32.12	PASS	
5 0.897 10.13 26.07 36.20 56.00 19.80 8.55 18.68 46.00 27.32 PASS 6 1.6035 10.14 22.55 32.69 56.00 23.31 8.11 18.25 46.00 27.75 PASS lote:1).QP Value (dBμV)= QP Reading (dBμV)+ Factor (dB) 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)	3	0.4065	9.94	26.49	36.43	57.72	21.29	10.90	20.84	47.72	26.88	PASS	
6 1.6035 10.14 22.55 32.69 56.00 23.31 8.11 18.25 46.00 27.75 PASS lote:1).QP Value (dBμV)= QP Reading (dBμV)+ Factor (dB) 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)	4	0.681	10.08	25.17	35.25	56.00	20.75	9.05	19.13	46.00	26.87	PASS	
lote:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB) 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)	5	0.897	10.13	26.07	36.20	56.00	19.80	8.55	18.68	46.00	27.32	PASS	
2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)	6	1.6035	10.14	22.55	32.69	56.00	23.31	8.11	18.25	46.00	27.75	PASS	
o). Wi margin(ab) = Wi Limit (abpv) - Wi value (abpv)	Note:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB) 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)												
Λ		_						-					

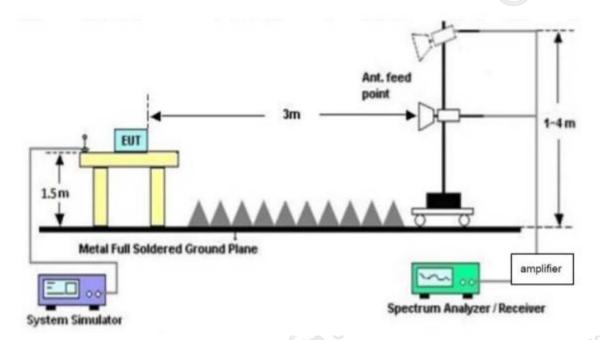

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$ CTATESTINI

Page 14 of 48 Report No.: CTA25022000201


4.2 **Radiated Emission**

TEST CONFIGURATION


Frequency range 9 KHz – 30MHz


Frequency range 30MHz - 1000MHz

Page 15 of 48 Report No.: CTA25022000201

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- Radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	- CTA

Transd=AF +CL-AG

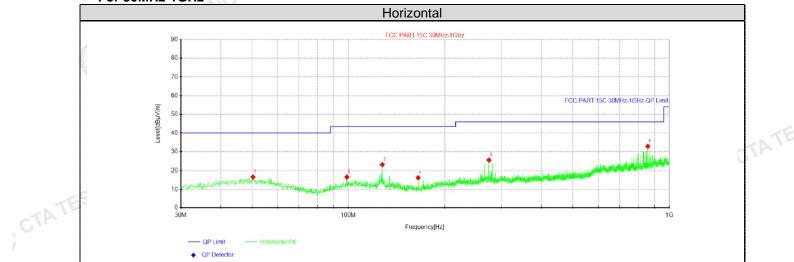
Report No.: CTA25022000201 Page 16 of 48

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

	Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
TE	0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
CIP.	0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
>	1.705-30	3	20log(30)+ 40log(30/3)	30
,	30-88	3	40.0	100
	88-216	3	43.5	150
	216-960	3	46.0	200
	Above 960	3	54.0	500

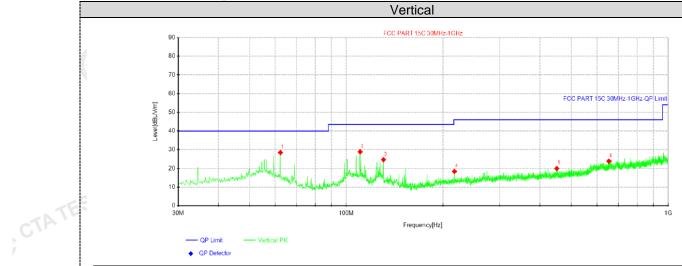

TEST RESULTS

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- 2. We measured Radiated Emission at GFSK, π/4 DQPSK mode from 9 KHz to 25GHz and recorded worst case at GFSK DH5 mode.
- For below 1GHz testing recorded worst at GFSK DH5 middle channel.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found CTA TESTING except system noise floor in 9 KHz to 30MHz and not recorded in this report.

Page 17 of 48 Report No.: CTA25022000201

For 30MHz-1GHz



Suspe	Suspected Data List										
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolority		
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity		
1	50.37	27.74	16.57	-11.17	40.00	23.43	200	360	Horizontal		
2	98.87	29.72	16.57	-13.15	43.50	26.93	100	137	Horizontal		
3	127.606	39.27	23.08	-16.19	43.50	20.42	100	10	Horizontal		
4	165.072	31.63	16.21	-15.42	43.50	27.29	200	359	Horizontal		
5	274.561	37.04	25.51	-11.53	46.00	20.49	100	265	Horizontal		
6	856.318	36.54	32.90	-3.64	46.00	13.10	100	358	Horizontal		

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Report No.: CTA25022000201 Page 18 of 48

CTATE

Suspe	Suspected Data List										
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolority		
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity		
1	62.3738	41.82	28.49	-13.33	40.00	11.51	200	304	Vertical		
2	110.388	42.25	28.89	-13.36	43.50	14.61	100	0	Vertical		
3	130.516	41.09	24.67	-16.42	43.50	18.83	100	0	Vertical		
4	216.967	30.95	18.39	-12.56	46.00	27.61	200	201	Vertical		
5	450.131	29.75	19.96	-9.79	46.00	26.04	100	304	Vertical		
6	653.588	29.33	23.89	-5.44	46.00	22.11	100	212	Vertical		

CTATE CTATE

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

For 1GHz to 25GHz

Note: GFSK , $\pi/4$ DQPSK all have been tested, only worse case GFSK is reported.

GFSK (above 1GHz)

Frequency(MHz):		2402		Polarity:		HORIZONTAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	61.79	PK	74	12.21	66.06	32.33	5.12	41.72	-4.27
4804.00	45.55	AV	54	8.45	49.82	32.33	5.12	41.72	-4.27
7206.00	53.62	PK	74	20.38	54.14	36.6	6.49	43.61	-0.52
7206.00	43.12	AV	54	10.88	43.64	36.6	6.49	43.61	-0.52

	- 11.71									
	Frequency(MHz):			24	2402 Polarity:		VERTICAL			
	Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
Ī	4804.00	59.87	PK	74	14.13	64.14	32.33	5.12	41.72	-4.27
	4804.00	43.50	AV	54	10.50	47.77	32.33	5.12	41.72	-4.27
	7206.00	51.68	PK	74	22.32	52.20	36.6	6.49	43.61	-0.52
Ī	7206.00	41.24	AV	54	12.76	41.76	36.6	6.49	43.61	-0.52

Freque	Frequency(MHz):			2441		Polarity:		HORIZONTAL	
Frequency (MHz)	Emis Lev (dBu	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	61.29	PK	74	12.71	65.17	32.6	5.34	41.82	-3.88
4882.00	44.93	AV	54	9.07	48.81	32.6	5.34	41.82	-3.88
7323.00	53.09	PK	74	20.91	53.20	36.8	6.81	43.72	-0.11
7323.00	42.44	AV	54	11.56	42.55	36.8	6.81	343.72	-0.11
			Carl C				-GTIN		

				aris .						
Frequency(MHz):			2441 Polarity:		arity:	VERTICAL				
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4882.00	59.28	PK	74	14.72	63.16	32.6	5.34	41.82	-3.88	
4882.00	43.20	AV	54	10.80	47.08	32.6	5.34	41.82	-3.88	
7323.00	51.21	PK	74	22.79	51.32	36.8	6.81	43.72	-0.11	
7323.00	40.83	AV	54	13.17	40.94	36.8	6.81	43.72	-0.11	

Freque	Frequency(MHz):			2480		Polarity:		HORIZONTAL	
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	60.67	PK	74	13.33	63.75	32.73	5.66	41.47	-3.08
4960.00	44.12	AV	54	9.88	47.20	32.73	5.66	41.47	-3.08
7440.00	52.35	PK	74	21.65	51.90	37.04	7.25	43.84	0.45
7440.00	41.76	AV	54	12.24	41.31	37.04	7.25	43.84	0.45

		JG.							
Freque	Frequency(MHz):		2480		Polarity:		VERTICAL		
Гтодиолом	Emis	sion	Limit	Morgin	Raw	Antenna	Cable	Pre-	Correction
Frequency	Le	vel		Margin	Value	Factor	Factor	amplifier	Factor
(MHz)	(dBuV/m)		(dBuV/m)	(dB)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
4960.00	58.91	PK	74	15.09	61.99	32.73	5.66	41.47	-3.08
4960.00	42.59	AV	54	11.41	45.67	32.73	5.66	41.47	-3.08
7440.00	50.80	PK	74	23.20	50.35	37.04	7.25	43.84	0.45
7440.00	40.23	AV	54	13.77	39.78	37.04	7.25	43.84	0.45

Page 20 of 48 Report No.: CTA25022000201

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Note: GFSK, π/4 DQPSK all have been tested, only worse case GFSK is reported.

GFSK

Freque	ncy(MHz)) :	24	02	Pola	rity:	Н	IORIZONTA	\L
Frequency (MHz)	Emis Lev (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	61.55	PK	74	12.45	71.97	27.42	4.31	42.15	-10.42
2390.00	43.87	AV	54	10.13	54.29	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)):	24	02	Pola	rity:	VERTICAL		
Frequency (MHz)	Emis Lev (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.98	PK	74	14.02	70.40	27.42	4.31	42.15	-10.42
2390.00	41.69	AV	54	12.31	52.11	27.42	4.31	42.15	-10.42
Freque	ency(MHz)):	24	80	Pola	rity:	Н	IORIZONTA	\L
Frequency (MHz)		ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	60.98	PK	74	13.02	71.09	27.7	4.47	42.28	-10.11
2483.50	42.94	AV	54	11.06	53.05	27.7	4.47	42.28	-10.11
Freque	ncy(MHz)):	24	80	Pola	rity:		VERTICAL	
	1		(0.11)		Raw	Antenna	Cable	Pre-	Correction
Frequency (MHz)	Emis Lev (dBu)		Limit (dBuV/m)	Margin (dB)	Value (dBuV)	Factor (dB/m)	Factor (dB)	amplifier (dB)	Factor (dB/m)
	Lev	vel			Value	Factor	Factor		Factor

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- CTA TESTING 5. The other emission levels were very low against the limit.

Page 21 of 48 Report No.: CTA25022000201

Maximum Peak Output Power

Limit

The Maximum Peak Output Power Measurement is 125mW (20.97).

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to CTATE the powersensor.

Test Configuration

Test Results

Туре	Channel	Output power (dBm)	Limit (dBm)	Result
	00	1.29		TES
GFSK	39	0.60	20.97	Pass
	78	0.12		
-114	G 00	0.45		
π/4DQPSK	39	-0.23	20.97	Pass
CTA	78	-0.58		
Note: 1.The test res	ults including the	cable loss.	CTATESTING	

Page 22 of 48 Report No.: CTA25022000201

20dB Bandwidth

Limit

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Configuration

Test Results

: Results			CTA TESTING
Modulation	Channel	20dB bandwidth (MHz)	Result
-ING	CH00	0.951	
GFSK	CH39	0.936	
CTA	CH78	0.951	Deep
j e	CH00	1.341	Pass
π /4DQPSK	CH39	1.287	STING
	CH78	1.314	
		(CV)	CTA CT

Test plot as follows: CTA TESTING

Page 23 of 48 Report No.: CTA25022000201

Report No.: CTA25022000201

Page 25 of 48 Report No.: CTA25022000201

4.5 Frequency Separation

LIMIT

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW.

TEST CONFIGURATION

TEST RESULTS

(3)		ANALIZ		
TEST RESULTS				TATESTING
Modulation	Channel	Channel Separation (MHz)	Limit(MHz)	Result
GFSK	CH38	1.168	25KHz or 2/3*20dB	Pass
OI OIX	CH39	1.100	bandwidth	1 855
π/4DQPSK	CH38	1.028	25KHz or 2/3*20dB	Door
11/4DQP3K	CH39	1.020	bandwidth	Pass

Note:

We have tested all mode at high, middle and low channel, and recorded worst case at middle

Test plot as follows:

Report No.: CTA25022000201 Page 26 of 48

Page 27 of 48 Report No.: CTA25022000201

Number of hopping frequency

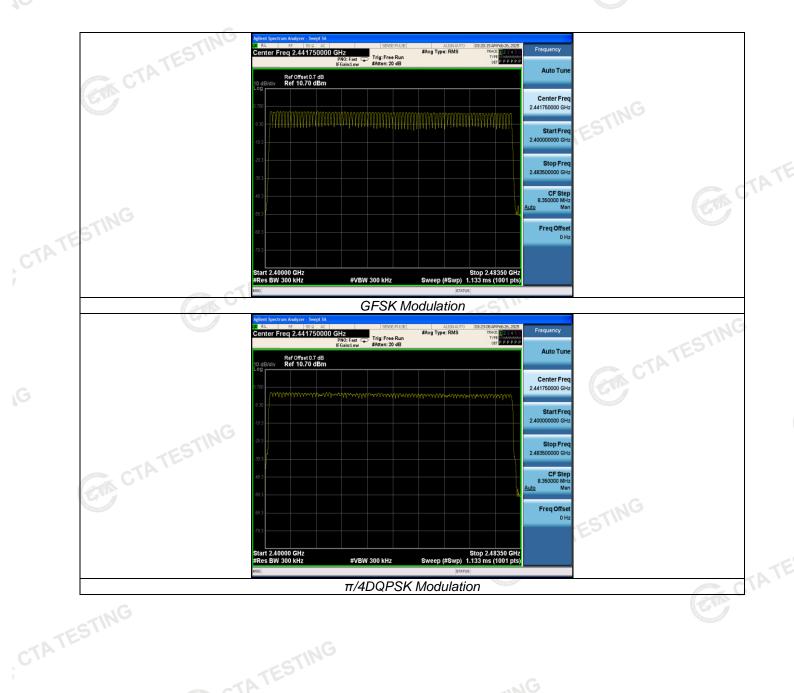
Limit

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Test Procedure

CTATE The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with 100 KHz RBW and 300 KHz VBW.

Test Configuration



Test Results

Test Results	CTAT	Es	STING
Modulation	Number of Hopping Channel	Limit	Result
GFSK	79	≥15	Pass
π/4DQPSK	79	215	Pass

Test plot as follows: CTATES

Report No.: CTA25022000201 Page 28 of 48

Page 29 of 48 Report No.: CTA25022000201

Time of Occupancy (Dwell Time)

Limit

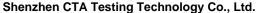
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz.

Test Configuration

Test Results

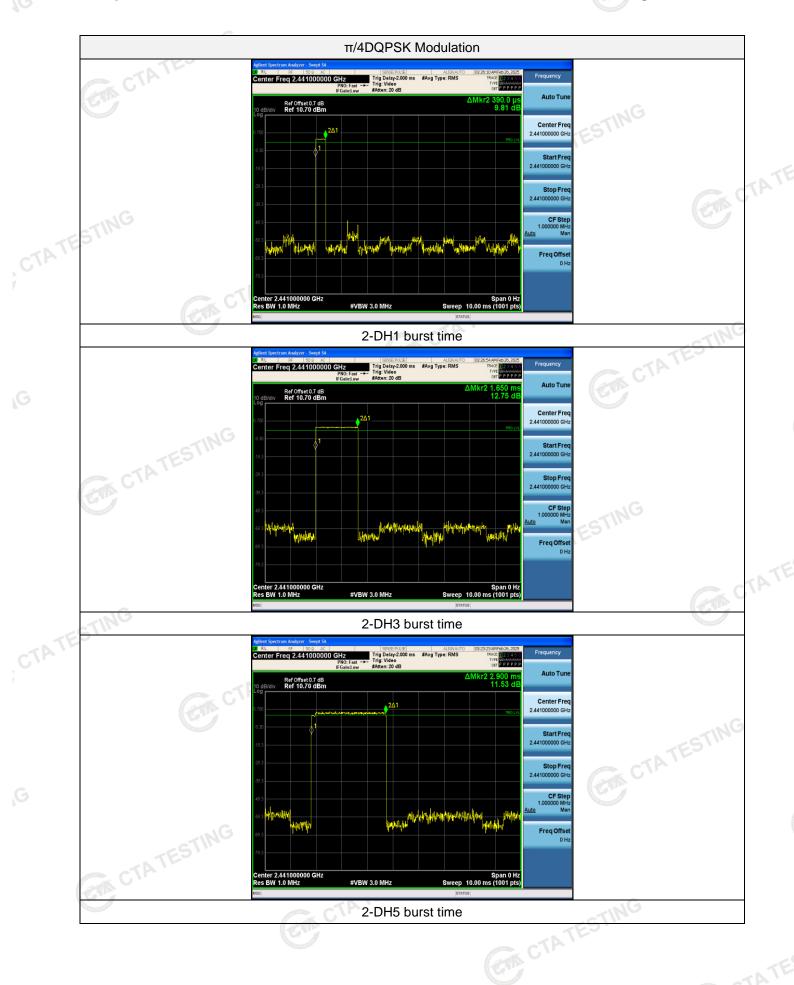

Test Results			CTATES		TESTING
Modulation	Packet	Burst time (ms)	Dwell time (s)	Limit (s)	Result
	DH1	0.390	0.125	- Communication of the Communi	
GFSK	DH3	1.640	0.262	0.40	Pass
TES	DH5	2.900	0.309		
CIL	2-DH1	0.390	0.125		
π/4DQPSK	2-DH3	1.650	0.264	0.40	Pass
	2-DH5	2.900	0.309	TESTIN	

Note: We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) x (1600 ÷ 2 ÷ 79) x31.6 Second for DH1, 2-DH1

Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3

Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5 CTA TESTING


Page 30 of 48 Report No.: CTA25022000201

Test plot as follows: **GFSK Modulation** Ref Offset 0.7 dB Ref 10.70 dBm Center Freq 2.441000000 GHz CTATE CTATESTING Span 0 Hz Sweep 10.00 ms (1001 pts #VBW 3.0 MHz CTATESTIN' DH1 burst time Ref Offset 0.7 dB Ref 10.70 dBm CTA TESTING CF Step 1.000000 MHz Freq Offset CTATE DH3 burst time 2 2.900 n 16.65 d Ref Offset 0.7 dB Ref 10.70 dBm CTATESTING CTATESTING Span 0 Hz Sweep 10.00 ms (1001 pts)

DH5 burst time

#VBW 3.0 MHz

CTATES

Report No.: CTA25022000201 Page 32 of 48

Out-of-band Emissions 4.8

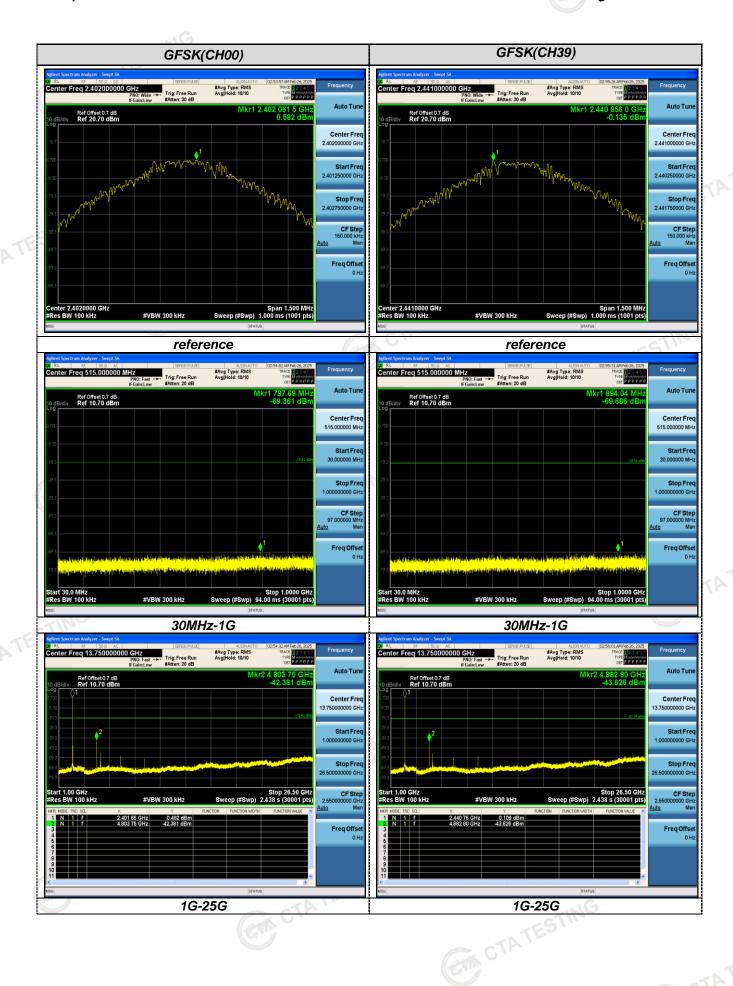
Limit

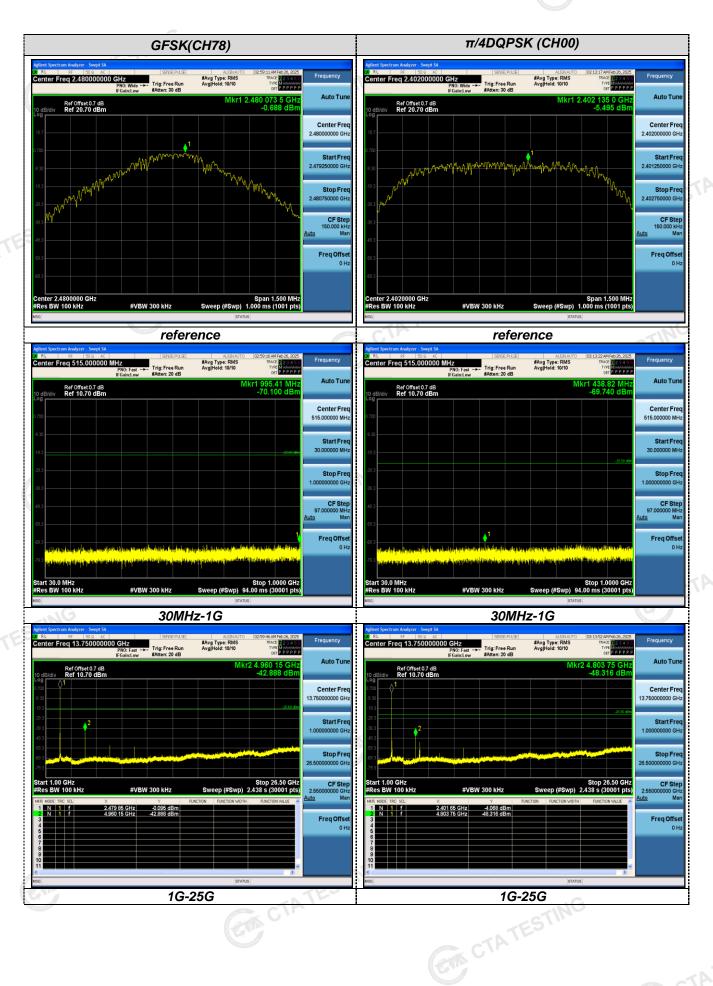
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are CTATES made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration




Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

We measured all conditions (DH1, DH3, DH5) and recorded worst case at DH5

Test plot as follows:

Page 36 of 48 Report No.: CTA25022000201

Band-edge Measurements for RF Conducted Emissions: **GFSK** #Avg Type: RMS Avg|Hold: 100/100 #Avg Type: RMS Avg|Hold: 100/100 Ref Offset 0.7 dB Ref 10.70 dBm Ref Offset 0.7 dB Ref 10.70 dBm Center Fre Center Fre CF Step 8.000000 MH Stop 2.40500 GHz Sweep (#Swp) 10.07 ms (1001 pts tart 2.47000 GHz Res BW 100 kHz CF Ste 10.500000 MH Freq Offse Freq Offset Left Band edge hoping off Right Band edge hoping off #Avg Type: RMS Avg|Hold:>100/100 #Avg Type: RMS AvalHold>100/100 Auto Tun Auto Tun Ref Offset 0.7 dB Ref 10.70 dBm Ref Offset 0.7 dB Ref 10.70 dBm Stop Fre Stop Fre CF Ste CF Step #VBW 300 kHz #VBW 300 kHz -62.918 dBn -66.294 dBn -60.350 dBn Freq Offset 0 Hz Freq Offse

Left Band edge hoping on

CTATESTING

Right Band edge hoping on