

Report No.: TB-RF183072 Page: 1 of 72

Radio Test Report

FCC ID: 2A2GJ-M2808

IC: 27498-M2808

Report No. : TB-RF183072

Applicant: Heltec Automation Technology Co., Ltd

Equipment Under Test (EUT)

EUT Name : Heltec Indoor Hotspot

Model No. : HT-M2808

Series Model No. : HT-M2802

Brand Name : ----

Sample ID : 20210603-15-1#& 20210603-15-2#

Receipt Date : 2021-07-14

Test Date : 2021-07-15 to 2021-08-19

Issue Date : 2021-08-20

Standards : FCC Part 15 Subpart C 15.247

RSS-247 Issue 2 February 2017

RSS-Gen Issue 5 March 2019

Test Method : ANSI C63.10: 2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above.

Witness Engineer :

Engineer Supervisor : TANK SV

Engineer Manager :

Ray Lating carried out on one sample.

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

CON	NIENIS	2
1.	GENERAL INFORMATION ABOUT EUT	6
	1.1 Client Information	6
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	
	1.6 Description of Test Software Setting	9
	1.7 Measurement Uncertainty	9
	1.8 Test Facility	10
2.	TEST SUMMARY	11
3.	TEST SOFTWARE	11
4.	TEST EQUIPMENT	
5.	CONDUCTED EMISSION	
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	
	5.5 EUT Operating Mode	
	5.6 Test Data	
6.	RADIATED AND CONDUCTED UNWANTED EMISSIONS	15
	6.1 Test Standard and Limit	15
	6.2 Test Setup	
	6.3 Test Procedure	
	6.4 Deviation From Test Standard	18
	6.5 EUT Operating Mode	18
	6.6 Test Data	18
7.	EMISSIONS IN NONRESTRICTED FREQUENCY BANDS	19
	7.1 Test Standard and Limit	19
	7.2 Test Setup	19
	7.3 Test Procedure	19
	7.4 Deviation From Test Standard	20
	7.5 EUT Operating Mode	20
	7.6 Test Data	20
8.	99% OCCUPIED AND 20DB BANDWIDTH	21
	8.1 Test Standard and Limit	21
	8.2 Test Setup	21
	8.3 Test Procedure	
	8.4 Deviation From Test Standard	
	8.5 EUT Operating Mode	
	8.6 Test Data	22

9.	PEAK OUTPUT POWER TEST	23
	9.1 Test Standard and Limit	23
	9.2 Test Setup	
	9.3 Test Procedure	23
	9.4 Deviation From Test Standard	24
	9.5 EUT Operating Mode	24
	9.6 Test Data	24
10.	POWER SPECTRAL DENSITY	25
	10.1 Test Standard and Limit	25
	10.2 Test Setup	25
	10.3 Test Procedure	25
	10.4 Deviation From Test Standard	25
	10.5 Antenna Connected Construction	25
	10.6 Test Data	25
11.	CARRIER FREQUENCY SEPARATION	26
	11.1 Test Standard and Limit	26
	11.2 Test Setup	
	11.3 Test Procedure	
	11.4 Deviation From Test Standard	27
	11.5 Antenna Connected Construction	27
	11.6 Test Data	27
12.	TIME OF OCCUPANCY (DWELL TIME)	28
	12.1 Test Standard and Limit	28
	12.2 Test Setup	28
	12.3 Test Procedure	28
	12.4 Deviation From Test Standard	29
	12.5 Antenna Connected Construction	29
	12.6 Test Data	29
13.	NUMBER OF HOPPING FREQUENCIES	30
	13.1 Test Standard and Limit	30
	13.2 Test Setup	
	13.3 Test Procedure	
	13.4 Deviation From Test Standard	31
	13.5 Antenna Connected Construction	31
	13.6 Test Data	31
14.	HOPPING FUNCTION REQUIREMENTS	32
	14.1 Test Standard and Limit	32
	14.4 Deviation From Test Standard	
	14.6 Test Data	32
15.	ANTENNA REQUIREMENT	33
	15.1 Test Standard and Limit	
	15.2 Deviation From Test Standard	
	15.3 Antenna Connected Construction	

Report No.: TB-RF183072 Page: 4 of 72

15.4 Test Data	33
ATTACHMENT A CONDUCTED EMISSION TEST DATA	34
ATTACHMENT BUNWANTED EMISSIONS DATA	36
ATTACHMENT C—EMISSIONS IN NONRESTRICTED FREQUENCY DATA	57
ATTACHMENT D—99% OCCUPIED AND 20DB BANDWIDTH DATA	61
ATTACHMENT E—PEAK OUTPUT POWER DATA	65
ATTACHMENT F—POWER SPECTRAL DENSITY DATADATA	67
ATTACHMENT G—CARRIER FREQUENCY SEPARATION DATA	69
ATTACHMENT H—TIME OF OCCUPANCY(DWELL TIME) DATA	71
ATTACHMENT I—NUMBER OF HOPPING FREQUENCY	72

TOBY

Revision History

Report No.	Version	Description	Issued Date
TB-RF183072	Rev.01	Initial issue of report	2021-08-20
	101		The state of the s
33	1083	EDITO ETTE	
MOBIS	4 100		MOBIL
	100		
Morris	3	UBA LIOUS	TUDE
TOTAL VIEW	m(B)	4033	The state of the s
THE PARTY OF		The state of the s	
	2000	The same of the sa	m Bis
4033			0033
	B		IOI: N
Charles	13 10	TOBY	Turk

1. General Information about EUT

1.1 Client Information

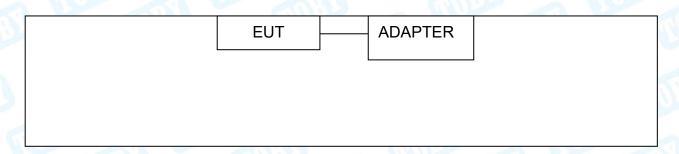
Applicant	-	Heltec Automation Technology Co., Ltd			
Address	23.	2-208, Block A, Yusha Building, 64 Hangtian Road, Longta Industrial Park, Chenghua District, Chengdu, Sichuan, China			
Manufacturer	1	Heltec Automation Technology Co., Ltd			
Address	:	: 2-208, Block A, Yusha Building, 64 Hangtian Road, Longtan Industrial Park, Chenghua District, Chengdu, Sichuan, China			

1.2 General Description of EUT (Equipment Under Test)

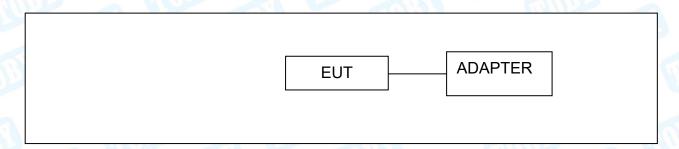
EUT Name		Heltec Indoor Hotspot				
HVIN/Models No.		HT-M2808, HT-M2802	HT-M2808, HT-M2802			
Model Different : All these models are identical in the same PCB, layout a electrical circuit, The only difference is model name.						
WURT I		Operation Frequency:	LoRa(125KHz): 903.9MHz-905.3MHz			
	ñ	Number of Channel:	8 channels			
Product Description		Antenna Gain:	Antenna 1: 0.5dBi External Antenna Antenna 2: 4dBi External Antenna Antenna 3: 2dBi External Antenna			
	The same	Bit Rate of Transmitter:	5.4kbps			
Power Rating Software Version		Adapter: Input: 90-264V~, 50/60Hz, 1.5A Output: DC 12V3.0A				
		N/A				
Hardware Version	÷	N/A				
Pomark:						

Remark:

- (1) The antenna gain and adapter provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Antenna information provided by the applicant. And the type of antenna please see the external photos.


Report No.: TB-RF183072 Page: 7 of 72

(4) Channel List:


Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	903.9	04	904.5	07	905.1
02	904.1	05	904.7	08	905.3
03	904.3	06	904.9		

1.3 Block Diagram Showing the Configuration of System Tested

Conducted Test

Radiated Test

1.4 Description of Support Units

		Equipment Inform	mation		
Name Model FCC ID/VOC Manufacturer					
	010			(dnm	
		Cable Information			
Number	Shielded Type	Ferrite Core	Length	Note	
Cable 1	Yes	NO	1.0M	Accessory	

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

. o o p o o a o . j .				
For Conducted Test				
Final Test Mode	Description			
Mode 1	TX Mode Channel 01			
	For Radiated Test			
Final Test Mode	Description			
Mode 1	TX Mode Channel 01			
Mode 2	TX Mode Channel 01/04/08			
Mode 3	Hopping Mode			

Note:

- (1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.
 - According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels.
- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a Mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

8 of 72

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	anii	Putty.exe	
Frequency	903.9MHz	904.5MHz	905.3MHz
LoRa	10	10	10

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	$\pm 3.50~\mathrm{dB}$ $\pm 3.10~\mathrm{dB}$
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Report No.: TB-RF183072 Page: 10 of 72

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

2. Test Summary

Standard Section FCC IC		T4 14	-	11	
		Test Item Test Sample(s)		Judgment	Remark
FCC 15.207(a)	RSS-Gen 8.8	Conducted Emission	20210603-15-1#	PASS	N/A
FCC 15.209 & 15.247(d)	RSS-Gen 8.9 & RSS 247 5.5	Radiated Unwanted Emissions	20210603-15-1#	PASS	N/A
FCC 15.203	RSS-247 6.8	Antenna Requirement	20210603-15-2#	PASS	N/A
FCC 15.247(a)	RSS-Gen 6.7 RSS 247 5.1 (1)	99% Occupied Bandwidth & 20dB Bandwidth	20210603-15-2#	PASS	N/A
FCC 15.247(b)(1)	RSS 247 5.4 (2)	Peak Output Power	20210603-15-2#	PASS	N/A
FCC 15.247(f)	RSS-247 5.2(b)	Power Spectral Density	20210603-15-2#	PASS	N/A
FCC 15.247(a)(1)	RSS 247 5.3 (a)	Carrier frequency separation	20210603-15-2#	PASS	N/A
FCC 15.247(f)	RSS 247 5.1 (4)	Time of occupancy	20210603-15-2#	PASS	N/A
FCC 15.247(b)(1)	RSS 247 5.1 (4)	Number of Hopping Frequency	20210603-15-2#	PASS	N/A(2)
FCC 15.247(d)	RSS-Gen 8.10 RSS-247 5.5	Band Edge	20210603-15-2#	PASS	N/A
FCC 15.207(a)	RSS-247 5.5	Conducted Unwanted Emissions	20210603-15-2#	PASS	N/A
FCC 15.205	RSS-Gen 8.10	Emissions in Restricted Bands	20210603-15-2#	PASS	N/A
FCC 15.247(a)(1)	RSS 247	Hopping function Requirements	20210603-15-2#	PASS	N/A
		On Time and Duty Cycle	20210603-15-2#		N/A

Note: N/A is an abbreviation for Not Applicable.

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120	Tonscend	V2.6.88.0336

Report No.: TB-RF183072
Page: 12 of 72

4. Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 02, 2021	Jul. 01, 2022
ann's	Compliance				
RF Switching Unit	Direction Systems	RSU-A4	34403	Jul. 02, 2021	Jul. 01, 2022
	Inc			20	Chiston.
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 02, 2021	Jul. 01, 2022
LISN	Rohde & Schwarz	ENV216	101131	Jul. 02, 2021	Jul. 01, 2022
Radiation Emission T	est				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 02, 2021	Jul. 01, 2022
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 02, 2021	Jul. 01, 2022
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 02, 2021	Jul. 01, 2022
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.01, 2020	Feb. 28, 2022
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.01, 2020	Feb. 28, 2022
Horn Antenna	ETS-LINDGREN	BBHA 9170	BBHA9170582	Mar.01, 2020	Feb. 28, 2022
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 06, 2021	Jul. 05, 2022
Pre-amplifier	Sonoma	310N	185903	Feb. 25, 2021	Feb. 24, 2022
Pre-amplifier	HP	8449B	3008A00849	Feb. 25, 2021	Feb. 24, 2022
Pre-amplifier	SKET	LNPA_1840G-50	SK201904032	Feb. 25, 2021	Feb. 24, 2022
Cable	HUBER+SUHNER	100	SUCOFLEX	Feb. 25, 2021	Feb. 24, 2022
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducted E	mission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 02, 2021	Jul. 01, 2022
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 02, 2021	Jul. 01, 2022
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 11, 2020	Sep. 10, 2021
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 11, 2020	Sep. 10, 2021
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 11, 2020	Sep. 10, 2021
William .	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 11, 2020	Sep. 10, 2021
DE Danier C	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 11, 2020	Sep. 10, 2021
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 11, 2020	Sep. 10, 2021
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 11, 2020	Sep. 10, 2021

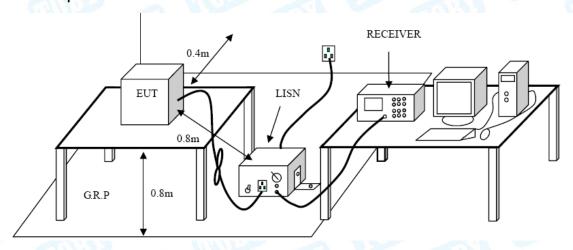
5. Conducted Emission

5.1 Test Standard and Limit

5.1.1 Test Standard

RSS-Gen 8.8

FCC Part 15.207


5.1.2 Test Limit

F	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

- The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.
- Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- ●I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- ●LISN at least 80 cm from nearest part of EUT chassis.
- ●The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

Report No.: TB-RF183072

Page: 14 of 72

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A.

6. Radiated and Conducted Unwanted Emissions

6.1 Test Standard and Limit

6.1.1 Test Standard

RSS-Gen 8.9 & RSS 247 5.5 FCC Part 15.209 & FCC Part 15.247(d)

6.1.2 Test Limit

	Genera	al field strength limits	at frequencies Below	30MHz
Freque	ncy	Field Strength	Field Strength	Measurement
(MHz	<u>z</u>)	(μ Α /m)*	(microvolt/meter)**	Distance (meters)
0.009~0	.490	6.37/F (F in kHz)	2400/F(KHz)	300
0.490~1	.705	63.7/F (F in kHz)	24000/F(KHz)	30
1.705~3	30.0	0.08	30	30

Note: 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

2, *is for RSS Standard, **is for FCC Standard.

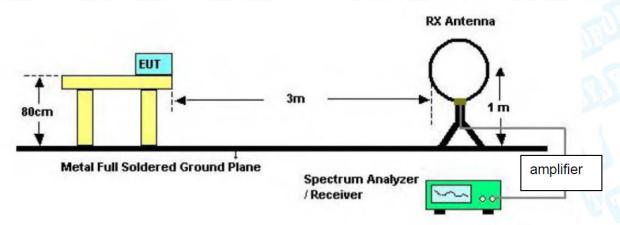
General field	strength limits at frequenc	ies above 30 MHz
Frequency (MHz)	Field strength (µV/m at 3 m)	Measurement Distance (meters)
30~88	100	(meters)
88~216	150	3
216~960	200	3
Above 960	500	3

General field strength limits at frequencies Above 1000MHz			
Frequency	Distance of 3m (dBuV/m)		
(MHz)	Peak	Average	
Above 1000	74	54	
	W 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

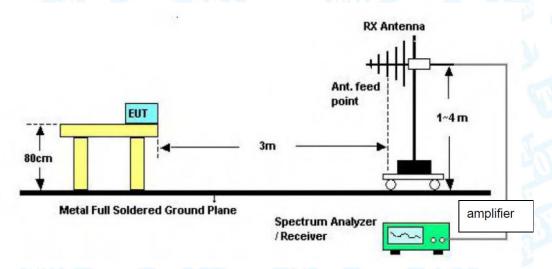
Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

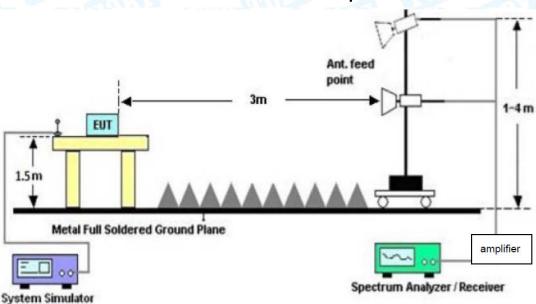
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.



Report No.: TB-RF183072

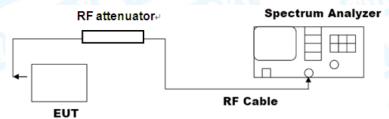

Page: 16 of 72

6.2 Test Setup


Radiated measurement

Below 30MHz Test Setup

Below 1000MHz Test Setup



Above 1GHz Test Setup

Conducted measurement

6.3 Test Procedure

---Radiated measurement

- The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- ●If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- ●For the actual test configuration, please see the test setup photo.

Report No.: TB-RF183072 Page: 18 of 72

--- Conducted measurement

Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW≥[3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Mode

Please refer to the description of test mode.

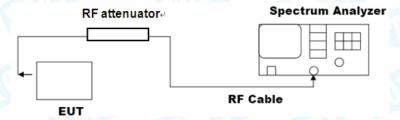
6.6 Test Data

Please refer to the Attachment B.

7. Emissions in nonrestricted frequency bands

7.1 Test Standard and Limit

7.1.1 Test Standard


RSS-Gen 8.10 & RSS 247 5.5 FCC Part 15.205 & FCC Part 15.247(d)

7.1.2 Test Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

7.2 Test Setup

Conducted measurement

7.3 Test Procedure

Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to \geq 1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW ≥ [3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Report No.: TB-RF183072 Page: 20 of 72

Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW ≥ [3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Mode

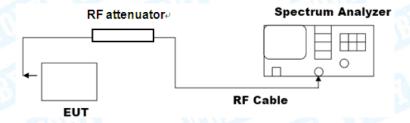
Please refer to the description of test mode.

7.6 Test Data

Please refer to the Attachment C.

8. 99% Occupied and 20dB Bandwidth

8.1 Test Standard and Limit


8.1.1 Test Standard

RSS-Gen 6.7 & RSS 247 5.1(a) FCC Part 15.205 & FCC Part 15.247(a)

8.1.2 Test Limit

There are no limits for 20dB bandwidth and 99% occupied bandwidth.

8.2 Test Setup

8.3 Test Procedure

- The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:
- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.

Report No.: TB-RF183072 Page: 22 of 72

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Mode

Please refer to the description of test mode.

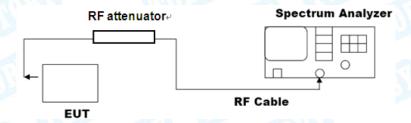
8.6 Test Data

Please refer to the Attachment D.

Report No.: TB-RF183072 Page: 23 of 72

9. Peak Output Power Test

9.1 Test Standard and Limit


9.1.1 Test Standard

RSS 247 5.4(2) FCC Part 15.247(b)(1)

9.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
	P _{max-pk} ≤ 1 W	
	<i>N_{ch}</i> ≥ 50	
	f ≥ MAX { 25 kHz, BW _{20dB} }	
	BW _{20dB} ≤250KHz	902~928
Dook Output Dower	t ch ≤ 0.4 s for $T = 20$ s	
Peak Output Power	<i>P</i> _{max-pk} ≤ 0.25W	
MUDE	25≤Nch <50	
	f ≥ MAX { 25 kHz, BW _{20dB} }	
	250KHz <bw<sub>20dB ≤500KHz</bw<sub>	
	t ch ≤ 0.4 s for $T = 10$ s	

9.2 Test Setup

f = hopping channel carrier frequency separation

9.3 Test Procedure

- This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test:
- a) Use the following spectrum analyzer settings:
 - 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
 - 2) RBW > 20 dB bandwidth of the emission being measured.
 - 3) VBW≥ RBW.
 - 4) Sweep: Auto.
 - 5) Detector function: Peak.
 - 6) Trace: Max hold.
- b) Allow trace to stabilize.
- c) Use the marker-to-peak function to set the marker to the peak of the emission.
- d) The indicated level is the peak output power, after any corrections for external

Report No.: TB-RF183072 Page: 24 of 72

attenuators and cables.

e) A plot of the test results and setup description shall be included in the test report.

NOTE-A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

9.4 Deviation From Test Standard

No deviation

9.5 EUT Operating Mode

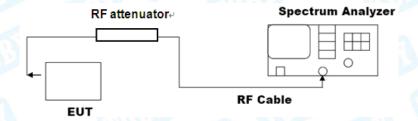
Please refer to the description of test mode.

9.6 Test Data

Please refer to the Attachment E.

10. Power Spectral Density

10.1 Test Standard and Limit


10.1.1 Test Standard

RSS 247 5.2(b) FCC Part 15.247(f)

10.1.2 Test Limit

Test Item	Limit
Power Spectral Density	8dBm(in any 3 kHz)

10.2 Test Setup

10.3 Test Procedure

- The following procedure shall be used if maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:
- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to 3 kHz≤RBW≤100 kHz.
- d) Set the VBW ≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.

10.4 Deviation From Test Standard

No deviation

10.5 Antenna Connected Construction

Please refer to the description of test mode.

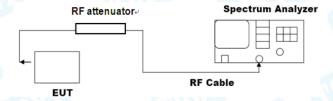
10.6 Test Data

Please refer to the Attachment F.

Report No.: TB-RF183072 Page: 26 of 72

11. Carrier frequency separation

11.1 Test Standard and Limit


11.1.1 Test Standard

RSS 247 5.1(2) FCC Part 15.247(a)(1)

11.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
	P _{max-pk} ≤ 1 W	
	<i>N_{ch}</i> ≥ 50	
	f ≥ MAX { 25 kHz, BW20dB }	
	BW _{20dB} ≤250KHz	MUDE
Carrier frequency	<i>t</i> ch ≤ 0.4 s for <i>T</i> = 20s	002 028
separation	<i>P</i> _{max-pk} ≤ 0.25W	902~928
THU .	25≤ <i>N</i> _{ch} <50	
	f ≥ MAX { 25 kHz, BW20dB }	
	250KHz <bw<sub>20dB ≤500KHz</bw<sub>	
	t ch ≤ 0.4 s for $T = 10$ s	

11.2 Test Setup

11.3 Test Procedure

- The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:
- a) Span: Wide enough to capture the peaks of two adjacent channels.
- b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- c) Video (or average) bandwidth (VBW) ≥ RBW.
- d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max hold.
- g) Allow the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

Report No.: TB-RF183072

Page: 27 of 72

11.4 Deviation From Test Standard

No deviation

11.5 Antenna Connected Construction

Please refer to the description of test mode.

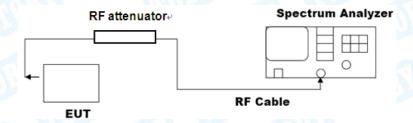
11.6 Test Data

Please refer to the Attachment G.

Report No.: TB-RF183072 Page: 28 of 72

12. Time of occupancy (dwell time)

12.1 Test Standard and Limit


12.1.1 Test Standard

RSS 247 5.3(1) FCC Part 15.247(f)

12.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
	P _{max-pk} ≤ 1 W	
	<i>N_{ch}</i> ≥ 50	
	f ≥ MAX { 25 kHz, BW _{20dB} }	
	BW _{20dB} ≤250KHz	
Time of occupancy	<i>t</i> ch ≤ 0.4 s for <i>T</i> = 20s	902~928
(dwell time)	<i>P</i> _{max-pk} ≤ 0.25W	902~926
WILLIAM STATE	25≤ <i>Nch</i> <50	
	f ≥ MAX { 25 kHz, BW _{20dB} }	
1 W	250KHz <bw<sub>20dB ≤500KHz</bw<sub>	33
	t ch ≤ 0.4 s for $T = 10$ s	

12.2 Test Setup

12.3 Test Procedure

- ●The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:
- a) Span: Zero span, centered on a hopping channel.
- b) RBW shall be \Box channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- d) Detector function: Peak.
- e) Trace: Max hold.

Use the marker-delta function to determine the transmit time per hop. If this value varies

Report No.: TB-RF183072 Page: 29 of 72

with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

(Number of hops in the period specified in the requirements) =

(number of hops on spectrum analyzer)x(period specified in the requirements / analyzer sweep time)

The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation.

The measured transmit time and time between hops shall be consistent with the values described in the operational description for the EUT.

12.4 Deviation From Test Standard

No deviation

12.5 Antenna Connected Construction

Please refer to the description of test mode.

12.6 Test Data

Please refer to the Attachment H.

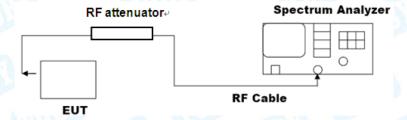
Report No.: TB-RF183072 Page: 30 of 72

13. Number of hopping frequencies

13.1 Test Standard and Limit

13.1.1 Test Standard

RSS 247 5.1(4) FCC Part 15.247(b)(1)


13.1.2 Test Limit

THE VALUE OF THE RESERVE OF THE RESE		
Test Item	Limit	Frequency Range(MHz)
	P _{max-pk} ≤ 1 W	
	<i>N_{ch}</i> ≥ 50	
	f ≥ MAX { 25 kHz, BW _{20dB} }	
Carrier frequency separation	BW20dB ≤250KHz	THE PARTY OF THE P
	t ch ≤ 0.4 s for $T = 20$ s	002 029
	<i>P</i> _{max-pk} ≤ 0.25W	902~928
	25≤ <i>N</i> _{ch} <50	(11)
	f ≥ MAX { 25 kHz, BW _{20dB} }	
	250KHz <bw<sub>20dB ≤500KHz</bw<sub>	
	t ch ≤ 0.4 s for $T = 10$ s	

 t_{ch} = average time of occupancy; T = period; N_{ch} = # hopping frequencies; BW = bandwidth; f = hopping channel carrier frequency separation

There is no minimum number of hopping channels associated with this type of hybrid system. While there is not a specific minimum limit, the hop sequence is required to appear as pseudorandom per Section 15.247(a)(1) (see Section 3 of this document).

13.2 Test Setup

13.3 Test Procedure

- The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:
- a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- c) VBW ≥ RBW.
- d) Sweep: Auto.
- e) Detector function: Peak.

Report No.: TB-RF183072 Page: 31 of 72

f) Trace: Max hold.

g) Allow the trace to stabilize.

It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies.

Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

13.4 Deviation From Test Standard

No deviation

13.5 Antenna Connected Construction

Please refer to the description of test mode.

13.6 Test Data

Please refer to the Attachment I.

Report No.: TB-RF183072 Page: 32 of 72

14. Hopping function Requirements

14.1 Test Standard and Limit

14.1.1 Test Standard

RSS 247

FCC Part 15.247(a)(1)

14.1.2 Test Limit

The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

14.4 Deviation From Test Standard

No deviation

14.6 Test Data

The transmitter follows the LoRa alliance protocol which complies with the pseudo-random hop sequence, equal use of each frequency, and receiver matching bandwidth and synchronization requirements.

Report No.: TB-RF183072 Page: 33 of 72

15. Antenna Requirement

15.1 Test Standard and Limit

15.1.1 Test Standard

RSS 247 6.8 FCC Part 15.203

15.1.2 Requirement

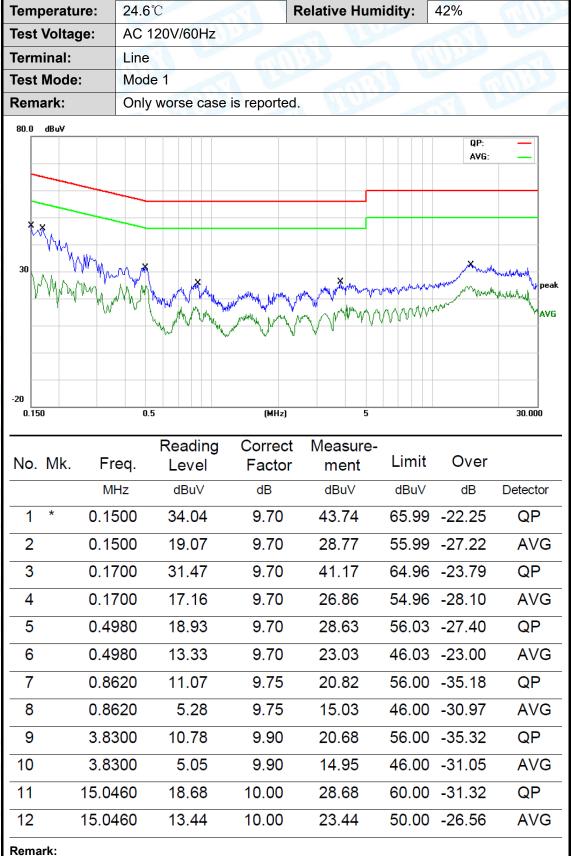
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.2 Deviation From Test Standard

No deviation

15.3 Antenna Connected Construction

The gains of the antenna used for transmitting is (Ant1: 0.4dBi; Ant1: 4dBi; Ant1: 2dBi), and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.


15.4 Test Data

The EUT antenna is a external antenna. It complies with the standard requirement.

	Antenna Type
	☐Permanent attached antenna
3	⊠Unique connector antenna
and the	☐Professional installation antenna

Attachment A-- Conducted Emission Test Data

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Temperature: 24.6℃ **Relative Humidity:** 42% AC 120V/60Hz Test Voltage: Terminal: Neutral Test Mode: Mode 1 Remark: Only worse case is reported. 80.0 dBuV QP: AVG: NAVG 0.150 (MHz) 30.000 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dΒ dBuV dBuV dΒ Detector 0.1539 9.70 40.89 65.78 -24.89 QP 1 31.19 2 0.1539 15.42 9.70 25.12 55.78 -30.66 AVG 3 31.23 9.70 40.93 65.07 -24.14 QP 0.1676 16.78 9.70 55.07 -28.59 4 0.1676 26.48 **AVG** 57.65 -28.93 5 0.4100 19.02 9.70 28.72 QP 6 9.70 47.65 -24.52 0.4100 13.43 23.13 **AVG** 7 56.03 -27.33 0.4980 19.00 9.70 28.70 QP 9.70 46.03 -23.02 **AVG** 8 0.4980 13.31 23.01 9 0.8500 12.03 9.75 21.78 56.00 -34.22 QP 10 9.75 46.00 -29.84 **AVG** 0.8500 6.41 16.16 60.00 -30.71 QP 11 14.8500 19.30 9.99 29.29 24.16 50.00 -25.84 12 14.8500 14.17 9.99 AVG

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Attachment B--Unwanted Emissions Data

--- Radiated Unwanted Emissions

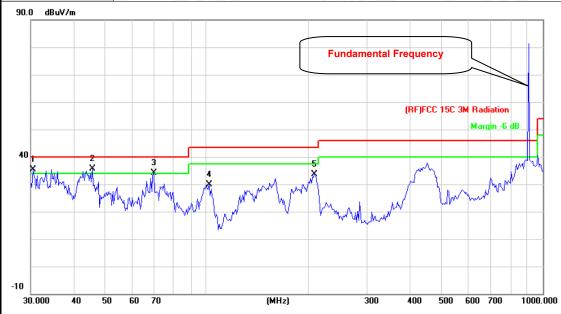
9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

Below the permissible value has no need to be reported.

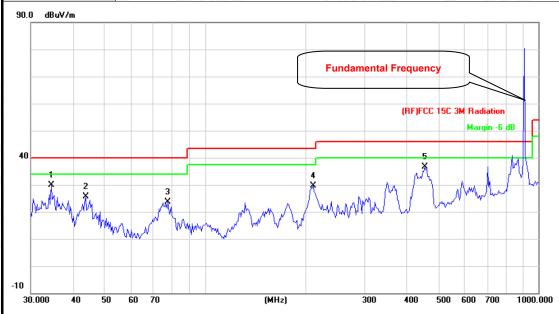
30MHz~1GHz


Temperature:	23.9℃	Aller	Relative Humidity	: 44%
Геst Voltage:	AC 120V/60Hz		THE PARTY OF THE P	
Ant. Pol.	Horizontal			
Test Mode: Mode 2 (903.9MHz-Antenna 1)				
Remark:	Only worse case	is reported.	U DE	The same of
90.0 dBuV/m				
			Fundamental Freque	ncy
40			(RF)	FCC 15C 3M Radiation Margin -6 dB
Mary Mary Mary	2	3 * *	Marly have	Jan May All
30.000 40 5	0 60 70 80	(MHz)	300 400	500 600 700 1000.000
	Reading		Measure-	
	Freq. Level	Factor	ment Lim	
	MHz dBu∨	dB/m	dBuV/m dBu	V/m dB Detecto
1 34	.5173 42.50	-16.77	25.73 40.	00 -14.27 peak
2 75	.1822 45.46	-23.15	22.31 40.	00 -17.69 peak
3 176	6.8878 47.25	-20.41	26.84 43.	50 -16.66 peak
4 330	0.1949 50.68	-15.31	35.37 46.	00 -10.63 peak
5 * 452	2.7197 52.44	-12.00	40.44 46.	00 -5.56 peak
5 * 452		-12.00		<u> </u>

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

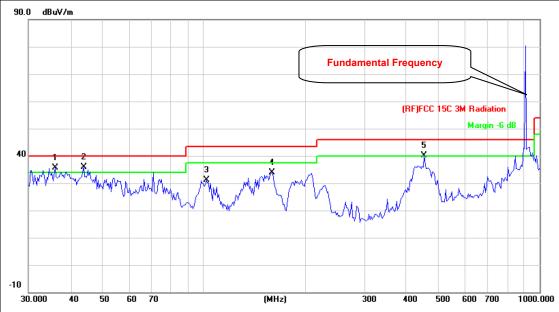
Temperature:	23.9℃	Relative Humidity:	44%
Test Voltage:	AC 120V/60Hz		MILL
Ant. Pol.	Vertical		
Test Mode:	Mode 2 (903.9MHz-An	tenna 1)	W. S.
Remark:	Only worse case is rep	orted.	CI III


No	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	İ	30.4238	49.16	-13.72	35.44	40.00	-4.56	peak
2	*	45.6948	57.70	-22.14	35.56	40.00	-4.44	peak
3	İ	69.6005	57.91	-23.73	34.18	40.00	-5.82	peak
4		101.6443	52.23	-22.30	29.93	43.50	-13.57	peak
5		209.3129	53.23	-19.59	33.64	43.50	-9.86	peak

^{*:}Maximum data x:Over limit !:over margin

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBμV/m)-Limit QPK(dBμV/m)

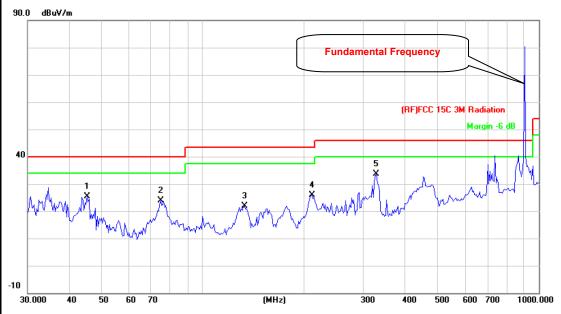
Temperature:	23.9℃	Relative Humidity:	44%
Test Voltage:	AC 120V/60Hz		MULL
Ant. Pol.	Horizontal	A COL	
Test Mode:	Mode 2 (904.5MHz-Anteni	na 1)	U
Remark:	Only worse case is reported	ed.	


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		34.5173	46.60	-16.77	29.83	40.00	-10.17	peak
2		43.8119	46.86	-21.33	25.53	40.00	-14.47	peak
3		77.3212	46.48	-22.94	23.54	40.00	-16.46	peak
4		210.7860	49.18	-19.49	29.69	43.50	-13.81	peak
5	*	455.9058	48.47	-11.92	36.55	46.00	-9.45	peak

^{*:}Maximum data x:Over limit !:over margin

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBμV/m)-Limit QPK(dBμV/m)

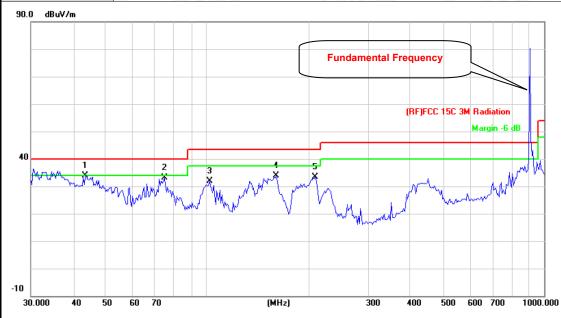
Temperature:	23.9℃	Relative Humidity:	44%			
Test Voltage:	AC 120V/60Hz		MUD			
Ant. Pol.	Vertical	Vertical				
Test Mode:	Mode 2 (904.5MHz-An	tenna 1)				
Remark:	Only worse case is rep	orted.	4000			


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	į	36.0007	53.25	-17.60	35.65	40.00	-4.35	peak
2	*	43.8119	57.33	-21.33	36.00	40.00	-4.00	peak
3		101.6443	53.44	-22.30	31.14	43.50	-12.36	peak
4		159.2251	55.05	-21.06	33.99	43.50	-9.51	peak
5	!	452.7197	52.13	-12.00	40.13	46.00	-5.87	peak

^{*:}Maximum data x:Over limit !:over margin

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBμV/m)-Limit QPK(dBμV/m)

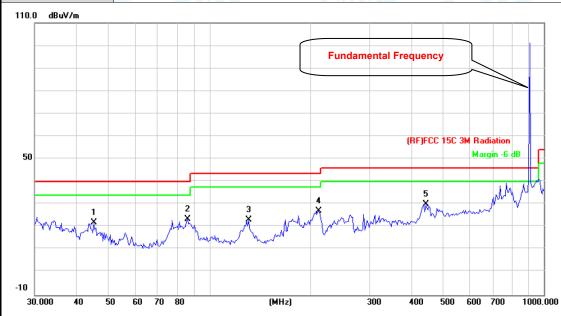
Temperature:	23.9℃	Relative Humidity:	44%			
Test Voltage:	AC 120V/60Hz		WILL THE			
Ant. Pol.	Horizontal	Horizontal				
Test Mode:	Mode 2 (905.3MHz-Antenna	a 1)				
Remark:	Only worse case is reported					


No.	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		45.0583	47.18	-21.92	25.26	40.00	-14.74	peak
2		74.6569	47.12	-23.22	23.90	40.00	-16.10	peak
3		132.6850	44.53	-22.59	21.94	43.50	-21.56	peak
4		210.7860	45.33	-19.49	25.84	43.50	-17.66	peak
5	*	327.8873	49.02	-15.40	33.62	46.00	-12.38	peak

^{*:}Maximum data x:Over limit !:over margin

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBμV/m)-Limit QPK(dBμV/m)

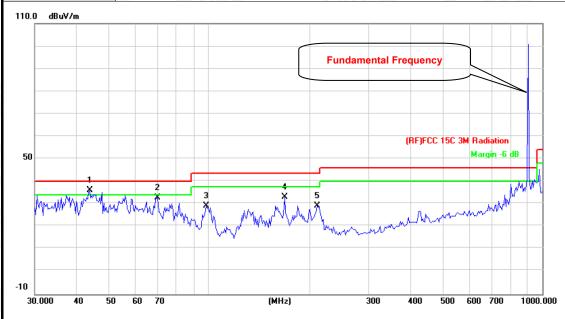
Temperature:	23.9℃	Relative Humidity:	44%
Test Voltage:	AC 120V/60Hz		THUE STATE OF THE
Ant. Pol.	Vertical	A LIVE	
Test Mode:	Mode 2 (905.3MHz-An	tenna 1)	TO THE REAL PROPERTY.
Remark:	Only worse case is rep	orted.	WIII DE


No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	43.5057	55.13	-21.18	33.95	40.00	-6.05	peak
2		74.6569	56.40	-23.22	33.18	40.00	-6.82	peak
3		101.6443	54.30	-22.30	32.00	43.50	-11.50	peak
4		160.3456	54.84	-21.00	33.84	43.50	-9.66	peak
5		209.3129	53.03	-19.59	33.44	43.50	-10.06	peak

^{*:}Maximum data x:Over limit !:over margin

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBμV/m)-Limit QPK(dBμV/m)

- W. U. V. A. V. V. K. 1981			
Temperature:	23.9℃	Relative Humidity:	44%
Test Voltage:	AC 120V/60Hz		MILL
Ant. Pol.	Horizontal	A COM	
Test Mode:	Mode 2 (903.9MHz-Antenr	a 2)	U. S.
Remark:	Only worse case is reporte	d.	


No.	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		45.0583	43.84	-21.92	21.92	40.00	-18.08	peak
2		85.8984	45.91	-22.34	23.57	40.00	-16.43	peak
3		130.8369	45.62	-22.58	23.04	43.50	-20.46	peak
4		212.2695	46.36	-19.41	26.95	43.50	-16.55	peak
5	*	443.2943	42.24	-12.13	30.11	46.00	-15.89	peak

^{*:}Maximum data x:Over limit !:over margin

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBμV/m)-Limit QPK(dBμV/m)

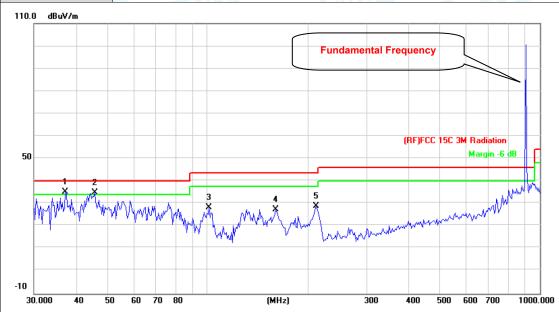
Temperature:	23.9℃	Relative Humidity:	44%				
Test Voltage:	AC 120V/60Hz		MUD				
Ant. Pol.	Vertical	77					
Test Mode:	Mode 2 (903.9MHz-A	Mode 2 (903.9MHz-Antenna 2)					
Remark:	Only worse case is re	eported.					

No	o. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	43.8119	57.35	-21.33	36.02	40.00	-3.98	peak
2		70.0903	56.30	-23.69	32.61	40.00	-7.39	peak
3		98.1419	51.47	-22.21	29.26	43.50	-14.24	peak
4		168.4138	53.78	-20.72	33.06	43.50	-10.44	peak
5		210.7860	48.65	-19.49	29.16	43.50	-14.34	peak

^{*:}Maximum data x:Over limit !:over margin

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBμV/m)-Limit QPK(dBμV/m)

Temperature:	23.9℃	Relative Humidity:	44%				
Test Voltage:	AC 120V/60Hz						
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	Mode 2 (904.5MHz-Antenn	Mode 2 (904.5MHz-Antenna 2)					
Remark:	Only worse case is reported	d.					

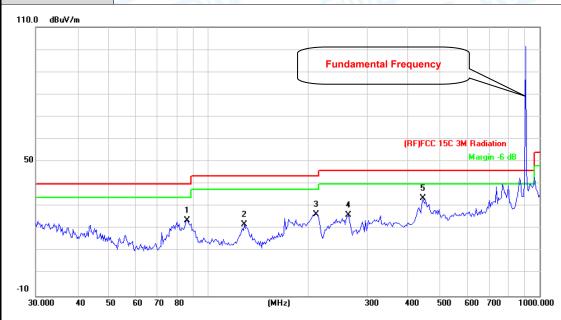

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		37.2855	39.05	-18.20	20.85	40.00	-19.15	peak
2	*	85.8984	46.45	-22.34	24.11	40.00	-15.89	peak
3		129.9226	44.42	-22.57	21.85	43.50	-21.65	peak
4		210.7860	46.48	-19.49	26.99	43.50	-16.51	peak
5		261.9753	42.15	-17.06	25.09	46.00	-20.91	peak

^{*:}Maximum data x:Over limit !:over margin

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBμV/m)-Limit QPK(dBμV/m)

Temperature:23.9℃Relative Humidity:44%Test Voltage:AC 120V/60HzAnt. Pol.VerticalTest Mode:Mode 2 (904.5MHz-Antenna 2)Remark:Only worse case is reported.

N	o. Mł	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	37.2855	53.35	-18.20	35.15	40.00	-4.85	peak
2	ļ	45.6948	57.14	-22.14	35.00	40.00	-5.00	peak
3		100.9339	50.52	-22.28	28.24	43.50	-15.26	peak
4		160.3456	48.44	-21.00	27.44	43.50	-16.06	peak
5		212.2695	48.41	-19.41	29.00	43.50	-14.50	peak

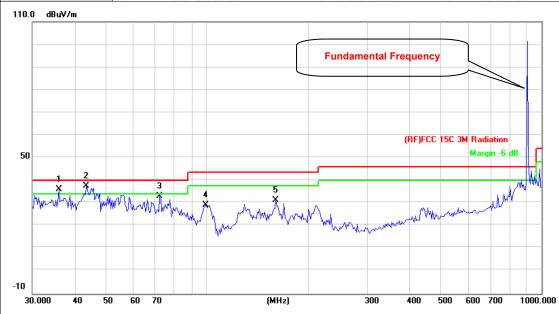

^{*:}Maximum data x:Over limit !:over margin

Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Temperature:23.9℃Relative Humidity:44%Test Voltage:AC 120V/60HzAnt. Pol.HorizontalTest Mode:Mode 2 (905.3MHz-Antenna 2)Remark:Only worse case is reported.

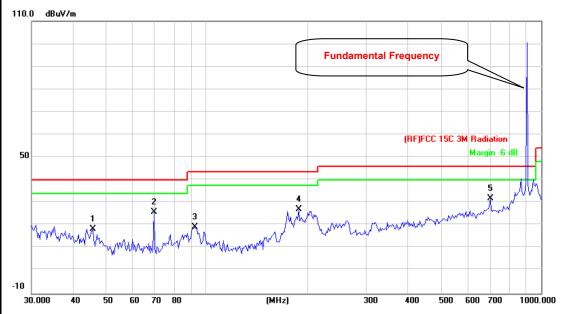
Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
	85.8983	45.98	-22.34	23.64	40.00	-16.36	peak
	128.1129	44.60	-22.55	22.05	43.50	-21.45	peak
	210.7860	45.94	-19.49	26.45	43.50	-17.05	peak
	263.8190	43.18	-17.02	26.16	46.00	-19.84	peak
*	443.2943	45.71	-12.13	33.58	46.00	-12.42	peak
		MHz 85.8983 128.1129 210.7860 263.8190	Mk. Freq. Level MHz dBuV 85.8983 45.98 128.1129 44.60 210.7860 45.94 263.8190 43.18	Mk. Freq. Level Factor MHz dBuV dB/m 85.8983 45.98 -22.34 128.1129 44.60 -22.55 210.7860 45.94 -19.49 263.8190 43.18 -17.02	Mk. Freq. Level Factor ment MHz dBuV dBl/m dBuV/m 85.8983 45.98 -22.34 23.64 128.1129 44.60 -22.55 22.05 210.7860 45.94 -19.49 26.45 263.8190 43.18 -17.02 26.16	Mk. Freq. Level Factor ment Limit MHz dBuV dBuV dBuV/m dBuV/m 85.8983 45.98 -22.34 23.64 40.00 128.1129 44.60 -22.55 22.05 43.50 210.7860 45.94 -19.49 26.45 43.50 263.8190 43.18 -17.02 26.16 46.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dBuV dBuV/m dBuV/m dBuV/m dB 85.8983 45.98 -22.34 23.64 40.00 -16.36 128.1129 44.60 -22.55 22.05 43.50 -21.45 210.7860 45.94 -19.49 26.45 43.50 -17.05 263.8190 43.18 -17.02 26.16 46.00 -19.84


^{*:}Maximum data x:Over limit !:over margin

Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

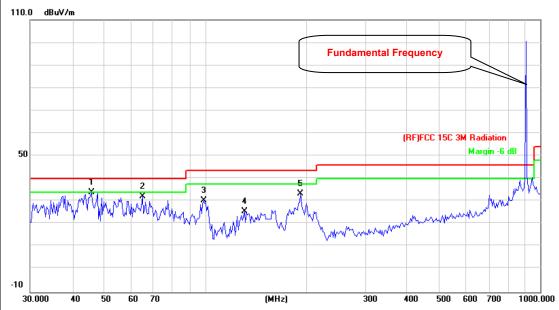
Temperature:	23.9℃	Relative Humidity:	44%
Test Voltage:	AC 120V/60Hz		MILL
Ant. Pol.	Vertical	A W	
Test Mode:	Mode 2 (905.3MHz-Ante	enna 2)	The same of the sa
Remark:	Only worse case is repo	rted.	T WILLIAM


No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	İ	36.0007	53.70	-17.60	36.10	40.00	-3.90	peak
2	*	43.5057	58.70	-21.18	37.52	40.00	-2.48	peak
3		72.0843	56.51	-23.48	33.03	40.00	-6.97	peak
4		98.8326	51.48	-22.23	29.25	43.50	-14.25	peak
5		160.3456	52.20	-21.00	31.20	43.50	-12.30	peak

^{*:}Maximum data x:Over limit !:over margin

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBμV/m)-Limit QPK(dBμV/m)

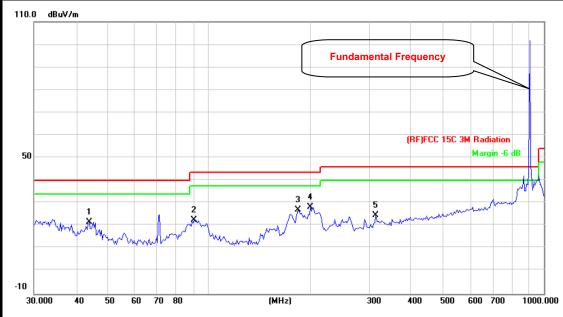
Temperature:	23.9℃	Relative Humidity:	44%			
Test Voltage:	AC 120V/60Hz		MUU			
Ant. Pol.	Horizontal					
Test Mode:	Mode 2 (903.9MHz-	Mode 2 (903.9MHz-Antenna 3)				
Remark:	Only worse case is	reported.	WILLIAM STATE			


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		45.6948	40.58	-22.14	18.44	40.00	-21.56	peak
2	*	69.6005	49.67	-23.73	25.94	40.00	-14.06	peak
3		92.1388	41.43	-22.14	19.29	43.50	-24.21	peak
4		188.4125	46.95	-20.02	26.93	43.50	-16.57	peak
5		704.2261	38.49	-6.74	31.75	46.00	-14.25	peak

^{*:}Maximum data x:Over limit !:over margin

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBμV/m)-Limit QPK(dBμV/m)

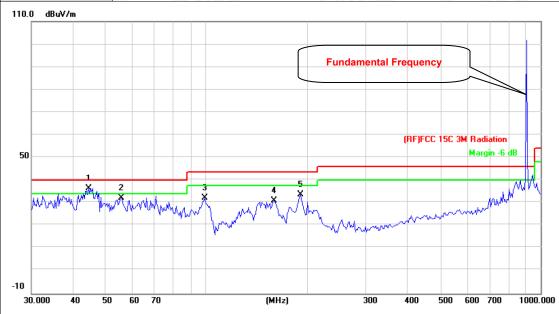
Temperature:	23.9℃	Relative Humidity:	44%				
Test Voltage:	AC 120V/60Hz		THE PARTY OF THE P				
Ant. Pol.	Vertical	- TO 1					
Test Mode:	Mode 2 (903.9MHz-Anto	Mode 2 (903.9MHz-Antenna 3)					
Remark:	Only worse case is repo	orted.	CI III				


Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
*	45.6948	55.98	-22.14	33.84	40.00	-6.16	peak
	64.8865	56.20	-24.17	32.03	40.00	-7.97	peak
	98.8326	52.59	-22.23	30.36	43.50	-13.14	peak
	130.8369	48.04	-22.58	25.46	43.50	-18.04	peak
	192.4186	53.19	-19.99	33.20	43.50	-10.30	peak
		* 45.6948 64.8865 98.8326 130.8369	Mk. Freq. Level MHz dBuV * 45.6948 55.98 64.8865 56.20 98.8326 52.59 130.8369 48.04	Mk. Freq. Level Factor MHz dBuV dB/m * 45.6948 55.98 -22.14 64.8865 56.20 -24.17 98.8326 52.59 -22.23 130.8369 48.04 -22.58	Mk. Freq. Level Factor ment MHz dBuV dBl/m dBuV/m * 45.6948 55.98 -22.14 33.84 64.8865 56.20 -24.17 32.03 98.8326 52.59 -22.23 30.36 130.8369 48.04 -22.58 25.46	Mk. Freq. Level Factor ment Limit MHz dBuV dB/m dBuV/m dBuV/m * 45.6948 55.98 -22.14 33.84 40.00 64.8865 56.20 -24.17 32.03 40.00 98.8326 52.59 -22.23 30.36 43.50 130.8369 48.04 -22.58 25.46 43.50	Mk. Freq. Level Factor ment Limit Over MHz dBuV dBuV dBuV/m dBuV/m dBuV/m dB * 45.6948 55.98 -22.14 33.84 40.00 -6.16 64.8865 56.20 -24.17 32.03 40.00 -7.97 98.8326 52.59 -22.23 30.36 43.50 -13.14 130.8369 48.04 -22.58 25.46 43.50 -18.04

x:Over limit !:over margin *:Maximum data

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBμV/m)-Limit QPK(dBμV/m)

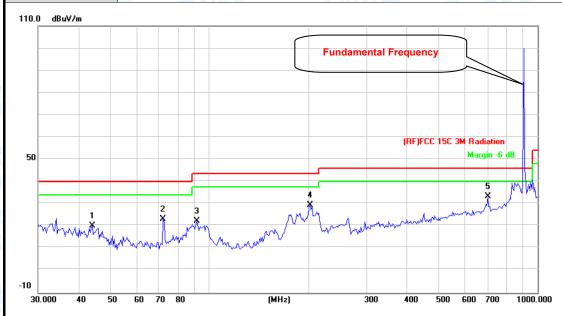
Temperature:	23.9℃	Relative Humidity:	44%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Horizontal	Horizontal				
Test Mode:	Mode 2 (904.5MHz-Antenn	Mode 2 (904.5MHz-Antenna 3)				
Remark:	Only worse case is reported	d.				


Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
	43.8119	43.04	-21.33	21.71	40.00	-18.29	peak
	90.2205	44.55	-22.11	22.44	43.50	-21.06	peak
	184.4898	47.28	-20.16	27.12	43.50	-16.38	peak
*	200.6881	48.39	-20.06	28.33	43.50	-15.17	peak
	314.3765	40.45	-15.83	24.62	46.00	-21.38	peak
		MHz 43.8119 90.2205 184.4898 * 200.6881	Mk. Freq. Level MHz dBuV 43.8119 43.04 90.2205 44.55 184.4898 47.28 * 200.6881 48.39	Mk. Freq. Level Factor MHz dBuV dB/m 43.8119 43.04 -21.33 90.2205 44.55 -22.11 184.4898 47.28 -20.16 * 200.6881 48.39 -20.06	Mk. Freq. Level Factor ment MHz dBuV dBuV dBuV/m 43.8119 43.04 -21.33 21.71 90.2205 44.55 -22.11 22.44 184.4898 47.28 -20.16 27.12 * 200.6881 48.39 -20.06 28.33	Mk. Freq. Level Factor ment Limit MHz dBuV dBuV dBuV/m dBuV/m 43.8119 43.04 -21.33 21.71 40.00 90.2205 44.55 -22.11 22.44 43.50 184.4898 47.28 -20.16 27.12 43.50 * 200.6881 48.39 -20.06 28.33 43.50	Mk. Freq. Level Factor ment Limit Over MHz dBuV dBuV dBuV/m dBuV/m dBuV/m dB 43.8119 43.04 -21.33 21.71 40.00 -18.29 90.2205 44.55 -22.11 22.44 43.50 -21.06 184.4898 47.28 -20.16 27.12 43.50 -16.38 * 200.6881 48.39 -20.06 28.33 43.50 -15.17

^{*:}Maximum data x:Over limit !:over margin

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBμV/m)-Limit QPK(dBμV/m)

Temperature:	23.9℃	Relative Humidity:	44%				
Test Voltage:	AC 120V/60Hz		WILLIAM STATE				
Ant. Pol.	Vertical	/ertical					
Test Mode:	Mode 2 (904.5MHz-Ante	lode 2 (904.5MHz-Antenna 3)					
Remark:	Only worse case is repor	ted.	WILD P				


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	44.4308	58.11	-21.64	36.47	40.00	-3.53	peak
2		55.6094	56.44	-24.14	32.30	40.00	-7.70	peak
3		98.8326	54.29	-22.23	32.06	43.50	-11.44	peak
4		159.2251	51.97	-21.06	30.91	43.50	-12.59	peak
5		191.0738	53.74	-19.96	33.78	43.50	-9.72	peak

^{*:}Maximum data x:Over limit !:over margin

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBμV/m)-Limit QPK(dBμV/m)

The state of the s			
Temperature:	23.9℃	Relative Humidity:	44%
Test Voltage:	AC 120V/60Hz		MULL
Ant. Pol.	Horizontal		
Test Mode:	Mode 2 (905.3MHz-	Antenna 3)	U
Remark:	Only worse case is r	eported.	WIII)

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		43.8119	41.58	-21.33	20.25	40.00	-19.75	peak
2		72.0843	46.59	-23.48	23.11	40.00	-16.89	peak
3		91.4949	44.50	-22.13	22.37	43.50	-21.13	peak
4		202.1005	49.39	-19.98	29.41	43.50	-14.09	peak
5	*	704.2261	40.19	-6.74	33.45	46.00	-12.55	peak

^{*:}Maximum data x:Over limit !:over margin

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBμV/m)-Limit QPK(dBμV/m)

VI. 1. 100 1. L. 100						
Temperature:	23.9℃	Relative Humidity:	44%			
Test Voltage:	AC 120V/60Hz		WILLIAM STATE			
Ant. Pol.	Vertical	Vertical Vertical				
Test Mode:	Mode 2 (905.3MHz-	-Antenna 3)	W. T.			
Remark:	Only worse case is	reported.				
•						

No	o. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	45.0583	57.73	-21.92	35.81	40.00	-4.19	peak
2		98.8326	54.28	-22.23	32.05	43.50	-11.45	peak
3		160.3456	54.13	-21.00	33.13	43.50	-10.37	peak
4		192.4186	54.34	-19.99	34.35	43.50	-9.15	peak
5		455.9058	42.08	-11.92	30.16	46.00	-15.84	peak

^{*:}Maximum data x:Over limit !:over margin

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBμV/m)-Limit QPK(dBμV/m)

Above 1GHz(only show the worst case Mid CH antenna 2)

Temperature:	23.2℃	Relative Humidity:	41%
Test Voltage:	AC 120V/60Hz	Military	
Ant. Pol.	Horizontal		1:33
Test Mode:	TX 905.3MHz-Antenna 2	10	

No	o. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		1808.812	52.85	-2.22	50.63	74.00	-23.37	peak
2	*	1808.968	37.87	-2.21	35.66	54.00	-18.34	AVG

Remark:

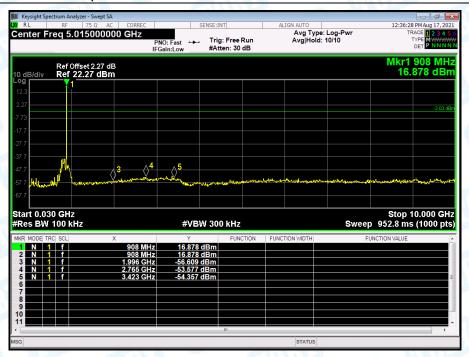
- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-10GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.2℃	Relative Humidity:	41%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Vertical	Vertical				
Test Mode:	TX 905.3MHz-Antenna 2		anti-			

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	1808.546	53.58	-2.22	51.36	74.00	-22.64	peak
2	2		1809.044	33.46	-2.21	31.25	74.00	-42.75	peak

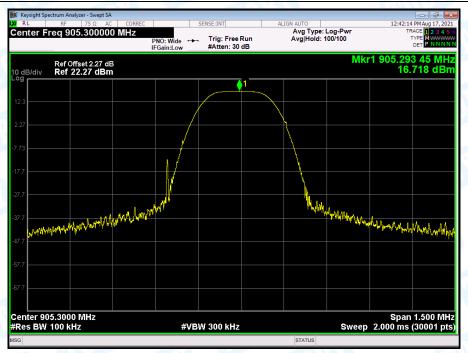
Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-10GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

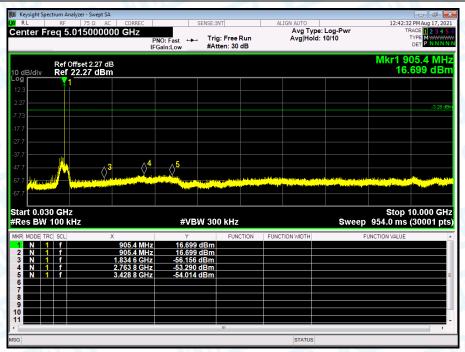


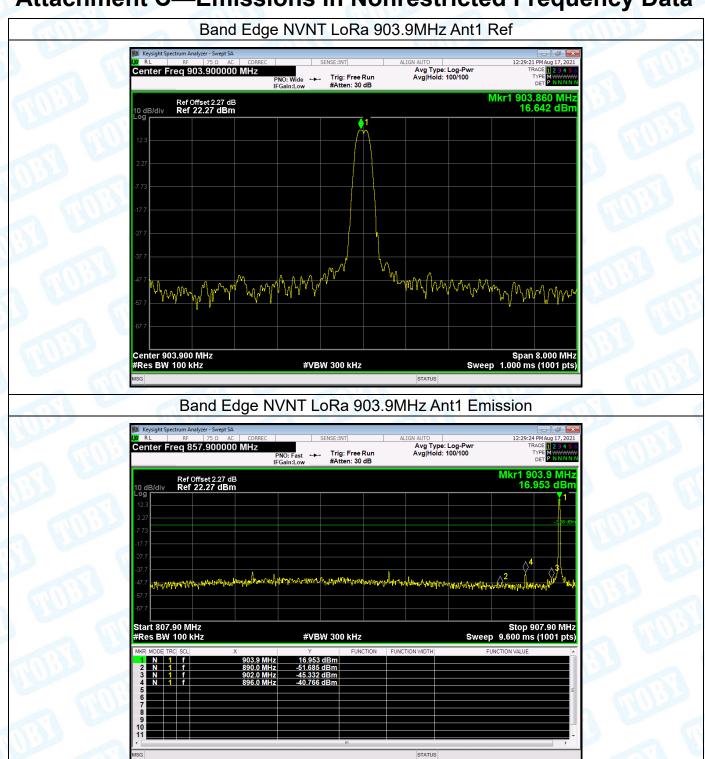
--- Conduction Unwanted Emissions

Tx. Spurious NVNT LoRa 903.9MHz Ant1 Ref

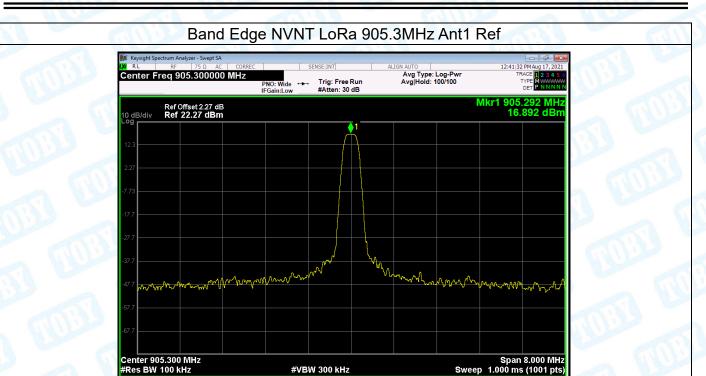


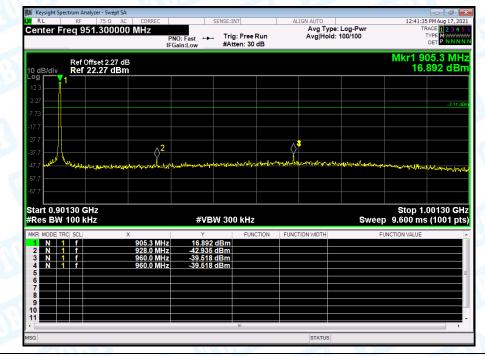
Tx. Spurious NVNT LoRa 903.9MHz Ant1 Emission

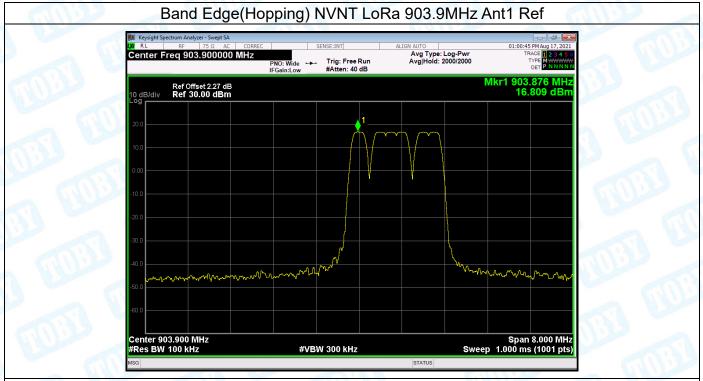


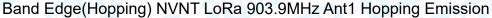


Tx. Spurious NVNT LoRa 905.3MHz Ant1 Emission

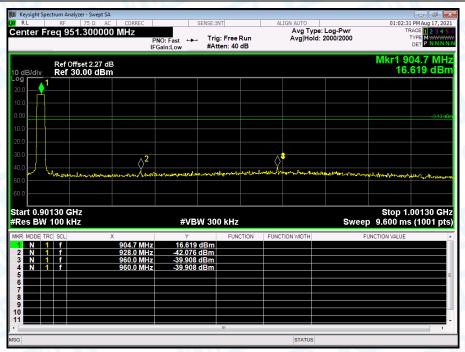



Attachment C—Emissions In Nonrestricted Frequency Data

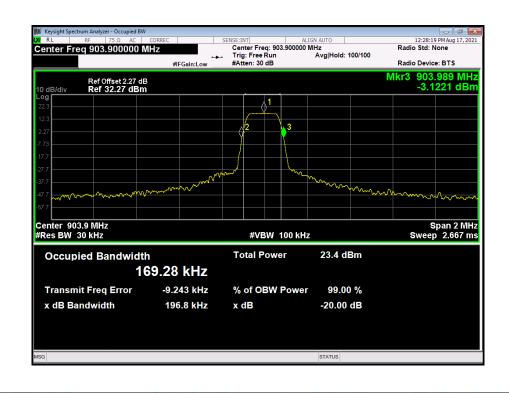


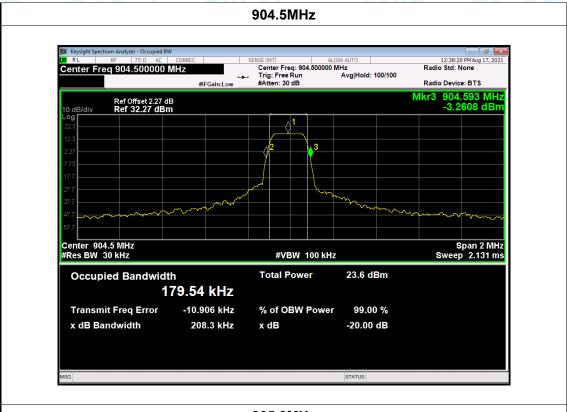


Band Edge NVNT LoRa 905.3MHz Ant1 Emission



Band Edge(Hopping) NVNT LoRa 905.3MHz Ant1 Hopping Emission

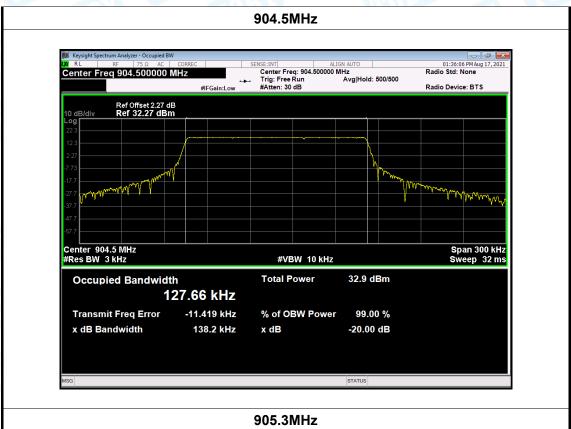


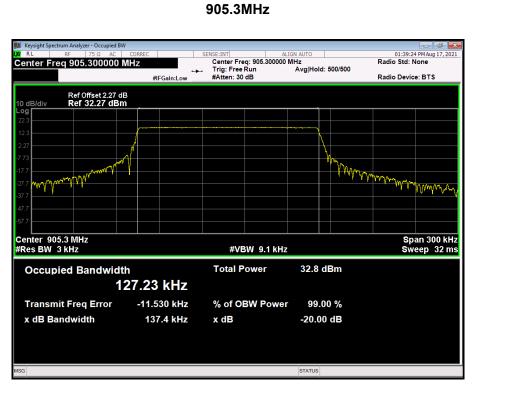

Attachment D—99% Occupied and 20dB Bandwidth Data

Temperature:	25℃		Relative Humidity:	55%				
Test Voltage:	AC 1	AC 120V/60Hz						
Test Mode:	TX N	lode						
Channel frequency		20dB Bandwidth	20dB Bandwidth	Limit				
(MHz)		(kHz)	*2/3 (kHz)	(kHz)				
903.9		196.8	131.20					
904.5		208.3	138.67	1				
905.3		198.8 132.53						
· · · · · · · · · · · · · · · · · · ·		·	·					

903.9MHz

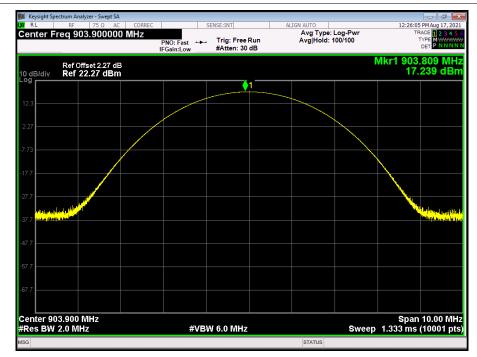
nperature:	25℃		Relative Hu	midity:	55%	
st Voltage:	AC 120V/60H	Hz	- 11 M			
st Mode:	TX Mode					
nannel freque	ency	99% Ba	andwidth		Limi	
(MHz)		(k	(Hz)		(kHz	
903.9		12	7.54			
904.5		12	7.66		1	
905.3		12	7.23		-	
		903.9	MHz		<u>I</u>	
LXI RL		SENSE:INT Center Fr Trig: Fre #FGain:Low #Atten: 3		00/500	01:34:07 PMAug 17, 2021 dio Std: None dio Device: BTS	
Center Fred	RF 75 Ω AC CORREC Q 903.900000 MHz # Ref Offset 2.27 dB	Center Fr → Trig: Free	req: 903.900000 MHz e Run Avg Hold: 5	00/500	01:34:07 PM Aug 17, 2021 dio Std: None	
LXI RL	rf 75 Ω AC CORREC 903.900000 MHz #	Center Fr → Trig: Free	req: 903.900000 MHz e Run Avg Hold: 5	00/500	01:34:07 PM Aug 17, 2021 dio Std: None	
Center Fred 10 dB/div Log 22 3	RF 75 Ω AC CORREC Q 903.900000 MHz # Ref Offset 2.27 dB	Center Fr → Trig: Free	req: 903.900000 MHz e Run Avg Hold: 5	00/500	01:34:07 PM Aug 17, 2021 dio Std: None	
Center Fred Log 223 123 227 -7.73	Ref Offset 2.27 dB Ref 32.27 dBm	Center Fr → Trig: Free	req: 903.900000 MHz e Run Avg Hold: 5 0 dB	00/500 Rai	01:34:07 PMAug 17, 2021 dio Std: None dio Device: BTS	
Center Fred Log 223 123 227 -7.73	Ref Offset 2.27 dB Ref 32.27 dBm	Center Fr → Trig: Free	req: 903.900000 MHz e Run Avg Hold: 5 0 dB	00/500 Rai	01:34:07 PMAug 17, 2021 dio Std: None dio Device: BTS	
Center Fred Log 223 123 227 -7.73	Ref Offset 2.27 dB Ref 32.27 dBm	Center Fr → Trig: Free	req: 903.900000 MHz e Run Avg Hold: 5 0 dB	00/500 Rai	01:34:07 PM Aug 17, 2021 dio Std: None	
Center Fred 10 dB/dlv Log 22.3 12.3 2.27 7.73 -17.7 -27.7 -37.7	Ref Offset 2.27 dB Ref 32.27 dBm	Center Fr → Trig: Free	req: 903.900000 MHz e Run Avg Hold: 5 0 dB	00/500 Rai	01:34:07 PMAug 17, 2021 dio Std: None dio Device: BTS	
Center Fred 10 dB/dlv Log 22.3 12.3 2.27 7.73 -17.7 -27.7 -37.7 47.7	Ref 075.0 AC CORREC Q 903.900000 MHz # Ref 0ffset 2.27 dB Ref 32.27 dBm	Center Fi Trig: Fren #Atten: 3	req: 903.900000 MHz e Run Avg Hold: 5 0 dB	00/500 Rai	01:34:07 PMAug 17, 2021 dio Std: None dio Device: BTS	

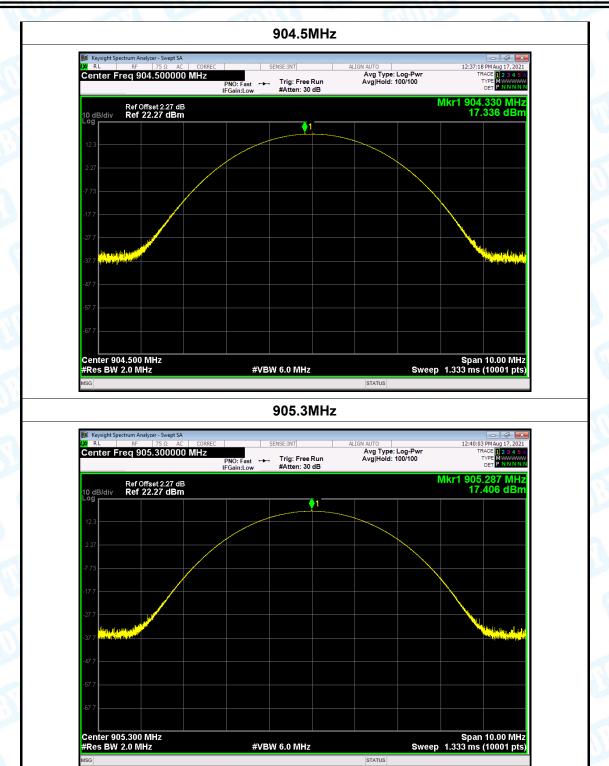

-20.00 dB


x dB Bandwidth

138.6 kHz

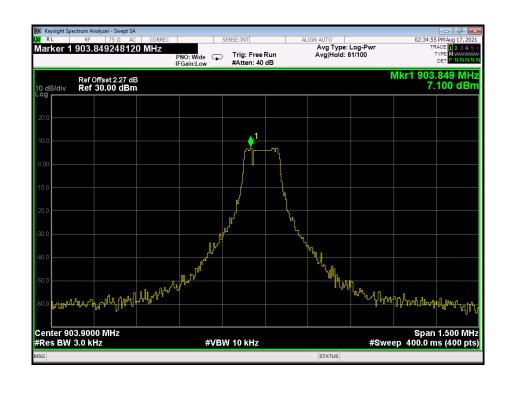
x dB

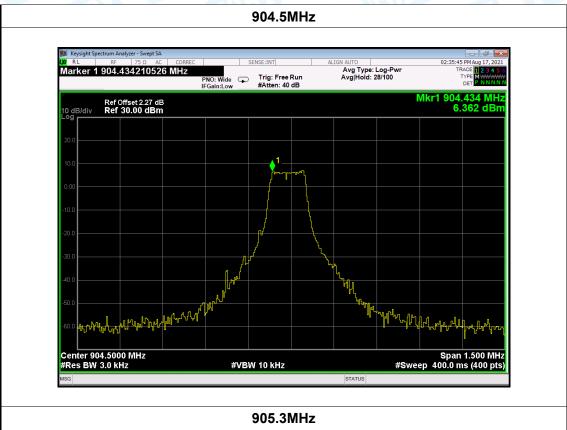


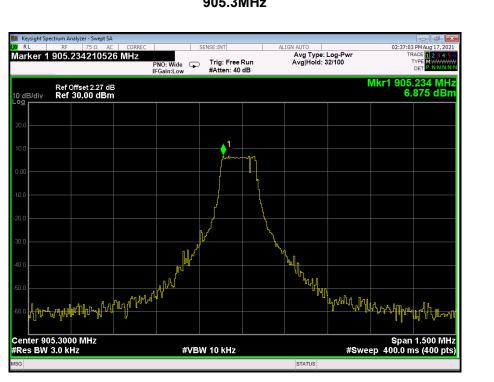


Attachment E—Peak Output Power Data

AC 120V/6	SOHz	WAY AND A STREET					
	00112						
TX Mode		3 6					
(MHz)	Test Result (dBm)		Limit (dBm)				
903.9							
904.5			21				
	17.406						
903.9MHz							
		7 (MHz) Test Result (d 17.239 17.336 17.406	7 (MHz) Test Result (dBm) 17.239 17.336 17.406				



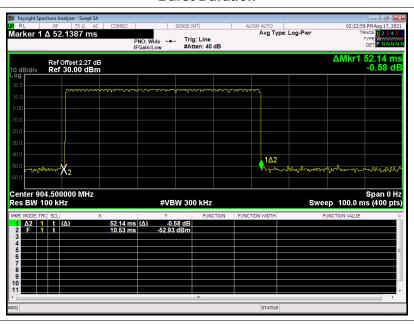

Attachment F—Power Spectral Density Data

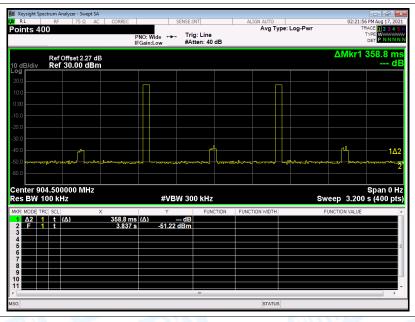

25℃		Relative Hu	midity:	55%	WHO I
AC 120V/	60Hz		The same	1	
TX Mode		130		الماليل	
uency	Power D	ensity	Limit	t	Result
(MHz)		kHz)	(dBm/3kHz)		Result
	7.10	0			
904.5		6.362			PASS
	6.87	5			
	AC 120V/	AC 120V/60Hz TX Mode Jency Power Do (dBm/3) 7.10 6.36	AC 120V/60Hz TX Mode Jency Power Density (dBm/3kHz) 7.100	AC 120V/60Hz TX Mode uency	AC 120V/60Hz TX Mode uency

903.9MHz

Attachment G—Carrier Frequency Separation Data

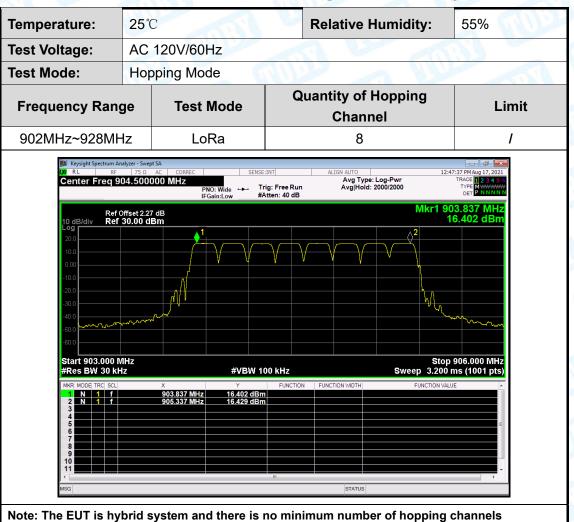
mperature:	25℃			Relative H	lumidity:	55%	
st Voltage:	AC 120V/60Hz						16
st Mode:	Hopping	Mode	MAK			Miles.	
Channel free	luency	Separat	ion Rea	d Value	Sej	paration	Limi
(MHz)			(kHz)			(kHz))
903.9			201.5			131.20	0
904.5			200.5			138.67	7
905.3			200.5			132.53	3
		Hop	ping M	ode			
			03.9 MH				
	Analyzer - Swept SA = 75 Ω AC CO 01.5000000 kHz f Offset 2.27 dB f 30.00 dBm	PNO: Wide	Trig: Free Run #Atten: 40 dB	ALIGN AUTO Avg Type: Avg Hold:>	100/100 AM	12:53:56 PM Aug 17, TRACE 1 23 TYPE MWW DET P NN kr1 201.5 k -0.143	4 5 6 ////////////////////////////////////
Marker 1 Δ 2 10 dB/div Re Re 20 0 10.0 10.0 20.0 30.0 40.0 50.0	75 Ω AC COI 01.500000 kHz	PNO: Wide IFGain:Low	Trig: Free Run	Avg Type: Avg Hold:>	100/100 AM	TRACE 123 TYPE MWAW DET PNN	, 2021 4 5 6 MWW INNN
Marker 1 Δ 2 10 dB/div Re 20.0 10.0 20.0 -10.0 -20.0 -40.0 -50.0	01.500000 kHz	PNO: Wide IFGain:Low	Trig: Free Run	Avg Type: Avg Hold:>	100/100 AM	TRACE [1/3] TYPE MAWN DET DINN [MW DET DINN	(Hz dB
Marker 1 Δ 2 10 dB/div Re 20 0 10.0 20.0 30.0 40.0 50.0 Center 904.00 #Res BW 30 H	01.500000 kHz F Offset 2.27 dB f 30.00 dBm	PNO: Wide IFGaintLow	Trig: Free Run #Atten: 40 dB	Avg Type: Avg Hold:>	ΔM 2 Sweep 1.0	Ikr1 201.5 k -0.143 Span 500.0 li00 ms (1001	45 G
Marker 1 Δ 2 10 dB/div Re Re 20 0 10.00 -10.0 -20.0 -30.0 -60.0 Center 904.00	01.500000 kHz	PNO: Wide IFGaintLow	Trig: Free Run #Atten: 40 dB	Avg Type: Avg Hold:>	ΔM 2	Ikr1 201.5 k -0.143 Span 500.0 li00 ms (1001	45 G




Attachment H—Time of Occupancy(Dwell Time) Data

- 1. All 18	Test Mode	Number of Channel	Observation Period (0.4s* Number of Channel)(s)	Max. Duration of Each Bust (s)	Number of Burst Repetition During Observation Period	Average Time of Occupancy on any Channel	Limit (s)
	Hopping Mode	8	3.2	0.05214	2	0.10428	0.4

Burst Duration


Burst Repetition During Observation Period Duration

Attachment I—Number of Hopping Frequency

Note: The EUT is hybrid system and there is no minimum number of hopping channels associated with this type of hybrid system.

----END OF REPORT-----